WorldWideScience

Sample records for ductile crack initiation

  1. Ductile crack initiation in the Charpy V-notch test

    International Nuclear Information System (INIS)

    Server, W.L.; Norris, D.M. Jr.; Prado, M.E.

    1978-01-01

    Initiation and growth of a crack in the Charpy V-notch test was investigated by performing both static and impact controlled deflection tests. Test specimens were deformed to various deflections, heat-tinted to mark crack extension and broken apart at low temperature to allow extension measurements. Measurement of the crack extension provided an estimate of crack initiation as defined by different criteria. Crack initiation starts well before maximum load, and is dependent on the definition of ''initiation''. Using a definition of first micro-initiation away from the ductile blunting, computer model predictions agreed favorably with the experimental results

  2. Detection of ductile crack initiation by acoustic emission testing

    International Nuclear Information System (INIS)

    Richter, H.; Boehmert, J.; Viehrig, H.W.

    1998-08-01

    A Charpy impact test equipment is described permitting simultaneous measurement of impact force, crack tip opening, acoustic emissions and magnetic emissions. The core of the equipment is an inverted pendulum ram impact testing machine and the tests have been performed with laterally notched, pre-fatigue ISO-V specimens made of steels of various strength and toughness properties. The tests are intended to ascertain whether the acoustic emission method is suitable for detecting steady crack initiation in highly ductile steels. (orig./CB) [de

  3. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    Science.gov (United States)

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  4. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography

    International Nuclear Information System (INIS)

    Morgeneyer, T.F.; Helfen, L.; Sinclair, I.; Proudhon, H.; Xu, F.; Baumbach, T.

    2011-01-01

    Ductile crack initiation and propagation within a naturally aged aluminium alloy sheet has been observed in situ via synchrotron radiation-computed laminography, a technique specifically adapted to three-dimensional imaging of thin objects that are laterally extended. Voids and intermetallic particles, and their subsequent evolution during ductile crack extension at different associated levels of stress triaxiality, were clearly observed within fracture coupons of a reasonable engineering length-scale, overcoming the conventional sample size limitation of computed tomography at high resolutions.

  5. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, M.R.

    1988-06-01

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  6. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  7. Determination of the initiation of ductile tearing in cracked branch pipes on the basis of a pre-determined criterion using small specimens

    International Nuclear Information System (INIS)

    Chapuliot, S.; Marie, S.

    1999-01-01

    This article describes an experimental and numerical study of the initiation conditions of ductile tearing in ferritic materials. An initial criterion J i is determined experimentally using a sufficiently thick CT specimen. The numerical and experimental aspects are then discussed for thinner CT specimen and a method is proposed for determining it in thin test samples. The local ductile tear initiation criterion, which was determined on the basis of 3D finite element calculations, was applied to a cracked branch pipe geometry subjected to out-of-plane bending to compare the load estimates at the start of propagation and the values measured during the test. The results of the comparison were highly satisfactory: the criterion is predictive. (orig.)

  8. Dynamic ductile fracture of a central crack

    Science.gov (United States)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  9. The role of ductile ligaments and warm prestress on the re-initiation of fracture from a crack arrested during thermal shock

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    The protection offered by warm prestress can be important for preserving a nuclear pressure vessel's integrity during a postulated emergency condition involving a loss of coolant, when the emergency core cooling water subjects the pressure vessel to a thermal shock. There are two aspects to the problem: (a) the initial extension of a defect into the vessel wall, and (b) the subsequent re-initiation of fracture at an arrested crack tip. This note considers the effect of warm prestress on the re-initiation of fracture from an arrested crack, and emphasizes the role of ductile ligaments. It is argued that the warm prestress concept is applicable, thus complementing the limited experimental results provided by the HSST Thermal Shock experimental programme. (orig.)

  10. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    the case in the deep cracked bend specimens. The effect is most pronounced for low levels of hardening. Ductile crack growth in mismatched specimens introduces the possibility of crack growth deviation away from the initial crack plane. This is mainly found to be controlled by the hardening level and mode of loading. Crack growth deviation is promoted by low hardening, and the effect is stronger in the deep cracked bend specimens. Paper III focuses on the effect of ductile crack growth on the near-tip stress level. In homogeneous specimens the peak stress level increases with ductile crack growth, with the most pronounced effect for small amounts of ductile crack growth. No unique stress field exists in front of the growing cracks, and both specimen size and global geometry influences the stress field, with the strongest effect for low hardening materials. In case of mismatch it is demonstrated that if the crack is forced to grow along the interface between the two materials, the effect of mismatch on the stress field is similar to the one found for stationary cracks. If crack growth deviation is allowed for the mismatch effect on the peak stress level is reduced, however, the highest stress level remains at or near the interface, and is not found in front of the current crack tip. (author)

  11. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  12. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  13. Fracture of longitudinally cracked ductile tubes

    International Nuclear Information System (INIS)

    Larsson, H.; Bernard, J.

    1978-01-01

    Various bulging factor and plasticity correction factor formulations are discussed and a new plasticity correction factor leading to a simple failure law is proposed. Failure stresses predicted by the usual Linear Elastic Fracture Mechanics formula corrected for plasticity are shown to be identical with the Dowling and Townley two-criteria approach if the relevant parameters are chosen in a suitable manner. Burst tests on AISI 304 stainless steel tubes performed at the Joint Research Centre, Ispra are described. The strengthening effect of the sealing patch was taken into account by replacing the Folias bulging factor by a smaller empirical factor determined by Bernard and Henry from fatigue crack growth tests. A flow stress sigma and a toughness Ksub(c) were derived which apply to the prediction of the onset of stable crack growth in 304 stainless steel tubes at room temperature. For other ductile materials and temperatures tentative formulae are proposed. (author)

  14. An experimental and analytical study of ductile fracture and stable crack-growth

    International Nuclear Information System (INIS)

    Rousselier, G.

    1978-01-01

    A study is described, the objectives of which were to define a numerical model for stable crack growth, to calibrate the model by tensile tests, and to obtain agreement between corresponding numerical calculations and experiments on cracked specimens. The model was based on a finite element program with a critical state at the crack tip defined by a ductility curve: equivalent plastic strain versus stress triaxiality. The curve was determined by tests on notched tensile specimens of a low alloy rotor steel. The critical states corresponded to the initiation of a crack at the centre of the specimens. Three point bend tests were also performed and experimental and numerical load displacement curves and crack growth versus displacement curves were compared. Agreement with experiments on cracked specimens was obtained by simple fittings of the 'ductility' curve in the high triaxiality area. Results are discussed and it is indicated where future progress might be made in numerical modelling of cracked bodies. (author)

  15. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    Venter, R.D.; Sinclair, A.N.; McCammond, D.

    1989-06-01

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  16. Modelling the tearing crack growth in a ductile ferritic steel using X-FEM elements

    International Nuclear Information System (INIS)

    Simatos, A.; Prabel, B.; Marie, S.; Nedelec, M.; Combescure, A.

    2012-01-01

    Extended Finite Element Method (X-FEM) is used to model a cracked structure without meshing explicitly the crack. Indeed, the crack is represented by a discontinuity of the displacement field through additional degrees of freedom using Heaviside type function or derived from the Irwin's singular fields. Initially, the stress integration in the XFEM framework supposed to divide the cut elements into sub-triangles that are conform to the crack. This was motivated in order to integrate the behaviour accurately on both sides of the crack in particular at proximity of the crack tip where singular enrichments are present. This strategy induces field projections from the usual Gauss point configuration to a variable new one that depends on the crack position in the element. For ductile fracture modelization, this approach is not applicable, because in presence of large scale yield, the projection of internal variable fields is not conservative, in particular at proximity of the crack tip. In order to circumvent this problem, a new integration strategy was proposed by B. Prabel. It consists in using 64 Gauss points that are placed without regards to the crack position. This simple integration scheme permits to take implicitly into account the crack position and the fields in the element in an accurate and consistent way. This strategy was used in problem calculation for which the plastic radius remained small. It allowed introducing the over integrated elements in the probable propagation zone, just before plastification. In the case of ductile tearing, the plasticity is not confined near the crack tip and an improvement of the proposed strategy is made. This is then used to model large ductile crack growth in a ductile ferritic steel. To validate the predictions, the modelization is compared to a second F.E. calculation using the node release technique for the crack propagation. It is then shown that the two predictions are strictly equivalents. (authors)

  17. Ductile cast irons: microstructure influence on fatigue crack propagation resistance

    Directory of Open Access Journals (Sweden)

    Mauro Cavallini

    2010-07-01

    Full Text Available Microstructure influence on fatigue crack propagation resistance in five different ductile cast irons (DCI was investigated. Four ferrite/pearlite volume fractions were considered, performing fatigue crack propagation tests according to ASTM E647 standard (R equals to 0.1, 0.5 and 0.75, respectively. Results were compared with an austempered DCI. Damaging micromechanisms were investigated according to the following procedures: - “traditional” Scanning Electron Microscope (SEM fracture surfaces analysis; - SEM fracture surface analysis with 3D quantitative analysis; - SEM longitudinal crack profile analysis - Light Optical Microscope (LOM transversal crack profile analysis;

  18. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  19. A practical method for computation of ductile crack growth by means of finite elements and parametric 3D-modelling

    International Nuclear Information System (INIS)

    Baumjohann, F.; Kroening, J.

    1999-01-01

    The present paper originates from a contribution to the safety assessment of a reactor pressure vessel (RPV). Investigations evaluating the safety against brittle fracture (exclosure of crack initiation and arrest assessments) are completed by calculations concerning ductile crack extension. Crack geometries including the expected crack extension are generated parametrically by a computer code and are used for further calculations with finite element programs. J-integrals of ductile growing cracks located between two comparative contours are determined by interpolation. The comparative contours are loaded by instationary temperature and pressure fields and are evaluated in advance. Taking the stability condition into consideration, the ductile crack extension is determined by pursuing the equilibrium between loading and crack resistance. The automatic modelling and a mathematical program processing the finite element results evaluate the crack growth of the finite element results very effectively. (orig.)

  20. Probability of crack-initiation and application to NDE

    Energy Technology Data Exchange (ETDEWEB)

    Prantl, G [Nuclear Safety Inspectorate HSK, (Switzerland)

    1988-12-31

    Fracture toughness is a property with a certain variability. When a statistical distribution is assumed, the probability of crack initiation may be calculated for a given problem defined by its geometry and the applied stress. Experiments have shown, that cracks which experience a certain small amount of ductile growth can reliably be detected by acoustic emission measurements. The probability of crack detection by AE-techniques may be estimated using this experimental finding and the calculated probability of crack initiation. (author).

  1. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  2. Crack initiation under generalized plane strain conditions

    International Nuclear Information System (INIS)

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab

  3. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    Venter, R.D.; Hoeppner, D.W.

    1985-10-01

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is J IC , but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  4. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  5. Dynamic circumferential ductile crack motion in finite length pipes with various end loadings

    International Nuclear Information System (INIS)

    Emery, A.F.; Kobayashi, A.S.; Love, W.J.; Perl, M.; Kistler, B.

    1981-01-01

    The computed time history, crack opening shape and tip velocity are presented for the ductile crack extension of circumferential cracks in finite length pipes. The pipes are loaded by: a) constant axial tension, b) constant axial displacement, c) constant end moment, and d) constant end rotation to study the effects of these significantly different types of loads. The crack extension is based upon a critical crack opening angle criterion. The results indicate that the extent of the crack movement and the extension velocity is primarily dependent upon the inertia of the moving pipe segments. With sufficient linear momentum, complete severance is obtained, while if the movement is more rotation than translation the cracks either do not extend or do so only slightly. Thus in tougher material, once it begins to extend, the crack may easily encircle the pipe while in more brittle materials it may not, since the moving segments of the pipe have not had time to develop sufficient momentum to force the continued extension of the crack into regions which are initially in compression. (orig.)

  6. Micromechanisms of ductile stable crack growth in nuclear pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, W.P.A.; Druce, S.G.

    1981-10-01

    The objective of this work was to investigate the relationship between the micromechanisms of ductile crack growth, the microstructural constituent phases present in nuclear pressure vessel steel, and the observed fracture behavior as determined by impact and fracture mechanics tests. Results from a microstructural and mechanical property comparison of an A508 Class 3 pressurized water reactor nozzle forging cutout and a 150-mm-thick A533B Class 1 plate are reported. The variation of upper-shelf toughness between the two steels and its orientation sensitivity are discussed on the basis of inclusion and precipitate distributions. Inclusion clusters in A533B, deformed to elongated disks in the rolling plane, have a profound effect on short transverse fracture properties. Data derived using the multi-specimen J-integral method to characterize the initiation of ductile crack extension and resistance to stable crack growth are compared with equivalent Charpy results. Results of the J /SUB R/ -curve analyses indicate (1) that the A533B short transverse crack growth resistance is approximately half that observed from transverse and longitudinal specimen orientations, and (2) that the A508 initiation toughness and resistance to stable crack growth are insensitive to position through the forging wall, and are higher than exhibited by A533B at any orientation in the midthickness position.

  7. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  8. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  9. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    International Nuclear Information System (INIS)

    Kadoi, Kota; Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi

    2016-01-01

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  10. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed

  11. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-10-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed.

  12. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  13. Ductile growth of crack like flawing during hydrotest; Propagacao dutil de defeitos planares durante teste hidrostatico

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jose C; Donato, Guilherme V [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Silva, Marcinei S. da; Bastian, Fernando L [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Romulo S. de [PETROBRAS/AB-RE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this paper effects of hydrostatic testing on ductile propagation of crack like flaw defects were evaluated in API X-60 steel. The model used was based on the J-tearing theory, supported by elastic - plastic fracture mechanics. The J-initiation resistance values (JIc) were determined by fracture mechanic tests using potential drop technique and compact test specimen. The JIc values were also determined from flow stress and Charpy V-notch at plateau, which are both usually available in mill-test data. Despite of being based on small database it seems it could be extended and it will be useful for future analysis. (author)

  14. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  15. Evaluation of ductile tearing in a cracked component with a simple method (Js)

    International Nuclear Information System (INIS)

    Moulin, D.; Drubay, B.; Clement, G.; Nedelec, M.

    1995-01-01

    In the nuclear industry, it is more and more usual to perform fracture assessment on detective structures made of ductile material with the help of elastoplastic' fracture mechanics relying on the parameter J. Several engineering methods have been developed in the past to calculate this parameter. These results were used to develop a practical procedure noted Js method which simply gives J as function of elastically calculated Je and a plastic correction factor. This method has been introduced in the A16 rule developed jointly by CEA-EdF and Novatome for fast breeder reactors in particular in order to evaluate the loading at crack instability taking into a account ductile tearing. The determination of initiation has already been presented. This determination of the loading at crack instability is examined through two simple but representative examples using the simplified estimation of J. Predicted loadings at crack instability are compared with experimental results. This study was carried out a part of cooperative program with the Institut de Protection et de Surete Nucleaire of the CEA. (author) 12 refs., 10 figs

  16. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  17. Effect of temperature on crack initiation in gas formed structures

    Energy Technology Data Exchange (ETDEWEB)

    Gohari, S.; Vrcelj, Z.; Sharifi, S.; Sharifishourabi, G.; Abadi, R. [Universiti Teknlogi Malaysia, Skudai (Malaysia)

    2013-12-15

    In the gas forming process, the work piece is formed by applying gas pressure. However, the gas pressure and the accompanying gas temperature can result in crack initiation and unstable crack growth. Thus, it is vital to determine the critical values of applied gas pressure and temperature to avoid crack and fracture failure. We studied the mechanism of fracture using an experimental approach and finite element simulations of a perfect aluminum sheet containing no inclusions and voids. The definition of crack was based on ductile damage mechanics. For inspection of initiation of crack and rupture in gas-metal forming, the ABAQUS/EXPLICIT simulation was used. In gas forming, the applied load is the pressure applied rather than the punching force. The results obtained from both the experimental approach and finite element simulations were compared. The effects of various parameters, such as temperature and gas pressure value on crack initiation, were taken into account.

  18. The role of crack tip opening in corrosion fatigue for the ductile ferritic steel-water system

    International Nuclear Information System (INIS)

    Tomkins, B.

    1977-01-01

    Water vapour or a water environment can dramatically reduce the fatigue strength of structural alloys, including aluminium and steel, and this reduction can be often related to the effect of the environment on crack initiation. More recently, however, under certain circumstances, it has become clear that fatigue crack growth rates can also be increased. A limited examination of crack tip openings in ductile steels under corrosion fatigue conditions, indicates that it may be possible to develop more physically based design rules for components which operate in some aqueous environments (author)

  19. Ductile crack growth resistance of PWR components. Application for structural integrity assessment

    International Nuclear Information System (INIS)

    Bethmont, M.; Eripret, C.; Le Delliou, P.; Frund, J.M.

    1995-01-01

    Structural integrity assessment of PWR components, as pressure vessel and piping, needs to evaluate the ductile crack growth resistance which is generally characterized by J resistance curves (or J-R curves) based on the path-independent J Integral. These curves are more often obtained from laboratory tests with small specimens as CT-specimens and their application to large component safety analysis could be questionable Indeed, it is well known that J-R curves could depend on the specimen size and on the loading mode (i.e. bending stress versus tensile stress) but this dependency could be different from one material to another. This means that it would depend not only on the stress-strain state but also on the actual local fracture mechanisms (i. e. the damage) occurring before the crack initiation or during the crack propagation. The purpose of this paper is to gather some results of crack growth resistance measurement studied at EDF with different materials in order to show how the effect of the parameters, as specimen geometry and mode of loading, is directly related to the local fracture mechanisms or the microstructure of the materials. For that a number of results are analysed by means of the local approach of fracture which is a very useful tool to predict quantitatively the J-R curve dependency, related to fracture mechanisms (authors). 12 refs., 9 figs

  20. A study on the ductile fracture of a surface crack, 1

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Nishio, Tamaki; Yano, Kazunori; Machida, Kenji; Miyamoto, Hiroshi

    1988-01-01

    Ductile fracture of surface crack is studied experimentally and numerically. At first, fatigue pre-crack is introduced, and the aspect ratios of the growing fatigue crack are measured. Then the ductile fracture test is carried out and the distributions of SZW and Δa are measured. It is noted that Δa is largest where φ, the angle from surface, is nearly 30deg. J integral distribution is evaluated by the finite element method, and it is shown that the J value is also the largest where φ is nearly 30deg. (author)

  1. Predicting the onset of cracks in bulk metal forming by ductile damage criteria

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Martins, Paulo A.F.

    2017-01-01

    Three different ductile damage criteria, Ayada, normalized Cockcroft and Latham and a new shear stress based criterion taking into account hydrostatic tension, are utilized for predicting the onset of cracks in various deformation processes. It is found that the Ayada criterion predicts well...... the onset of cracks when they originate from hydrostatic tension. The shear based criterion predicts cracks triggered by shear and the normalized Cockcroft and Latham criterion indicates the overall area of onset of cracks caused by either hydrostatic or shear stresses. However the prediction...... is not as accurate as the Ayada criterion for cracks caused by hydrostatic tension....

  2. Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

    International Nuclear Information System (INIS)

    Zacharopoulos, Marios

    2017-01-01

    The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr

  3. Effects of absorbed hydrogen on crack-tip ductility in the welded A516 steel

    International Nuclear Information System (INIS)

    Khattak, M.A.; Haslan, M.H.; Tamin, M.N.

    2007-01-01

    Effects of absorbed hydrogen on structure and properties of welded A516 Grade-70 steel are investigated. Emphasis is placed on ductility measure of the crack-tip plastic zone under Mode I loading. Specimens are cathodically charged in a cell with dilute sulphuric acid and corrosion inhibitor with uniform charging current density of 20 mA/ cm 2 and at different exposure time. Results indicate a change from coarse- to fine-grained microstructures in the weld region and heat affected zone (HAZ) of hydrogen-charged specimen. Well-defined ferrite-pearlite bands in the base metal are transformed into coarse-grain structure. Hardness variation along radial distance indicates higher values towards the center of the bar, possibly due to faster diffusion rate but limited solubility of hydrogen. Load-COD responses indicate that slow, stable crack propagation occurred in both base metal and HAZ. The measured provisional fracture toughness, K Q is higher for HAZ than that for the base metal. The toughness values decreases significantly for the initial three hours of hydrogen charging. The tensile fracture region in the immediate fatigue pre-crack tip forms a triangular (rough) zone due to limited constraint to free surface deformation in the thin specimen. Fracture surface of HAZ is dominated by intergranular fracture with localized cleavage facets. (author)

  4. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  5. On the influence of microscale inertia on dynamic ductile crack extension

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  6. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  7. Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility with the surrou......Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility...

  8. Ductile failure simulation of tensile plates with multiple through-wall cracks

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2009-01-01

    In this paper, failure behaviors of ductile plates with multiple cracks are simulated, finite element analyses using ABAQUS. To simulate crack coalescence or propagation of multiple cracks, a technique to reduce stresses within an finite element is proposed and implemented using user-defined subroutines provided in ABAQUS. In the proposed method, all stress components reduce to almost zero when the effective strain reaches critical values which are a function of the stress triaxiality. A main benefit of the proposed numerical scheme is its simplicity. The proposed scheme is applied to simulate multiple-cracked plate tests by Japanese researchers. Simulated maximum loads are compared with experimental ones, showing overall good agreements.

  9. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  10. Three-dimensional microstructural effects on plane strain ductile crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2006-01-01

    Ductile crack growth under mode 1, plane strain, small scale yielding conditions is analyzed. Overall plane strain loading is prescribed, but a full 3D analysis is carried out to model three dimensional microstructural effects. An elastic-viscoplastic constitutive relation for a porous plastic...

  11. Microstructural basis and crack growth theories for post-irradiation ductility loss in Nimonic PE16

    International Nuclear Information System (INIS)

    Chang, A.L.

    1982-01-01

    A study has been carried out to investigate the degradation of postirradiation ductility at reactor temperatures in Nimonic PE16, a Fe-Cr-Ni-based precipitation-hardened superalloy. Fractographic and microstructural investigations show that the grain matrix is capable of deformation and does not limit the postirradiation tensile ductility. Grain-boundary helium bubbles formed during neutron irradiation seem to be crack nucleation sites under stress. Growth and coalescence of these microcracks under stress lead to intergranular fracture. A rigid-grain fracture model is shown to be able to correlate the observed microstructures with most features of the mechanical properties, except the strain rate dependence of the ductility. By incorporating the interactions between diffusion and plastic deformation, a plastic-grain fracture model has been developed which can explain all postirradiation tensile ductility data quantitatively. 13 references

  12. Influence of material ductility and crack surface roughness on fracture instability

    International Nuclear Information System (INIS)

    Khezrzadeh, Hamed; Wnuk, Michael P; Yavari, Arash

    2011-01-01

    This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.

  13. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    Science.gov (United States)

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  14. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  15. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae Yong; Lee, Chang Hee [Hanyang University, Seoul (Korea, Republic of); Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Kwang Soo; Shim, Deog Nam [Doosan HEAVY Industries and Construction, Seoul (Korea, Republic of)

    2009-10-15

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature.

  16. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    International Nuclear Information System (INIS)

    Ryu, Jae Yong; Lee, Chang Hee; Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho; Park, Kwang Soo; Shim, Deog Nam

    2009-01-01

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature

  17. Cross-validated detection of crack initiation in aerospace materials

    Science.gov (United States)

    Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios

    2014-03-01

    A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.

  18. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1988-02-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions.

  19. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    International Nuclear Information System (INIS)

    Zahoor, A.

    1988-01-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions. (orig.)

  20. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  1. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  2. A cohesive plastic/damage-zone model for ductile crack analysis

    International Nuclear Information System (INIS)

    Zhang, C.; Gross, D.

    1995-01-01

    A cohesive plastic/damage-zone model of the Dugdale-Barenblatt type (G.I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55-129; D.S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100-104) is presented for analyzing crack growth in ductile materials with damage evolution. A semi-infinite Mode I crack in plane stress or plane stress is considered. The damage is assumed to be present in form of dispersed microvoids which are localized into a narrow strip ahead of the crack-tip. A simple damage model of the Gurson model type (A.L. Gurson, J. Eng. Mater. Technol. 99 (1977) 2-15; V. Tvergaard, Advances in Applied Mechanics, Vol. 27, Academic Press, 1990, pp. 83-151) is developed for uniaxial tension to describe the macroscopic properties of the cohesive plastic/damage-zone. Under small-scale yielding and small-scale damage conditions, a system of nonlinear integral equations for the plastic strain and the length of the cohesive plastic/damage-zone is derived. Numerical results are presented and discussed to reveal the effect of damage evolution on the ductile crack growth. (orig.)

  3. Statistical distribution of time to crack initiation and initial crack size using service data

    Science.gov (United States)

    Heller, R. A.; Yang, J. N.

    1977-01-01

    Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.

  4. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  5. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  6. Application of micromechanical models of ductile fracture initiation to reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Chaouadi, R.; Walle, E. van; Fabry, A.; Velde, J. van de; Meester, P. de

    1996-01-01

    The aim of the current study is the application of local micromechanical models to predict crack initiation in ductile materials. Two reactor pressure vessel materials have been selected for this study: JRQ IAEA monitor base metal (A533B Cl.1) and Doel-IV weld material. Charpy impact tests have been performed in both un-irradiated and irradiated conditions. In addition to standard tensile tests, notched tensile specimens have been tested. The upper shelf energy of the weld material remains almost un-affected by irradiation, whereas a decrease of 20% is detected for the base metal. Accordingly, the tensile properties of the weld material do not reveal a clear irradiation effect on the yield and ultimate stresses, this in contrast to the base material flow properties. The tensile tests have been analyzed in terms of micromechanical models. A good correlation is found between the standard tests and the micromechanical models, that are able to predict the ductile damage evolution in these materials. Additional information on the ductility behavior of these materials is revealed by this micromechanical analysis

  7. Determination of the onset of ductile crack extension in 2 1/4 Cr 1 Mo steel by multi-specimen J integral testing

    International Nuclear Information System (INIS)

    Druce, S.G.

    1982-02-01

    Results obtained at AERE Harwell as part of the first phase of the European Group on Fracture round robin activity into ductile crack initiation detection are presented and discussed. Data are analysed using the current ASTM Jsub(IC) testing procedure and by an alternative procedure. Difficulties in the definition of 'initiation' are highlighted and deficiencies of the ASTM procedure exposed. The ASTM Jsub(IC) value for 2 1/4 Cr 1 Mo steel was determined as 0.21 MN/m. The alternative procedure provides a more accurate evaluation of the 'initiation' value of J, that is, at the point of crack advance in excess of that due to crack tip blunting. Using this procedure the 'initiation' value, Jsub(i), was measured as 0.14 MN/m. (author)

  8. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  9. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  10. Ductile fracture prediction of an axially cracked pressure vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki

    1991-01-01

    In this paper, the J-value of an axially cracked cylinder under several PTS conditions are evaluated using a simple estimation scheme which we proposed. Results obtained are summerized as follow: (1) Under any PTS conditions, the effect of internal pressure is so predominant upon the J-value and dJ/da that it is very important to grasp the transient of internal pressure under any imaginable accident from the viewpoint of structural integrity. (2) Under any IP, TS, and PTS conditions, J - a/W relation shows that the J-value reaches its maximum at a certain crack depth, then drops to zero at a/W ≅ 0.9. Though the effect of inertia is not taken into account, this fact may explain the phenomena of crack arrest qualitatively. (3) The compliance of a cylindrical shell plays an important role in the fracture prediction of a pressure vessel. (4) Under typical PTS conditions, the region at the crack tip dominated by the Hutchinson-Rice-Rosengren singularity is substantially large enough to apply the J-based criterion to predict unstable ductile fracture. (author)

  11. A numerical study of crack tip constraint in ductile single crystals

    Science.gov (United States)

    Patil, Swapnil D.; Narasimhan, R.; Mishra, R. K.

    In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

  12. Fractographic observations of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Shetty, D.K.; Skidmore, A.J.

    1983-01-01

    This note reports the results of a fractographic study conducted on a group of 1T compact fracture toughness specimens of a heavy-section A508 steel denoted TSE6 tested in the ductile-brittle transition region (22 and 82 0 C). The fatigue-precracked specimens were loaded at a rapid rate (760 or 550 mm per second) to promote cleavage-crack growth and lower-bound toughness behavior. All specimens experienced unstable cleavage fracture prior to reaching a maximum in the load displacement curve. Some ductile crack growth occurred in half of the specimens. The objective of fractographic examinations was to understand the observed statistical variations in cleavage initiation by (a) locating the origins of unstable cleavage fracture in the vicinity of the fatigue-precrack or ductilerupture crack fronts, (b) identifying microstructural features associated with the triggering of cleavage, and (c) documenting characteristic fracture surface dimensions such as the extent of stable-crack growth prior to unstable cleavage (Δα) and the distance of the cleavage origin from the ductilerupture front, /chi/ (or fatigue-crack front when Δα = 0)

  13. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  14. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  15. Investigation of Ductile-to-Brittle Transition of RPV Materials by using the Pre-cracked Charpy Impact Data

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Much recent work in the field of elastic-plastic fracture mechanics has been directed to developing a mechanics-based relationship between the onset of cleavage fracture in structural components and that of Charpy V-notch specimens. The assessing processes of the cracks located in the reactor pressure vessel (RPV) is described in the ASME code Sec. III, App. G and Sec. XI, App. A. The RTNDT obtained from the impact test using standard Charpy V-notch (CVN) specimens is used as a reference temperature to assess the integrity of RPV materials. The initial RTNDT, for the Linde 80 weld, was determined by the 67.8J Charpy impact energy instead of drop weight test. Generally, Linde 80 weld has low upper-shelf energy. The initial RTNDT obtained from the Charpy impact energy curve has been considered overly conservative. Recently, master curve method has been investigated to assess the integrity of RPV materials directly. The initial RTT0 obtained from the master curve method is considered more realistic than the initial RTNDT obtained from impact test for low upper-shelf fracture toughness RPV materials. In this research, the correlation of transition regions between the master curves and the Charpy impact energy curves was investigated using the dynamic fracture toughness curve and the impact energy curve obtained from the impact test of pre-cracked Charpy (PCC) specimens. For the low toughness RPV material the ductile-to-brittle transition corresponding to the static master curve was anticipated using the invested correlation

  16. Extended Finite Element Method XFEM for ductile tearing: Large crack growth modelization based on the transition from a continuous medium to the crack via a cohesive zone model

    International Nuclear Information System (INIS)

    Simatos, A.

    2010-01-01

    This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr

  17. Risk estimation for LCF crack initiation

    OpenAIRE

    Schmitz, Sebastian; Rollmann, Georg; Gottschalk, Hanno; Krause, Rolf

    2013-01-01

    An accurate risk assessment for fatigue damage is of vital importance for the design and service of today's turbomachinery components. We present an approach for quantifying the probability of crack initiation due to surface driven low-cycle fatigue (LCF). This approach is based on the theory of failure-time processes and takes inhomogeneous stress fields and size effects into account. The method has been implemented as a finite-element postprocessor which uses quadrature formulae of higher o...

  18. Fundamental study of crack initiation and propagation

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.; Reaugh, J.E.; Moran, B.; Quinones, D.F.; Wilkins, M.L.

    1977-01-01

    Objective is to determine the fracture toughness of A533B-1 steel by computer modeling Charpy V-notch tests. A computer model of ductile fracture was developed that predicts fracture initiation. The model contains a set of material-dependent parameters obtained by computer simulations of small specimen tests. The computer calculations give detailed stress and strain histories up to the time of fracture, which are used to determine the model parameter values. The calibrated fracture model, that correctly predicts fracture initiation (and initiation energy) in the Charpy specimen, may then be used to simulate tests of accepted fracture-toughness specimens and hence obtain fracture toughness. The model parameters were calibrated to predict fracture in four different test specimens: two different notched-tension specimens, a simple tension specimen, and a precracked compact-tension specimen. The model was then used in a computer simulation of the Charpy V-notch specimen to initiate and advance a flat fracture. Results were compared with interrupted Charpy tests. Calibration of the model for two additional heat treatments of A533B-1 steel is in progress

  19. Observations of the severity of notch-root radius in initiation of subcritical crack growth

    International Nuclear Information System (INIS)

    Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.

    1981-01-01

    Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography

  20. Prediction of fracture initiation in square cup drawing of DP980 using an anisotropic ductile fracture criterion

    Science.gov (United States)

    Park, N.; Huh, H.; Yoon, J. W.

    2017-09-01

    This paper deals with the prediction of fracture initiation in square cup drawing of DP980 steel sheet with the thickness of 1.2 mm. In an attempt to consider the influence of material anisotropy on the fracture initiation, an uncoupled anisotropic ductile fracture criterion is developed based on the Lou—Huh ductile fracture criterion. Tensile tests are carried out at different loading directions of 0°, 45°, and 90° to the rolling direction of the sheet using various specimen geometries including pure shear, dog-bone, and flat grooved specimens so as to calibrate the parameters of the proposed fracture criterion. Equivalent plastic strain distribution on the specimen surface is computed using Digital Image Correlation (DIC) method until surface crack initiates. The proposed fracture criterion is implemented into the commercial finite element code ABAQUS/Explicit by developing the Vectorized User-defined MATerial (VUMAT) subroutine which features the non-associated flow rule. Simulation results of the square cup drawing test clearly show that the proposed fracture criterion is capable of predicting the fracture initiation with sufficient accuracy considering the material anisotropy.

  1. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    Science.gov (United States)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  2. The initiation of environmentally-assisted cracking in semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water

  3. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  4. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  5. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  6. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.X.; Kurtz, R.J.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  7. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue

    International Nuclear Information System (INIS)

    Huang Zhiyong; Wagner, Daniele; Bathias, Claude; Paris, Paul C.

    2010-01-01

    In the very high cycle regime (N f > 10 7 cycles) cracks can nucleate on inclusions, 'supergrains' and pores, which leads to fish-eye propagation around the defect. The initiation from an inclusion or other defect is almost equal to the total crack growth lifetime, perhaps much more than 99% of this lifetime in many cases. Integration of the Paris law allows one to predict the number of cycles to crack initiation. A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number of cycles to crack initiation. A thermo-mechanical model has been developed. In this study several fish-eyes from various materials have been observed by scanning electron microscopy, and the fractographic results analyzed as they related to the mechanical and thermo-mechanical models.

  8. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Murakawa, H. [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  9. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y; Murakawa, H [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-31

    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  10. Fundamental study of crack initiation and propagation. Annual progress report, March 1976--March 1977

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    Ductile fracture in nuclear pressure vessel steel was characterized using a computer model of material damage. The model predicts crack initiation and growth and contains constants that are set by computer simulation of the following fracture tests: the simple tension test, the circumferentially notched round tension test, the blunt-notched compact tension test, and the Charpy V-notch test. The simulations provide the stress and strain states of these tests at fracture. The major goal of our characterization program is to determine the correlation between Charpy toughness and fracture toughness

  11. Effect of T-stress on crack growth along an interface between ductile and elastic solids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2003-01-01

    For crack growth along an interface joining an elastic-plastic solid to an elastic substrate the effect of a non-singular stress component in the crack growth direction in the elastic-plastic solid is investigated. Conditions of small scale yielding are assumed, and due to the mismatch of elastic...

  12. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  13. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  14. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Norris, D.M.

    1984-11-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior.

  15. Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension

    International Nuclear Information System (INIS)

    Zahoor, A.; Norris, D.M.

    1984-01-01

    Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior

  16. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  17. Extending the XFEM approach for fast transient three-dimensional crack propagation in ductile materials

    International Nuclear Information System (INIS)

    Pelee-De-Saint-Maurice, Romains

    2014-01-01

    This PhD thesis presents numerical methods is dedicated to three-dimensional crack propagation in the framework of fast explicit structural dynamics using EUROPLEXUS software (currently abbreviated EPX, co-owned by CEA and EC/JRC). An approach based on the well-known XFEM method is proposed, representing the crack through level set functions. Special care is given to the update of the level set functions from the propagation velocity expressed on the crack edge, since the most widely used method based on the solution of Hamilton-Jacobi equations lacks robustness for fast transient crack propagations, even when level-sets are computed on an auxiliary regular finite difference grid. It is therefore chosen instead to implement a 3D approximated geometric method to update both level-sets. As far as failure mechanics is concerned, a local stress criterion on the edge of the crack, first developed by Haboussa et al., gives characteristic parameters of the material fracture. Mechanical equivalent quantities (strain, deformation) around the crack front are weighted by a Gaussian function, which gives more importance to Gauss integration points located near the crack tip. The maximum of the equivalent stress tensor near the crack tip gives the direction of the crack, and the Kanninen equation gives the crack velocity. Besides, because of the discontinuous displacement field, the numerical integration for elements cut by the crack yields performance issues. Increasing the number of quadrature points is CPU time consuming and quite hard to handle if it is chosen to change the number of points only for elements in the vicinity of the crack. Another approach tested here consists in keeping constant the number and position of quadrature points and modifying their weights in cut elements to obtain an accurate integration of several reference discontinuous fields. The proposed methods are tested and validated on significant examples, both two-dimensional, to ensure the backward

  18. Numerical analysis of ductile crack growth in a simplified nozzle model under pressurized thermoshock loading

    International Nuclear Information System (INIS)

    Kuna, M.; Guth, W.; Nguyen Huy, T.

    1990-01-01

    Cracks in nozzles are failures with a 3D geometry and therefore are a very complicated task for modelling and calculation. A very much simplified 2D model was established of nozzle cracking, which allows less different preliminary examination and a conservative (safe) assessement. The lecture explains the testing and verification of this 2D model with regard to its applicability, analysing the model's suitability for determining the thermo-elastic-plastic loads by means of FE calculations, or the J-dependent crack growth in the nozzle. (orig.) [de

  19. Degenerated graphite nodules influence on fatigue crack paths in a ferritic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-10-01

    Full Text Available ferritic to a completely pearlitic matrix, and they are widely used for many applications (e.g. wheels, gears, crankshafts in cars, exhaust manifolds, valves, flywheels, boxes bearings, hubs, shafts, valves, flanges, pipelines .... Considering the graphite elements, their morphology can be considered as degenerated when its nodularity is too low and this can be due to different causes (e.g., a partially failed nodularization process or a wrong inoculant. In this work, a ferritic DCI with degenerated nodules was obtained by means of an annealing treatment and the fatigue crack propagation resistance was investigated by means of fatigue crack propagation tests performed according to ASTM E647, focusing on the influence of degenerated graphite nodules on the fatigue crack paths. This analysis was performed both analysing the crack path profile by means of a scanning electron microscope (SEM and by means of a SEM fracture surfaces analysis

  20. The application of an atomistic J-integral to a ductile crack.

    Science.gov (United States)

    Zimmerman, Jonathan A; Jones, Reese E

    2013-04-17

    In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.

  1. Study on the fatigue crack initiation life under spherical contact

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Joo; Kim, Tae Wan [Busan National Univ., Busan (Korea, Republic of); Lee, Mun Ju [Samsung Electronics Co., Ltd., Suwon (Korea, Republic of)

    2001-08-01

    In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the prediction of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

  2. Study on the fatigue crack initiation life under spherical contact

    International Nuclear Information System (INIS)

    Cho, Yong Joo; Kim, Tae Wan; Lee, Mun Ju

    2001-01-01

    In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the prediction of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used

  3. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void...

  4. Crack Tip Flipping: A New Phenomenon yet to be Resolved in Ductile Plate Tearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2017-01-01

    Conclusive insight to the mechanics that govern so-called “crack tip flipping”remains to be revealed, but details continue to fall into place as researcher dig deeper. The work presents an overview of the latest findings and the next steps to be made....

  5. Impact initiation of explosives and propellants via statistical crack mechanics

    Science.gov (United States)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using

  6. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  7. High temperature crack initiation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien

    1994-01-01

    The study deals with crack initiation at 600 deg. C and 650 deg. C, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were updated in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the help of microstructural observations and finite element results. An identification of a 'Paris' law' for continuous cyclic loading and of a unique correlation between the initiation time and C h * for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris' law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris' law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C h * parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates decrease when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue

  8. Crack initiation at high temperature on an austenitic stainless steel

    International Nuclear Information System (INIS)

    Laiarinandrasana, L.

    1994-01-01

    The study deals with crack initiation at 600 degrees Celsius and 650 degrees Celsius, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were update in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size, monitored by electrical potential drop technique. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the helps of microstructural observations and finite elements results. An identification of a 'Paris'law' for continuous cyclic loading and of a unique correlation between the initiation time and C * k for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris'law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris'law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C * k parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for 'equivalent' creep-fatigue tests. These crack growth rates when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue Paris law predicted ones

  9. Application of stable crack growth in fracture assessment of defects in ductile materials

    International Nuclear Information System (INIS)

    Dillstroem, Peter

    2009-06-01

    This report goes through the use of methods/standards, which consider stable (J-controlled) crack growth. We have demonstrated the following: - ASME XI, App. C, App. H, which deals with analysis of stainless steel and ferritic piping, take account of stable growth. In App. C, this corresponds to the inclusion of stable growth up to Δa ∼ 10 mm. - R6-method, BS 7910:1999 and ASME XI, Code Case N-494, contains an established formalism to take account of stable growth. A prerequisite is that you have access to relevant and authentic material data in the form of fracture resistance K k /J k and J r curves. - All of the above methods/standards are applicable in the nuclear context. We reported also that required to produce relevant and valid data (fracture resistance K k /J k and J r curves) to be used for the analysis of stable growth. This report does not specify how much stable crack that can be counted at a Safety Assessment

  10. Evaluation of the probability of crack initiation and crack instability for a pipe with a semi-elliptical crack

    International Nuclear Information System (INIS)

    Le Delliou, P.; Hornet, P.

    2001-01-01

    This paper presents some work conducted at EDF R and D Division to evaluate the probability that a semi-elliptical crack in a pipe not only initiates but also propagates when submitted to mechanical loading such as bending and pressure combined or not with a thermal shock. The first part is related to the description of the mechanical model: the simplified methods included in the French RSE-M Code used to evaluate the J-integral as well as the principle of the determination of the crack propagation. Then, the way this deterministic approach is combined to a reliability code is described. Finally, an example is shown: the initiation and the instability of a semi-elliptical crack in a pipe submitted to combined pressure and bending moment. (author)

  11. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model

  12. Evaluations of environmental effect on micro crack initiation and propagation by surface observations of fatigue specimens

    International Nuclear Information System (INIS)

    Fujikawa, Ryosuke; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    Fatigue life of nuclear facilities tends to be decreased by the influence of reactor coolant, which is called environmental effect. The effect accelerates crack growth rate but the influence for crack initiation is not clarified. This study intends to discuss the environmental effect in crack initiation. The crack length and the number of cracks are measured from the investigation of fatigue test specimens in reactor coolant and air. The behavior of crack initiation is revealed from the measurement of number of cracks, crack sizes and fatigue life. From this study, environmental effect of reactor coolant is considered to influence crack initiation and increase the number of micro crack. It is also estimated that the coalescence of cracks influences the acceleration of crack growth. (author)

  13. A new technique for detection of dynamic crack initiation

    International Nuclear Information System (INIS)

    Miya, K.; Yanagi, H.; Someya, K.

    1986-01-01

    A new test device was constructed to measure dynamic fracture toughness using electromagnetic force as a dynamic load and a laser system for the detection of load-line deflection. This method provides several advantages with respect to load control, high strain rate and easy instrumentation of the test device. Using the device, experiments on the dynamic fracture were performed with use of edge-cracked three point bending specimens which were made from the nuclear pressure vessel material A508cl.3. The present paper reports on the characteristic feature of dynamic fracture, the measuring technique of dynamic loading and deflection, the detection of dynamic crack initiation and fractographic observation. The detection of the dynamic crack initiation was made possible by the application of an AC electrical potential method that employs a lock-in amplifier driven by a demodulation mode of signal averager and guarantees a fast response to the crack initiation. It was found that the fracture was initiated after unloading of the electromagnetic force is finished, in other words, the fracture was caused by an inertia force and the dynamic fracture toughness Jsub(Id) of the test material was elevated with the increasing loading rate. (orig.)

  14. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  15. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  16. Energetic approach for ductile tearing

    International Nuclear Information System (INIS)

    Marie, St.

    1999-01-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J i tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G fr is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J i and G fr , intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  17. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  18. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  19. Fatigue crack initiation and growth life prediction with statistical consideration

    International Nuclear Information System (INIS)

    Kwon, J.D.; Choi, S.H.; Kwak, S.G.; Chun, K.O.

    1991-01-01

    Life prediction or residual life prediction of structures or machines is one of the most strongly world wide needed problems as requirement in the stage of slowly developing economy which comes after rapidly and highly developing stage. For the purpose of statistical life prediction, fatigue test was conducted under the 3 stress levels, and for each stress level, 20 specimens are used. The statistical properties of the crack growth parameter m and C in the fatigue crack growth law of da/dN = C(ΔK) m , and the relationship between m and C, and the statistical distribution pattern of fatigue crack initiation, growth and fracture lives can be obtained by experimental results

  20. Ductile fracture behavior of 6-inch diameter type 304 stainless steel and STS 42 carbon steel piping containing a through-wall or part-through crack

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro; Kaneko, Tadashi; Yokoyama, Norio.

    1986-05-01

    The double ended guillotine break philosophy in the design base accident of the nuclear power plant is considered to be overly conservative from the view point of piping design. Through the past experiences and developments of the fabrication, inspection, and operation of nuclear power plants, it has been recognized that the Leak-Before-Break (LBB) concept can be justified in the LWR pressure boundary pipings. In order to verify the LBB concept, extensive experimental and theoretical works are being conducted in many countries. Furthermore, a revised piping design standard, in which LBB concept is introduced, is under preparation in Japan, U.S.A., and European countries. At JAERI, a research program to investigate the unstable ductile fracture behavior of LWR piping under bending load has been carried out as a part of the LBB verification researches since 1983. This report summarizes the result of the ductile fracture tests conducted at room temperature in 1983 and 84. The 6-inch diameter pipes of type 304 stainless steel and STS 42 carbon steel pipe with a through-wall or part-through crack were tested under bending load with low or high compliance condition at room temperature. Pipe fracture data were obtained from the test as regards to load- displacement curve, crack extension, net section stress, J-resistance curve, and so on. Besides, the influence of the compliance on the fracture behavior was examined. Discussions are performed on the ductile pipe fracture criterion, flaw evaluation criterion, and LBB evaluation method. (author)

  1. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  2. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  3. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  4. Multiple-shock initiation via statistical crack mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  5. Experimental evidence and physical models of fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří

    2016-01-01

    Roč. 91, OCT (2016), s. 294-303 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GA13-23652S; GA ČR GA13-32665S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Crack initiation * Persistent slip band * Point defects * Extrusions * Intrusions Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  6. An analysis method for fatigue crack initiation on geometrical singularities

    International Nuclear Information System (INIS)

    Amzallag, C.; Bernard, J.L.; Pellissier-Tanon, A.; Vassal, J.M.

    1982-05-01

    For studying the significance of defects a promising point of view is to separate fatigue crack initiation and propagation. Comparing the works done on these two stages it appears that relatively few has been done on the first one. This presentation shows how this stage can be evaluated by using appropriate criteria. The validation of a criterion through experimental data obtained on actual and simulated singularities for different specimen geometries is presented

  7. Case Study of Crack Initiation from Bi-material Notches

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 449-452 ISSN 1013-9826. [Fracture and Damage Mechanics /9./. Nagasaki, 20.09.2010-22.09.2010] R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : Crack initiation * bi-material notch * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Fatigue crack initiation – The role of point defects

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří

    2014-01-01

    Roč. 65, AUG (2014), s. 18-27 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/2371; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Fatigue crack initiation * Point defects * Persistent slip band * Intrusion * Extrusion Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  9. Zircaloy-4 stress corrosion by iodine: crack kinetics and influence of irradiation on the crack initiation

    International Nuclear Information System (INIS)

    Serres, A.

    2008-01-01

    radiation-induced hardening is observed. The microstructural deformation mode of proton irradiated Zircaloy-4 strained in the transverse direction is basal channeling, and deformation is localized in macroscopic deformation bands. The critical resolved shear stresses of the basal and prismatic gliding systems are reversed by proton-irradiation. The dislocation loops microstructure, the hardening, and the deformation modes of neutron-irradiated Zircaloy-4 are fairly well simulated by proton-irradiation. Proton-irradiation induces a significant increase of the I-SCC crack initiation susceptibility, after transverse tensile testing. At low iodine concentrations, cracks initiate on the macroscopic deformation bands, and when there is an increase in the iodine concentration, the level of local deformation necessary to crack initiation decreases. (author)

  10. Validity limits in J-resistance curve determination: A computational approach to ductile crack growth under large-scale yielding conditions. Volume 2

    International Nuclear Information System (INIS)

    Shih, C.F.; Xia, L.; Hutchinson, J.W.

    1995-02-01

    In this report, Volume 2, Mode I crack initiation and growth under plane strain conditions in tough metals are computed using an elastic/plastic continuum model which accounts for void growth and coalescence ahead of the crack tip. The material parameters include the stress-strain properties, along with the parameters characterizing the spacing and volume fraction of voids in material elements lying in the plane of the crack. For a given set of these parameters and a specific specimen, or component, subject to a specific loading, relationships among load, load-line displacement and crack advance can be computed with no restrictions on the extent of plastic deformation. Similarly, there is no limit on crack advance, except that it must take place on the symmetry plane ahead of the initial crack. Suitably defined measures of crack tip loading intensity, such as those based on the J-integral, can also be computed, thereby directly generating crack growth resistance curves. In this report, the model is applied to five specimen geometries which are known to give rise to significantly different crack tip constraints and crack growth resistance behaviors. Computed results are compared with sets of experimental data for two tough steels for four of the specimen types. Details of the load, displacement and crack growth histories are accurately reproduced, even when extensive crack growth takes place under conditions of fully plastic yielding. A description of material resistance to crack initiation and subsequent growth is essential for assessing structural integrity such as nuclear pressure vessels and piping

  11. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions

    Science.gov (United States)

    Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao

    2018-02-01

    Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.

  12. The role of extrusions and intrusions in fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Mazánová, Veronika; Heczko, Milan; Petráš, Roman; Kuběna, Ivo; Casalena, L.; Man, Jiří

    2017-01-01

    Roč. 185, NOV (2017), s. 46-60 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : Extrusion * Fatigue crack initiation * Intrusion * Persistent slip marking * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016

  13. Investigation on the Crack Initiation of V-Shaped Notch Tip in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.

  14. Analytical description of brittle-to-ductile transition in bcc metals. Nucleation of dislocation loop at the crack tip

    International Nuclear Information System (INIS)

    Voskoboinikov, R.E.

    2002-03-01

    Nucleation of dislocation loop at the crack tip in a material subjected to uniaxial loading is investigated. Analytical expression for the total energy of rectangular dislocation loop at the crack tip is found. Dependence of the nucleation energy barrier on dislocation loop shape and stress intensity factor at the crack tip is determined. It is established that the energetic barrier for nucleation of dislocation loop strongly depends on the stress intensity factor. Nucleation of dislocation loop is very sensitive to stress field modifiers (forest dislocations, precipitates, clusters of point defects, etc) in the crack tip vicinity. (orig.)

  15. Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach

    National Research Council Canada - National Science Library

    Liu, C

    2001-01-01

    The objectives in this report are to: determine the inherent critical initial crack size in a particulate composite material, determine the statistical distribution function of the inherent critical crack size, normal distribution, two...

  16. Crack initiation through vibration fatigue of small-diameter pipes

    International Nuclear Information System (INIS)

    Comby, R.; Thebault, Y.; Papaconstantinou, T.

    2002-01-01

    Socket welds are used extensively for small bore piping connections in nuclear power plant systems. Numerous fatigue-related failures occurred in the past ten years mainly on safeguard systems and continue to occur frequently, showing that corrective actions did not take into account all aspects of the problem. Destructive examination of cracked small bore piping connections allowed a better understanding of failure mechanisms and a prediction of crack initiation site depending on nozzle fittings such as run pipe and small bore pipe thickness. A three-dimensional finite element model confirmed the conclusions of the lab examinations. For thick run pipes, it was shown that the failure tend to initiate predominantly at the socket weld toe or at the root, depending on the respective thickness of coupling and small bore pipe. Some additional studies, based on RSE-M code, are in progress in order to determine the maximum stresses location. Lessons learned through these investigations led to optimise the in-service inspection scope and to define solutions to be carried out to prevent failure of ''susceptible'' small bore pipe connections. Since July 2000, a large program is in progress to select all ''susceptible'' small bore pipes in safety-related systems and to apply corrective measures such as piping modifications or system operational modifications. (authors)

  17. A comparison of conventional local approach and the short crack approach to fatigue crack initiation at a notch

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Narayanaswami; Leroy, Rene; Tougui, Abdellah [Laboratoire de Mecanique et Rheologie, Universite Francois Rabelais de Tours, Polytech Tours, Departement Mecanique et Conception de Systemes, Tours (France)

    2009-09-15

    Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718

    International Nuclear Information System (INIS)

    Alexandre, F.

    2004-03-01

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  19. Studies on the disbonding initiation of interfacial cracks.

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Brian J. (Lehigh University, Bethlehem, PA); Pearson, Raymond A. (Lehigh University, Bethlehem, PA)

    2005-08-01

    With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believed to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub

  20. Unstable ductile fracture conditions in upper shelf region

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Kubo, Takahiro

    1985-01-01

    The phenomenon of unstability of ductile fracture in the upper shelf region of a forged steel for nuclear reactor pressure vessels A508 Cl. 3 was studied with a large compliance apparatus, whose spring constants were 100, 170 and 230 kgf/mm, at the test temperatures of 100, 200 and 300 0 C and at the loading rates of 2, 20 and 200 mm/min in the crosshead speed. The main results obtained are as follows: (1) The fracture modes of the specimens consisted of (a) stable fracture, (b) unstable fracture which leads to a complete fracture rapidly and (c) quasiunstable fracture which does not lead to a complete fracture though a rapid extension of ductile crack takes place. (2) Side groove, high temperature or small spring constant made a ductile crack more unstable. (3) High temperature or large spring constant made the occurrence of quasiunstable fracture easier. (4) Quasiunstable ductile fracture took place before the maximum load, that is, at the J integral value of about 10 kgf/mm. The initiation of a microscopic ductile crack, therefore, seems to lead to quasiunstable fracture. (5) The concept that unstable ductile fracture takes place when Tsub(app) exceeds Tsub(mat) seems applicable only to the case in which unstable ductile fracture takes place after the maximum load has been exceeded. (author)

  1. Workshop on initiation of stress corrosion cracking under LWR conditions: Proceedings

    International Nuclear Information System (INIS)

    Nelson, J.L.; Cubicciotti, D.; Licina, G.J.

    1988-05-01

    A workshop titled ''Initiation of Stress Corrosion Cracking under LWR Conditions'' was held in Palo Alto, California on November 13, 1986, hosted by the Electric Power Research Institute. Participants were experts on the topic from nuclear steam supply and component manufacturers, public and private research laboratories, and university environments. Presentations included discussions on the definition of crack initiation, the effects of environmental and electrochemical variables on cracking susceptibility, and detection methods for the determination of crack initiation events and measurement of critical environmental and stress parameters. Examination of the questions related to crack initiation and its relative importance to the overall question of cracking of LWR materials from these perspectives provided inputs to EPRI project managers on the future direction of research efforts designed to prevent and control cracking. Thirteen reports have been cataloged separately

  2. Effect of sized and specimen geometry on the initiation and propagation of the ductile fracture

    International Nuclear Information System (INIS)

    Frund, J.M.; Marini, B.; Bethmont, M.

    1994-02-01

    Strength to the fracture of the pipe in PWR has to be justified with mechanical analyses. These tests are based on the strength to ductile fracture of steels which are tested in lab. The values of resistance to fracture are obtained through tensile tests on CT specimens (determination of J-R curves). The purpose of this study is to justify the sizes of the specimens which have to be used to characterize the strength to ductile fracture of steel in secondary pipes. Tests were conducted on 0,5T-CT, 1T-CT and 2T-CT specimens. Two materials with different suffer contents were studied. The test results show that the JO,2 values gotten from the different specimens are similar. But the strength to ductile fracture in 2T-CT specimens in lower than the one measured in 0,5t-CT and 1T-CT specimens. The surface of fracture of the different specimens displays splits perpendicular to the notch and parallel to the sheet surface. These splits are produced by the separation of the manganese sulfur inclusions. The effect notes on the J-R curves seems to be relevant to these splits. The reason why these splits might be responsible for a decrease of the tearing modulus are not clearly defined up to this point. The results which have been published show the importance of the geometry effects (presence or not of lateral notches...) and the loading mode on the strength to ductile fracture. We note that the curves determined from tests on CT specimens are conservative. A few preliminary studies showed that the geometry effects on resistance to fracture can be studied and explained by using local approach methods. The Rousselier modeling is useful to explain the behaviour of ferritic steels in ductile fracture. (authors). 20 refs., 7 figs., 5 tabs

  3. On crack initiation in notched, cross-plied polymer matrix composites

    Science.gov (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  4. Effect of yield stress matching on ductile fracture behavior of girth welds for X line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hiroyuki; Hagiwara, Naoto [Tokyo Gas Co., Ltd. (Japan)

    2005-07-01

    This paper describes the effects of yield stress matching on the ductile fracture behavior of girth welded joints for X linepipes. Three welded joints were made on an X line pipe using several consumables to obtain about a 20% overmatched, even matched and about a 20% under matched weld metal. For these three welded joints, curved wide plate tensile tests were then conducted with a surface notch in the weld metal. To determine the ductile crack initiation from the surface notch, these tests employed a direct-current electric potential (d-c E P) method. Crack opening displacement, gauge length strain and local strain adjacent to the surface notch were also measured. The ductile crack initiation was successfully detected using the d-c E P method. The yield stress matching significantly affected the ductile crack initiation and fracture behavior, that is, the overmatched welded joint had a higher resistance to ductile fracture than that of the under matched welded joint. The allowable strength matching level was determined from the relationship between the strength matching and the gauge length strain at the ductile crack initiation detected using the d-c E P method. (author)

  5. A new in situ technique for studying deformation and fracture in thin film ductile/brittle laminates

    International Nuclear Information System (INIS)

    Hackney, S.A.; Milligan, W.W.

    1991-01-01

    A new technique for studying deformation and fracture of thin film ductile/brittle laminates is described. The laminates are prepared by sputtering a brittle coating on top of an electropolished TEM thin foil. The composites are then strained in situ in the TEM. In this preliminary investigation, the composites consisted of a ductile aluminum substrate and a brittle silicon coating. Cracks in the brittle film grew discontinuously in bursts several micrometers in length. The crack opening displacement initiated plastic deformation in the ductile film, thus dissipating energy and allowing crack arrest. The interface was well bonded, and delamination was not observed. Due to the good interfacial bond and the crack opening behind the crack tip, it was possible to study very large plastic deformations and ductile fracture in the aluminum in situ, without buckling of the foil. The possibility of micromechanical modeling of the fracture behavior is briefly discussed. (orig.)

  6. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  7. Analysis of fatigue crack initiation in cycled austempered ductile cast irons

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Dluhoš, J.; Zouhar, Michal; Ševčík, Martin

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2337-2346 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI * Finite element modelling * Neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  8. Ductile fracture theories for pressurised pipes and containers

    Science.gov (United States)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  9. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Lee, Joon Seong; Kwak, Sang Log; Kim, Young Jin; Park, Youn Won

    2001-01-01

    In order to improve leak-before-break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but crack initiation cycle was higher than the experimental result

  10. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    Science.gov (United States)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of

  11. Ductile failure modeling

    DEFF Research Database (Denmark)

    Benzerga, Ahmed Amine; Leblond, Jean Baptiste; Needleman, Alan

    2016-01-01

    Ductile fracture of structural metals occurs mainly by the nucleation, growth and coalescence of voids. Here an overview of continuum models for this type of failure is given. The most widely used current framework is described and its limitations discussed. Much work has focused on extending void...... growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic...... anisotropy, or the influence of nonlocal effects that bring a material size scale into the models. Often the voids are not present in the material from the beginning, and realistic nucleation models are important. The final failure process by coalescence of neighboring voids is an issue that has been given...

  12. Detection and closure measurement of short fatigue crack initiated at notch root

    International Nuclear Information System (INIS)

    Lee, Jong-Hyung; Kobayashi, Hideo

    1985-01-01

    Short fatigue cracks initiated at the notch root were successfully detected at a fairly high accuracy by the ultrasonic amplitude calibration method for the notched compact specimens of an A508-3 steel. Crack closure measurements by the ultrasonic and back-face strain compliance methods were also performed. Crack growth characteristics at the notch root are similar to those of delyed retardation caused by a single peak overload. Also, transitional behavior from short cracks to long cracks was interpreted in terms of effective stress intensity ΔKsub(eff). The relation between crack growth rate da/dN and ΔKsub(eff) for short cracks shows a fairly good agreement with those for long cracks. (author)

  13. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  14. Athermal brittle-to-ductile transition in amorphous solids.

    Science.gov (United States)

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  15. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  16. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Goak, S. R.; Kim, Y. J.; Lee, J. S.; Park, Y. W.

    2000-01-01

    In order to improve LBB(Leak-Before-Break) methodology, more precisely the crack growth evaluation, a benchmark problem was proposed by the CEA Saclay. The aim of this benchmark analysis was to evaluate the crack growth in a notched pipe under cyclic bending loads. The proposed benchmark analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result

  17. Crack initiation and fracture features of Fe–Co–B–Si–Nb bulk metallic glass during compression

    Directory of Open Access Journals (Sweden)

    S. Lesz

    2016-01-01

    Full Text Available The aim of the paper was investigation crack initiation and fracture features developed during compression of Fe-based bulk metallic glass (BMG. These Fe-based BMG has received great attention as a new class of structural material due to an excellent properties (e.g. high strength and high elasticity and low costs. However, the poor ductility and brittle fracture exhibited in BMGs limit their structural application. At room temperature, BMGs fails catastrophically without appreciable plastic deformation under tension and only very limited plastic deformation is observed under compression or bending. Hence a well understanding of the crack initiation and fracture morphology of Fe-based BMGs after compression is of much importance for designing high performance BMGs. The raw materials used in this experiment for the production of BMGs were pure Fe, Co, Nb metals and nonmetallic elements: Si, B. The Fe–Co–B–Si–Nb alloy was cast as rods with three different diameters. The structure of the investigated BMGs rod is amorphous. The measurement of mechanical properties (Young modulus - E, compressive stress - σc, elastic strain - ε, unitary elastic strain energy – Uu were made in compression test. Compression test indicates the rods of Fe-based alloy to exhibit high mechanical strength. The development of crack initiation and fracture morphology after compression of Fe-based BMG were examined with scanning electron microscope (SEM. Fracture morphology of rods has been different on the cross section. Two characteristic features of the compressive fracture morphologies of BMGs were observed. One is the smooth region. Another typical feature of the compressive fracture morphology of BMGs is the vein pattern. The veins on the compressive fracture surface have an obvious direction as result of initial displace of sample along shear bands. This direction follows the direction of the displacement of a material. The formation of veins on the

  18. Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-09-01

    Full Text Available This paper explores the fracture process based on finite element simulation. Both probabilistic and deterministic methods are employed to model crack initiation, and several commonly used criteria are utilized to predict crack growth. It is concluded that the criteria of maximum tensile stress, maximum normal stress, and maximum Mises stress, as well as the Coulomb-Mohr criterion are able to predict the initiation of the first crack. The mixed-mode criteria based on the stress intensity factor (SIF, energy release rate, and the maximum principal stress, as well as the SIF-based maximum circumferential stress criterion are suitable to predict the crack propagation.

  19. Crack initiation behaviors of metallic walls subjected to high heat flux expected at plasma disruption

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Uno, Masayoshi; Seki, Masahiro.

    1989-01-01

    Experimental and numerical studies were performed to investigate crack initiation behavior near a surface of stainless steel and tungsten when subjected to extremely high heat flux. The improved electron beam test facility was used as the heat source. Two-dimensional thermal and elasto-plastic stress analyses were also performed. From the results for stainless steel, micro-cracks about 0.1 mm deep only initiated in the resolidified layer along dendrites. No cracks propagated into the non-melted zone, and repeated heating of up to 20 times did not affect the depth and population of the cracks. According to the elasto-plastic stress analyses, no fatigue cracks were expected. Cracks with a depth of more than a few millimeters were observed in a tungsten plate. The cracks initiated at a boundary between heated and unheated areas. They grew into the non-melted zone, and curved towards the center part of the heated area. The elasto-plastic stress analyses indicated that the cracks were initiated due to the residual tensile strain after heated at the surface of the test specimen. When the heat flux was repeated, the cracks propagated and penetrated to the rear side of the test specimen in several repetition. (author)

  20. Ductile-brittle behavior at the (110)[001] crack in bcc iron crystals loaded in mode I

    Czech Academy of Sciences Publication Activity Database

    Prahl, Jakub; Machová, Anna; Spielmannová, Alena; Karlík, M.; Landa, Michal; Haušild, P.; Lejček, Pavel

    2010-01-01

    Roč. 77, č. 2 (2010), s. 184-192 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GA101/07/0789; GA AV ČR IAA1010414 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : Fe–3wt.%Si single crystals * crack * dislocation emission * twinning Subject RIV: JG - Metallurgy Impact factor: 1.571, year: 2010 http://journals1.scholarsportal.info/details.xqy?uri=/00137944/v77i0002/184_dbatciiclimi.xml

  1. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  2. Ductile failure X-prize.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Wellman, Gerald William; Emery, John M.; Ostien, Jakob T.; Foster, John T.; Cordova, Theresa Elena; Crenshaw, Thomas B.; Mota, Alejandro; Bishop, Joseph E.; Silling, Stewart Andrew; Littlewood, David John; Foulk, James W., III; Dowding, Kevin J.; Dion, Kristin; Boyce, Brad Lee; Robbins, Joshua H.; Spencer, Benjamin Whiting

    2011-09-01

    Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

  3. Energetic approach for ductile tearing; Approche energetique de la dechirure ductile

    Energy Technology Data Exchange (ETDEWEB)

    Marie, St

    1999-07-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J{sub i} tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G{sub fr} is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J{sub i} and G{sub fr}, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  4. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    Science.gov (United States)

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  5. Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy

    Science.gov (United States)

    2014-09-01

    concepts of fracture mechanics. Corrosion crack initiation or growth can develop when exposed to continuous or intermittent humid environment during...act as nucleation sites. For many materials of the structure such as Al, steel the growth of fatigue cracks from corrosion pit stands legitimate...critical or rather threshold values below which the nucleation of fatigue crack is not possible [6]. Under certain conditions that prevail on

  6. Effect of variable load on crack initiation microalloyed steel S 690-QL

    Directory of Open Access Journals (Sweden)

    M. Burzić

    2015-01-01

    Full Text Available The accumulation of damage in the form of initiation and growth of micro-cracks is the first stage of destruction that ends when the merger microcracks form macro cracks. Cracks formed in the cycle number N =104 - 105 are the result of low cycle fatigue. From the need to evaluate low cycle fatigue life was carried out to investigate the low cycle fatigue microalloyed high-strength steel S690QL in the heat-treated.

  7. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test

    Science.gov (United States)

    Thompson, R. G.; Genculu, S.

    1983-01-01

    The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.

  8. Study of initiation and growth of stress corrosion cracks. Quantitative characterization and modeling

    International Nuclear Information System (INIS)

    Peyrat, Christine

    1997-01-01

    A phenomenological study of Stress Corrosion Cracking (SCC) cracks initiation and growth was carried out on a Z 2 CN 18.10 stainless steel in a boiling aqueous magnesium chloride solution at 153 deg. C. The characterization method exploits the morphological information (cracks shape and size distribution) available on a specimen after SCC test. This method, independent of any mechanistic hypothesis, led to the analytical representation of the growth rate of a given crack as a function of its depth and of the density of deeper cracks. The presence of this last parameter could be the expression of a 'shielding effect' of mechanical origin, exerted by the cracks of large size. A 'true initiation' rate was calculated by an extrapolation based on the analytical expression of the growth rate. This analytical representation of cracks initiation and growth accounts for the saturation observed in the experimental determination of the 'apparent initiation'. As time goes, the number of cracks deeper than a given threshold depth tends towards a limit which depends very strongly on the chosen threshold. This saturation effect can be interpreted as exclusively due to the way the small cracks propagate, as the 'true initiation' rate can be expressed versus time by a simple power law. In the case of slow strain rate tests, it is shown that the kinetic parameters characteristic of initiation and growth depend on the applied elongation rate. In particular, the initial crack growth rate increases with elongation rate. The validity domains of the proposed expressions have been specified by means of SCC tests carried out under different types of mechanical loading. (author) [fr

  9. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  10. Ring ductility of irradiated Inconel 706 and Nimonic PE16

    International Nuclear Information System (INIS)

    Huang, F.H.; Fish, R.L.

    1984-01-01

    The tensile ductility of fast neutron-irradiated, precipitation-hardened alloys Inconel 706 and Nimonic PE16 has been observed to be very low for certain test conditions. Explanations for the low ductility behavior have been sought by examination of broken tensile specimens with microscopy and other similar techniques. A ring compression test provides a method of evaluating the ductility of irradiated cladding specimens. Unlike the conventional uniaxial tensile testing in which the tensile specimen is deformed uniformly, the ring specimen is subjected to localized bending where the crack is initiated. The ductility can be estimated through an analysis of the bending of a ring in terms of strain hardening. Ring sections from irradiated, solution-treated Inconel 706 and Nimonic PE16 were compressed in the diametral direction to provide load-deflection records over a wide range of irradiation and test temperatures. Results showed that ductility in both alloys decreased with increasing test temperatures. The poorest ductility was exhibited at different irradiation temperatures in the two alloys - near 550 0 C for PE16 and 460 to 520 0 C for Inconel 706. The ring ductility data indicate that the grain boundary strength is a major factor in controlling the ductility of the PE16 alloy

  11. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias

    2015-01-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  12. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Li, Xiantao

    2014-01-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  13. Prevention of crack initiation in valve bodies under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, J.; Coppolani, P.

    1996-12-01

    On site and testing experience has shown that cracking in valves affects mainly the stellite hardfacing on seats and discs but may also be a concern for valve bodies. Metallurgical investigations conducted by EDF laboratories on many damaged valves have shown that most of the damage had either a chemical, manufacturing, or operating origin with a strong correlation between the origins and the type of damage. The chemical defects were either excess ferritic dilution of stellite or excess carburizing. Excess carburizing leads to a too brittle hardfacing which cracks under excessive stresses induced on the seating surfaces, via the stem, by too high operating thrusts. The same conditions can also induce cracks of the seats in the presence, in the hardfacing, of hidden defects generated during the welding process. Reduction of the number of defects results first from controls during manufacturing, mainly in the thickness of stellite. On the other hand, maintenance must be fitted to the type of defect. In-situ lapping may lead to release of cobalt, resulting in contamination of the circuit. Furthermore, it is ineffectual in the case of a crack through the seating surface, as is often found on globe valves. The use of new technologies of valves with removable seats and cobalt-free alloys solves permanently this kind of problem.

  14. Corrosion initiation and propagation in cracked concrete - a literature review

    NARCIS (Netherlands)

    Pacheco, J.; Polder, R.

    2012-01-01

    The major degradation mechanism in civil engineering concrete structures is corrosion of reinforcement due to chloride penetration. Corrosion reduces serviceability and safety due to cracking and spalling of concrete and loss of steel cross section. Recently, service life design has moved from

  15. An energy analysis of crack-initiation and arrest in epoxy

    Science.gov (United States)

    Chudnovsky, A.; Kim, A.; Bosnyak, C. P.

    1992-01-01

    The objective of this work is to study fracture processes such as crack initiation and arrest in epoxy. A compact tension specimen with displacement-controlled loading is employed to observe multiple crack initiations and arrests. The energy release rate at crack initiation is significantly higher than that at crack arrest, as has been observed elsewhere. In this study, the difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in strength theory, is conventionally attributed to the statistics of defects which control the fracture process. Triangular shaped ripples, deltoids, are formed on the fracture surface of the epoxy during the slow sub-critical crack growth, prior to the smooth mirrorlike surface characteristic of fast cracks. The deltoids are complimentary on the two crack faces which excludes any inelastic deformation from consideration. The deltoids are analogous to the ripples created on a river surface downstream from a small obstacle. However, in spite of the expectation based on this analogy and the observed scale effect, there are no 'defects' at the apex of the deltoids detectable down to the 0.1 micron level. This suggests that the formation of deltoids during the slow process of subcritical crack growth is an intrinsic feature of the fracture process itself, triggered by inhomogeneity of material on a submicron scale. This inhomogeneity may be related to a fluctuation in the cross-link density of the epoxy.

  16. Determination and demarcation of fatigue crack initiation phase in rotating bending condition

    International Nuclear Information System (INIS)

    Pasha, R.A.; Rehman, K.; Shah, M.

    2012-01-01

    In engineering applications, components often experience cyclic loading and therefore, have crack initiation propagation phase. In this research work experimental demarcation of fatigue crack initiation has been investigated. Initiation phase of fatigue life of Aluminium was determined by using single and two step fatigue loading test on four point rotating bending fatigue testing machine. Experimental data is used to determine the distinction between the initiation and propagation phase. Initiation phase is determined at different stress levels. The obtained results demonstrate the effect of stress level on initiation phase and propagation phase. (author)

  17. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model

    International Nuclear Information System (INIS)

    Raquet, O.

    1994-01-01

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl 2 aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a 'riddle' for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author)

  18. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  19. High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Directory of Open Access Journals (Sweden)

    S. Foletti

    2013-10-01

    Full Text Available This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept.

  20. Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures

    Directory of Open Access Journals (Sweden)

    Wada Kentaro

    2018-01-01

    Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.

  1. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  2. Evaluation of initiation behavior of stress corrosion cracking for type 316L stainless steel in high temperature water. Behavior of crack initiation and effects of distribution of plastic strain on crack initiation

    International Nuclear Information System (INIS)

    Miura, Yasufumi; Miyahara, Yuichi; Kako, Kenji; Sato, Masaru

    2011-01-01

    It is known that the initiation of stress corrosion cracking (SCC) in components such as the reactor core shroud and primary loop re-circulation piping made of L-grade stainless steel is affected by the properties of surface work hardened layer. Therefore, it is important to clarify the effect of the hardened layer on SCC initiation behavior. In this study, creviced bent beam (CBB) test using specimens made of Type 316L stainless steel with controlled distribution of surface work hardened layer was conducted in a simulated BWR environment in order to evaluate the effect of the controlled layer on SCC initiation behavior. The results obtained are as follows; (1) Micro intergranular SCC of low carbon stainless steel was initiated in 50 hours. (2) In this SCC test, it was found that only micro cracks whose depths were smaller than 50 μm were observed until 250 hours and cracks whose depths were larger than 50 μm were observed after 500 hours. (3) SCC was initiated preferentially on the region with high plastic strain gradient in the specimen with controlled distribution of work hardened layer. (author)

  3. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  4. Initiation of cleavage in a low alloy steel: effect of a ductile damage localized around inclusions; Declenchement du clivage dans un acier faiblement allie: role de l'endommagement ductile localise autour des inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Carassou, S

    2000-07-01

    The fracture mechanism in a low alloy steel, used in the pressurised water reactor vessel, has been studied in the ductile to brittle transition temperature range. We used the local approach of fracture in conjunction with both fractographic observations and numerical simulations. Previous studies suggested the onset of cleavage to be favoured by the presence of nearby manganese sulphide (MnS) clusters: the ductile damaged zone localised inside a cluster increases the stress around it, and so contribute to the triggering of cleavage due to nearby classical sites, like carbides. The experimental study of size dependence and anisotropy on the global fracture behaviour, together with fractographic observations, give here the proof of the influence of MnS clusters on the onset of cleavage in this steel. Fracture behaviour of pre-cracked specimens tested in the transition regime has then been simulated, by three dimensional finite element method computations. Ductile tearing process preceding the cleavage onset at those temperatures regime was well reproduced by the Rousselier's model. Failure probabilities, related to given stress states, has been given by post-processor calculations, using a probabilistic model based on the specific cleavage fracture process. Fracture toughness scatter of the steel, tested in the transition regime, is then well reproduced by those calculations. However, the critical cleavage stress of an elementary volume, that scales for the fracture process, is still assumed to be temperature dependant. Numerical simulations of the local fracture process suggest that this temperature effect can partly be explained by the temperature dependant decrease of the stress amplification due to the MnS clusters. (author)

  5. Development of crack growth and crack initiation test units for stress corrosion cracking examinations in high-temperature water environments under neutron irradiation (1) (Contract research)

    International Nuclear Information System (INIS)

    Izumo, Hironobu; Ishida, Takuya; Kawamata, Kazuo; Inoue, Shuichi; Ide, Hiroshi; Saito, Takashi; Ishitsuka, Etsuo; Chimi, Yasuhiro; Ise, Hideo; Miwa, Yukio; Ugachi, Hirokazu; Nakano, Junichi; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-04-01

    To evaluate integrity of irradiation-assisted stress corrosion cracking (IASCC) on in-core structural materials used in light water reactors (LWRs), useful knowledge regarding IASCC has been obtained mainly by post-irradiation examinations (PIEs). In the core of commercial LWRs, however, the actual IASCC occurs under the effects of irradiation on both materials and high-temperature water environment. Therefore, it is necessary to confirm the suitability of the knowledge by PIE with comparison to IASCC behaviors during in-core SCC tests. Fundamental techniques for in-core crack growth and crack initiation tests have been developed already at the Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency (JAEA). For the in-core crack growth test technique, to evaluate the effects of neutron irradiation on stainless steels irradiated to low neutron fluences, it is indispensable to develop new loading technique which is applicable to compact tension (CT) specimens with thickness of 0.5 inch (0.5T), from the viewpoint of validity based on the fracture mechanics. Based on the present technical investigation for the in-core loading technique, it is expected that a target load of 7.6 kN approximately can apply to a 0.5T-CT specimen by adopting a loading unit of a lever type instead of the previous uni-axial tension type. For the in-core crack initiation test technique, moreover, construction of a loading unit adopting linear variable differential transformers (LVDTs) has been investigated and technical issues have examined. (author)

  6. Effect of size of alpha phases on cyclic deformation and fatigue crack initiation during fatigue of an alpha-beta titanium alloy

    Directory of Open Access Journals (Sweden)

    Sun Qiaoyan

    2018-01-01

    Full Text Available Alpha phase exhibits equiaxed or lamellar morphologies with size from submicron to microns in an alpha-beta titanium alloy. Cyclic deformation, slip characteristics and crack nucleation during fatigue in different microstructures of TC21 alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si were systematically investigated and analyzed. During low-cycle fatigue, equiaxed microstructure (EM in TC21 alloy exhibits higher strength, ductility and longer low-cycle fatigue life than those of the lamellar microstructure (LM. There are more voids in the single lamellar alpha than the equiaxed alpha grains. As a result, voids more easily link up to form crack in the lamellar alpha phase than the equiaxed alpha phase. However, during high-cycle fatigue, the fine lamellar microstructure (FLM shows higher fatigue limit than bimodal microstructure (BM. The localized plastic deformation can be induced during high-cycle fatigue. The slip bands or twins are observed in the equiaxed and lamellar alpha phases(>1micron, which tends to form strain concentration and initiate fatigue crack. The localized slip within nanoscale alpha plates is seldom observed and extrusion/intrusion dispersedly distributed on the sample surface in FLM. This indicates that FLM show super resistance to fatigue crack which bring about higher fatigue limit than BM.

  7. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  8. The influence of microstructure on fatigue crack initiation in spheroidal graphite cast irons

    International Nuclear Information System (INIS)

    Starkey, M.S.; Irving, P.E.

    1979-01-01

    This paper reports the first stage of this work which concentrates on fatigue crack initiation with particular emphasis on the influence of microstructure. The fatigue lives of three fully ferritic and two fully pearlitic irons, each with different graphite nodule size distributions, have been determined at two strain amplitudes, 0.005 and 0.00018. The tests were carried out in fully reversed strain control on smooth cylindrical specimens in a servohydraulic testing machine. The effects of matrix structure and strength were clearly seen in that the pearlitic irons were superior at both strain levels. Nodule size on the other hand appeared to have no significant effect. The crack initiation sites in the specimens were located by interrupting the tests on detection of a 5% tensile load drop and heat tinting, before continuing. After failure, which was defined as complete separation, the fracture faces were examined on the scanning electron microscope. In the majority of the specimens the major crack origin was found to be a surface micropore with depths ranging from 50 to 250 μm. It is suggested that these micropores and not the graphite modules strongly influence the crack initiation behaviour in SG iron. These findings were confirmed by monitoring the initiation and growth of surface cracks from micropores using surface replica techniques. The influence of microstructure on the percentage of life spent in initiating and propagating a crack was thus determined. Hence the factors contributing to the fatigue behaviour of SG irons can be quantified. Their influence on predictions of cycles to crack initiation using the local approach is discussed. (orig.) 891 RW/orig. 892 RKD [de

  9. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  10. Master curve based correlation between static initiation toughness KIC and crack arrest toughness KIa

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.

    1999-01-01

    Historically the ASME reference curve concept assumes a constant relation between static fracture toughness initiation toughness and crack arrest toughness. In reality, this is not the case. Experimental results show that the difference between K IC and K Ia is material specific. For some materials there is a big difference while for others they nearly coincide. So far, however, no systematic study regarding a possible correlation between the two parameters has been performed. The recent Master curve method, developed for brittle fracture initiation estimation, has enabled a consistent analysis of fracture initiation toughness data. The Master curve method has been modified to be able to describe also crack arrest toughness. Here, this modified 'crack arrest master curve' is further validated and used to develop a simple, but yet (for safety assessment purpose) adequately accurate correlation between the two fracture toughness parameters. The correlation enables the estimation of crack arrest toughness from small Charpy-sized static fracture toughness tests. The correlation is valid for low Nickel steels ≤ (1.2% Ni). If a more accurate description of the crack arrest toughness is required, it can either be measured experimentally or estimated from instrumented Charpy-V crack arrest load information. (orig.)

  11. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  12. Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

    Energy Technology Data Exchange (ETDEWEB)

    Pustode, Mangesh D. [Bharat Forge Ltd., Pune (India); Dewangan, Bhupendra [Tata Steel, Jamshedpur (India); Raja, V. S. [Indian Institute of Technology Bombay, Mumbai (India); Paulose, Neeta; Babu, Narendra [Gas Turbine Research Establishment (GTRE), Bangalore (India)

    2016-10-15

    DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and 400 ℃. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (Δtscc) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary α grain and discontinuous faceted cracking through the transformed β grains.

  13. Contribution to the determination of priority constructive influences on the hot crack initiation of welded components

    International Nuclear Information System (INIS)

    Gollnow, Christian

    2015-01-01

    The previous research results do not allow a general hot crack characterisation although a variety of experimental and numerical knowledge is available. The reason for this is mainly the large number of influencing factors that complicate a complete description of the hot cracking phenomenon and especially solidification cracking. The hot crack formation and thus the solidification crack initiation can be described by the interaction of process, metallurgy and design. However, the literature examination shows that in the solidifaction crack characterisation the influence of the design aspect is often underestimated. The pre-stresses of the structural components is up to now not considered as an essential cause for the formation of solidification cracks. The evaluation of the influence of the various parameters is presented partly inconsistent. In addition, the targeted presentation of the design influence with respect to the solidification cracks in the weld is because the limited transferability of the various component-specific stresses on a laboratory scale and thus to the respective hot cracking tests restricted. Hence, the difficulty to transfer the results between laboratory specimen and component as well as the general hot crack characterisation is given. In this work the different types of stresses from the component welding in the laboratory and to quantify experimentally the solidification crack critical values, displacements and displacement rates were detected. In this regard external loaded hot cracking tests were carried out by using the advantages of contactless measurement techniques close to the weld and to analyse the welding process with respect to various local and global design-specific factors influencing the formation of solidification cracks in high alloyed steel. These investigations were performed on austenitic (1.4828) and ferritic (1.4509) materials with different mechanical and technological properties. To reflect the praxis relevant

  14. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    Science.gov (United States)

    1982-02-01

    A-"AIS012 CALIFORNIA UNdIV LOS ANSELES DEPT OF MATERIALS SCIEN--ETC F/S 11/6 IDENTIFICATION OF FLAWS RESPONSIBLE FOR CRACK INITIATION AM %I--ETC(U...Sines and Adams . 71 It might be thought that other compressive loading devices could serve the same purpoee. For example, a spherical joint instead of the...compressive strength can be 18 times the tensile strength as reported by Adams . 92 This is because the established criteria are damage criter- ia, not

  15. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  16. Influence of intermetallic particles on short fatigue crack initiation in AA2050-T8 and AA7050-T7451

    Directory of Open Access Journals (Sweden)

    Nizery Erembert

    2014-06-01

    Full Text Available Fatigue crack initiation at particles is studied in hot rolled 2050-T8 and 7050-T7451 material, using 1 to 4 mm cross section specimens. Both size and aspect ratio of particles are observed to affect their probability of being damaged. In 2050-T8 material, the probability that a matrix crack initiate at a cracked particle increases with its size, and no effect of aspect ratio is observed. In 2050-T8 specimens, matrix cracks initiate at both precracked (Al, Cu, Fe, Mn particles and particles cracked during cycling. Initiation in 7050-T74 specimens occur on Mg2Si particles which may be cracked or debonded, and Al7Cu2Fe particles that are cracked during cyclic loading.

  17. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  18. Evaluation of initial degradation in stress corrosion cracking by magnetic methods

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Suzuki, Takayuki; Matsumoto, Yoshihiro; Demachi, Kazuyuki; Uesaka, Mitsuru

    2003-01-01

    Two magnetic methods are proposed for the evaluation of initial degradations of type 304 stainless steel in stress corrosion cracking (SCC). The first one is the measurement of the distribution of chromium depletion by means of a magnetic force microscope (MFM). MFM observations are performed for some samples sensitized in various conditions, and the obtained results coincide with the expected ones from the chromium behavior. Moreover, the phase distributions in the solution-annealed and sensitized states are observed by electron backscatter pattern technique. The observation results show that the phase transformation from the austenite phase to the martensite phase occurred along grain boundaries where the chromium was depleted. The second one is the detection of initial SCC cracks by measurement of magnetic flux densities. In-situ measurement of magnetic flux density during the SCC test and MFM observation reveal the relation of initial SCC cracks and magnetic properties. (author)

  19. Description of the initiation and progress of cracks for hot cracks in temperature resistant 1% CrMoV castings under creep or fatigue stress

    International Nuclear Information System (INIS)

    Bareiss, J.; Maile, K.; Berger, C.; Mayer, K.H.; Weiss, M.

    1994-01-01

    The results available so far have shown that under vibration stress at room temperature and at 530 C, the simplified equations of fracture mechanics are sufficient (in spite of the complicated fault geometries), in order to conservatively describe the behaviour of fault positions (open or partly-healed hot cracks) with regard to their crack initiation behaviour if combined with the findings US test technique. Here the sample castings which in the initial state showed fault indications of US type EET near the surface, tend to earlier initiation of a crack compared to lower fault positions of the samples. Internal fault positions (partially healed hot cracks) often only showed local cracks (trans-crystalline deformation cracks) within the fault area with an order of magnitude of about 10-50 μm, in spite of exceeding the threshold value Δ Ko. The comparison of the crack propagation behaviour of the sample castings, determined via the potential sensor method on medium lengths of fault with the results of crack growth of fracture mechanics samples in the da/dN- Δ K diagram showed for the evaluated sample castings with a relatively great initial depth or length of fault that the upper scatter band limit of the Paris Law determined for the material can be used to estimate the fault position behaviour. (orig./RHM) [de

  20. A study on the effects of artifacts on fatigue limit of ductile cast iron with ferritic structure

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and Austempered Ductile cast Iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes (diameter≤0.4mm) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the √areas of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness develops through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron

  1. Stress corrosion cracks initiation of recrystallized Zircaloy-4 in iodine-methanol solutions

    International Nuclear Information System (INIS)

    Mozzani, N.

    2013-01-01

    During the pellet-cladding interaction, Zirconium-alloy fuel claddings might fail when subjected to incidental power transient in nuclear Pressurized Water Reactors, by Iodine-induced Stress Corrosion Cracking (I-SCC). This study deals with the intergranular initiation of I-SCC cracks in fully recrystallized Zircaloy-4, in methyl alcohol solution of iodine at room temperature, with the focus on critical mechanical parameters and iodine concentration. It was carried out with an approach mixing experiments and numerical simulations. An anisotropic and viscoplastic mechanical behavior model was established and validated over a wide range of loadings. With numerous constant elongation rate tensile tests and four points bending creep tests, the existence of a threshold iodine concentration I0 close to 10 -6 g.g -1 was highlighted, necessary to the occurrence of I-SCC damage, along with a transition concentration I1 close to 2.10 -4 g.g -1 . Above I1 the mechanism changes, leading to a sped up crack initiation and a loss of sensitivity towards mechanical parameters. The importance of concentration on parameters such as crack density, crack average length and intergranular and transgranular crack velocities was evidenced. Experimental results show that plastic strain is not required for I-SCC crack initiation, if the test time is long enough in the presence of stress. Its main influence is to rush the occurrence of cracking by creating initiation sites, by way of breaking the oxide layer and building up intergranular stress. Below I1, the critical strains at initiation show a substantial strain rate sensitivity. In this domain, a threshold stress of 100 MPa was found, well below the yield stress. Thanks to the combined use of notched specimens and numerical simulations, a strong protective effect of an increasing stress bi-axiality ratio was found, both in the elastic and plastic domains. Proton-irradiated samples, up to a dose of 2 dpa, were tested in the same conditions

  2. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  3. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  4. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    International Nuclear Information System (INIS)

    Krenn, C.R.

    1996-12-01

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {111} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary η phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {111} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use

  5. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress

    Directory of Open Access Journals (Sweden)

    Yongshui Kang

    2014-10-01

    Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.

  6. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  7. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    International Nuclear Information System (INIS)

    Kassir, M.K.; Hofmayer, C.H.; Bandyopadhyay, K.K.

    1991-01-01

    A High Level Vibration Test (HLVT) Program was carried out recently on the seismic table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Center (NUPEC) in Japan. The objective of the study being performed at Brookhaven National Laboratory is to use the HLVT data to assess the accuracy and usefulness of existing methods for predicting crack initiation and growth under complex, large amplitude loading. The work to be performed as part of this effort involves: (1) analysis of the stress/strain distribution in the vicinity of the crack, including the potential for residual stresses due to the weld repair; (2) analysis of the number of load cycles required for crack initiation, including estimates of the impact of the weld repair on the crack initiation behavior; (3) analysis of crack advance as a function of applied loading (classic fatigue versus cyclic tearing) taking into account the variable amplitude loading and the possible influence of the repair; and (4) material property testing to supplement the work performed as part of the HLVT, providing the materials data necessary to perform the analysis efforts. A summary of research progress for FY 1990 is presented. 2 refs

  8. Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy

    Directory of Open Access Journals (Sweden)

    Tan Changsheng

    2018-01-01

    Full Text Available Cyclic heterogeneous deformation, slip characteristics and crack nucleation with different microstructures, such as bimodal microstructure (BM and fine lamellar microstructure (FLM in TC21 alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si, were systematically investigated and analyzed during high cycle fatigue at room temperature. The results demonstrated that the FLM microstructure possesses higher high-cycle fatigue strength than those of the BM one. For BM, the heterogeneous plastic deformation existed within the different large primary α phase, such as equiaxed primary α and primary α lath. The cracks at interfaces and slip bands easily coalesce with each other to form large cracks in BM. However, the α laths with similar morphology and size (nanosize distributed uniformly in FLM and could relatively deform homogeneously in micro-region, which delayed the initiation of the fatigue crack. Based on the electron-backscattered diffraction (EBSD analysis, it found that the strain was nonuniformly distributed in BM, however, it is relatively homogeneous in FLM. Moreover, lots of straight cracks are parallel and along single intrusions within the β grain which delays the coalescence of cracks.

  9. Affection mechanism research of initiation crack pressure of perforation parameters of horizontal well

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2016-09-01

    Full Text Available Horizontal wells show better affect and higher success rate in low water ratio cement, complex fracture zone, crevice and heavy oil blocks, it is the main measures to expand control area of a single well. Hydraulic fracturing technology is the most financial way to improve the penetration of the reservoir to increase the production. However, compare with the vertical wells, the fracture of Horizontal wells are more complex, and lead to the initiation crack pressure is much higher than vertical wells. In this paper, defined the crack judging basis, and established the finite element model which could compute the initial crack pressure, to research the affection mechanism of perforation azimuth angle, density, diameter and depth, to provide references of perforation project's design and optimize. The research of this paper has significances on further understanding the affection mechanism of perforation parameters.

  10. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  11. Effect of long-term thermal exposure on the hot ductility behavior of GH3535 alloy

    International Nuclear Information System (INIS)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L.; Li, Z.J.; Zhou, X.T.

    2016-01-01

    The hot ductility behavior of Ni–16Mo–7Cr alloys (named GH3535) exposed at 700 °C for different durations has been investigated by means of tensile test. It was found that the alloy exhibited a constant low ductility within the first 10 h exposure, and then showed an increasing ductility with the exposure time until 1000 h. After that, the ductility of the alloy decreased gradually with the increasing exposure time up to 10000 h. Detailed microstructural investigations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) have shown that the change in the ductility of the alloy with the exposure time could be attributed to the precipitation of M 12 C carbide at the grain boundary. Such precipitates with size of 200 nm, which are formed during the thermal exposure within 1000 h, can significantly restrain the grain boundary sliding and crack initiation, resulting in the high ductility of the alloy. Further exposure will cause the coarsening of the carbides, making them as the source of grain boundary cracks, hence decreases the ductility of the alloy.

  12. Determination of the bonding strength in solid oxide fuel cells' interfaces by Schwickerath crack initiation test

    DEFF Research Database (Denmark)

    Boccaccini, D. N.; Sevecek, O.; Frandsen, Henrik Lund

    2017-01-01

    An adaptation of the Schwickerath crack initiation test (ISO 9693) was used to determine the bonding strength between an anode support and three different cathodes with a solid oxide fuel cell interconnect. Interfacial elemental characterization of the interfaces was carried out by SEM/EDS analys...

  13. Numerical Analysis of Rolling Contact Fatigue Crack Initiation and Fatigue Life Prediction of the Railway Crossing

    NARCIS (Netherlands)

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact.

  14. Numerical analysis for fatigue life prediction on railroad RCF crack initiation

    NARCIS (Netherlands)

    Ma, Y.; Markine, V.L.

    2015-01-01

    In the present paper, a numerical procedure for surface crack initiation analysis based on the critical plane approach is proposed. The complex stress/strain state of wheel and rail (W/R) contact is analysed by means of submodelling approach together with the transient contact nodal loads obtained

  15. Study of cyclic strain localization and fatigue crack initiation using FIB technique

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Vystavěl, T.; Weidner, A.; Kuběna, Ivo; Petrenec, Martin; Kruml, Tomáš; Polák, Jaroslav

    2012-01-01

    Roč. 39, JUN (2012), s. 44-53 ISSN 0142-1123 R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507 Keywords : fatigue crack initiation * persistent slip band * focused ion beam (FIB) Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.976, year: 2012

  16. Initiation and propagation of rebar corrosion in carbonated and cracked concrete

    International Nuclear Information System (INIS)

    Ghantous, Rita-Maria

    2016-01-01

    This thesis aims to study the carbonation-induced corrosion initiation and propagation in cracked concrete under different conditions. It is performed in the framework of concrete ageing management of cooling towers of Electricity of France (EDF) nuclear power plants. Indeed some of them can be affected by cracks which may promote the carbonation of the concrete surrounding the cracks and induce a rapid reinforcement corrosion initiation in the carbonated area. Firstly, cracks representative of those encountered in the cooling towers concrete are reproduced on laboratory specimens using the three point bending test. Three crack openings are obtained (100 μm, 300 μm and 500 μm). Cracked specimens are thereafter exposed to accelerated carbonation for two aims. First for the acceleration of the concrete neutralization phase which ensure the suitable thermodynamic conditions for active corrosion initiation. Second, for the estimation of the length of the mechanically damaged steel/binder interface supposed to be comparable to the carbonated length along the rebar on both sides of the crack. It is found that carbonation at 50% CO_2 is not suitable here because it overestimated the damaged zone length, maybe due to enhanced carbonation shrinkage. The second part aims to investigate the corrosion initiation and propagation phases while varying several parameters. For this purpose, cracked and carbonated specimens are subjected to corrosion under different exposure conditions. Specimens showing different crack widths and different types of binder are corroded in a reference test in which 30 minutes of rain occurs each 3 days at 20 C. Additionally, some corrosion tests are realized under raining/drying cycles for 3 minutes rain, other at 40 C and other in natural environmental conditions. Moreover, some cracked specimens are exposed in different orientations with respect to rain. Furthermore, specimens with different bars locations are prepared in order to investigate

  17. Strain energy density-distance criterion for the initiation of stress corrosion cracking of alloy X-750

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.M. Jr.; Symons, D.M.

    1996-05-01

    A strain energy density-distance criterion was previously developed and used to correlate rising-load K{sub c} initiation data for notched and fatigue precracked specimens of hydrogen precharged Alloy X-750. This criterion, which was developed for hydrogen embrittlement (HE) cracking, is used here to correlate static-load stress corrosion cracking (SCC) initiation times obtained for smooth geometry, notched and fatigue precracked specimens. The onset of SCC crack growth is hypothesized to occur when a critical strain, which is due to environment-enhanced creep, is attained within the specimen interior. For notched and precracked specimens, initiation is shown by analysis to occur at a variable distance from notch and crack tips. The initiation site varies from very near the crack tip, for highly loaded sharp cracks, to a site that is one grain diameter from the notch, for lower loaded, blunt notches. The existence of hydrogen gradients, which are due to strain-induced hydrogen trapping in the strain fields of notch and crack tips, is argued to be controlling the site for initiation of cracking. By considering the sources of the hydrogen, these observations are shown to be consistent with those from the previous HE study, in which the characteristic distance for crack initiation was found to be one grain diameter from the notch tip, independent of notch radius, applied stress intensity factor and hydrogen level.

  18. Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression

    Science.gov (United States)

    Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security

  19. Combined Effect of Initial Curing Temperature and Crack Width on Chloride Penetration in Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Elkedrouci Lotfi

    2018-01-01

    Full Text Available Reinforced concrete (RC structures are gradually being degraded all over the world, largely due to corrosion of the embedded steel bars caused by an attack of chloride penetration. Initial curing would be regarded as one factor influencing chloride diffusion in concrete in combination with cover cracking that is also of great attention for reinforced structures. In this study, a non-steady state diffusion test of chloride ion involving RC beam specimens with a water-to-cement ratio of 0.5, initial curing temperatures of 5°C or 20°C and three types of crack widths ranging from 0 to 0.2mm was performed. Chloride content at 5°C or was determined. The results show that the higher chloride content was obtained in condition of crack width large than 0.1mm with low initial curing temperature and there are no obvious differences in chloride content when the crack width was not larger than 0.1mm.

  20. Mathematical modeling of vibration processes in reinforced concrete structures for setting up crack initiation monitoring

    Science.gov (United States)

    Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.

    2015-03-01

    The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.

  1. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Science.gov (United States)

    Gordon, Ali Page

    crystal plasticity model was used to simulate the material behavior in the L and T orientations. The constitutive model was implemented in ABAQUS and a parameter estimation scheme was developed to obtain the material constants. A physically-based model was developed for correlating crack initiation life based on the experimental life data and predictions are made using the crack initiation model. Assuming a unique relationship between the damage fraction and cycle fraction with respect to cycles to crack initiation for each damage mode, the total crack initiation life has been represented in terms of the individual damage components (fatigue, creep-fatigue, creep, and oxidation-fatigue) observed at the end state of crack initiation.

  2. Study of crack initiation in low-cycle fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Mu, P.

    2011-03-01

    The material studied is an austenitic stainless steel, that is widely used in nuclear equipment for its very high corrosion resistance combined to good mechanical properties. Although crack initiation is proved to play an important role in fatigue, its mechanisms have not been fully understood. Some crack initiation criteria based on physical mechanisms of plastic deformation have been defined. However, these criteria are not easy to use and valid, as they need local variables at the grain scale. The present study aims at establishing a crack initiation criterion in low-cycle fatigue, which should be usable under variable amplitude loading conditions. Tension-compression fatigue tests were first carried out to characterize the mechanical behavior of the stainless steel AISI 316L. The mechanical behavior was simulated using a self-consistent model using a crystalline plastic law based on dislocation densities. The evolution of surface damage was observed during a fatigue test using an in situ optical microscopic device. Cracks were analyzed after 2000 cycles and their crystallographic characteristics calculated. As surface grains exhibit larger strain because they are less constraint by neighbor grains, a specific numerical frame is necessary to determine stress state in surface grains. A localization law specific to surface grains under cyclic loading was identified from finite element simulations. The proposed form needs an intergranular accommodation variable, on the pattern of the localization law of Cailletaud-Pilvin. Stress-strain state in surface grains was simulated. Potential indicators for crack initiation were then compared on a same experimental data base. Indicators based on the equivalent plastic strain were found to be suitable indicators of fatigue damage. (author)

  3. Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron

    International Nuclear Information System (INIS)

    Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak; Kim, Dong Youl

    2005-01-01

    Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from α+γ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from γ). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons

  4. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    International Nuclear Information System (INIS)

    James, L.A.

    1996-01-01

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ''critical'' concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors

  5. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    International Nuclear Information System (INIS)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner's rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the ΔK methodology (Paris law), ΔJ concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided

  6. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    2015-01-01

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  7. Applicability of a 'marker-technique' to support the examination of crack growth behaviour in brittle and ductile Ni-alloys at 500 and 750 C

    International Nuclear Information System (INIS)

    Schwarze, D.; Schubert, F.

    1999-12-01

    The crack growth behaviour of materials for application in turbines at temperatures of 500- 750 C has been investigated. The creep and fatigue service loadings of a real turbine disc were simulated by introducing hold-times. The materials tested were the superalloy PM N18, Inconel 617 and the intermetallic phase β-NiAl of nominally stoichiometric composition. The crack growth tests were conducted in air and in vacuum (10 -5 mbar) to assess the influence of the test atmosphere. One of the main objectives was to develop a marker method and its application, as support for the crack growth tests carried out. The width of the marker required for the marker bands could be chosen through the number of stress cycles or the crack growth increment in the marker-cycle. At 500 C, the crack surfaces of the CT specimens of Inconel 617 and PM N18 exhibited mixed fractures with trans- and intercrystalline regions. The fracture development could be divided into three, classical parts. At his temperature for both alloys the K I concept for the evaluation of the crack growth may be used. The RCT specimens of the intermetallic phase β-NiAl fractured in a completely brittle manner with no measurable time to failure. At 500 C, Inconel 617 and especially PM N18 were well suited to the use of the marker method. Measurements of the distances between the marker bands gave a good estimate of the crack growth rates. At the higher test temperature of 750 C, the crack growth rates and the proportion of intercrystalline fracture increased for Inconel 617 and PM N18. In all three materials, the formation of pores and dimpled fracture was observed, especially at high ΔK I values, and the coarse-grained β-NiAl exhibited higher crack growth rates than the fine-grained material. For this temperature the evaluation of the crack growth experiments should be by the K I concept for PM N18 and for Inconel 617 the C * concept is recommended. At the higher test temperature, the increased plasticity of

  8. A study on the fracture strength of steel fiber reinforced concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong Il; Chai, Won Kyu; Lee, Myeong Gu

    1991-01-01

    Fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Reinforced Concrete) structures with initial cracks. Sixty three SFRC beams were used in the tests. And the fracture mode, and relations between loading and mid-span deflection of the beams were observed. On the base of test results, fracture behavior of SFRC beams resulted from steel fiber content and initial crack length to beam depth ratio were found out, and the stress intensity factors, the modulus of rupture and the fracture energy of SFRC beams may then be calculated. According to the results of regression analysis, prediction formulas for the modulus of rupture and the fracture energy of SFRC beams are also suggested. (Author)

  9. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs

  10. Initiation and propagation of fatigue cracks in cast IN713LC superalloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.

    2010-01-01

    Roč. 77, č. 11 (2010), s. 2008-2015 ISSN 0013-7944 R&D Projects: GA MPO FT-TA4/023; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : IN 713LC * high temperature fatigue * crystallographic fatigue crack initiation * mean stress effect Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.571, year: 2010

  11. Crack initiation criteria for singular stress concentrations Part I: A universal assessment of singular stress concentrations

    Czech Academy of Sciences Publication Activity Database

    Knésl, Zdeněk; Klusák, Jan; Náhlík, Luboš

    2007-01-01

    Roč. 14, č. 6 (2007), s. 399-408 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GA101/05/0320; GA ČR GA101/05/0227 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture mechanics * stability criteria * singular stress concentrations * crack initiation * critical stress Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. On the Crack Initiated From the Bi-material Notch Tip

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Kotoul, M.

    452-453, - (2011), s. 441-444 ISSN 1013-9826. [Fracture and Damage Mechanics. Nagasaki, 20.09.2010-22.09.2010] R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : orthotropic bi-material notch * crack initiation * Matched asymptotic procedure Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Numerical analysis of rolling contact fatigue crack initiation and fatigue life prediction of the railway crossing

    OpenAIRE

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact. Material model accounting for elastic- plastic isotropic and kinematic hardening effects is adopted. The results from FE analysis are combined with J-S fatigue model that is based on critical plan...

  14. Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Chai, G.; Škorík, Viktor

    2016-01-01

    Roč. 658, MAR (2016), s. 221-228 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Fatigue crack initiation * Persistent slip markings * Extrusions * Intrusions Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  15. AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Valtr, M.; Petrenec, Martin; Dluhoš, J.; Kuběna, Ivo; Obrtlík, Karel; Polák, Jaroslav

    2015-01-01

    Roč. 76, JUL (2015), s. 11-18 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/2371; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : fatigue crack initiation * 316L austenitic steel * atomic force microscopy * extrusion * intrusion Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  16. The shape of extrusions and intrusions and initiation of stage I fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Vystavěl, T.; Petrenec, Martin

    2009-01-01

    Roč. 517, 1-2 (2009), s. 204-211 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : Extrusion * Intrusion * Fatigue crack initiation * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.901, year: 2009

  17. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  18. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. An important element of the Heavy-Section Steel Technology (HSST) Program is devoted to the investigation and evaluation of these proposals. This paper presents the technological bases and fracture-margin assessment objectives for some of the recently proposed crack-initiation and arrest-technology developments. The HSST Program approach to the evaluation of the proposals is described and the results and conclusions obtained to date are presented

  19. Effect of pre-deformation on the fatigue crack initiation life of X60 pipeline steel

    International Nuclear Information System (INIS)

    Zheng, M.; Luo, J.H.; Zhao, X.W.; Bai, Z.Q.; Wang, R.

    2005-01-01

    It is impossible to keep petroleum and natural gas transmission pipelines free from defects in the manufacturing, installation and servicing processes. The damage might endanger the safety of pipelines and even shorten their service life; gas or petroleum release due to defects may jeopardise the surrounding ecological environments with associated economic and life costs. Pre-tensile deformation of X60 steel is employed to experimentally simulate the influence of dents on the fatigue crack initiation life. The investigation indicates that the fatigue crack initiation life of pre-deformed X60 pipeline steel can be assessed by a previously proposed energetic approach. The threshold for crack initiation increases with the pre-deformation due to a strain hardening effect, while the fatigue resistant factor exhibits a maximum with pre-deformation owing to its special dependence on fracture strain and fracture strength. The result is expected to be beneficial to the understanding of the effect of damage on the safety of pipelines and fatigue life prediction

  20. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  1. Fatigue micro-crack initiation behavior and effect of irradiation damage on it in austenitic stainless steel

    International Nuclear Information System (INIS)

    Nakai, Ryosuke; Sato, Yuki; Nogami, Shuhei; Hasegawa, Akira

    2012-01-01

    The effect of irradiation on slip band formation and growth and micro-crack initiation behavior under low cycle fatigue in SUS316L austenitic stainless steel was investigated using accelerator-based proton irradiation and a low cycle fatigue test at room temperature in air. The micro-crack initiation was observed at slip band, grain boundary, twin boundary, and triple junction regardless of the total strain range and the proton irradiation. In unirradiated specimens, the micro-crack initiation life dropped by 75-90% due to the increase of the plastic strain range. Under the condition the plastic strain range was 0.4%, the micro-crack initiation was observed mainly at the grain boundary. On the other hand, under the condition the plastic strain range was 1.0%, the number fractions of the micro-crack initiation in slip band and twin boundary were increased. In proton-irradiated specimens, the micro-crack initiation life decreased by 50-80% and the micro-crack initiation was observed mainly at slip band and twin boundary. (author)

  2. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... HAP Emission Limits for Catalytic Cracking Units As stated in § 63.1565(b)(4), you shall meet each...

  3. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Toloczko, Mychailo [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Kruska, Karen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Bruemmer, Stephen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.

    2017-05-22

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.

  4. A model for crack initiation in the Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panat, Rahul, E-mail: rahul.panat@wsu.edu

    2015-12-01

    The development of high energy density Lithium-ion batteries is of intense interest due to their application in the electric car and consumer electronics industry. The primary limiter in using high energy density battery electrodes is the cracking of the electrode material due to the severe strain caused by the charging–discharging cycles. In this paper, a linear perturbation model is used to describe the evolution of the electrode surface under stress. The driving force for the surface undulation formation is the reduction in the electrode strain energy. The kinetics of mass transport is described by the surface and volume diffusion. The model predicts that the Si electrode will develop surface undulations of the order of sub-1 μm length scale on the electrode surface, showing a reasonable agreement with experimental results reported in literature. Such surface undulations roughen the anode surface and can form notches that can act as crack initiation sites. It is also shown that this model is applicable when the temperature of the system is not constant and the system is not isolated. The limitations of the model are also discussed. - Highlights: • This work presents a theoretical formulation that predicts crack formation at an electrode surface under a lithiation cycle. • The research provides the critical parameters required to improve the life of the Li-ion batteries. • These research findings can be used to modify the surface structure to minimize crack formation. • The predictions from the model show a reasonable agreement with the experiments. • None of the theoretical literature so far has addressed the crack formation problem addressed in this paper.

  5. Stress corrosion cracking of Alloy 82 in hydrogenated steam at 400 C: influence of microstructural and mechanical parameters on initiation of SCC cracks

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth

    2016-01-01

    In Pressurize Water Reactors (PWR), Stress Corrosion Cracking (SCC) is the mean degradation mode of components pieced together by welding. Nickel based alloys are, among others, used in dissimilar metal welding (DMW). International report showed only 3 cracking cases in Alloy 82 out of 300 cracking cases concerned on nickel based alloys DMW in primary water circuit. The aim of this study is to identify which microstructural and local mechanism parameters at microstructure scale provide the initiation of SCC cracks. Characterizations performed on specimen surface to identify those parameters are composed of chemical composition analysis and EBSD analysis (Electron Back-Scattered Diffraction) to know the morphology and the crystallography of grains for microstructure features on one hand, and experimental strain fields measured by Digital Imaging Correlation (DIC) of gold micro-grids deposed by electronic lithography on U-bend specimen surface and stress fields calculated along grains boundaries by finite element for local mechanical features on the other hand. The correlation between those characterizations and localization of initiation sites of SCC cracks, obtained on U-bend specimens tested in autoclave in hydrogen steam water at 400 C and 188 bar for 3500 hours, confirmed the susceptibility of the Alloy 82 in SCC conditions with intergranular SCC cracks. The perpendicular position to the loading direction (mode I) is the worst conditions for grains boundary in SCC. The others points concern the chemical composition (precipitation, impurities) around grain boundary and the grain boundary type which is more susceptible when it is a High Angle Grain Boundary. It is following by the mechanical characterization (stress and strain gradient) along grain boundary. This methodology can be used to other material and helped to define which microstructural and mechanical parameter can be define the initiation of SCC cracks. (author) [fr

  6. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  7. Development of a Physically-Based Methodology for Predicting Material Variability in Fatigue Crack Initiation and Growth Response

    National Research Council Canada - National Science Library

    Chan, Kwai

    2004-01-01

    ... of aerospace structural alloys. In this three-year program, physics-based fatigue crack initiation and growth models were developed and integrated into a probabilistic micromechanical code for treating fatigue life variability...

  8. Fracture mechanics aspects in the safe design of ductile iron shipping and storage containers

    International Nuclear Information System (INIS)

    Sappok, M.; Bounin, D.

    1996-01-01

    Containers made of ductile cast iron provide a safe method for transport of radioactive material. Contrary to widespread opinion ductile cast iron is a very tough material and can be manufactured in heavy sections. The containers are designed to withstand the very high impact loads of accidents like free drops onto unyielding targets. The design is based on postulated undetected crack-like flaws at the highest stressed location. Design must show that applied stress intensities are smaller than fracture toughness and no crack initiation and therefore also no crack propagation can occur. The design procedure followed in this paper is given in a new guideline still being drafted by the International Atomic Energy Agency

  9. Investigating the process of white etching crack initiation in bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Benjamin; Greco, Aaron

    2016-04-01

    White etching cracks (WECs) have been identified as a dominant mode of premature failure within wind turbine gearbox bearings. Though WECs have been reported in the field for over a decade, the conditions leading to WECs, and the process by which this failure culminates, are both highly debated. In previously published work, the generation of WECs on a benchtop scale was linked to sliding at the surface of the test sample, it was also postulated that the generation of WECs was dependent on the cumulative energy that had been applied to the sample over the entirety of the test. In this paper, a three ring on roller bench top test rig is used to systematically alter the cumulative energy that a sample experiences through changes in normal load, sliding, and run time, in an attempt to correlate cumulative energy with the formation of WECs. It was determined that, in the current test setup, the presence of WECs can be predicted by this energy criterion. The authors then used this information to study the process by which WECs initiate. Lastly, it was found that, under the current testing conditions, the formation of a dark etching microstructure precedes the formation of a crack, and a crack precedes the formation of white etching microstructure.

  10. Process for improving the low temperature ductility of tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.

    1975-05-01

    At temperatures below about 100 0 C, liquid-phase-sintered tungsten-base composites fail in a brittle manner because of the formation of cleavage cracks in the tungsten spheroids. Improving the ductility, then, would require some alloying addition or treatment which would improve the ductility of these spheroids, or some method of changing the stress distribution, such as putting the surface in compression, which would reduce stress concentrations and thereby require a higher load to initiate fracture. The ductilizing process used here consists of coating the composite with a ductile metal followed by heat treating at a high enough temperature to insure sufficient diffusion so that the coat and base become integral. The ductile coat is now the 'piece' surface, and the initiation of cleavage cracks requires much greater stresses. Coats of copper, nickel, gold, and cobalt have been used successfully. A possible added advantage is that the surface properties can now be controlled if certain reflective properties or corrosion resistance are needed. Also soldering or low temperature brazing operations are feasible, allowing the construction or assembly of intricate shapes which could not be accomplished previously. (U.S.)

  11. A study on the fracture energy of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Sim Jongsung; Chai, Won-Kyu; Lee, Myeong-Gu

    1991-01-01

    Fracture test is performed in order to investigate the fracture behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty six SFRC beams are used in this test. The relationships between loading, strain, and mid-span deflection of the beams are observed under the three point loading system. From the test results, the effects of the fiber content, the fiber aspect ratio and the initial crack ratio on the concrete fracture behavior were studied, and the flexural strength and the fracture energy of SFRC beams were also calculated. According to the regression technique, some empirical formulae for predicting the flexural strength and the fracture energy of SFRC beams are also suggested. (author)

  12. EPRI research program NDE techniques for crack initiation of steam turbine rotor

    International Nuclear Information System (INIS)

    Goto, T.; Kimura, J.; Kawamoto, K.; Kadoya, Y.; Viswanathan, R.

    1990-01-01

    EPRI RP 2481-8 aims at the development of nondestructive methods for the life assessment of steam turbine rotor for its crack initiation caused by creep and/or fatigue. As a part of the research project, the demonstration of the state of the art NDE techniques was conducted during June to August of 1988 at EPRI NDE Center, Charlotte, N.C. by Mitsubishi Heavy Industries, Ltd. using four rotors retired after long term service (16-22x10 4 hr). This paper introduces the results of the demonstration

  13. Simulation of surface crack initiation induced by slip localization and point defects kinetics

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Liu, Jia; Rachdi, Fatima

    2014-01-01

    Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation. The whole FE modelling accounts for: - localized plastic slip in PSBs; - production and annihilation of vacancies induced by cyclic slip. If temperature is high enough, point defects may diffuse in the surrounding matrix due to large concentration gradients, allowing continuous extrusion growth in agreement with Polak's model. At each cycle, the additional atoms diffusing from the matrix are taken into account by imposing an incremental free dilatation; - brittle fracture at the interfaces between PSBs and their surrounding matrix which is simulated using cohesive zone modelling. Any inverse fitting of parameter is avoided. Only experimental single crystal data are used such as hysteresis loops and resistivity values. Two fracture parameters are required: the {111} surface energy which depends on environment and the cleavage stress which is predicted by the universal binding energy relationship. The predicted extrusion growth curves agree rather well with the experimental data published for copper and the 316L steel. A linear dependence with respect to PSB length, thickness and slip plane angle is predicted in agreement with recent AFM measurement results. Crack initiation simulations predict fairly well the effects of PSB length and environment for copper single and poly-crystals. (authors)

  14. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  15. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  16. The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation

    International Nuclear Information System (INIS)

    Lankford, J.; Davidson, D.L.

    1979-01-01

    The threshold for indentation cracking is established for a range of ceramic materials, using the techniques of scanning electron microscopy and acoustic emission. It is found that by taking into account indentation plasticity, current theories may be successfully combined to predict threshold indentation loads and crack sizes. Threshold cracking is seen to relate to radial rather than median cracking. (author)

  17. A review on ductile mode cutting of brittle materials

    Science.gov (United States)

    Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao

    2018-06-01

    Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

  18. Role of pluronics on rheological, drying and crack initiation of 'suckable' gels of decontamination

    International Nuclear Information System (INIS)

    Bousquet, C.

    2007-12-01

    The aim of this work was to understand the role of an addition of pluronics on the rheological behaviour, the drying and the fracturing of 'suckable' gels used for nuclear decontamination. The system studied was an aqueous suspension of silica (100 g/L of Aerosil 380) in a strong acidic medium (HNO 3 /H 3 PO 4 1.5 mol/L/1.5 mol/L) in presence of pluronics. Pluronics are amphiphilic tri-blocks copolymers composed of ethylene poly-oxide blocks and of propylene poly-oxide. The first part of this study deals with the characterization of the rheological properties of the gels. From viscosity retaking measurements, flow rheo-grams analysis and the viscoelastic properties of the gels, have been determined an improvement of the rheological properties of the gels significant from the addition of 5 g/L of copolymer. In a second part, the determination of adsorption isotherms coupled to small angles neutrons diffusion measurements has revealed that copolymers are adsorbed flat on silica in bridging the aggregates between them and that the improvement of the rheological behaviour of the gels is due to the increase of the bonds density of the gelled lattice. Moreover, beyond 10 g/L, the adsorption saturation of copolymers at the surface of the silica prevents the bridging of the aggregates which induces the gel destabilization. The last part of this work deals with the characterization of characteristic values of drying and of crack initiation of gels. Then is revealed a relation between the drying kinetics and the formation of cracks in the gel layer. Moreover, the study of the evolution of stresses in the gel layer during time allows to reveal that the addition of pluronics to the formulation of gels allows to improve the gel resistance to the crack initiation and to the delamination. (O.M.)

  19. J-integral evaluation and stability analysis in the unstable ductile fracture

    International Nuclear Information System (INIS)

    Miyoshi, Toshiro; Yoshida, Yuichiro; Shiratori, Masaki.

    1984-01-01

    Concerning unstable ductile fracture, which is an important problem on the structural stability of line pipes, nuclear reactor piping and so on, the research on fracture mechanics parameters which control the beginning of the stable growth and unstable growth of cracks attracts interest. At present, as the parameters, the T-modulus based on J-integral crack tip opening angle, crack opening angle averaged over crack developing part, plastic work coefficient and so on have been proposed. The research on the effectiveness and inter-relation of these parameters is divided into generation phase and application phase, and by these researches, it was reported that all T-modulus, CTOA and COA took almost constant values in relation to crack development, except initial transition period. In order to decide which parameter is most appropriate, the detailed analysis is required. In this study, the analysis of unstable ductile fracture of a central crack test piece and a small tensile test piece was carried out by finite element method, and the evaluation of J-integral in relation to crack development, J-integral resistance value when COA is assumed to be a constant, the form of an unstable fracture occurring point and the compliance dependence were examined. The method of analysis, the evaluation of J-integral, J-integral resistance value, unstable fracture occurring point and stability diagram are described. (Kako, I.)

  20. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  1. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    International Nuclear Information System (INIS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-01-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  2. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  3. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  4. Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials

    Science.gov (United States)

    Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.

    2017-05-01

    The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.

  5. The effects of microstructure on crack initiation in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-09-01

    Full Text Available Liquid-metal-induced embrittlement under tensile test conditions is identified by the existence of a characteristic ductility trough. In this study, the effect of molten gallium on the behaviour of two brass alloys with different microstructures...

  6. Evaluation of local stress for stress corrosion crack initiation by three-dimensional polycrystal model

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kitamura, Takayuki

    2006-01-01

    In order to understand the initiation behavior of microstructurally small cracks in a stress corrosion cracking condition, it is important to know the tensile normal stress acting on the grain boundary (normal G.B. stress). The local stress in a polycrystalline body is greatly influenced by deformation constraint which is caused by anisotropic and/or inhomogeneous property of each grain. In present study, the local normal G.B. stress on bi- and tri-crystal bodies and a three-dimensional polycrystalline body consisting of 100 grains were evaluated by the finite element method under a remote uniform tensile stress condition. The polycrystalline body was generated by using a Monte Carlo procedure and random orientations were assigned to each grain. It was revealed that the local normal G.B. stress on the polycrystalline body is inhomogeneous under uniform applied stress. The stress tends to be large near the triple points due to the deformation constraint caused by adjacent grains, even though the grain boundary inclination to the load axis has large influence. It was also shown that particular high stress was not observed at corners of the polycrystalline body. (author)

  7. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  8. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 5 Table 5 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 5 Table 5 to Subpart UUU of Part 63—Initial Compliance With Metal HAP Emission Limits...

  9. Averaged strain energy density-based synthesis of crack initiation life in notched steel bars under torsional fatigue

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-10-01

    Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles

  10. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Li, H.; Yu, X.L.; Zhou, Y.; Duan, S.W.; Li, S.Z.; Huang, Z.L.; Zuo, L.S.

    2015-01-01

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  11. SCC life estimation based on cracks initiated from the corrosion pits of bolting material SCM435 used in steam turbine

    International Nuclear Information System (INIS)

    Itoh, Hitomi; Ochi, Mayumi; Fujiwara, Isao; Momoo, Takashi

    2003-01-01

    Life estimation was performed for the stress corrosion cracking (SCC) that occurs in deaerated and wet hot pure steam at the bottoms of the threads of bolts made of SCM435 (equivalent to AISI 4137) used in steam turbine. SCC is believed to occur when corrosion pits are formed and grow to critical size, after which SCC is initiated and cracks propagate until the critical fracture toughness value is reached. Calculations were performed using laboratory and field data. The results showed that, for a 40mm diameter bolt with 0.2% offset strength of 820MPa, the critical crack depth for straight-front cracks was 5.4mm. The SCC life depends on the lubricant used; the SCC life estimated from this value is approximately 70,000 hours when graphite is used as a lubricant. (author)

  12. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    Science.gov (United States)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  13. Evaluation of static and dynamic fracture toughness in ductile cast iron

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Yamada, Shinya

    1994-01-01

    Ductile cast irons have been explored as a cask (container for spent nuclear fuel) material because of their low cost and good formability. The cask, which is a huge casting with 400-mm thickness and 100-Mg weight, envelops the nuclear material. Therefore, the fracture toughness of cask must be evaluated not only under the static loading condition but also under the dynamic loading condition to ensure its safety against an accident during the transport. In this article, crack extension behavior and fracture toughness of ductile cast iron were examined by three-point bend tests, where various detection methods of crack initiation under static and dynamic loading conditions were adopted. Loading on the specimens was interrupted at various displacement points, and the final fracture surfaces of the specimen were observed via scanning electron microscopy (SEM). Crack-tip opening displacement (CTOD) obtained under the dynamic loading conditions was smaller than that under the static loading condition in ferritic ductile cast iron, and CTOD additionally decreased with increasing pearlite content in the matrix. The relationship between J(ΔC) obtained by the compliance changing rate method and J(R) established by the intersection of the crack extension resistance curve and the theoretical blunting line varied with pearlite content. The average value of J(ΔC) and J(R), that is J(mid), was proposed to define the fracture toughness of ductile cast iron; J(mid) was considered to be a reasonable measure for the fracture toughness of ductile cast iron, irrespective of loading condition and the pearlite content in the matrix

  14. Establishing precursor events for stress corrosion cracking initiation in type 304L stainless steel

    International Nuclear Information System (INIS)

    Khan, M.U.F.; Raja, V.S.; Roychowdhury, S.; Kain, V.

    2015-01-01

    The present study attempts to establish slip band emergence, due to localized deformation, as a precursor event for SCC initiation in type 304L SS. The unidirectional tensile loading was used for straining flat tensile specimen, less than 10% strain, in air, 0.5 M NaCl + 0.5 M H 2 SO 4 and boiling water reactor (BWR) simulated environment (288 C. degrees, 10 MPa). The surface features were characterized using optical microscopy, scanning electron microscopy (including electron backscattered diffraction-EBSD) and atomic force microscopy. The study shows that with increase in strain level, during unidirectional slow strain rate test (SSRT), average slip band height increases in air and the attack on slip lines occurs in acidified chloride environment. In BWR simulated environment, preferential oxidation on slip lines and initiation of a few cracks on some of the slip lines are observed. Based on the observation, the study suggests slip bands, formed due to localized deformation, to act as a precursor for SCC initiation. (authors)

  15. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  16. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  17. Testing Bonds Between Brittle And Ductile Films

    Science.gov (United States)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  18. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

    Science.gov (United States)

    Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan

    2018-06-01

    This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

  19. Crack initiation and propagation paths in small diameter FSW 6082-T6 aluminium tubes under fatigue loading

    Directory of Open Access Journals (Sweden)

    Roberto Tovo

    2016-03-01

    Full Text Available This paper reports results of fatigue tests of friction stir welded (FSW aluminium tubes. Relatively small 38 mm diameter tubes were used and hence an automated FSW process using a retracting tool was designed for this project, as the wall thickness of the aluminium tube was similar to the diameter of the FSW tool. This is a more complex joint geometry to weld than the more usual larger diameter tube reported in the literature. S-N fatigue testing was performed using load ratios of R = 0.1 and R = -1. Crack path analysis was performed using both low magnification stereo microscopy and scanning electron microscopy, in order to identify crack initiation sites and to determine the direction of crack propagation. Work is still in progress to follow the crack path through the various microstructural zones associated with the weld. A simple statistical analysis was used to characterize the most typical crack initiation site. This work forms part of a wider project directed at determining multiaxial fatigue design rules for small diameter 6082-T6 aluminium tubes that could be of use in the ground vehicle industry.

  20. Hot Ductility Characterization of Sanicro-28 Super-Austenitic Stainless Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Abedi, H. R.

    2016-05-01

    The hot ductility behavior of a super-austenitic stainless steel has been studied using tensile testing method in the temperature range from 1073 K to 1373 K (800 °C to 1100 °C) under the strain rates of 0.1, 0.01, and 0.001 s-1. The hot compression tests were also performed at the same deformation condition to identify the activated restoration mechanisms. At lower temperatures [ i.e., 1073 K and 1173 K (800 °C and 900 °C)], the serration of initial grain boundaries confirms the occurrence of dynamic recovery as the predominant restoration process. However, in the course of applied deformation, the initial microstructure is recrystallized at higher temperatures [ i.e., 1273 K and 1373 K (1000 °C and 1100 °C)]. In this respect, annealing the twin boundaries could well stimulate the recrystallization kinetic through initiation new annealing twins on prior annealing twin boundaries. The hot tensile results show that there is a general trend of increasing ductility by temperature. However, two regions of ductility drop are recognized at 1273 K and 1373 K (1000°C)/0.1s-1 and (1100°C)/0.01s-1. The ductility variations at different conditions of temperature and strain rate are discussed in terms of simultaneous activation of grain boundary sliding and restoration processes. The observed ductility troughs are attributed to the occurrence of grain boundary sliding and the resulting R-type and W-type cracks. The occurrence of dynamic recrystallization is also considered as the main factor increasing the ductility at higher temperatures. The enhanced ductility is primarily originated from the post-uniform elongation behavior, which is directly associated with the strain rate sensitivity of the experimental material.

  1. Application of ductile fracture assessment methods for the assessment of pressure vessels from high strength steels (HSS)

    International Nuclear Information System (INIS)

    Eisele, U.; Schiedermaier, J.

    2003-01-01

    The economical and safe design of pressure vessels requires, besides others, also a detailed knowledge of the vessel failure behaviour in the case of existing imperfections or cracks. The behaviour of a cracked component under a given loading situation depends on material toughness. For ferritic steels, the material toughness is varying with temperature. At low temperature dominantly brittle fracture behaviour is observed, at high temperature the failure mode is dominantly ductile fracture. The transition between these two extremes is floating. In the case of existing or postulated cracks, the safety analysis has to be performed using fracture mechanics methods. In the lower shelf of toughness, K iC as of ASTM E 399 is the characterising value for crack initiation and immediate unstable crack extension (cleavage). In the upper shelf level the characterising value is the ''actual crack initiation toughness'' J i acc. to ISO 12135, characterising the onset of slow stable crack extension. For the transition regime in ASTM E 1921 the instability values K JC are defined, characterising cleavage failure after more or less extended ductile crack growth. The safety analysis of a component operated in the upper shelf of the material toughness, has to consider initiation as well as stable crack extension following initiation. The inclusion of any crack extension into this consideration needs to consider the influence of the constraint in front of a crack tip, leading to multiaxial stress conditions and decreasing the material crack resistance significantly. Thus, the exclusion of crack initiation needs to be proven in a first step of each safety analysis. Assessing the component in a uniform way over the relevant temperature range is possible by using initiation characteristics, which also have the advantage of transferability. A change of criterion considering initiation at the lower shelf, instability in the transition range and again initiation in the upper shelf can be

  2. Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Thomas

    2016-07-01

    Materials in many modern small-scale applications are under complex cyclic stress states and undergo up to 10{sup 9} cycles. Fatigue mechanisms limit their lifetime and lead to failure. Therefore, the Very High Cycle Fatigue (VHCF) regime needs to be studied. This thesis investigates the fatigue mechanisms and crack initiation of nickel, aluminum and copper on a small-scale in the VHCF regime by means of innovative fatigue experimentation. Firstly, the development and implementation of a novel custom-built resonant fatigue setup showed that the resonant frequency of bending micro-samples changes with increasing cycle number due to the accumulating fatigue damage. Then, additional insights on early damage formation have been explored. Mechanisms, prior to crack initiation, such as slip band formation at a state where it appears in only a few grains, have been observed. Cyclic hardening, vacancy formation and oxidation formation may be considered as possible explanations for early fatigue mechanisms. In addition, the new experimental setup can be used to define parameters needed for crack initiation models. Finally, these crack initiation processes have been experimentally examined for pure aluminum and pure copper.

  3. A ductile fracture analysis using a local damage model

    Energy Technology Data Exchange (ETDEWEB)

    Benseddiq, N. [Laboratoire de Mecanique et de Rheologie de Tours, Ecole Nationale d' Ingenieurs du Val de Loire (ENIVL), Rue de la Chocolaterie, 41000 Blois Cedex (France)], E-mail: nbensedd@polytech-lille.fr; Imad, A. [Laboratoire de Mecanique de Lille (UMR CNRS 8107), USTL, Ecole Polytechnique Universitaire de Lille Cite Scientifique, Avenue P. Langevin, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-15

    In this study, the Gurson-Tvergaard-Needleman (GTN) model is used to investigate ductile tearing. The sensitivity of the model parameters has been examined from literature data. Three types of parameters have been reported: the 'constitutive parameters'q{sub 1}, q{sub 2} and q{sub 3}, the 'initial material and nucleation parameters' and the 'critical and final failure parameters'. Each parameter in this model has been analysed in terms of various results in the literature. Both experimental and numerical results have been obtained for notched round and CT specimens to characterize ductile failure in a NiCr steel (12NC6) with a small initial void volume fraction f{sub 0} (f{sub 0}=0.001%). Ductile crack growth, defined by the J-{delta}a curve, has been correctly simulated using the numerical calculations by adjusting the different parameters of the GTN model in the calibration procedure.

  4. Ductile-brittle transition of thoriated chromium.

    Science.gov (United States)

    Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.

    1972-01-01

    Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.

  5. Modeling the initiation of Primary Water Stress Corrosion Cracking in nickel base alloys 182 and 82 of Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Wehbi, Mickael

    2014-01-01

    Nickel base welds are widely used to assemble components of the primary circuit of Pressurized Water Reactors (PWR) plants. International experience shows an increasing number of Stress Corrosion Cracks (SCC) in nickel base welds 182 and 82 which motivates the development of models predicting the time to SCC initiation for these materials. SCC involves several parameters such as materials, mechanics or environment interacting together. The goal of this study is to have a better understanding of the physical mechanisms occurring at grains boundaries involved in SCC. In-situ tensile test carried out on oxidized alloy 182 evidenced dispersion in the susceptibility to corrosion of grain boundaries. Moreover, the correlation between oxidation and cracking coupled with micro-mechanical simulations on synthetic polycrystalline aggregate, allowed to propose a cracking criterion of oxidized grain boundaries which is defined by both critical oxidation depth and local stress level. Due to the key role of intergranular oxidation in SCC and since significant dispersion is observed between grain boundaries, oxidation tests were performed on alloys 182 and 82 in order to model the intergranular oxidation kinetics as a function of chromium carbides precipitation, temperature and dissolved hydrogen content. The model allows statistical analyses and is embedded in a local initiation model. In this model, SCC initiation is defined by the cracking of the intergranular oxide and is followed by slow and fast crack growth until the crack depth reaches a given value. Simplifying assumptions were necessary to identify laws used in the SCC model. However, these laws will be useful to determine experimental conditions of future investigations carried out to improve the calibration used parameters. (author)

  6. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental

  7. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  8. An investigation into the change of shape of fatigue cracks initiated at surface flaws

    International Nuclear Information System (INIS)

    Portch, D.J.

    1979-09-01

    Surface fatigue cracks found in plant can often be closely approximated in shape by a semi-ellipse. The stress intensity factor range at the deepest part of the surface crack is dependent upon a number of variables, including the crack aspect ratio. In fatigue life analysis, the aspect ratio of a propagating crack is frequently assumed to remain constant, possibly due to the complexity of estimating aspect ratio change on the basis of linear elastic fracture mechanics. This report describes the results of an experimental programme to examine the change of shape of fatigue cracks subjected to uniaxial tensile or bending stresses. The data obtained has been used to modify equations proposed by the author in a previous report to predict the change of aspect ratio of a crack propagating from a known defect. These modified equations, although not including terms to account for the effects of varying mean stress levels or material properties, generally give a good agreement with published experimental results. Crack propagation rate data obtained from the tensile fatigue tests has been used to estimate crack tip stress intensity factors. These are compared with values calculated from published solutions using both the constant geometry assumption and also the shape change equations proposed in this report. Use of these equations gives improved agreement with experiment in most cases. (author)

  9. Crack growth initiation in concrete-like materials in the presence of creep

    International Nuclear Information System (INIS)

    Masuero, J.R.; Creus, G.J.

    1993-01-01

    A numerical procedure that employs the finite elements method and the state variables approach is proposed to analyze the critical condition of a crack in an ageing viscoelastic body under sustained load. A far field solution proposed by Schapery is used. An example shows how a crack can becomes critical after some finite time that depends on the characteristics of the concrete. (author)

  10. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  11. Forced tearing of ductile and brittle thin sheets.

    Science.gov (United States)

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  12. The Crack Initiation and Propagation in threshold regime and S-N curves of High Strength Spring Steels

    International Nuclear Information System (INIS)

    Gubeljak, N; Predan, J; Senčič, B; Chapetti, M D

    2016-01-01

    An integrated fracture mechanics approach is proposed to account for the estimation of the fatigue resistance of component. Applications, estimations and results showed very good agreements with experimental results. The model is simple to apply, accounts for the main geometrical, mechanical and material parameters that define the fatigue resistance, and allows accurate predictions. It offers a change in design philosophy: It could be used for design, while simultaneously dealing with crack propagation thresholds. Furthermore, it allows quantification of the material defect sensitivity. In the case of the set of fatigue tests carried out by rotational bending of specimens without residual stresses, the estimated results showed good agreement and that an initial crack length of 0.5 mm can conservatively explain experimental data. In the case of fatigue tests carried out on the springs at their final condition with bending at R = 0.1 our data shows the influence of compressive residual stresses on fatigue strength. Results also showed that the procedures allow us to analyze the different combinations of initial crack length and residual stress levels, and how much the fatigue resistance can change by changing that configuration. For this set of tests, the fatigue resistance estimated for an initial crack length equal to 0.35 mm, can explain all testing data observed for the springs. (paper)

  13. Critical applied stresses for a crack initiation from a sharp V-notch

    Directory of Open Access Journals (Sweden)

    L. Náhlík

    2014-10-01

    Full Text Available The aim of the paper is to estimate a value of the critical applied stress for a crack initiation from a sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM was generalized, because the stress singularity exponent differs from 0.5 in the studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of the generalized stress intensity factor was obtained using stability criteria based on the opening stress component averaged over a critical distance d from the V-notch tip and generalized strain energy density factor. Calculated values of the critical applied stresses were compared with experimental data from the literature and applicability of the LEFM concept is discussed.

  14. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  15. Crack initiation and crack growth in high temperature materials under cyclic thermal stresses; Rissinitiierung und Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, C.

    1996-12-01

    The high temperatures of use in drive units, such as the combustion chamber or the hot gas turbine, for example, usually cause high temperature changes. Great temperature differences occur for short periods in the components, and thermal shock is produced. In this work, theoretical and experimental investigations are introduced on crack initiation and crack growth in high temperature materials under cyclic thermal stresses. The experiments were carried out with the inter-metallic phase Ni{sub 3}Al, the nickel-based alloy Nimonic 80A and the iron-based alloy PM 2000 strengthened by oxide dispersion (ODS). A characteristic crack appearance picture was found for each material, which was examined more closely. The stresses occurring in the sample during one cycle were calculated with the aid of the finite element program ABAQUS, knowing the specific material parameters. Based on the linear-elastic fracture mechanics, stress intensity factors were calculated on the superimposition principle. Using the material data from isothermal crack propagation experiments, the prediction of fatigue crack spread with cyclic thermal stresses is compared with the experimental findings. (orig./AKF) [Deutsch] Die hohen Einsatztemperaturen in Antriebsaggregaten wie z.B. der Brennkammer oder der Heissgasturbine bedingen in der Regel hohe Temperaturwechsel. Dabei treten kurzzeitig grosse Temperaturunterschiede in den Bauteilen auf, ein Thermoschock wird erzeugt. In der vorliegenden Arbeit werden theoretische und experimentelle Untersuchungen zur Rissinitiierung und zum Risswachstum in Hochtemperaturwerkstoffen unter zyklisch thermischer Belastung vorgestellt. Die Experimente wurden mit der intermetallischen Phase Ni{sub 3}Al, der Nickelbasislegierung Nimonic 80A und der oxid-dispersionsverfestigten (ODS) Eisenbasislegierung PM2000 durchgefuehrt. Fuer jeden Werkstoff stellte sich ein charakteristisches Risserscheinungsbild dar, das naeher untersucht wurde. Die in der Probe auftretenden

  16. Elevated temperature ductility of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649 0 C was observed to eliminate the ductility minimum at 649 0 C in both types 304 and 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593 0 C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition

  17. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    International Nuclear Information System (INIS)

    Min, Zhang; Xi-ping, Song; Long, Yu; Hong-liang, Li; Ze-hui, Jiao; Hui-chen, Yu

    2015-01-01

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K max . Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C

  18. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xi-ping, Song, E-mail: xpsong@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Long, Yu; Hong-liang, Li [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Ze-hui, Jiao; Hui-chen, Yu [National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-01-12

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K{sub max}. Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C.

  19. A method for probing the effects of conformal nanoscale coatings on fatigue crack initiation in electroplated Ni films

    International Nuclear Information System (INIS)

    Straub, T.; Baumert, E.K.; Eberl, C.; Pierron, O.N.

    2012-01-01

    This paper describes an experimental technique to identify robust nanoscale coatings for improving the long-term reliability of metallic microelectromechanical systems. More specifically, the influence of nanoscale alumina coatings on the fatigue crack initiation process in 20 μm thick electrodeposited Ni films was investigated in a mild (30 °C, 50% RH) and harsh (80 °C, 90% RH) environment. Atomic-layer-deposited alumina layers, with thicknesses of 5 and 25 nm, were coated on Ni fatigue micro-resonators, and the fatigue degradation behavior in the very high cycle fatigue regime was compared to that of uncoated structures. Evidence based on post-test scanning electron microscopy and resonant frequency evolution plots shows that the coatings do not prevent the formation of fatigue extrusions and micro-cracks. However, their formation is likely delayed for the 25 nm thick alumina-coated Ni films. - Highlights: ► Effect of alumina coatings (5 and 25 nm thick) on fatigue initiation in nickel films ► Fatigue tests were performed at 30 °C, 50% relative humidity (RH) and 80 °C, 90% RH. ► Coatings did not prevent fatigue extrusions and micro-cracks. ► 25 nm coatings likely delayed the formation of fatigue extrusions and micro-cracks. ► The technique can be used to identify reliable nanoscale coatings.

  20. Towards the prediction of the growth of crack networks: influence of microstructural parameters on scattering at initiation

    International Nuclear Information System (INIS)

    Osterstock, St.

    2008-10-01

    This research thesis aims at understanding the importance of microstructure in the scattering of mechanical fields and of its potential influence on fatigue crack initiation, at studying the grains in which equi-biaxial fatigue cracks are appearing, and at proposing a coalescence model based on the discrete dislocation dynamics (DDD). After an overview of fatigue, the author describes the tests developed by EDF or the CEA to study thermal fatigue. Then, he presents the equi-biaxial fatigue test which allows the first stages of initiation of thermal fatigue cracks to be studied. Maps of cracked areas are obtained by Electron Back Scattered Diffraction, and results are discussed with respect to results obtained in dislocation dynamics. Polycrystalline computations are implemented. They allow a better understanding of the importance of the material microstructure for the scattering of the surface grain mechanical fields. Finally, a coalescence model is presented, based on experimental results obtained during the equi-biaxial fatigue testing. Coalescence criteria are proposed

  1. Estimation scheme for unstable ductile fracture of pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki; Sakai, Shinsuke

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture using the J-integral. The proposed method uses a load-versus-displacement diagram which is generated using fully plastic solutions. By this method, the phenomena of the ductile fracture can be grasped visually. Thus, the parametrical survey can be executed far more easily than before. Then, using the proposed method, unstable ductile fracture is analyzed for single-edge cracked plates under both uniform tension and pure bending. In addition, several parametrical surveys are performed concerning (1) J-controlled crack growth, (2) compliance of the structure, (3) ductility of the material (i.e., J-resistance curve), and (4) scale of the structure (i.e., screening criterion). As a result, it is shown that the proposed method is especially effective for the paramtrical study of unstable ductile fracture. (author)

  2. Application of failure assessment diagram methods to cracked straight pipes and elbows

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Gintalas, M.; Sahu, M.K.; Chattopadhyay, J.; Dutta, B.K.

    2016-01-01

    This paper reports fracture assessments of large-scale straight pipes and elbows of various pipe diameters and crack sizes. The assessments estimate the load for ductile fracture initiation using the failure assessment diagram method. Recent solutions in the literature for stress intensity factor and limit load provide the analysis inputs. An assessment of constraint effects is also performed using recent solutions for elastic T-stress. It is found that predictions of initiation load are close to the experimental values for straight pipes under pure bending. For elbows, there is generally increased conservatism in the sense that the experimental loads are greater than those predicted. The effects of constraint are found not to be a major contributor to the initiation fracture assessments but may have some influence on the ductile crack extension. - Highlights: • This paper presents assessments of the loads for ductile fracture initiation in 21 large-scale piping tests. • Modern stress intensity factor and limit load solutions were used for standard failure assessment diagram methods. • This leads to generally accurate assessments of the loads for ductile crack initiation. • The effects of constraint are found not to be a major contributor to the initiation fracture assessments.

  3. Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), č. článku 1640007. ISSN 1756-9737. [FDM 2016 - International Conference on Fracture and Damage Mechanics /15./. Alicante, 14.09.2016-16.09.2016] R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : inclined crack * railway axle * residual fatigue lifetime * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Leber, H.J.

    2012-01-01

    Highlights: ► Corrosion fatigue in austenitic stainless steels under light water reactor conditions. ► Identification of major parameters of influence on initiation and short crack growth. ► Critical system conditions for environmental reduction of fatigue initiation life. ► Comparison with the environmental factor (F env ) approach. - Abstract: The corrosion fatigue initiation and short crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water reactor and pressurised water reactor primary water conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. The special emphasis was placed to the behaviour at low corrosion potentials and, in particular, to hydrogen water chemistry conditions. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental reduction and acceleration of fatigue initiation life and subsequent short crack growth, respectively, are discussed and summarised. The observed corrosion fatigue behaviour is compared with the fatigue evaluation procedures in codes and regulatory guidelines.

  5. Numerical treatment of creep crack growth

    International Nuclear Information System (INIS)

    Kienzler, R.; Hollstein, T.

    1990-06-01

    To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)

  6. An initial investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205

    Science.gov (United States)

    Washabaugh, Peter; Hill, Larry

    2007-06-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  7. Strain localization and fatigue crack initiation in ultrafine-grained copper in high- and giga-cycle region

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Navrátilová, L.

    2014-01-01

    Roč. 58, JAN (2014), s. 202-208 ISSN 0142-1123 R&D Projects: GA ČR GAP108/10/2001; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Fatigue crack initiation * Strain localization * Stability of ultrafine-grained structure * UFG Cu Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.275, year: 2014

  8. An energetic criterion for a micro-crack of finite length initiated in orthotropic bi-material notches

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Ševeček, O.; Hrstka, M.; Kotoul, M.

    2013-01-01

    Roč. 110, SEP (2013), s. 396-409 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GAP108/10/2049; GA ČR(CZ) GA101/09/1821 Institutional support: RVO:68081723 Keywords : crack initiation * bi-material notch * orthotropic bi-material notch * singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.662, year: 2013

  9. Standard test method for measurement of creep crack growth times in metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension δai = 0.2 mm from the onset of first applied force and creep crack growth rate, ˙a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...

  10. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  11. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  12. Crack initiation at high temperature on an austenitic stainless steel; Amorcage de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Laiarinandrasana, L

    1994-11-25

    The study deals with crack initiation at 600 and 650 degrees Celsius, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were update in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the helps of microstructural observations and finite elements results. An identification of a `Paris`law` for continuous cyclic loading and of a unique correlation between the initiation time and C{sup *}{sub k} for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris`law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris`law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C{sup *}{sub k} parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for `equivalent` creep-fatigue tests. These crack growth rates when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue Paris law predicted ones. (Abstract Truncated)

  13. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels; Numerische Simulation der wasserstoffunterstuetzten Rissbildung in austentisch-ferritischen Duplexstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Mente, Tobias

    2015-07-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  14. Critical crack path assessments in failure investigations

    Directory of Open Access Journals (Sweden)

    Robert D. Caligiuri

    2015-10-01

    Full Text Available This paper presents a case study in which identification of the controlling crack path was critical to identifying the root cause of the failure. The case involves the rupture of a 30-inch (0.76 m natural gas pipeline in 2010 that tragically led to the destruction of a number of homes and the loss of life. The segment of the pipeline that ruptured was installed in 1956. The longitudinal seam of the segment that ruptured was supposed to have been fabricated by double submerged arc welding. Unfortunately, portions of the segment only received a single submerged arc weld on the outside, leaving unwelded areas on the inside diameter. Post-failure examination of the segment revealed that the rupture originated at one of these unwelded areas. Examination also revealed three additional crack paths or zones emanating from the unwelded area: a zone of ductile tearing, a zone of fatigue, and a zone of cleavage fracture, in that sequence. Initial investigators ignored the ductile tear, assumed the critical crack path was the fatigue component, and (incorrectly concluded that the root cause of the incident was the failure of the operator to hydrotest the segment after it was installed in 1956. However, as discussed in this paper, the critical path or mechanism was the ductile tear. Furthermore, it was determined that the ductile tear was created during the hydrotest at installation by a mechanism known as pressure reversal. Thus the correct root cause of the rupture was the hydrotest the operator subjected the segment to at installation, helping to increase the awareness of operators and regulators about the potential problems associated with hydrotesting.

  15. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  16. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  17. Fatigue crack initiation at complex flaws in hydrided Zr-2.5%Nb samples from CANDU pressure tubes

    International Nuclear Information System (INIS)

    Stoica, L.; Radu, V.

    2016-01-01

    The paper addresses the phenomena which occur at locations where the oxide layer of the inner surface of CANDU tube pressure is damaged by the contact with the fuel element or due to the action of hard particles at the interface between the tube pressure and bearing pad of fuel element. In such situations generate defects, which most often are defects known as ''bearing pad fretting flaws'' or ''debris fretting flaws''. In this paper the experiments are completed in a series of previous works on the mechanical fatigue phenomenon on samples prepared from the pressure tube Zr-2.5% Nb alloy. The phenomenon of variable mechanical stress (or fatigue) may lead to initiation of cracks at the tip of volumetric flaws, according to the accumulation of hydrides, which then fractures and can propagate through the tube wall pressure due to the mechanism of type DHC (Delayed Hydride Cracking). (authors)

  18. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Pei, Linqing; Lu, Cheng; Zhao, Xing; Zhang, Liang; Cheng, Kuiyu; Michal, Guillaume; Tieu, Kiet

    2015-01-01

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  19. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack......, and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  20. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  1. Microstructure-based approach for predicting crack initiation and early growth in metals.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  2. Hot ductility testing and weld simulation tests

    International Nuclear Information System (INIS)

    Weber, G.; Schick, M.

    1999-01-01

    The objective of the project was to enhance the insight into the causes of intergranular cracks detected in austenitic circumferential welds at BWR pipes. The susceptibility of a variety of austenitic pipe materials to hot cracking during welding and in-service intergranular crack corrosion was examined. The assumption was cracking in the root area of the HAZ of a multiple-layer weld. Hot-ductility tests and weld simulation tests specifically designed for the project were performed with the austenitic LWR pipe materials 1.4553 (X6 CrNiNb 18 10 S), 1.4550 (X10 CrNiNb 18 9), 1.4533 (X6 CrNiTi 18 9, two weld pools), and a non-stabilized TP 304 (X5 CrNi 18 10). (orig./CB) [de

  3. Investigation of crack initiation with a three color digital holographic interferometer

    Science.gov (United States)

    Karray, Mayssa; Poilane, Christophe; Mounier, Denis; Gargoury, Mohamed; Picart, Pascal

    2012-10-01

    This paper proposes a three-color holographic interferometer devoted to the deformation analysis of a composite material submitted to a short beam shear test. The simultaneous recording of three laser wavelengths using a triple CCD sensor results in the evaluation of shear strains at the lateral surface of the sample. Such an evaluation provides a pertinent parameter to detect premature crack in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope.

  4. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    International Nuclear Information System (INIS)

    Maillot, V.

    2004-01-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  5. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  6. A phenomenological model for iodine stress corrosion cracking of zircaloy

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)

  7. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  8. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    International Nuclear Information System (INIS)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H 3 BO 3 ) with 1 bar hydrogen overpressure at 360 degrees C and 320 degrees C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition

  9. Determination of the bonding strength in solid oxide fuel cells’interfaces by Schwickerath crack initiation test

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Charlas, B.; Hjelm, J.; Cannio, M.; Hendriksen, P. V.

    2017-01-01

    Roč. 37, č. 11 (2017), s. 3565-3578 ISSN 0955-2219 Institutional support: RVO:68081723 Keywords : Schwickerath crack-initiation test * Three-point bending test * SOFC interfaces * Metal-ceramic bond strength Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.411, year: 2016 https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=S1ftxS2ACYn8QwRNK3P&page=1&doc=1

  10. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    Science.gov (United States)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  11. Investigation of Helicopter Longeron Cracks

    Science.gov (United States)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  12. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  13. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  14. Analysis of crack initiation in the vicinity of an interface in brittle materials. Applications to ceramic matrix composites and nuclear fuels

    International Nuclear Information System (INIS)

    Poitou, B.

    2007-11-01

    In this study, criterions are proposed to describe crack initiation in the vicinity of an interface in brittle bi-materials. The purpose is to provide a guide for the elaboration of ceramic multi-layer structures being able to develop damage tolerance by promoting crack deflection along interfaces. Several cracking mechanisms are analyzed, like the competition between the deflection of a primary crack along the interface or its penetration in the second layer. This work is first completed in a general case and is then used to describe the crack deviation at the interface in ceramic matrix composites and nuclear fuels. In this last part, experimental tests are carried out to determine the material fracture properties needed to the deflection criteria. An optimization of the fuel coating can be proposed in order to increase its toughness. (author)

  15. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  16. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  17. Mechanical factors affecting reliability of pressure components (fatigue, cracking)

    International Nuclear Information System (INIS)

    Lebey, J.; Garnier, C.; Roche, R.; Barrachin, B.

    1978-01-01

    The reliability of a pressure component can be seriously affected by the formation and development of cracks. The experimental studies presented in this paper are devoted to three different aspects of crack propagation phenomena which have been relatively little described. In close connection with safety analyses of PWR, the authors study the influence of the environment by carrying out fatigue tests with samples bathed in hot pressurized water. Ferritic, austenitic and Incolloy 800 steels were used and the results are presented in the form of fatigue curves in the oligocyclic region. The second part of the paper relates to crack initiation cirteria in ductile steels weakened by notches. The CT samples used make it possible to study almost all types of fracture (ductile, intermediate and brittle). The use of two criteria based on the load limit and on the toughness of the material constitutes a practical way of evaluating crack propagation conditions. A series of tests carried out on notched spherical vessels of different size shows that large vessels are relatively brittle; fast unstable fracture is observed as size increases. Crack growth rate in PWR primary circuits (3/6 steel) is studied on piping elements (0.25 scale) subjected to cyclic stress variations (285 0 C and with pressure varying between 1 and 160 bar in each cycle). By calculating the stress intensity factor, correlation with results obtained in the laboratory on CT samples is possible. (author)

  18. Determination of Ductile Tearing Resistance Curve in Weld Joints

    International Nuclear Information System (INIS)

    Marie, S.; Gilles, P.; Ould, P.

    2010-01-01

    Steels present in the ductile domain a tearing resistance which increase with the crack propagation up to the failure. This ductile tearing resistance is in general characterised with curves giving the variation of a global parameter (opening displacement at the crack tip delta, integral J) versus the crack extension Delta a. These global approaches depend more or less on the specimen geometry and on the type of the imposed loading. Local approaches based on the description of the ductile tearing mechanisms provide reliable solution to the transferability problem (from the lab specimen to the component) but are complex and costly to use and are not codified. These problems get worse in the case of a weld joint where no standard is available for the measurement of their ductile tearing resistance. But the welded joints are often the weak point of the structure because of greater risk of defects, the heterogeneity of the microstructure of the weld, deformation along the interface between two materials with different yield stress (mismatch).... After briefly recalling the problems of transferability of the ductile tearing resistance curves obtained on lab specimen to the case of components, this article identifies the factors complicating the determination of the toughness in the welded joints and gives recommendations for the experimental determination of ductile tearing resistance curves of welded joints

  19. Influence of the residual stresses on crack initiation in brittle materials and structures

    International Nuclear Information System (INIS)

    Henninger, C.

    2007-11-01

    Many material assemblies subjected to thermo-mechanical loadings develop thermal residual stresses which modify crack onset conditions. Besides if one of the components has a plastic behaviour, plastic residual deformations may also have a contribution. One of the issues in brittle fracture mechanics is to predict crack onset without any pre-existing defect. Leguillon proposed an onset criterion based on both a Griffth-like energetic condition and a maximum stress criterion. The analysis uses matched asymptotics and the theory of singularity. The good fit between the model and experimental measurements led on homogeneous isotropic materials under pure mechanical loading incited us to take into account residual stresses in the criterion. The comparison between the modified criterion and the experimental measurements carried out on an aluminum/epoxy assembly proves to be satisfying concerning the prediction of failure of the interface between the two components. Besides, it allows, through inversion, identifying the fracture properties of this interface. The modified criterion is also applied to the delamination of the tile/structure interface in the plasma facing components of the Tore Supra tokamak. Indeed thermal and plastic residual stresses appear in the metallic part of these coating tiles. (author)

  20. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  1. Experimental and Computational Study of Ductile Fracture in Small Punch Tests

    Directory of Open Access Journals (Sweden)

    Betül Gülçimen Çakan

    2017-10-01

    Full Text Available A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.

  2. Experimental and Computational Study of Ductile Fracture in Small Punch Tests.

    Science.gov (United States)

    Gülçimen Çakan, Betül; Soyarslan, Celal; Bargmann, Swantje; Hähner, Peter

    2017-10-17

    A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.

  3. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  4. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G.

    2014-07-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  5. Fatigue crack initiation in nickel-based superalloys studied by microstructure-based FE modeling and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Fried M.

    2014-01-01

    Full Text Available In this work stage I crack initiation in polycrystalline nickel-based superalloys is investigated by analyzing anisotropic mechanical properties, local stress concentrations and plastic deformation on the microstructural length scale. The grain structure in the gauge section of fatigue specimens was characterized by EBSD. Based on the measured data, a microstructure-based FE model could be established to simulate the strain and stress distribution in the specimens during the first loading cycle of a fatigue test. The results were in fairly good agreement with experimentally measured local strains. Furthermore, the onset of plastic deformation was predicted by identifying shear stress maxima in the microstructure, presumably leading to activation of slip systems. Measurement of plastic deformation and observation of slip traces in the respective regions of the microstructure confirmed the predicted slip activity. The close relation between micro-plasticity, formation of slip traces and stage I crack initiation was demonstrated by SEM surface analyses of fatigued specimens and an in-situ fatigue test in a large chamber SEM.

  6. Crack trajectory near a weld: Modeling and simulation

    DEFF Research Database (Denmark)

    Rashid, M.M.; Tvergaard, Viggo

    2008-01-01

    A 2D computational model of ductile fracture, in which arbitrary crack extension through the mesh is accommodated without mesh bias, is used to study ductile fracture near the weld line in welded aluminum plates. Comparisons of the calculated toughness behavior and crack trajectory are made...

  7. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  8. Electrochemical investigation of crack initiation during corrosion fatigue of stainless steels in the passive state. Elektrochemische Untersuchung der Rissbildung bei Schwingungsrisskorrosion im stabil-passiven Werkstoffzustand

    Energy Technology Data Exchange (ETDEWEB)

    Spaehn, R. (Technische Hochschule Darmstadt (Germany, F.R.))

    1991-03-01

    The corrosion fatigue behaviour of three stainless steels - ferritic (12% Cr), austenitic (type 316 Ti) and austenitic-ferritic (type 31803; Duplex stainless steel) - was studied under rotating bending moments in aqueous sulphuric acid of 30deg C. An instrumental set-up for recording the transient currents of specimens during potentiostatically controlled corrosion fatigue is described. Based on this transient current signal technique, three stages on the corrosion fatigue process can be discerned. In the incubation period, small stochastic current transients are caused by the response of the passive layer to alternating stresses and environmental conditions. The appearance of sinusoidal current signals indicates crack initiation whereas the phase angle between a fixed marker - i.e. a light barrier signal -, and the anodic amplitude represents the site of initiating cracks. Finally, the crack growth period is characterized by an increasing cell current and steadily growing sinusoidal current signals caused by the interplay of microplastic and repassivation processes at the crack tip. (orig.).

  9. Local approach on mixed-mode ductile fracture of an aged stainless steel 316L

    International Nuclear Information System (INIS)

    Jeon, K.L.; Marini, B.

    1993-01-01

    In the frame of the structural integrity of the fast breeder reactor vessel, the local approach of fracture is applied to the ductile crack initiation under mixed-mode I+II loading for a 316L type stainless steel thermally aged for 1000 hours at 700 deg C. Experimental and numerical tests are performed on axisymmetric notched specimens, compact tension specimens and disymmetric four-point bend specimens. From elastoplastic finite element analyses, the damage variables are evaluated with various models: the Beremin model, the McClintock model, the Guennouni-Francois model and the Lemaitre model. The critical values of damage variable obtained on simple tensile specimens and axisymmetric notched specimens are used for the prediction of crack initiation under mixed-mode loading. The damage variable at crack initiation seems to be rather dependent on the fracture mode related to the stress triaxiality and the brittle fracture of banded ferrite of the aged material. The results are compared with those of the J values at crack initiation. (author). 9 ref., 2 figs

  10. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  11. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718; Aspects probabilistes et microstructuraux de l'amorcage des fissures de fatigue dans l'alliage INCO 718

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, F

    2004-03-15

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  12. Dynamic response of cracked hexagonal subassembly ducts

    International Nuclear Information System (INIS)

    Glazik, J.L.; Petroski, H.J.

    1979-01-01

    The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals

  13. A study of complex defects failing by fatigue, ductile tearing and cleavage

    International Nuclear Information System (INIS)

    Bezensek, B.; Ren, Z.; Hancock, J.W.

    2001-01-01

    Defect assessment procedures ensure the structural integrity of plant, which may contain complex defects. The present work addresses complex defects with re-entrant sectors, which develop from the interaction of two co-planar surface breaking defects in fatigue. Experimental studies show rapid fatigue growth and amplified crack driving forces in the re-entrant sector. This leads to the rapid evolution of the complex crack into a bounding semielliptical defect. Experiments involving ductile tearing of cracks with a re-entrant sector show that tearing initiates in the re-entrant sector and that the defect evolves into a bounding semielliptical defect. Cleavage failures of defects with re-entrant sectors indicate the re-characterisation procedure is only conservative after invoking constraint arguments. The study confirms the conservatism inherent in the re-characterisation rules of assessment procedures, such as BS 7910 [1] and ASME Section XI [2] for complex defects extending by fatigue or ductile tearing. A potentially non-conservative situation exists for defects with re-entrant sectors failing by cleavage at small fractions of the limit load.(author)

  14. Material specification for ductile cast iron in the United States

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1987-01-01

    The United States currently does not have formal design criteria for qualifying ductile cast iron (DCI) transportation casks. There is also no dedicated material standard for DCI for this particular application. Recognizing the importance of a material standard for this application, Lawrence Livermore Laboratories, in a report to the NRC, recommended that steps be taken to develop an ASTM material specification suitable for spent fuel shipping containers. A draft ASTM material specification has been written and is currently in the ASTM approval process. This paper reviews the brief history of the development of the specification, the technical basis for the material properties, the ASTM approval process and the current status of the draft specification. The expected implications of having an adopted ASTM specification on the licensing process are also discussed. The relationship of fracture toughness to composition, microstructure and tensile properties has been evaluated at Sandia National Laboratories. The first main conclusion reached is that static fracture toughness is essentially decoupled from tensile properties such as yield strength, tensile strength and ductility. The significance of this finding is that tensile properties provided for in existing DCI specifications should not be used as an indicator of a material's ability to resist crack initiation. A material specification which includes fracture toughness requirements is needed to address the brittle fracture concerns. Second, static fracture toughness was found to correlate well with material microstructure; specifically, graphite nodule count or nodule spacing

  15. Characterisation of Ductile Prepregs

    Science.gov (United States)

    Pinto, F.; White, A.; Meo, M.

    2013-04-01

    This study is focused on the analysis of micro-perforated prepregs created from standard, off the shelf prepregs modified by a particular laser process to enhance ductility of prepregs for better formability and drapability. Fibres are shortened through the use of laser cutting in a predetermined pattern intended to maintain alignment, and therefore mechanical properties, yet increase ductility at the working temperature. The increase in ductility allows the product to be more effectively optimised for specific forming techniques. Tensile tests were conducted on several specimens in order to understand the ductility enhancement offered by this process with different micro-perforation patterns over standard prepregs. Furthermore, the effects of forming temperature was also analysed to assess the applicability of this material to hot draping techniques and other heated processes.

  16. Contribution to the determination of priority constructive influences on the hot crack initiation of welded components; Beitrag zur Ermittlung vorrangig konstruktiver Einflussgroessen auf die Heissrissinitiierung an geschweissten Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Gollnow, Christian

    2015-07-01

    The previous research results do not allow a general hot crack characterisation although a variety of experimental and numerical knowledge is available. The reason for this is mainly the large number of influencing factors that complicate a complete description of the hot cracking phenomenon and especially solidification cracking. The hot crack formation and thus the solidification crack initiation can be described by the interaction of process, metallurgy and design. However, the literature examination shows that in the solidifaction crack characterisation the influence of the design aspect is often underestimated. The pre-stresses of the structural components is up to now not considered as an essential cause for the formation of solidification cracks. The evaluation of the influence of the various parameters is presented partly inconsistent. In addition, the targeted presentation of the design influence with respect to the solidification cracks in the weld is because the limited transferability of the various component-specific stresses on a laboratory scale and thus to the respective hot cracking tests restricted. Hence, the difficulty to transfer the results between laboratory specimen and component as well as the general hot crack characterisation is given. In this work the different types of stresses from the component welding in the laboratory and to quantify experimentally the solidification crack critical values, displacements and displacement rates were detected. In this regard external loaded hot cracking tests were carried out by using the advantages of contactless measurement techniques close to the weld and to analyse the welding process with respect to various local and global design-specific factors influencing the formation of solidification cracks in high alloyed steel. These investigations were performed on austenitic (1.4828) and ferritic (1.4509) materials with different mechanical and technological properties. To reflect the praxis relevant

  17. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    International Nuclear Information System (INIS)

    Kawai, E; Umeno, Y

    2017-01-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses. (paper)

  18. The influence of environmental variables and irradiation on iodine stress corrosion crack initiation and growth in Zircaloy

    International Nuclear Information System (INIS)

    Lunde, L.; Videm, K.

    1980-01-01

    Variables in the SCC testing technique and the effect of the fast neutron dose appear to explain most of the controversy about the effect of irradiation damage on the SCC behaviour of Zircaloy. On the basis of extensive laboratory testing functions expressing the time for stress corrosion crack (SCC) initiation and the rate of crack propagation at different stresses and temperatures have been worked out. The environmental variables in the SCC test can have a much larger influence on the life-time for autoclaved material than for pickled and sandblasted metal. For irradiated (oxidized) material a ten times increase in the iodine concentration reduced the failure stress from 500 to 250 MPa. By comparing our results with published data it is concluded that the failure stress (after 1-3 hours) is very dependent upon the neutron dose. Neutron damage will raise the stress threshold for doses up to 10 20 n/cm 2 and thereafter the failure stress is gradually decreased to low values with increasing neutron doses up to 5.10 21 n/cm 2 . (author)

  19. Theoretical prediction of energy release rate for interface crack initiation by thermal stress in environmental barrier coatings for ceramics

    Science.gov (United States)

    Kawai, E.; Umeno, Y.

    2017-05-01

    As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.

  20. Cracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands

    Directory of Open Access Journals (Sweden)

    Eamor M. Woo

    2016-09-01

    Full Text Available This article reviews possible mechanisms of various crack forms and their likely correlations with interior crystal lamellae and discontinuous interfaces in spherulites. Complex yet periodically repetitive patterns of cracks in spherulites are beyond attributions via differences in thermal expansion coefficients, which would cause random and irregular cracks in the contract direction only. Cracks in brittle polymers such as poly(l-lactic acid (PLLA, or poly(4-hydroxyl butyrate (PHB, or more ductile polymers such as poly(trimethylene terephthalate (PTT are examined and illustrated, although for focus and demonstration, more discussions are spent on PLLA. The cracks can take many shapes that bear extremely striking similarity to the ring-band or lamellar patterns in the same spherulites. Crack patterns may differ significantly between the ring-banded and ringless spherulites, suggesting that the cracks may be partially shaped and governed by interfaces of lamellae and how the lamellar crystals assemble themselves in spherulites. Similarly, with some exceptions, most of the cracks patterns in PHB or PTT are also highly guided by the lamellar assembly in either ring-banded spherulites or ringless spherulites. Some exceptions of cracks in spherulites deviating from the apparent crystal birefringence patterns do exist; nevertheless, discontinuous interfaces in the initial lamellae neat the nuclei center might be hidden by top crystal over-layers of the spherulites, which might govern crack propagation.

  1. Cracking in dissimilar laser welding of tantalum to molybdenum

    Science.gov (United States)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  2. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(..delta..K)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel.

  3. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(ΔK)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel

  4. Experimental investigations of the influence of thickness and mixed-mode loading on the crack initial angle in LC4-CS aluminum

    Science.gov (United States)

    Dong, Huiru; Guo, Wanlin; Yu, Liang

    2002-05-01

    The influence of thickness and mixed mode I/II loading on the crack initial angle of aluminum LC4-CS plates of 2, 4, 8 and 14 mm thickness was investigated experimentally from tensile-tearing testing of the compact-tension-shear type specimens. Experimental results of the crack initial angle for various thickness plates and load mode mixity were presented, and compared with theoretical predictions form the maximum tangential stress criterion and the maximum triaxial stress criterion. The crack initial angle is found to vary not only with load mode mixity but also with specimen thickness. The experimental result show a god agreement with theoretical predictions in 2, 14 mm- thickness specimens but a great deal difference in 8 mm-thickness specimens. The results are discussed in the viewpoint of 3D failure theory.

  5. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  6. Simulation of the ductile damage under the metal forming

    International Nuclear Information System (INIS)

    Bogatov, A. A.

    2003-01-01

    Potentiality of metal forming is limited by ductile damage. The damage degree is estimated by the scalar value ω, that is equal to 0(ω=0) before plastic strain and is equal to 1(ω=1) at the macro cracks moment. There are two criteria that describe micro damage. The value ω=ω * corresponds to the generation of micro voids that couldn't be recovered by recrystallization but do not reduce the metal strength. The value ω=ω ** corresponds to the generation of micro voids that reduce the metal strength and material long life. The models of metal damage accumulation under pure and alternate strain also the model of metal damage recovery under the recrystallization are developed. The specimen testing at high loading parameters gives the basic equations of the ductile damage mechanics. All of that gives the method to study ductile damage under the metal forming. The methodology damage nucleation and growing is shown on various examples: the void and crack development in the areas ductile damage and unlimited ductility; mathematical simulation of the metal damage under the sheet and wire drawing and others. The problems of physical simulating at the ductile damage under metal forming are shown too in this paper. The method and equipment of metal damage physical simulation are proposed. (Original)

  7. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  8. Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

    Science.gov (United States)

    Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.

    2018-02-01

    An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with parallel to the extrusion direction. The DRXed grains were deformed by the basal slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

  9. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  10. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    . Ductile crack growth in a thin strip under mode I, overall plane strain, small scale yielding conditions is analyzed. Although overall plane strain loading conditions are prescribed, full 3D analyses are carried out to permit modeling of the three dimensional material microstructure and of the resulting......Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low...

  11. Stress and strain field singularities, micro-cracks, and their role in failure initiation at the composite laminate free-edge

    Science.gov (United States)

    Dustin, Joshua S.

    A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of

  12. Observations on Mode I ductile tearing in sheet metals

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau

    2013-01-01

    Cracked ductile sheet metals, subject to Mode I tearing, have been observed to display a variety of fracture surface morphologies depending on the material properties, and a range of studies on the fracture surface appearance have been published in the literature. Whereas classical fractures...

  13. Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2002-01-01

    .... Experiments were performed using two materials, nominally brittle polymethyl methacrylate and nominally ductile polycarbonate to quantify crack tip heating and identify dominant dissipative mechanisms...

  14. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Park, H. B.; Chopra, O. K.

    2000-01-01

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of ΔJ and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values

  15. Ductility loss of ion-irradiated zircaloy-2 in iodine

    International Nuclear Information System (INIS)

    Shimada, M.; Terasawa, M.; Yamamoto, S.; Kamei, H.; Koizumi, K.

    1981-01-01

    An ion bombardment simulation technique for neutron irradiation was applied to 'thick' materials to study the effect of radiation damage on the ductility change in Zircaloy-2 in an iodine environment. Specimens were prepared from actual cladding tubes and, prior to the irradiation, they were heat-treated in vacuo at 450, 580, and 700/degree/C for 2 h. Irradiation was performed by 52-MeV alpha particles up to the 0.32 displacements per atom (dpa) at 340/degree/C. Ductility loss begins to appear after 0.03 dpa irradiation, both in iodine and argon gas environments. The iodine presence resulted in ductility reduction, compared with the argon result in all irradiation dose ranges examined. The stress applied during irradiation caused ductility loss to commence at lower dosage than in the case of stress-free irradiation. These results are discussed in relation to the existing stress corrosion cracking models

  16. A damage cumulation method for crack initiation prediction under non proportional loading and overloading

    International Nuclear Information System (INIS)

    Taheri, S.

    1992-04-01

    For a sequence of constant amplitude cyclic loading containing overloads, we propose a method for damage cumulation in non proportional loading. This method uses as data cyclic stabilized states at non proportional loading and initiation or fatigue curve in uniaxial case. For that, we take into account the dependence of Cyclic Strain Stress Curves (C.S.S.C.) and mean cell size on prehardening and we define a stabilized uniaxial state cyclically equivalent to a non proportional stabilized state through a family of C.S.S.C. Although simple assumptions like linear damage function and linear cumulation is used we obtain a sequence effect for difficult cross slip materials as 316 stainless steel, but the Miner rule for easy cross-slip materials. We show then differences between a load-controlled test and a strain controlled test: for a 316 stainless steel in a load controlled test, the non proportional loading at each cycle is less damaging than the uniaxial one for the same equivalent stress, while the result is opposite in a strain controlled test. We show also that an overloading retards initiation in a load controlled test while it accelerates initiation in a strain controlled test. (author). 26 refs., 8 figs

  17. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  18. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  19. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  20. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  1. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    Directory of Open Access Journals (Sweden)

    Mustafa Merih Arıkan

    2015-06-01

    Full Text Available Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility were plotted for this material. Reduction of area (RA decreases and cracking susceptibility increases during cooling from solidification between certain temperatures depending on the cooling rate. Although the temperatures which fracture behavior change upon cooling during continuous casting may vary for different materials, it was found that the type of fracture was ductile at 1100 and 1050 °C; semi-ductile at 1000 °C, and brittle at 800 °C for the steel P245NB. There is a ductility trough between 1000 and 725 °C. The ductility trough gets slightly narrower as the cooling rate decreases.

  2. Corrosion cracking resistance of the VT3-1 titanium alloy with initial defects in the metal

    International Nuclear Information System (INIS)

    Konradi, G.G.; Mozhaev, A.V.; Zmievskij, V.I.; Sokolov, V.S.

    1978-01-01

    Investigated is the corrosion cracking resistance of thick sheet half-finished product of the VT3-1 alloy in 3% NaCl solution during 800 hrs. It is shown that crack development occurs during the first 24 hours with stress intensities above the threshold coefficient of stress intensities. Ratios of crack sizes permissible for using the alloy in the air and NaCl solution media are obtained

  3. Development of Nanostructured Austempered Ductile Cast Iron

    Science.gov (United States)

    Panneerselvam, Saranya

    Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.

  4. Fracture toughness for materials of low ductility

    International Nuclear Information System (INIS)

    Barzilay, S.; Karp, B.; Perl, M.

    1998-05-01

    The results of a survey of methods for evaluating fracture toughness characteristics for semi-brittle and brittle materials are presented in this report. These methods differ considerably from those used for ductile materials by the specimen configurations, the methodology of the experiments and by the problems occurring while using these methods. The survey yields several important findings A. It is possible to create steady state crack growth by cyclic loading in several semi-brittle materials. B. The need for pre-cracking is not yet clear, nevertheless it is recommended to evaluate fracture toughens with pre-cracked specimen. C. As crack length and ligament size may effect fracture toughness results it is necessary to define minimum specimen dimensions to avoid this effect. D. The specimen thickness hardly affects the fracture toughens. E. Loading rate for the test is not well defined. It is commonly accepted to end the test in one minute. F. The main mechanism that causes inelastic deformation in semi-brittle materials is related to the generation of micro-cracks

  5. Microstructure and mechanical properties of internal crack healing in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ruishan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Ma, Qingxian, E-mail: maqxdme@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Weiqi [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The behavior of internal crack healing in a low carbon steel at elevated temperatures was investigated. The internal cracks were introduced into low carbon steel samples via the drilling and compression method. The microstructure of crack healing zone was observed using optical microscopy and scanning electron microscopy. The mechanical properties of crack healing zone at room temperature were tested. The results show that there are two mechanisms of crack healing in the low carbon steel. Crack healing is caused by atomic diffusion at lower temperatures, and mainly depends on recrystallization and grain growth at higher temperatures. The microstructural evolution of crack healing zone can be divided into four stages, and the fracture morphology of crack healing zone can be classified into five stages. At the initial healing stage, the fracture exhibits brittle or low ductile dimple fracture. The ultimate fracture mode is dimple and quasi-cleavage mixed fracture. Fine grain microstructures improve the ultimate tensile strength of crack healing zone, which is even higher than that of the matrix. The strength recovery rate is higher than that of the plasticity.

  6. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  7. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  8. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  9. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  10. Life time estimation for irradiation assisted mechanical cracking of PWR RCCA rodlets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Takanori; Yamaguchi, Youichirou [Nuclear Development Corp., Tokai, Ibaraki (Japan)

    1999-09-01

    Intergranular cracks of cladding tubes had been observed at the tips of the rodlets of PWR rod cluster control assemblies (RCCAs). Because RCCAs were important core components, an investigation was carried out to estimate their service lifetime. The reviews on their mechanism and the life time estimation are shown in this paper. The summaries are as follows. (1) The mechanism of the intergranular crack of the cladding tube was not IASCC but irradiation assisted mechanical cracking (IAMC) caused by an increase in hoop strain due to the swelling of the absorber and a decrease in elongation due to neutron irradiation. (2) The crack initiation limit of cylindrical shells made of low ductile material and subjected to internal pressure was determined in relation to the uniform strain of the material and was in accordance with that of the RCCA rodlets in an actual plant. (3) From the above investigation, the method of estimating the lifetime and countermeasures for its extension were obtained. (author)

  11. Patients "falling through the cracks". The Canterbury Charity Hospital: initial progress report.

    Science.gov (United States)

    Bagshaw, Philip F; Allardyce, Randall A; Bagshaw, Susan N; Stokes, Brian W; Shaw, Carl S; Proffit, Lorraine J; Nicholls, M Gary; Begg, Evan J; Frampton, Christopher M

    2010-08-13

    To present the early experience of establishing a community-funded and volunteer-staffed hospital in Christchurch, New Zealand. This was to provide free selected elective healthcare services to patients in the Canterbury region who were otherwise unable to access treatment in the public health system or afford private healthcare. Data were reviewed relating to the establishment, financing, staffing and running of the Canterbury Charity Hospital. Details were provided of patients referred by their general practitioners who were seen and treated during the first two and a half years of function. Canterbury Charity Hospital Trust, established in 2004, completed the purchase of a residential villa in 2005 and converted it into the Canterbury Charity Hospital, which performed its first operations in 2007. By the end of December 2009, 115 volunteer health professionals and 79 non-medical volunteers had worked at the Hospital, provided a total of 966 outpatient clinic appointments, of which 609 were initial assessments, and performed 610 surgical procedures. Funding of $NZ4.3 million (end of last financial year) came from fundraising events, donations, grants and interest from investments. There has been no government funding. There is a substantial unmet need for elective healthcare in Canterbury, and this has, in part, been addressed by the recently established Canterbury Charity Hospital. The overwhelming community response we have experienced in Canterbury raises the question of whether the current public health system needs attention to be re-focused on unmet need. We contend that unless this occurs it might be necessary to establish charity-type hospitals elsewhere throughout the country.

  12. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  13. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  14. Cohesive traction–separation laws for tearing of ductile metal plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, John W.

    2012-01-01

    The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack tip and shear localization followed by a slant fracture in the necked region somewhat clos...

  15. Effect of shrinkage porosity on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    Wang Zehua

    2013-05-01

    Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.

  16. The effect of initiation feature and environment on fatigue crack formation and early propagation in aluminum zinc magnesium copper

    Science.gov (United States)

    Burns, James T.

    The current research provides insight into fatigue crack formation and progression in the poorly understood size regime that bridges safe-life and damage tolerance approaches; particular attention is given to the influences of corrosion-induced degradation and time-cycle dependent loading environment effects. Quantitative analysis of crack formation life (Ni), microstructurally small crack (database. Results show that fatigue crack formation involves a complex interaction of elastic stress concentration, due to a 3-dimensional macro-pit, coupled with local micro-feature (and constituent) induced plastic strain concentration. Such interactions cause high Ni variability, but, from an engineering perspective, a broadly corroded surface should contain an extreme group of features driving Ni to ˜0. At low-applied stresses, Ni consumes a significant portion of total life, which is well predicted by coupling elastic-plastic FEA with empirical low-cycle fatigue life models. All pristine and corroded da/dN were uniquely correlated using complex continuum stress intensity (K) and crack opening solutions which account for the stress concentrating formation feature. Multiple crack growth regimes were observed, typical of environment enhanced fatigue in Al alloys. Such behavior is not captured by prominent mechanics-based small crack models. Furthermore, neither local closure nor slip-based models captured the order of magnitude variability in da/dN attributed to microstructure. Low temperature loading produces an order of magnitude increase in Ni, and even larger reduction in da/dN, due to elimination of H-enhanced cracking by reduced external water vapor pressure, lower crack tip reaction rate (to produce atomic-H), and slower H diffusion. Engineering level modeling approaches are validated using these high fidelity experimental results, informing next generation prognosis methods for realistic airframe environments.

  17. Finite element analysis of the influence of elastic anisotropy on stress intensification at stress corrosion cracking initiation sites in fcc alloys

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2018-05-01

    A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.

  18. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1995-01-01

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi 2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  19. Investigation of Cracks Found in Helicopter Longerons

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  20. Statistical crack mechanics

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1993-01-01

    Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives

  1. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  2. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    International Nuclear Information System (INIS)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-01-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  3. The effect of chloride on general corrosion and crack initiation of low-alloy steels in oxygenated high-temperature water

    International Nuclear Information System (INIS)

    Herbst, Matthias; Roth, Armin; Widera, Martin; Kuester, Karin; Huettner, Frank; Nowak, Erika

    2012-01-01

    The effect of chloride on the general corrosion and its potential impact on EAC crack initiation of low-alloy steel (German reactor pressure vessel steel 22 NiMoCr 3 7) in oxygenated high-temperature water were investigated. The general corrosion behavior was analyzed by exposure tests with either permanently increased chloride concentration levels or temporary chloride transients. The potential effect on EAC crack initiation was analyzed with pre-strained C-ring specimens and in SSRT (CERT) tests with slowly rising strain. Both kinds of tests were performed under simulated BWR conditions and with different chloride levels. The chloride concentrations of 5 to 50 ppb were chosen according to the action levels of the German water chemistry guideline for the reactor coolant of BWRs (VGB R401J, 2006). In all exposure tests, none of the pre-strained C-ring specimens showed crack initiation during up to 1000 hours of exposure time with up to 50 ppb chloride. Investigations of the oxide layer thickness after immersion testing revealed a decrease with increasing chloride concentration. As shown by post-test chemical analysis of the oxide layer composition by TOF-SIMS, this effect is most likely primarily due to adsorption of chloride on the oxide layer surface, since only very limited penetration of chloride into the oxide was detected. In contrast to the tests with C-ring specimens, where no crack initiation occurred, slightly accelerated crack initiation at lower elongation levels was observed at increasing chloride concentrations in SSRT tests under simulated BWR conditions using actively loaded specimens. In addition, SSRT specimens that were cyclically loaded at the oxide fracture elongation level were used to generate a continuous, exposure of bare metal to the environment by repeated fracture of the oxide. This loading pattern did not cause crack initiation at all chloride concentrations applied (up to 50 ppb). From these results, it may be concluded that at least

  4. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  5. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  6. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    International Nuclear Information System (INIS)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang

    2009-06-01

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  7. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Wang, C.Y. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Cui, C.Y.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, J.Z., E-mail: blueesky2005@163.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-05

    The influence of massive laser shock peening (LSP) impacts with coverage area on tensile properties of AM50 magnesium alloy was investigated using MTS880-10 servo-hydraulic material testing machine system. Microstructure in the surface layer and fracture morphologies of as-machined and LSPed tensile specimens were also characterized and analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cross-sectional optical microscopy (OM). Special attention is paid to the crack initiation location as a function of LSPed coverage area in the gauge part of tensile specimen. Experimental results and analysis indicate that coverage area significantly influenced tensile properties of the tensile specimen. In addition, the grain refinement process in the top surface layer of AM50 magnesium alloy caused by massive LSP impacts is presented. Furthermore, the underlying influence mechanism of LSPed coverage area on tensile properties and crack initiation location of tensile specimen was clearly revealed.

  8. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Luo, K.Y.; Wang, C.Y.; Sun, G.F.; Cui, C.Y.; Sheng, J.; Lu, J.Z.

    2016-01-01

    The influence of massive laser shock peening (LSP) impacts with coverage area on tensile properties of AM50 magnesium alloy was investigated using MTS880-10 servo-hydraulic material testing machine system. Microstructure in the surface layer and fracture morphologies of as-machined and LSPed tensile specimens were also characterized and analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cross-sectional optical microscopy (OM). Special attention is paid to the crack initiation location as a function of LSPed coverage area in the gauge part of tensile specimen. Experimental results and analysis indicate that coverage area significantly influenced tensile properties of the tensile specimen. In addition, the grain refinement process in the top surface layer of AM50 magnesium alloy caused by massive LSP impacts is presented. Furthermore, the underlying influence mechanism of LSPed coverage area on tensile properties and crack initiation location of tensile specimen was clearly revealed.

  9. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files.

    Science.gov (United States)

    Soni, Dileep; Raisingani, Deepak; Mathur, Rachit; Madan, Nidha; Visnoi, Suchita

    2016-01-01

    To evaluate the incidence of apical crack initiation during canal preparation with stainless steel K-files and hand protaper files (in vitro study). Sixty extracted mandibular premo-lar teeth are randomly selected and embedded in an acrylic tube filled with autopolymerizing resin. A baseline image of the apical surface of each specimen was recorded under a digital microscope (80×). The cervical and middle thirds of all samples were flared with #2 and #1 Gates-Glidden (GG) drills, and a second image was recorded. The teeth were randomly divided into four groups of 15 teeth each according to the file type (hand K-file and hand-protaper) and working length (WL) (instrumented at WL and 1 mm less than WL). Final image after dye penetration and photomicrograph of the apical root surface were digitally recorded. Maximum numbers of cracks were observed with hand protaper files compared with hand K-file at the WL and 1 mm short of WL. Chi-square testing revealed a highly significant effect of WL on crack formation at WL and 1 mm short of WL (p = 0.000). Minimum numbers of cracks at WL and 1 mm short of WL were observed with hand K-file and maximum with hand protaper files. Soni D, Raisingani D, Mathur R, Madan N, Visnoi S. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files. Int J Clin Pediatr Dent 2016;9(4):303-307.

  10. On the applicability of local approaches for the determination of the failure behavior of ductile steels

    International Nuclear Information System (INIS)

    Kussmaul, K.; Eisele, U.; Seidenfuss, M.

    1992-01-01

    The strength and deformation behavior of specimens and components is, on one hand, influenced by the local state of stress and strain and, on the other hand by the chemical composition and the microstructure of the material used. Using two different steels it was investigated in how far it is possible to predict the failure behavior of specimens and components qualitatively and quantitatively by means of local approaches. For this purpose two methods differing considerably from the basic idea were chosen. For the description of the failure behavior so-called damage models were used. These damage models try to describe numerically the process developing microscopically and finally leading to fracture by means of continuum mechanical approaches in order to calculate the macroscopical failure behavior. The results show that for ductile materials the damage models allow a very accurate calculation of smooth and notched specimens and components. The efforts presently required for the calculation are however still very high. Analyses using fracture mechanics approaches (J-Integral) in combination with the local stress states (multiaxiality) were performed to describe the failure behavior. With this approach it was tried to calculate crack initiation and maximum load of precracked specimens and components. The fracture mechanics methods are to be preferred for cracked components if an engineering estimation of crack initiation and maximum load is required only, since the calculational efforts of the fracture mechanics methods are much lower than those of the damage models

  11. The influence of the first non-singular stress terms on crack initiation direction in an orthotropic bi-material plate

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Hrstka, M.; Profant, T.; Krepl, Ondřej; Ševeček, O.; Kotoul, M.

    2014-01-01

    Roč. 71, JUN (2014), s. 67-75 ISSN 0167-8442 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA14-11234S Institutional support: RVO:68081723 Keywords : Bi-material notch * Crack initiation direction * Non-singular stress term * Generalized fracture mechanics * Path-independent integral Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.262, year: 2014

  12. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case

  13. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    Energy Technology Data Exchange (ETDEWEB)

    James, L.A.

    1997-10-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case.

  14. A procedure for safety assessment of components with cracks - Handbook

    International Nuclear Information System (INIS)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I.

    1996-01-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack like defects or for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: The procedure should be able to handle both linear and non-linear problems without any a priori division; The procedure shall ensure uniqueness of the safety assessment; The procedure should be well defined and easy to use; The conservatism of the procedure should be well validated; The handbook that documents the procedure should be so complete that for most assessments access to any other fracture mechanics literature should not be necessary. The method utilized is based on the R6-method developed at Nuclear Electric plc. This method can in principle be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperatures where creep deformation is of importance. The first edition of the handbook was released in 1990 and the second in 1991. This third edition has been extensively revised. A Windows-based program (SACC) has been developed which can perform the assessments described in the book including calculation of crack growth due to stress corrosion and fatigue. 52 refs., 27 figs., 35 tabs

  15. Post analysis of AE data of seal plug leakage of NAPS-2 and fatigue crack initiation of three point bend sample using cluster and artificial neural network

    International Nuclear Information System (INIS)

    Singh, A.K.; Mehta, H.R.; Bhattacharya, S.

    2003-01-01

    Acoustic Emission data is very weak and passive in nature that leads to a challenging task to separate AE data from noise. This paper illuminates the work done of post analysis of acoustic emission data of seal plug leakage of operating PHWR, NAPS-2, Narora and Fatigue Crack initiation of three-point bend sample using cluster analysis and artificial neural network (ANN). First the known AE data generated in lab by PCB debonding and pencil leak break were analyzed using ANN to get the confidence. After that the AE data acquired by scanning all 306-coolant channels at NAPS-2 was sorted out in five separate clusters for different leakage rate and background noise. Fatigue crack initiation, AE data generated in MSD lab on three-point bend sample was clustered in ten separate clusters in which one cluster was having 98% AE data of crack initiation period noted with the help of travelling microscope but remaining clusters indicating AE data of different sources and noise. The above data was further analysed with self organizing map of Artificial Neural Network. (author)

  16. The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles

    Energy Technology Data Exchange (ETDEWEB)

    Sabirov, I. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)]. E-mail: sabirov@unileoben.ac.at; Duschlbauer, D. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Pettermann, H.E. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Kolednik, O. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)

    2005-02-25

    A procedure is proposed to determine, for second-phase particles near a crack tip, the maximum particle stresses at the moment of void initiation by either particle fracture or particle/matrix interface separation. A digital image analysis system is applied to perform a quantitative analysis of corresponding fracture surface regions from stereo image pairs taken in the scanning electron microscope. The fracture surface analysis is used to measure, for individual particles, the crack tip opening displacement at the moment of void initiation and the particle location with respect to the crack tip. From these data, the stress tensor at the moment of void initiation is calculated from the Hutchinson-Rice-Rosengren (HRR) field theory. The corresponding average local stresses within the particle are evaluated by a non-linear Mori-Tanaka-type approach. These stresses are compared to estimates according to the models by Argon et al. [A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6 (1975) 825] and Beremin [F.M. Beremin, Metall. Trans. 12 (1981) 723]. The procedure is demonstrated on an Al6061-10% Al{sub 2}O{sub 3} metal matrix composite.

  17. Creep-fatigue crack initiation assessment on thick circumferentially notched 316L tubes under cyclic thermal shocks and uniform tension with the σd approach

    International Nuclear Information System (INIS)

    Michel, B.; Poette, C.

    1997-01-01

    For crack initiation assessment under creep fatigue loading, in high temperature Fast Reactor's components, specific approaches based on fracture mechanics analysis had to be developed. In the present paper the crack initiation assessment method proposed in the A16 document is presented. The so called ''σ d method'' is also validated on experimental results for tubular specimens with internal axisymmetric surface cracks. Experimental data are extracted from the TERFIS program carried out on a sodium test device at the CEA Cadarache. Metallurgical examinations on TERFIS specimens confirm that the initiation assessment of the ''σ d '' approach is conservative even for a different geometry than the CT specimen on which the method was set up. However, the conservatism is reduced when the creep residual stress field is relaxed during the hold time. An investigation concerning this last point is needed in order to know if relaxing the stress, when using a lower bound of the mechanical properties, always keeps a safety margin. (author). 14 refs, 10 figs, 4 tabs

  18. Hot Ductility of the 17-4 PH Stainless Steels

    Science.gov (United States)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  19. Evaluation of the crack initiation of curved compact tension specimens of a Zr-2.5Nb pressure tube using the unloading compliance and direct current potential drop methods

    International Nuclear Information System (INIS)

    Kim, Young Suk; Jeong, Hyeon Cheol; Ahn, Sang Bok

    2005-01-01

    The Direct Current Potential Drop(DCPD) method and the Unloading Compliance(UC) method with a crack opening displacement gauge were applied simultaneously to the Zr-2.5Nb Curved Compact Tension (CCT) specimens to determine which of the two methods can precisely determine the crack initiation point and hence the crack length for evaluation of their fracture toughness. The DCPD method detected the crack initiation at a smaller load-time displacement compared to the UC method. As a verification, a direct observation of the fracture surfaces on the curved compact tension specimens was made on the CCT specimens experiencing either 0.8 to 1.0 mm load line displacement or various loads from 50% to 80% of the maximum peak load, or P max . The DCPD method is concluded to be more precise in determining the crack initiation and fracture toughness, J in Zr-2.5Nb CCT specimens than the UC method

  20. Contribution to the study of the mechanism of crack in amorphous silica: study by the molecular dynamics of crack in amorphous silica

    International Nuclear Information System (INIS)

    Van Brutzel, L.

    2000-01-01

    The aim of this thesis was to understand the mechanism which occurs during the crack at the atomic scale in amorphous silica. The difficulties of the experimental observations at this length scale lead us to use numerical studies by molecular dynamics to access to the dynamical and the thermodynamical informations. We have carried out large simulations with 500000 atoms and studied the structure of the amorphous silica before to studying their behaviours under an imposed strain. The structure of this simulated amorphous silica settled in three length scales. In small length scale between 0 and 5 angstrom glass is composed of tetrahedra, this is close to the crystalline structure. In intermediate length scale between 3 and 10 angstrom tetrahedra are connected together and build rings of different sizes composed in majority between 5 and 7 tetrahedra. In bigger length scale between 15 and 60 angstrom, areas with high density of rings are surrounded by areas with low density of rings. These structural considerations play an important role in initiation and propagation of a crack. Indeed. in this length scale. crack propagates by growth and coalescence of some small cavities which appear in area with low density of rings behind the crack tip. The cavities dissipate the stress with carries away a delay to propagation of the crack. This phenomenons seems ductile and leads to non linear elastic behaviour near the crack tip. We have also shown that the addition of alkali in the amorphous silica changes the structure by creation of nano-porosities and leads to enhance the ductility during the crack propagation. (author)

  1. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  2. A case study of environmental assisted cracking in a low alloy steel under simulated environment of pressurized water reactor

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.

    2011-01-01

    Highlights: → We study environmental assisted cracking (EAC) in simulated PWR environment. → The corrosion rate in simulated coolant is low but increases with B conc. → A516 steel shows EAC in simulated coolant particularly at high oxygen levels. → Fracture occurs when the surface cracks join the subsurface cracks. → Corrosion of MnS inclusions and ferrite provide crack nucleation sites. -- Abstract: The electromechanical behavior of a pressure vessel grade steel A516 has been investigated using potentiodynamic polarization curves and slow strain rate test (SSRT) in simulated environment of pressurized water reactor. The anodic polarization behavior shows that the steel remains active in the solution till localized attack (pitting) starts. The cracks initiated at the surface propagate in a trans-granular mode. These cracks are initiated at the inclusion (MnS) sites and at the interfaces between local anode (ferrite) and local cathode (pearlite). It seems that the ultimate fracture occurs when the propagating surface cracks join the subsurface hydrogen induced cracks. The addition of oxygen in the testing chamber to supersaturation levels shifts the corrosion potential to anodic side and significantly lowers the strength and ductility. Compared to the room temperature properties, the UTS and tensile elongation in various simulated conditions are reduced by 10-25% and 25-75%, respectively.

  3. Crack arrest: some comments on microscopic and macroscopic aspects in relation to the assurance of structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Lidbury, D.P.G.; Druce, S.G.; Tomkins, B. [AEA Technology, Risley (United Kingdom)

    1996-12-31

    Fracture prevention in high integrity structures in general, and steel nuclear reactor pressure vessels (RPVs) in particular, is based upon the avoidance of crack initiation, with due regard to real or postulated defects, material toughness and anticipated normal and off-normal loading conditions. However, avoidance of crack initiation can never be guaranteed in any absolute sense. Thus, in cases where there is the possibility of an initiated crack propagating by brittle, cleavage fracture, the crack arrest concept may be usefully applied to provide some additional assurance of structural integrity. Within this context, the mechanical processes operative during the initiation and arrest of cleavage cracks are briefly compared and contrasted. The empirical evidence for indexing and onset-of-upper-shelf temperature for initiation (OUST) and the crack arrest temperature (CAT) relative to the Pellini drop-weight nil-ductility transition temperature (NDTT) is examined, and estimates of the parameter (OUST-CAT) are made for a range of steels. In the light of this, correlations between small-scale tests and more structurally relevant, large-scale tests are examined in relation to both initiation- and arrest-based failure avoidance methodologies. (author).

  4. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    Science.gov (United States)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  5. An approach to ductile fracture resistance modelling in pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L.N.; Fredj, A. [BMT Fleet Technology Ltd., Kanata (Canada)

    2009-07-01

    Ductile fracture resistance studies of high grade steels in the pipeline industry often included analyses of the crack tip opening angle (CTOA) parameter using 3-point bend steel specimens. The CTOA is a function of specimen ligament size in high grade materials. Other resistance measurements may include steady state fracture propagation energy, critical fracture strain, and the adoption of damage mechanisms. Modelling approaches for crack propagation were discussed in this abstract. Tension tests were used to calibrate damage model parameters. Results from the tests were then applied to the crack propagation in a 3-point bend specimen using modern 1980 vintage steels. Limitations and approaches to overcome the difficulties associated with crack propagation modelling were discussed.

  6. Development of Flexible Link Slabs using Ductile Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi

    Civil engineering structures with large dimensions, such as multi-span bridges, overpasses and viaducts, are typically equipped with mechanical expansion joints. These joints allow the individual spans of the structure to undergo unrestrained deformations due to thermal expansions and load......-deformation response and crack development of representative sections of the reinforced composites, and iv) detailing, designing and testing of large scale prefabricated link slab elements. In addition, an application of ductile Engineered Cementitious Composite (ECC) in prefabricated floor panels is presented...... crack widths and crack spacing measurements are obtained, which can characterize the tensile behavior of ECC. In chapter 3 on interfacial bond, the bond slip behavior and crack development, between the reinforcement and surrounding cementitious matrix is investigated in a unique test setup with special...

  7. Crack blunting, cleavage fracture in transition area and stable crack growth - investigated using the nonlinear fracture mechanics method

    International Nuclear Information System (INIS)

    Heerens, J.

    1990-01-01

    A procedure is developed which allows to estimate crack tip blunting using the stress-strain curve of the material and the J-integral. The second part deals with cleavage fracture in a quenched and tempered pressure vessel steel. It was found that within the ductile to brittle transition regime the fracture toughness is controlled by cleavage initiated at 'weak spots of the material' and by the normal stresses at the weak spots. In the last part of the paper the influence of specimen size on J-, Jm- and δ 5 -R-curves for side grooved CT-specimens under fully plastic condition is investigated. In order to characterize constraint-effects the necking of the specimens was measured. For specimens having similar constraint the parameters Jm and δ 5 yielded size independent R-curves over substantial larger amounts of crack extension than the J-integral. (orig.) With 114 figs., 10 tabs [de

  8. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  9. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  10. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    Energy Technology Data Exchange (ETDEWEB)

    Wasmer, K., E-mail: kilian.wasmer@empa.c [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nikbin, K.M.; Webster, G.A. [Department of Mechanical Engineering, Imperial College London, London SW7 2BX (United Kingdom)

    2010-08-15

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 {sup o}C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  11. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  12. Toward a better understanding of strain incompatibilities at grain boundaries in the analysis of fatigue crack initiation at low temperature in the UdimetTM 720 Li superalloy

    Directory of Open Access Journals (Sweden)

    Larrouy Baptiste

    2014-01-01

    Full Text Available Low cycle fatigue properties of polycrystalline γ-γ′ Ni-based superalloys are dependent on many factors such as temperature, environment, grain size and distribution of the strengthening phases. Under LCF conditions at intermediate temperatures, an intergranular crack initiation could be observed. In this paper we propose to analyze the local conditions favouring such an intergranular cracking mode considering the high strength C&W UdimetTM720 Li alloy, widely used for manufacturing high pressure turbine disk for aeroengine applications. Tensile and fatigue tests were performed in air in the 20–465 ∘C range of temperature on micro-samples in order to focus on plasticity and damage processes developed near grain boundaries. A special attention was paid on the slip transfer between neighbouring grains taking into account their local crystallographic orientations. In some specific crystallographic configurations, small zones were detected at the tip of slip bands presenting an intense elastic/plastic activity. Although they are limited in size, they are associated to local crystalline rotations. High levels of local strain/stress were also evaluated in these volumes using an EBSD pattern cross correlation technique. The development of such specific zones was investigated at different stages of the tensile and LCF behaviour and was identified as leading to micro-cracks initiation for both solicitation modes.

  13. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  14. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  15. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model; Caracterisation quantitative de l`amorcage et de la propagation en corrosion sous contrainte. Approche d`une modelisation phenomenologique

    Energy Technology Data Exchange (ETDEWEB)

    Raquet, O

    1994-11-25

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl{sub 2} aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a `riddle` for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author).

  16. Effect of the size of the apical enlargement with rotary instruments, single-cone filling, post space preparation with drills, fiber post removal, and root canal filling removal on apical crack initiation and propagation.

    Science.gov (United States)

    Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan

    2015-02-01

    The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Prediction of hot-ductility of steels during continuous casting using artificial neural networks

    International Nuclear Information System (INIS)

    Liu, W.J.; Emadi, D.; Essadiqi, E.

    2000-01-01

    During continuous casting, transversal cracks can be developed due to tensile stress in temperature regions where the steel exhibits a low ductility. The cracking tendency during continuous casting depends on the steel chemistry and the casting parameters such as lubrication, mold type, secondary cooling and bending/unbending temperatures. To prevent cracking one needs to predict the hot-ductility of a material under continuous-casting conditions. However, hot-ductility is one of the poorly understood material behaviors and cannot be readily modeled using conventional techniques. In the present study, we used an alternative method, namely Artificial Neural Networks (ANN), to model the ductility of a steel under continuous casting conditions. A hot-ductility database was established based on published literature. Several standard three-layer ANN models were then trained using data randomly selected from the database. The outputs of the ANN models were subsequently compared with the remaining data in the database. The results indicate that ANN is a suitable modelling technique for hot-ductility prediction. (author)

  18. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  19. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  20. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    Bousquet, Amaury

    2013-01-01

    with ductile shear zones between the different planes of cracking. The study of the surface fraction of ductile shear zones and associated closing stress tends to justify the established criterion. An analytical model is proposed to justify the criterion deduced from numerical modeling. This model assumes that the ligaments hold the crack lips and therefore induce closing stress at the crack tip which has to be compensated to achieve the effective cleavage stress at the crack tip. This resistance of ligaments is directly related to the mechanical behavior of the material and justifies the dependence of fracture stress criterion with strain rate. Lastly, the crack branching was analyzed thanks to movies obtained with the high-speed camera. The cleavage crack propagates in a straight way over few millimeters. Then, new cracks appear on both sides of the initial crack lips which leads to the arrest of the initial crack. One of the new cracks leads to the failure of the CT specimen. The essential role of the thickness and loading on this branching mechanism is emphasized. The increased thickness reduces the frequency of occurrence of this mechanism and eventually even cancel. Low thicknesses lead to more extensive plasticity at the crack tip and generates the germs for the triggering of secondary cracks that appear. Logically, the intensity of loading must be large enough to create this extended plastic zone: the experiments with a straight path are the tests for which the initial loadings are the lowest. (author)

  1. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect

    Energy Technology Data Exchange (ETDEWEB)

    Briffod, Fabien, E-mail: briffod@rme.mm.t.u-tokyo.ac.jp; Shiraiwa, Takayuki; Enoki, Manabu

    2017-05-17

    In this study, fatigue crack initiation in pure α-iron is investigated through a microstructure-sensitive framework. At first, synthetic microstructures are modeled based on an anisotropic tessellation that accounts for the information of the grains morphology extracted from electron backscatter diffraction (EBSD) analysis. Low-cycle fatigue experiments under strain-controlled conditions are conducted in order to calibrate a crystal plasticity model and a J{sub 2} model including isotropic and kinematic hardening. A critical plane fatigue indicator parameter (FIP) based on the Tanaka-Mura model is then presented to evaluate the location and quantify the driving force for the formation of a crack. The FIP is averaged over several potential crack paths within each grain defined by the intersection between a given slip plane and the plane of the model thus accounting for both the lattice orientation and morphology of the grain. Several fatigue simulations at various stress amplitudes are conducted using a sub-modeling technique for the attribution of boundary conditions on the polycrystalline aggregate models including an elliptic defect. The influence of the microstructure attributes and stress level on the location and amplitude of the FIP are then quantified and discussed.

  2. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  3. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  4. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  5. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  6. Mechanical model for ductility loss

    International Nuclear Information System (INIS)

    Hu, W.L.

    1980-01-01

    A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, Ω, and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation

  7. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  8. The causes of geometry effects in ductile tearing

    International Nuclear Information System (INIS)

    Dexter, R.J.; Griesbach, T.J.

    1993-01-01

    An adequate understanding of geometry effects in ductile tearing can only be achieved when the different causes of the effects are distinguished and these geometry effects are linked to particular micromechanical fracture processes or global deformation mechanisms. It is shown that the micromechanical process of ductile (fibrous) fracture is dependent on achieving a critical strain, which is only slightly dependent on the stress state for the range of triaxiality conditions in pressure vessels and through-cracked plates. Under certain conditions, the crack tip strain can be shown to scale with the value of the J integral and there is a direct connection between J and the underlying micro mechanical process. This connection is lost for significant crack extension or large-scale plasticity. Nevertheless the J integral may still be use on an empirical basis under some conditions. Under fully-plastic conditions the primary source of geometry dependence in the J-R curves is due to the geometry dependence of the shape and volume of the plastic region that develops around the uncracked ligament. This occurs because J is essentially proportional to the total plastic work done on the specimen. If it can be assured that the fracture mode in both the test specimen and the structure will remain fully fibrous, it is conservative to extrapolate J-R curves generated from small compact specimens for the analysis of pressure vessel crack stability. 132 refs., 12 figs., 3 tabs

  9. Initial report on stress-corrosion-cracking experiments using Zircaloy-4 spent fuel cladding C-rings

    International Nuclear Information System (INIS)

    Smith, H.D.

    1988-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is sponsoring C-ring stress corrosion cracking scoping experiments as a first step in evaluating the potential for stress corrosion cracking of spent fuel cladding in a potential tuff repository environment. The objective is to scope the approximate behavior so that more precise pressurized tube testing can be performed over an appropriate range of stress, without expanding the long-term effort needlessly. The experiment consists of stressing, by compression with a dead weight load, C-rings fabricated from spent fuel cladding exposed to an environment of Well J-13 water held at 90/degree/C. The results indicate that stress corrosion cracking occurs at the high stress levels employed in the experiments. The cladding C-rings, tested at 90% of the stress at which elastic behavior is obtained in these specimens, broke in 25 to 64 d when tested in water. This was about one third of the time required for control tests to break in air. This is apparently the first observation of stress corrosion under the test conditions of relatively low temperature, benign environment but very high stress. The 150 ksi test stress could be applied as a result of the particular specimen geometry. By comparison, the uniaxial tensile yield stress is about 100 to 120 ksi and the ultimate stress is about 150 ksi. When a general model that fits the high stress results is extrapolated to lower stress levels, it indicates that the C-rings in experiments now running at /approximately/80% of the yield strength should take 200 to 225 d to break. 21 refs., 24 figs., 5 tabs

  10. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  11. Reactor cooling water expansion joint bellows: The role of the seam weld in fatigue crack development

    International Nuclear Information System (INIS)

    West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.

    1992-01-01

    The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed

  12. A crack growth evaluation method for interacting multiple cracks

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2003-01-01

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)

  13. Evaluation of fracture toughness of ductile cast iron for casks

    International Nuclear Information System (INIS)

    Hide, Koh-ichiro; Arai, Taku; Takaku, Hiroshi; Shimazaki, Katsunori; Kusanagi, Hideo

    1988-01-01

    We studied the fracture toughness and tensile properties of ductile cast iron for casks, and tried to introduce a fatigue crack into partial cask model. Main results were shown as follows. (1) Fracture toughness were in the upper shelf area above -25deg C, and were in the transition area at -40 and -70deg C. (2) Increasing the value of K I , the fracture toughness decreased. (3) Increasing the specimen thickness, fracture toughness decreased. (4) Fracture toughness of an artificial flaw (ρ=0.1 mm) was the same as that of a fatigue crack at -40deg C. (5) Tensil properties were inferior at -196 and about 400deg C because of low temperature brittleness and blue brittleness. (6) Tensile properties in the middle of cask wall were inferior. (7) It seems to be possible to introduce a fatigue crack into a full size cask. (author)

  14. Finite element analysis of crack growth from rectangular notch in mixed mode loading

    International Nuclear Information System (INIS)

    Mohd Rawi Mohd Zin

    2002-01-01

    The direction of crack growth from rectangular notch for ductile material is determined in this paper. The ductile material is assumed to exhibit the elastic-plastic behaviour. In the model, the crack is assumed to start when the J-integral fracture criterion exceeded the critical value during the application of load and the crack tip propagated to a priori. The direction of the crack is characterised by maximum principles stress criterion and the mechanism of crack propagation is simulated by deleted element technique. The model is validated with experimental results and it shows good agreement. (Author)

  15. Crack resistance of tungsten strengthened by dispersed refractory oxides

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Investigation results are presented for crack resistance of commercial tungsten, obtained during specimen testing at temperatures of 20 deg C to Tsub(cr) (upper boundary of temperature range of ductile-brittle transition). Comparison of s-n diagrams and temperature dependences of crack resistance are conducted for commercial tungsten and tungsten strengthened by refractory oxides. It is shown that dispersion hardening increases crack resistance in the temperature range of 20 to 2000 deg C but the upper boundary of ductile-brittle shifts to the side of higher temperatures

  16. Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Long, E-mail: longwang_calt@163.com [Univ. Lille, CNRS, Centrale Lille, Arts et Metiers Paris tech, FRE 3723 – LML – Laboratoire de Mecanique de Lille, F-59000 Lille (France); Limodin, Nathalie; El Bartali, Ahmed; Witz, Jean-François; Seghir, Rian [Univ. Lille, CNRS, Centrale Lille, Arts et Metiers Paris tech, FRE 3723 – LML – Laboratoire de Mecanique de Lille, F-59000 Lille (France); Buffiere, Jean-Yves [Laboratoire Matériaux, Ingénierie et Sciences (MATEIS), CNRS UMR5510, INSA-Lyon, 20 Av. Albert Einstein, 69621 Villeurbanne (France); Charkaluk, Eric [Univ. Lille, CNRS, Centrale Lille, Arts et Metiers Paris tech, FRE 3723 – LML – Laboratoire de Mecanique de Lille, F-59000 Lille (France)

    2016-09-15

    Lost Foam Casting (LFC) process is replacing the conventional gravity Die Casting (DC) process in automotive industry for the purpose of geometry optimization, cost reduction and consumption control. However, due to lower cooling rate, LFC produces in a coarser microstructure that reduces fatigue life. In order to study the influence of the casting microstructure of LFC Al-Si alloy on damage micromechanisms under monotonic tensile loading and Low Cycle Fatigue (LCF) at room temperature, an experimental protocol based on the three dimensional (3D) in-situ analysis has been set up and validated. This paper focuses on the influence of pores on crack initiation in monotonic and cyclic tensile loadings. X-ray Computed Tomography (CT) allowed the microstructure of material being characterized in 3D and damage evolution being followed in-situ also in 3D. Experimental and numerical mechanical fields were obtained by using Digital Volume Correlation (DVC) technique and Finite Element Method (FEM) simulation respectively. Pores were shown to have an important influence on strain localization as large pores generate enough strain localization zones for crack initiation both in monotonic tensile and cyclic loadings.

  17. Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis

    International Nuclear Information System (INIS)

    Wang, Long; Limodin, Nathalie; El Bartali, Ahmed; Witz, Jean-François; Seghir, Rian; Buffiere, Jean-Yves; Charkaluk, Eric

    2016-01-01

    Lost Foam Casting (LFC) process is replacing the conventional gravity Die Casting (DC) process in automotive industry for the purpose of geometry optimization, cost reduction and consumption control. However, due to lower cooling rate, LFC produces in a coarser microstructure that reduces fatigue life. In order to study the influence of the casting microstructure of LFC Al-Si alloy on damage micromechanisms under monotonic tensile loading and Low Cycle Fatigue (LCF) at room temperature, an experimental protocol based on the three dimensional (3D) in-situ analysis has been set up and validated. This paper focuses on the influence of pores on crack initiation in monotonic and cyclic tensile loadings. X-ray Computed Tomography (CT) allowed the microstructure of material being characterized in 3D and damage evolution being followed in-situ also in 3D. Experimental and numerical mechanical fields were obtained by using Digital Volume Correlation (DVC) technique and Finite Element Method (FEM) simulation respectively. Pores were shown to have an important influence on strain localization as large pores generate enough strain localization zones for crack initiation both in monotonic tensile and cyclic loadings.

  18. Thermografic measurement of crack initiation and propagation at thin sheet joints; Rissentstehung thermometrisch ermitteln. Zerstoerungsfreie Bestimmung der Rissinitiierung in mechanisch gefuegten und widerstandpunktgeschweissten Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, W.; Stahlfeld, G. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe V.5 - Sicherheit in der Fuegetechnik

    2000-07-01

    This contribution demonstrates how a thermometric procedure might be applied to determine crack initiation during fatigue testing of joints at steel sheets. The procedure is based on the measurement of the temperature increase which is produced by the heat at the respective joint caused by deformation energy. Such investigations are aimed at detection of crack initiation before it becomes visible at the specimen surface. Thermografic measurements at different mechanical joints and resistance welded spots are compared and various applications are suggested. (orig.) [German] In diesem Beitrag wird gezeigt, wie sich ein thermometrisches Verfahren einsetzen laesst, um die Rissentstehung waehrend der Dauerschwingpruefung von Stahlblechen zu erfassen. Vergleichend werden Messungen an Proben, die durch Stanznieten, Clinchen und Widerstandspunktschweissen gefuegt wurden, gegenuebergestellt. Hierzu wird die am Fuegepunkt waehrend der Pruefung in Waerme umgewandelte Formaenderungsenergie kontinuierlich in Form der Temperaturerhoehung gemessen. Ziel dieser Untersuchungen ist es, solche Temperaturerhoehungen zur Erkennung der Rissentstehung zu verwenden, bevor der Riss die Blechoberflaeche erreicht hat und visuell erkennbar wird. Zudem werden verschiedene Anwendungsmoeglichkeiten vorgeschlagen. (orig.)

  19. Determination of ductile tearing resistance J-R curves in welded joints; Determination de courbes de resistance a la dechirure ductile dans les joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Ould, P. [AREVA NP, Tour AREVA, 92086 Paris La Defense (France); Marie, St. [CEA Saclay, DM2S, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    The ductile tearing resistance of steels is generally characterized in terms of resistance curves giving the increase of a resistance parameter such as the crack driving force J or a crack opening displacement as a function of the crack extension {Delta}a. Welded joints are often the weakest part of structures because of greater risk of defects, heterogeneity of the microstructure of the weld, strain concentration along mismatched interfaces. This paper recalls the transferability issues common to all integrity assessments based on tearing resistance curves and points out the difficulties of characterization specific to welds. Several recommendations are proposed for the experimental determination of tearing resistance of welded joints. (authors)

  20. Development of European creep crack growth testing code of practice for industrial specimens

    International Nuclear Information System (INIS)

    Dogan, B.; Nikbin, K.; Petrovski, B.

    2004-01-01

    The integrity and residual life assessment of high temperature components require defects, detected or assumed to exist, through minimum allowable limits of detectable flaws using nondestructive testing methods. It relies on information obtained from the material's mechanical, uniaxial creep, creep crack initiation and growth properties. The information derived from experiments needs to be validated and harmonised following a Code of Practice that data variability between different institutions can be reduced to a minimum. The present paper reports on a Code of Practice (CoP) being prepared within the framework of the partially European Commission funded project CRETE. The novel aspect of the presented CoP is the inclusion of component relevant industrial specimen geometries. It covers testing and analysis of Creep Crack growth (CCG) in metallic materials at elevated temperature using six different cracked geometries that have been validated in. It aims to give advice on testing, measurements and analysis of creep crack growth data for a range of creep brittle to creep ductile materials using component service relevant specimen geometries and sizes. The CoP may be used for material selection criteria and inspection requirements for damage tolerant applications. In quantitative terms, these types of tests can be used to assess the individual and combined effects of metallurgical, fabrication, operating temperature, and loading conditions on creep crack growth life. Further issues will be addressed including material properties, damage and crack growth related constraint effect, stress relaxation and stress-strain fields, residual stresses, partitioning displacement, analysis of elastic creep, elastic compliance measurements

  1. Study of the initiation and the propagation of cracks under 3D thermal cyclic loading; Etude de l'amorcage et de la propagation des fissures sous chargement thermique cyclique 3D

    Energy Technology Data Exchange (ETDEWEB)

    Ancelet, O

    2005-07-01

    The incident which has occurred on the Civaux power plant has shown the noxiousness of thermal loading and the difficulty to take it into account at design level. The objective of this report is to study the initiation and the propagation of crack under thermal loading. In this aim the CEA has developed a new experiment named FAT3D. The various experiments carried out showed the harmfulness of a thermal loading, which makes it possible to rapidly initiate a network of cracks and to propagate one (or some) cracks through the totally thickness of the component under certain conditions. These experimental results associated with a mechanical analysis put at fault the usual criteria of damage based on the variations of the equivalent strain. In addition, the study of the propagation stage shows the importance of the plasticity which, in the case of a thermal loading, slows down the propagation of the crack. (author)

  2. Post-cracking Behaviour and Fracture Energy of Synthetic Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Marta KOSIOR-KAZBERUK

    2016-11-01

    Full Text Available The paper reports the results of experimental programme focused on the effect of various synthetic fibres on fracture properties and ductility of concrete. The fracture energy was assessed on beams with initial notches in three-point bend test. The incorporation of synthetic fibres had a slight effect on mechanical properties of concrete but, at the same time, it had a significant influence on the fracture energy by modification of post-cracking behaviour of concrete. It was found that the modern synthetic fibres might be able to impart significant toughness and ductility to concrete. However, the beneficial effect of fibres depends on their length and flexibility. The analysis of load-deflection curves obtained made it possible to fit the simple function, describing the post-peak behaviour of fibre reinforced concrete, which can be useful for the calculation of GF value.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13246

  3. Hot ductility and fracture mechanisms of a structural steel

    International Nuclear Information System (INIS)

    Calvo, J.; Cabrera, J. M.; Prado, J. M.

    2006-01-01

    The hot ductility of a structural steel produced from scrap recycling has been studied to determine the origin of the transverse cracks in the corners that appeared in some billets. Samples extracted both from a billet with transverse cracks and from a billet with no external damage were tested. To evaluate the influence of residual elements and inclusions, the steel was compared to another one impurity free. Reduction in area of the samples tensile tested to the fracture was taken as a measure of the hot ductility. The tests were carried out at temperatures ranging from 1000 degree centigree to 650 degree centigree and at a strain rate of 1.10-3 s-1. The fracture surfaces of the tested samples were observed by scanning electron microscopy in order to determine the embrittling mechanisms that could be acting. The steel with residuals and impurities exhibited lower ductility values for a wider temperature range than the clean steel. The embrittling mechanisms also changed as compared to the impurity free steel. (Author)

  4. Multi-scale modeling of ductile failure in metallic alloys

    International Nuclear Information System (INIS)

    Pardoen, Th.; Scheyvaerts, F.; Simar, A.; Tekoglu, C.; Onck, P.R.

    2010-01-01

    Micro-mechanical models for ductile failure have been developed in the seventies and eighties essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale. (authors)

  5. Multiscale modeling of ductile failure in metallic alloys

    Science.gov (United States)

    Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.

    2010-04-01

    Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.

  6. Incidence of apical crack initiation and propagation during the removal of root canal filling material with ProTaper and Mtwo rotary nickel-titanium retreatment instruments and hand files.

    Science.gov (United States)

    Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Kesim, Bertan; Tuncay, Oznur

    2014-07-01

    The aim of this study was to determine the incidence of crack initiation and propagation in apical root dentin after retreatment procedures performed by using 2 rotary retreatment systems and hand files with additional instrumentation. Eighty extracted mandibular premolars with single canals were selected. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the control group, and no preparation was performed. The remaining 60 teeth were prepared to size 35 with rotary files and filled with gutta-percha and AH Plus sealer. Specimens were then divided into 3 groups (n = 20), and retreatment procedures were performed with the following devices and techniques: ProTaper Universal retreatment files, Mtwo retreatment files, and hand files. After retreatment, the additional instrumentation was performed by using size 40 ProTaper, Mtwo, and hand files. Digital images of the apical root surface were recorded before preparation, after instrumentation, after filling, after retreatment, and after additional instrumentation. The images were then inspected for the presence of any new apical cracks and propagation. Data were analyzed with the logistic regression and Fisher exact tests. All experimental groups caused crack initiation and propagation after use of retreatment instruments. The ProTaper and Mtwo retreatment groups caused greater crack initiation and propagation than the hand instrument group (P ProTaper and Mtwo instruments after the use of retreatment instruments caused crack initiation and propagation, whereas hand files caused neither crack initiation nor propagation (P < .05). This study showed that retreatment procedures and additional instrumentation after the use of retreatment files may cause crack initiation and propagation in apical dentin. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Intermediate Crack Induced Debonding in Concrete Beams Strengthened with CFRP Plates - An Experimental Study

    DEFF Research Database (Denmark)

    Rusinowski, Piotr Michal; Täljsten, Björn

    2009-01-01

    , ductility and even durability. Design of structural strengthening applications using externally bonded FRP composites is usually based on conventional design approaches with improvement to account for the presence and characteristics of the FRP material. Non-conventional design issues that are specific...... of the strengthening method. End-peeling has governed a large interest and several debonding models have been presented. However, interfacial peeling at flexural cracks has not attained the same focus – even though this debonding failure is most likely more common. This paper presents laboratory tests of concrete...... beams strengthened in flexure with CFRP epoxy bonded plates. Wrapping with CFRP sheets was applied in order to try to localize the failure initiation. Concrete cracking as well as debonding initiation and propagation was possible to observe with help of advanced optical measuring system and high speed...

  8. Stable propagation of interacting crack systems and modeling of damage

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Tabbara, M.R.

    1989-01-01

    This paper presents general thermodynamic criteria for the stable states and stable path of structures with an interacting system of cracks. In combination with numerical finite element results for various cracked structure geometries, these criteria indicate that the crack response path of structures may exhibit bifurcations, after which the symmetry of the crack system is broken and some cracks grow preferentially. The problem is of interest for the prediction of ultimate loads, ductility and energy absorption capability of nuclear concrete structures as well as structures made of composites and ceramics

  9. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  10. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  11. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  12. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    Haddar, N.

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  13. Application of the cracked pipe element to creep crack growth prediction

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, J.; Charras, T.

    1997-04-01

    The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

  14. Effects of structure and defect on fatigue limit in high strength ductile irons

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits(σ ω ) and the maximum defect size(√area max ) was expressed as σ ω n · √area max =C 2 . Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates

  15. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  16. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  17. Microscopic examination of crack growth in a pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Isacsson, M.; Narstroem, T. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material. 19 refs, 8 figs, 3 tabs.

  18. Microscopic examination of crack growth in a pressure vessel steel

    International Nuclear Information System (INIS)

    Isacsson, M.; Narstroem, T.

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material

  19. Microstructural effects of ductile phase toughening of Nb-Nb silicide composites

    International Nuclear Information System (INIS)

    Lewandowski, J.J.; Dimiduk, D.; Kerr, W.; Menddiratta, M.G.

    1988-01-01

    In the Nb-Si system, the terminal Nb phase and Nb 5 Si 3 phase are virtually immiscible up to approximately 2033k. This system offers the potential of producing composites consisting of a ductile refractory metal phase and a strong intermetallic phase. In-situ composites containing different volume fractions of the ductile Nb phase were produced via vacuum arc-casting. Microhardness testing as well as smooth bend bar testing was conducted at temperatures ranging from 298k to 1673k in an attempt to determine microstructural effects on the yield strength and smooth bar fracture strength. Notched bend specimens were similarly tested to determine the effects of the ductile phase (i.e. Nb) on enhancing the notched bend toughness. It is shown that Nb phase often behaves in a ductile manner during testing, thereby toughening the in-situ composite. The mechanism of toughening appears to be due to crack bridging

  20. Influence of side-groove root radius on the ductile fracture toughness of miniature C(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.

    2009-05-15

    The use of miniature C(T) specimens, MC(T), for fracture toughness measurements in the upper shelf regime has been investigated at SCK-CEN since 2004, in the framework of the Electrabel/Tractebel SCK-CEN Convention (now General Framework Agreement SUEZ-SCK-CEN). This geometry has been used and validated on both unirradiated (2004-05) and irradiated (2006) materials, mainly reactor pressure vessel (RPV) steels. While side-grooved MC(T) specimens have shown in all conditions a systematically lower tearing resistance and ductile crack initiation toughness as compared to standard-size 1TC(T) samples, the only plain-sided MC(T) specimen tested in 2005 exhibited very high ductile fracture toughness, thus pointing at a strong influence of side-grooving on the upper shelf properties of MC(T) specimens. This study investigates the influence of side-grooving on the initiation toughness and tearing resistance of MC(T) specimens, as a function of the root radius of the side-groove (ranging from 0.1 to 1 mm) and in comparison with plain-sided MC(T) and reference 1TC(T) samples. The material used is the well characterized DIN 22NiMoCr37 RPV steel, which had been used in the European project which generated the famous EURO fracture toughness data set.

  1. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  2. Investigation of hot ductility in Al-killed boron steels

    International Nuclear Information System (INIS)

    Chown, L.H.; Cornish, L.A.

    2008-01-01

    The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300 deg. C, cooled at rates of 0.3, 1.2 and 3.0 deg. C s -1 to temperatures in the range 750-1050 deg. C, and then strained to failure at initial strain rates of 1 x 10 -4 or 1 x 10 -3 s -1 . It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0 deg. C s -1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from ∼900 deg. C (near the Ae 3 temperature) to ∼1000 or 1050 deg. C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility

  3. Effects of loading variables on fatigue-crack growth in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1995-10-01

    Full Text Available Liquid-metal-induced embrittlement (LMIE) refers to the loss of ductility in normally ductile metals and alloys when stressed while in contact with a liquid metal. In this study, the fatigue crack growth behaviour of brass in molten gallium...

  4. The effect of low temperatures on the fatigue crack growth of S460 structural steel

    NARCIS (Netherlands)

    Walters, C.L.; Alvaro, A.; Maljaars, J.

    2016-01-01

    The Fatigue Ductile–Brittle Transition (FDBT) is a phenomenon similar to the fracture ductile to brittle transition, in which the fracture mode of the fatigue cracks changes from ductile transgranular to cleavage and/or grain boundary separation. Fatigue at temperatures below the FDBT has a much

  5. A note on the applied tearing modulus (Tsub(J)sup(app)) in ductile instability testing and analysis

    International Nuclear Information System (INIS)

    Saka, Masumi; Takahashi, Hideaki; Abe, Hiroyuki; Ando, Kotoji.

    1984-01-01

    In the evaluation of the soundness of the structures made of high toughness materials, it is a very important problem to clarify by what dynamic condition the transition from the stable propagation of ductile cracks to ductile unstable breaking is controlled. As a criterion for ductile unstable breaking, Paris et al. proposed that an applied tearing modulus is not smaller than a material tearing modulus, based on J-integral. In order to make highly reliable forecast on the starting point of ductile unstable breaking, it is necessary to sufficiently examine the features of an applied tearing modulus. In this study, referring to the test results of the ductile unstable breaking of ITCT test pieces of A508 steel for reactor pressure vessels, the features of the changing tendency of an applied tearing modulus accompanying crack development and the cause of these features were examined in detail. Moreover, the errors in the theoretical forecast of J-integral and the amount of crack development at the start of ductile unstable breaking in relation to the above features were examined. The test pieces and the experimental method, the method of analysis, the experimental results, the features of an applied tearing modulus and the accuracy of forecast are reported. (Kako, I.)

  6. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  7. Advances in crack-arrest technology for reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs

  8. Ductile flow by water-assisted cataclasis

    Science.gov (United States)

    den Brok, Bas

    2003-04-01

    In the presence of water otherwise brittle materials may deform macroscopically ductile by water-assisted cataclastic creep. This is possible as long as (i) solubility is high enough, so that stress-corrosion can occur, and (ii) local stress is low enough, to that fracturing remains subcritical. Water-assisted cataclastic creep (WACC) may play an important role in the middle and lower continental crust where mineral solubilities are high and stresses low. WACC is a poorly understood deformation process. Experiments were performed on very soluble brittle salts (Na-chlorate; K-alum) to study microstructure development by WACC. The experiments were carried out at room temperature and atmospheric pressure in a small see-through vessel. In this way the cataclastic deformation process could be studied "in-situ" under the microscope. Crystals were loaded in the presence of saturated salt solution. It appeared that originally straight mineral surfaces were instable when kept under stress. Grooves (or channels) slowly developed in the surface by local dissolution. These grooves behave like so-called Grinfeld instabilities. They develop because the energy of a grooved surface under stress is lower than the energy of a straight surface under stress. The grooves may deepen and turn into subcritical cracks when local stress further increases. These cracks propagate slowly. They propagate parallel to sigma1 but also at an angle and even perpendicular to sigma1, often following crystallographically controlled directions. The fractures mostly change direction while propagating, locally making turns of more than 180 degrees. Irregular fracture fragments thus develop. The fractures may migrate sideways (as with grain bounday migration) probably by solution-redeposition driven by differences in stress between both sides of the fracture. Thus the shape of the fragments changes. The size of the fracture fragments seems to be controlled by the distance of the grooves, which decreases

  9. Evaluation of the crack initiation of curved compact tension specimens of a Zr-2.5Nb pressure tube using the unloading compliance and direct current potential drop methods

    International Nuclear Information System (INIS)

    Jeong, Hyeon Cheol; Ahn, Sang Bok; Park, Joong Chul; Kim, Young Suk

    2005-01-01

    Zr-2.5Nb pressure tubes, carrying fuel bundles and heavy water coolant inside, degrade due to neutron irradiation and hydrogen embrittlement during their operation in heavy water reactors. The safety criterion for the Zr-2.5Nb tubes to