WorldWideScience

Sample records for ductile cast iron

  1. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  2. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  3. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  4. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  5. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra......Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  6. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  7. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  8. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... ductile iron mains. (a) Each service line connected to a cast iron or ductile iron main must be connected...

  9. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  10. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  11. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... of the latest years of research indicate that ductile cast iron in the future will become a highly engineered material in which strict control of a range of alloy elements combined with intelligent design and highly advanced processing allows us to target properties to specific applications to a much higher...... degree than we have seen previously. It is the aim of the present paper to present ductile iron as a modern engineering material and present the many different possibilities that the material hides. Focus will be on the latest research in solidification and melt treatment. But for completeness...

  12. Development of Nanostructured Austempered Ductile Cast Iron

    Science.gov (United States)

    Panneerselvam, Saranya

    Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.

  13. Evaluation of static and dynamic fracture toughness in ductile cast iron

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Yamada, Shinya

    1994-01-01

    Ductile cast irons have been explored as a cask (container for spent nuclear fuel) material because of their low cost and good formability. The cask, which is a huge casting with 400-mm thickness and 100-Mg weight, envelops the nuclear material. Therefore, the fracture toughness of cask must be evaluated not only under the static loading condition but also under the dynamic loading condition to ensure its safety against an accident during the transport. In this article, crack extension behavior and fracture toughness of ductile cast iron were examined by three-point bend tests, where various detection methods of crack initiation under static and dynamic loading conditions were adopted. Loading on the specimens was interrupted at various displacement points, and the final fracture surfaces of the specimen were observed via scanning electron microscopy (SEM). Crack-tip opening displacement (CTOD) obtained under the dynamic loading conditions was smaller than that under the static loading condition in ferritic ductile cast iron, and CTOD additionally decreased with increasing pearlite content in the matrix. The relationship between J(ΔC) obtained by the compliance changing rate method and J(R) established by the intersection of the crack extension resistance curve and the theoretical blunting line varied with pearlite content. The average value of J(ΔC) and J(R), that is J(mid), was proposed to define the fracture toughness of ductile cast iron; J(mid) was considered to be a reasonable measure for the fracture toughness of ductile cast iron, irrespective of loading condition and the pearlite content in the matrix

  14. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  15. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  16. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  17. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  18. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren Peter; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  19. Value/impact of design criteria for cast ductile iron shipping casks

    International Nuclear Information System (INIS)

    1983-01-01

    The ductile failure criteria proposed in the Base report appear appropriate except that stress intensity values, S/sub m/ should be based on lower safety factors and ductility should be added as a criterion. A safety factor for stress intensity, s/sub m/ of 4 is recommended rather than 3 on minimum ultimate tensile strength, S/sub u/ in accordance with ASME code philosophy of assigning higher safety factors to cast ductile iron than to steel. This more conservative approach has no impact on costs since the selection of wall thickness is controlled by shielding rather than by stress considerations. The addition of a ductility criterion is recommended because of the problems associated with the selection of appropriate brittle failure criteria and the potential for cast ductile iron to have extremely low elongation at failure. Neither a materials nor a linear elastic fracture mechanics (LEFM) approach appear to be viable for demonstrating the prevention of brittle failure in cast ductile iron shipping casks. It is possible that the analytic methods predict brittle failure because of extremely conservative assumptions whereas real casks may not fail. Model drop tests could be used to demonstrate containment integrity. It is estimated that a risk committment of at least $1,000,000 would be required for engineering, design, model fabrication and testing. Before taking such risks, a mechanism should be found to obtain concurrence from NRC that the results of the test would be acceptable. Probabilistic approaches or model testing could be used to demonstrate the acceptability of cast ductile iron casks from a brittle failure point of view. Before probabilistic methods can be used, the NRC would have to be persuaded to accept the approach of the Competent Authority in West Germany or more formalized methods for probabilistic risk assessments

  20. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  1. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  2. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu......A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500......-7) and a fully ferritic ductile iron (EN-GJS-450-10). The experiment showed that both the alloy composition and choice of feeder influenced the degreeof deformation measured in the finished casting. It was found that the deformation of the pearlitic alloy was influenced controllably by changing the feeder...

  3. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  4. Influence of microscopic casting defects on fatigue endurance of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Nový František

    2018-01-01

    Full Text Available In this work, there are published results about fatigue endurance of ductile cast iron obtained at high-frequency sinusoidal cyclic push-pull loading in the ultra-high cycle fatigue region. The main attention was focused on the fatigue lifetime data scatter caused by the influence of microscopic casting defects (microshrinkages, microbubbles, microcracks, non-metallic inclusions and local clusters of big graphitic nodules.

  5. A study on the effects of artifacts on fatigue limit of ductile cast iron with ferritic structure

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and Austempered Ductile cast Iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes (diameter≤0.4mm) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the √areas of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness develops through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron

  6. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  7. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  8. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  9. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  10. 46 CFR 56.60-15 - Ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  11. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    ] with a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions...

  12. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  13. Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron

    International Nuclear Information System (INIS)

    Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak; Kim, Dong Youl

    2005-01-01

    Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from α+γ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from γ). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons

  14. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Science.gov (United States)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  15. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  16. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  17. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  18. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  19. White cast iron with a nano-eutectic microstructure and high tensile strength and considerable ductility prepared by an aluminothermic reaction casting

    International Nuclear Information System (INIS)

    La, Peiqing; Wei, Fuan; Hu, Sulei; Li, Cuiling; Wei, Yupeng

    2013-01-01

    A white cast iron with nano-eutectic microstructure was prepared by an aluminothermic reaction casting. Microstructures of the cast iron were investigated by optical microscope (OM), electron probe micro-analyzer (EPMA), scanning electron microscope (SEM) and X-ray diffraction (XRD). Mechanical properties of the cast iron were tested. The results showed that the cast iron consisted of pearlite and cementite phases. Lamellar spacing of the pearlite phase was in a range of 110–275 nm and much smaller than that of the Ni-Hard 2 cast iron. Hardness of the cast iron was 552 Hv, tensile strength was 383 MPa, total elongation was 3% and compressive strength was 2224 MPa. Tensile strength and hardness of the cast iron was same to Ni-Hard 2 cast iron, besides the ductility was much better than that of the Ni-Hard 2 cast iron which is much expensive than the cast iron.

  20. Effect of Cu on the microstructural and mechanical properties of as-cast ductile iron

    International Nuclear Information System (INIS)

    Tiwari, Siddhartha; Das, J.; Ray, K.K.; Kumar, Hemant; Bhaduri, A.

    2012-01-01

    The application of ductile cast iron in the heavy engineering components like, cask for the storage and transportation of radioactive materials, demands high strength with improved fracture toughness in as cast condition. The mechanical properties and fracture toughness of as-cast ductile iron (DI) is directly related to its structure property which can be controlled by proper inoculation, alloying elements and cooling rate during solidification. The aim of the present investigation is to study the effect of varying amount of Cu (0.07%, 0.11%, and 0.16%) with 1% Ni in the microstructural development of as-cast ductile iron with emphasis on its mechanical properties and fracture toughness. Three different ductile irons have been prepared using induction furnace in batches of 300 kg following industrial practice. Microstructural features (amount of phases, morphology, size and count of graphite nodules) and mechanical properties (tensile strength and hardness) of prepared DI were determined using standard methods. Dynamic fracture toughness was measured using instrumented Charpy impact test on pre-cracked specimens following the standard ISO-FDIS-26843. Additionally, fracture surfaces of broken tensile and pre-cracked specimens were observed by SEM to study the micro-mechanism of fracture. The pearlite fraction and the nodule count are found to increase with increasing amount of copper in ferritic-pearlitic matrix. The hardness and strength values are found to increase with increasing amount of pearlite whereas fracture toughness decreases. Fractographs of broken specimens exhibited decohesion of graphite, crack propagation from graphite interface and transgranular fracture of ferrite. (author)

  1. Review of current research and application of ductile cast iron quality monitoring technologies in Chinese foundry industry

    Directory of Open Access Journals (Sweden)

    Da-yong Li

    2015-07-01

    Full Text Available There is a long history of studying and making use of ductile cast iron in China. Over the years, the foundrymen in China have carried out a lot of valuable research and development work for measuring parameters and controlling the quality in ductile cast iron production. Many methods, such as rapid metallographic phase, thermal analysis, eutectic expansion ratio, surface tension measurement, melt electrical resistivity, oxygen and sulfur activity measurement, ultrasonic measurement and sound frequency measurement, have been used and have played important roles in Chinese casting production in the past. These methods can be generally classified as liquid testing and solid testing according to the sample state. Based on the analysis of the present situation of these methods applied in the Chinese metal casting industry, the authors consider that there are two difficult technical problems to be currently solved in monitoring ductile iron quality. One is to seek an effective method for quickly evaluating the nodularizing result through on-the-spot sample analysis before the liquid iron is poured into the mould. The other is to find a nondestructive method for accurately identifying casting quality before castings are delivered.

  2. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...

  3. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    cooing curves in thin wall ductile iron castings. The experiments show how TC’s of different design interact with the melt and how TC design and surface quality affect the results of the data acquisition. It is discussed which precautions should be taken to ensure reliable acquisition of cooling curves....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification...

  4. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  5. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  6. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  7. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  8. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  9. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  10. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  11. Cellular automaton modelling of ductile iron microstructure in the thin wall casting

    International Nuclear Information System (INIS)

    Burbelko, A A; Gurgul, D; Kapturkiewicz, W; Górny, M

    2012-01-01

    The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration.

  12. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...

  13. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  14. Fatigue properties of ductile cast iron containing chunky graphite

    International Nuclear Information System (INIS)

    Ferro, P.; Lazzarin, P.; Berto, F.

    2012-01-01

    Highlights: ► Experimental determination of high cycle fatigue properties of EN-GJS-400. ► Evaluation of the influence of chunky graphite morphology on fatigue life. ► Metallurgical analysis and microstructural parameters determination. ► Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  15. Comparing the Structure and Mechanical Properties of Welds on Ductile Cast Iron (700 MPa under Different Heat Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Ronny M. Gouveia

    2018-01-01

    Full Text Available The weldability of ductile iron, as widely known, is relatively poor, essentially due to its typical carbon equivalent value. The present study was developed surrounding the heat treatability of welded joints made with a high strength ductile cast iron detaining an ultimate tensile strength of 700 MPa, and aims to determine which heat treatment procedures promote the best results, in terms of microstructure and mechanical properties. These types of alloys are suitable for the automotive industry, as they allow engineers to reduce the thickness of parts while maintaining mechanical strength, decreasing the global weight of vehicles and providing a path for more sustainable development. The results allow us to conclude that heat treatment methodology has a large impact on the mechanical properties of welded joints created from the study material. However, the thermal cycles suffered during welding promote the formation of ledeburite areas near the weld joint. This situation could possibly be dealt through the implementation of post-welding heat treatments (PWHT with specific parameters. In contrast to a ductile cast iron tested in a previous work, the bull-eye ductile cast iron with 700 MPa ultimate tensile strength presented better results during the post-welding heat treatment than during preheating.

  16. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  17. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  18. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  19. Ductile cast irons: microstructure influence on fatigue crack propagation resistance

    Directory of Open Access Journals (Sweden)

    Mauro Cavallini

    2010-07-01

    Full Text Available Microstructure influence on fatigue crack propagation resistance in five different ductile cast irons (DCI was investigated. Four ferrite/pearlite volume fractions were considered, performing fatigue crack propagation tests according to ASTM E647 standard (R equals to 0.1, 0.5 and 0.75, respectively. Results were compared with an austempered DCI. Damaging micromechanisms were investigated according to the following procedures: - “traditional” Scanning Electron Microscope (SEM fracture surfaces analysis; - SEM fracture surface analysis with 3D quantitative analysis; - SEM longitudinal crack profile analysis - Light Optical Microscope (LOM transversal crack profile analysis;

  20. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  1. Material specification for ductile cast iron in the United States

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1987-01-01

    The United States currently does not have formal design criteria for qualifying ductile cast iron (DCI) transportation casks. There is also no dedicated material standard for DCI for this particular application. A draft ASTM material specification has been written and is currently in the ASTM approval process. This paper reviews the brief history of the development of the specification, the technical basis for the material properties, the ASTM approval process and the current status of the draft specification. The expected implications of having an adopted ASTM specification on the licensing process are also discussed. (orig./DG)

  2. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  3. Interface Structure and Elements Diffusion of As-Cast and Annealed Ductile Iron/Stainless Steel Bimetal Castings

    Directory of Open Access Journals (Sweden)

    M. Ramadan

    2018-04-01

    Full Text Available Bimetal casting is considered to a promising technique for the production of high performance function materials. Heat treatment process for bimetal castings became an essential tool for improving interface structure and metallurgical diffusion bond. Molten iron alloy with carbon equivalent of 4.40 is poured into sand mold cavities containing solid 304 stainless steel strips insert. Specimens are heated to 7200C in an electrical heating furnace and holded at 720 0C for 60min and 180min. For as-cast specimens, a good coherent interface structure of ductile cast iron/304 stainless bimetal with four layers interfacial microstructure are obtained. Low temperature annealing at 720oC has a significat effect on the interface layers structure, where, three layers of interface structure are obtained after 180min annealing time because of the complete dissolving of thin layer of ferrite and multi carbides (Layer 2. Low temperature annealing shows a significant effect on the diffusion of C and otherwise shows slightly effect on the diffusion of Cr and Ni. Plearlite phase of Layer 3 is trsformed to spheroidal shape instead of lamallar shape in as-cast bimetals by low tempeature annealing at 720oC. The percent of the performed spheroidal cementit increases by increasing anneaaling time. Hardness of interface layers is changed by low temperauture annealing due to the significant carbon deffussion.

  4. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, Y. S.; Chang, H. Y.; Lim, B. T.; Park, H. B.

    2016-01-01

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  5. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  6. Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron

    Science.gov (United States)

    Olawale, J. O.; Ibitoye, S. A.

    2017-10-01

    The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.

  7. Study on Damage Mechanism of Ductile Cast Iron Cooling Stave

    Science.gov (United States)

    Wang, Cui; Zhang, Jianliang; Zuo, Haibin; Dai, Bing

    The damage mechanism of ductile cast iron cooling stave applied to No.4 blast furnace of Guofeng steel was analyzed through damage investigation in details, the damage causes: high-temperature gas flow erosion, wear of burden, high-temperature ablation, carburizing damage, improper operation on blast furnace, etc. were given out both in macroscopic and microscopic views. It can be obtained from metallographic diagrams that the diameter of graphite nodules increases, the number per unit area reduces, and roundness declines, successively, from cold to hot surface, which are not conducive to stave longevity. In summary, the material for staves manufacture should be better in comprehensive mechanical properties to prolong the service life, thus making blast furnace long campaign.

  8. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  9. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  10. Probing the structure and mechanical properties of the graphite nodules in ductile cast irons via nano-indentation

    DEFF Research Database (Denmark)

    Andriollo, Tito; Fæster, Søren; Winther, Grethe

    2018-01-01

    Little is known today about the mechanical properties of the graphite nodules, despite the key influence these particles have on the performance of ductile cast irons. To address this issue, nano-indentation tests were performed on the cross-section of a nodule whose sub-surface morphology...

  11. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  12. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  13. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  14. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  15. Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Tesařová, H.; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2307-2316 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ferritic ductile cast iron * ADI * nickel alloying * neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  16. Investigation of phase transformations in ductile cast iron of differential scanning calorimetry

    International Nuclear Information System (INIS)

    Przeliorz, R; Piatkowski, J

    2011-01-01

    The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 deg. C min -1 , local extrema have been observed to occur: for pearlite→austenite transformation at 784 deg. C and 795 deg. C, respectively, and for ferrite+ graphite →austenite transformation at 805 deg. C and 821 deg. C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 deg. C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  17. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  18. The Influence of Different Assist Gases on Ductile Cast Iron Cutting by CO2 Laser

    Directory of Open Access Journals (Sweden)

    Meško J.

    2017-12-01

    Full Text Available This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2 laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ, its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm. The technological parameters that were varied during the experiments included the type of assist gases (N2 and O2, to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.

  19. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  20. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  1. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  2. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  3. COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovsky

    2017-01-01

    Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products. 

  4. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  5. Microstructural characteristics of Al-alloyed austempered ductile irons

    International Nuclear Information System (INIS)

    Kiani-Rashid, A.R.; Edmonds, D.V.

    2009-01-01

    Microstructural development after austempering ductile irons containing 0.48% and 4.88%Al has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental irons were made by green sand casting and gravity die casting. After austenitising at 920 deg. C for 90 min, an austempering treatment at 400 deg. C for times up to 100 min resulted in microstructures consisting of carbide-free bainitic ferrite with considerable amounts of high carbon retained austenite.

  6. Development of ductile cast iron for spent fuel cask applications using fracture mechanics principles

    International Nuclear Information System (INIS)

    Ray, K.K.; Tiwari, S.; Hemlata Kumari; Mamta Kumari; Kumar, Hemant; Albert, S.K.; Bhaduri, A.K.

    2016-01-01

    The structure-property relations of ductile cast irons (DCIs) with varying Cu content and ~1 wt.% Ni has been investigated with an emphasis on examining their fracture toughness property towards the development of suitable materials for large volume containers for transport of spent fuel. The detailed microstructural characteristics, hardness, tensile and fracture toughness properties of three DCIs were assessed in as-cast and annealed conditions. Fracture toughness values were determined using both ball indentation (K BI ) and J-integral (KJ Ic ) test. The obtained results assist to infer that: (i) the amount of pearlite and nodule count increases with increased amount of Cu, (ii) the hardness and strength values increases whereas fracture toughness values marginally decreases with increased Cu content, and (iii) the magnitudes of K BI estimated using a proposed analysis are in good agreement with KJ Ic values for the as-cast materials. (author)

  7. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Choi, J.O.; Kim, J.Y.; Choi, C.O.; Kim, J.K.; Rohatgi, P.K.

    2004-01-01

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  8. Evaluation of fracture toughness of ductile cast iron for casks

    International Nuclear Information System (INIS)

    Hide, Koh-ichiro; Arai, Taku; Takaku, Hiroshi; Shimazaki, Katsunori; Kusanagi, Hideo

    1988-01-01

    We studied the fracture toughness and tensile properties of ductile cast iron for casks, and tried to introduce a fatigue crack into partial cask model. Main results were shown as follows. (1) Fracture toughness were in the upper shelf area above -25deg C, and were in the transition area at -40 and -70deg C. (2) Increasing the value of K I , the fracture toughness decreased. (3) Increasing the specimen thickness, fracture toughness decreased. (4) Fracture toughness of an artificial flaw (ρ=0.1 mm) was the same as that of a fatigue crack at -40deg C. (5) Tensil properties were inferior at -196 and about 400deg C because of low temperature brittleness and blue brittleness. (6) Tensile properties in the middle of cask wall were inferior. (7) It seems to be possible to introduce a fatigue crack into a full size cask. (author)

  9. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  11. Structure and mechanical properties of ductile iron GJS-500-7

    International Nuclear Information System (INIS)

    Kuryloa, P.; Tertela, E.

    2017-01-01

    The paper presents the results of research on mechanical properties (hardness distribution along the cross section towards the cast’s core) and on the structures of ductile iron GJS-500-7. The study defines the range and form of the surface layer of cast iron. It has been shown that the surface layer of the working surface of the cast may be shaped within its transition zone. [es

  12. Spall behavior of cast iron with varying microstructures

    International Nuclear Information System (INIS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-01-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  13. Spall behavior of cast iron with varying microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Plume, Gifford; Rousseau, Carl-Ernst, E-mail: rousseau@uri.edu [Mechanical Engineering, University of Rhode Island, 92 Upper College Rd., Kingston, Rhode Island 02881 (United States)

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  14. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  15. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  16. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  17. TEM investigation of ductile iron alloyed with vanadium.

    Science.gov (United States)

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  18. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  19. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  20. Dynamic fracture toughness and evaluation of fracture in a ferritic nodular cast iron for casks

    International Nuclear Information System (INIS)

    Yasunaka, T.; Nakano, K.

    1993-01-01

    The effect of loading rate and temperature on fracture toughness of a ferritic nodular cast iron obtained from a thick-walled cylindrical casting has been investigated. Based upon this result, the cast iron is evaluated as a material for casks. (1) In the ductile fracture region, fracture toughness increases with increases in loading rate. (2) Ductile-brittle transition temperature is linearly related to the logarithm of stress intensity rate. (3) In the ductile fracture region, converted plain strain fracture toughness divided by yield stress can be adopted as a material constant which is independent of loading rate and temperature. From the result of a static fracture toughness test, the evaluation of fracture in high loading rate can be made. (4) In the ductile fracture region of the material investigated, the maximum allowable flaw depth exceeded the minimum detectable flaw size by a nondestructive inspection. Ferritic nodular cast iron can be used as a material for casks in the ductile fracture region at least. (J.P.N.)

  1. Material specification for ductile cast iron in the United States

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1987-01-01

    The United States currently does not have formal design criteria for qualifying ductile cast iron (DCI) transportation casks. There is also no dedicated material standard for DCI for this particular application. Recognizing the importance of a material standard for this application, Lawrence Livermore Laboratories, in a report to the NRC, recommended that steps be taken to develop an ASTM material specification suitable for spent fuel shipping containers. A draft ASTM material specification has been written and is currently in the ASTM approval process. This paper reviews the brief history of the development of the specification, the technical basis for the material properties, the ASTM approval process and the current status of the draft specification. The expected implications of having an adopted ASTM specification on the licensing process are also discussed. The relationship of fracture toughness to composition, microstructure and tensile properties has been evaluated at Sandia National Laboratories. The first main conclusion reached is that static fracture toughness is essentially decoupled from tensile properties such as yield strength, tensile strength and ductility. The significance of this finding is that tensile properties provided for in existing DCI specifications should not be used as an indicator of a material's ability to resist crack initiation. A material specification which includes fracture toughness requirements is needed to address the brittle fracture concerns. Second, static fracture toughness was found to correlate well with material microstructure; specifically, graphite nodule count or nodule spacing

  2. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    International Nuclear Information System (INIS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-01-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  3. A fracture mechanics safety concept to assess the impact behavior of ductile cast iron containers for shipping and storage of radioactive materials

    International Nuclear Information System (INIS)

    Voelzke, H.; Roedel, R.; Droste, B.

    1994-01-01

    Within the scope of the German licensing procedures for shipping and storage containers for radioactive materials made of ductile cast iron, BAM performs approval design tests including material tests to ensure the main safety goals of shielding, leaktightness and subcriticality under ''Type B accident conditions''. So far the safety assessment concept of BAM is based essentially on the experimental proof of container strength by prototype testing under most damaging test conditions in connection with complete approval design tests, and has been developed especially for cylindrical casks like CASTOR- and TN-design. In connection with the development of new container constructions such as ''cubic cast containers'', and the fast developments in the area of numerical calculation methods, there is a need for a more flexible safety concept especially considering fracture mechanics aspects.This paper presents the state of work at BAM for such an extended safety concept for ductile cast iron containers, based on a detailed brittle fracture safe design proof. The requirements on stress analysis (experimental or numerical), material properties, material qualification, quality assurance provisions and fracture mechanics safety assessment, including well defined and justified factors of safety, are described. ((orig.))

  4. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  5. Austempered ductile iron (ADI) for railroad wheels : final report.

    Science.gov (United States)

    2017-01-31

    The purpose of this project is to investigate the potential for austempered ductile iron (ADI) to be used as an alternative material for the production of rail wheels, which are currently cast or forged steel which is commonly heat treated. ADI has s...

  6. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    as well as on the material surface. The effects of residual stresses arising during the manufacturing process are also accounted for. It is shown that the constitutive response of the equivalent composite medium can match ductile cast iron only if the graphite Young’s modulus value lies within a certain...

  7. Influence of intercritical austempering on the microstructure and mechanical properties of austempered ductile cast iron (ADI)

    International Nuclear Information System (INIS)

    Panneerselvam, Saranya; Putatunda, Susil K.; Gundlach, Richard; Boileau, James

    2017-01-01

    The focus of this investigation was to examine the influence of intercritical austempering process on the microstructure and mechanical properties of low-alloyed austempered ductile cast iron (ADI). The investigation also examined the influence of intercritical austempering process on the plane strain fracture toughness of the material. The effect of both austenitization and austempering temperature on the microstructure and mechanical properties was examined. The microstructural analysis was carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. The test results indicate that by intercritical austempering it is possible to produce proeutectoid ferrite in the matrix microstructure. Lower austenitizing temperature produces more proeutectoid ferrite in the matrix. Furthermore, the yield, tensile strength and the fracture toughness of the ADI decreases with decrease in austenitizing temperature. A considerable increase in ductility was observed in the samples with higher proeutectoid ferrite content. The fracture surfaces of the ADI samples revealed that dimple ductile fracture produced higher fracture toughness of 60±5 MPa√m in this intercritically austempered ADI.

  8. Influence of intercritical austempering on the microstructure and mechanical properties of austempered ductile cast iron (ADI)

    Energy Technology Data Exchange (ETDEWEB)

    Panneerselvam, Saranya [Wayne State University, Detroit, MI (United States); Putatunda, Susil K., E-mail: sputa@eng.wayne.edu [Wayne State University, Detroit, MI (United States); Gundlach, Richard [Element Materials Technology, MI (United States); Boileau, James [Ford Motor Company, Dearborn, MI (United States)

    2017-05-10

    The focus of this investigation was to examine the influence of intercritical austempering process on the microstructure and mechanical properties of low-alloyed austempered ductile cast iron (ADI). The investigation also examined the influence of intercritical austempering process on the plane strain fracture toughness of the material. The effect of both austenitization and austempering temperature on the microstructure and mechanical properties was examined. The microstructural analysis was carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. The test results indicate that by intercritical austempering it is possible to produce proeutectoid ferrite in the matrix microstructure. Lower austenitizing temperature produces more proeutectoid ferrite in the matrix. Furthermore, the yield, tensile strength and the fracture toughness of the ADI decreases with decrease in austenitizing temperature. A considerable increase in ductility was observed in the samples with higher proeutectoid ferrite content. The fracture surfaces of the ADI samples revealed that dimple ductile fracture produced higher fracture toughness of 60±5 MPa√m in this intercritically austempered ADI.

  9. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  10. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    influence the soundness of different sections of the castings. Moreover, the microstructural changes due to variations in thermal gradients are classified, and the variations in the mushy zone described. The paper discusses how solidification and segregation influence porosity and microstructure of ductile...

  11. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  12. Improvement in thermal fatigue resistance of cast iron piston; Chutetsu piston no tainetsu hiro sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Amano, K; Uosaki, Y; Takeshige, N [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Cast iron piston is superior in reduction of diesel engine emission to aluminum piston because of its characteristic of heat insulation. In order to study thermal fatigue characteristics of cast iron, thermal fatigue tests were carried out on two kinds of ferrite ductile cast iron. Differences between cast iron piston and aluminum piston in thermal fatigue resistance have been investigated by using FEM analysis. 5 refs., 14 figs., 1 tab.

  13. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  14. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  15. Influence of the surface roughness on the fatigue properties in ausferritic ductile irons (ADI

    Directory of Open Access Journals (Sweden)

    Svenningsson Roger

    2014-06-01

    Full Text Available Heat treatment of cast ductile iron (DI to ausferritic ductile iron (ADI is known to increase fatigue properties. However, the surface roughness of the cast material is also of significant importance. In this investigation, test rods with seven different surface qualities were cast from the same melt i.e. with same chemical composition. The surfaces of the test rods were varied by a number of parameters; grain size of the moulding sand, coated or non-coated mould surfaces, as-cast or machined and polished, shot peened or not. In addition, a reference material in conventional DI was cast and tested. All eight series were subjected to high-cycle fatigue bending tests. The results show that surface defects, such as micro porosity and minor inclusions drastically decrease the fatigue properties. For some ADI materials the stress amplitude limit was actually lower compared to the non-heat treated DI. The machined, polished and shot-peened material demonstrated the best fatigue properties, which is as expected.

  16. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  17. Fracture mechanics aspects in the safe design of ductile iron shipping and storage containers

    International Nuclear Information System (INIS)

    Sappok, M.; Bounin, D.

    1996-01-01

    Containers made of ductile cast iron provide a safe method for transport of radioactive material. Contrary to widespread opinion ductile cast iron is a very tough material and can be manufactured in heavy sections. The containers are designed to withstand the very high impact loads of accidents like free drops onto unyielding targets. The design is based on postulated undetected crack-like flaws at the highest stressed location. Design must show that applied stress intensities are smaller than fracture toughness and no crack initiation and therefore also no crack propagation can occur. The design procedure followed in this paper is given in a new guideline still being drafted by the International Atomic Energy Agency

  18. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  19. A program to qualify ductile cast iron for use as a containment material for type B transport cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Sorenson, K.B.; Witt, C.R.

    1990-01-01

    This paper reports on the Department of Energy (DOE) investigations for the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. Interaction by contract with the private industry, the American Society for Testing and Materials (ASTM) Committee A4.04, and the Electric Power Research Institute (EPRI) will be actively pursued to establish material specification acceptance criteria for ductile iron use as a cask material in the United States of America (USA). All test results will be documented in the safety analysis report for packaging for submission to the U.S. Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings

  20. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  1. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  2. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  3. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  4. Transition temperature and fracture mode of as-castand austempered ductile iron.

    Science.gov (United States)

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  5. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  6. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  7. Residual analysis applied to S-N data of a surface rolled cast iron

    Directory of Open Access Journals (Sweden)

    Omar Maluf

    2005-09-01

    Full Text Available Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted to rotating bending fatigue tests.

  8. Modern Cored Wire Injection 2PE-9 Method in the Production of Ductile Iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-04-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of nodular graphite cast iron with use of unique implementation of drum ladle as a treatment/ transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results of using this method for possibility production of ductile iron under specific industrial conditions. In this case was taken ductile iron with material designation: EN-GJS-450- 10 Grade according PN-EN 1563:2000. Microstructure of 28 trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical metallic matrix and graphite characteristic. Additionally, mechanical properties were checked in one experiment. Because of further possibility treatment temperature reduction only the rough magnesium recovery and cost of this new method are given.

  9. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  10. Strain rate effects on fracture behavior of Austempered Ductile Irons

    Science.gov (United States)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  11. The application of fracture mechanics on nodular cast iron

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Kockelmann, H.; Roos, E.; Eisele, U.

    1987-01-01

    A series of studies on predominantly thick-walled castings was the first attempt at a characterization of the material of ferritization-annealed ductile cast iron under aspects of fracture mechanics according to today's state of fracture-mechanics research and testing. As in static and dynamic tensile testing, ferritic cast iron meeting specifications was found to be tough down -40 0 C and below in fracture mechanical testing without substantial reduction of the corresponding characteristics at room temperature; this is true for a temperature range where the lowest point of impact notch work has been reached already. Impact-type stresses with and without notching resulted in enhanced deformation resistance and deformability in the longitudinal samples taken from tubes. (orig./DG) [de

  12. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  13. An Analysis of the Weldability of Ductile Cast Iron Using Inconel 625 for the Root Weld and Electrodes Coated in 97.6% Nickel for the Filler Welds

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Cárcel-Carrasco

    2016-11-01

    Full Text Available This article examines the weldability of ductile cast iron when the root weld is applied with a tungsten inert gas (TIG welding process employing an Inconel 625 source rod, and when the filler welds are applied with electrodes coated with 97.6% Ni. The welds were performed on ductile cast iron specimen test plates sized 300 mm × 90 mm × 10 mm with edges tapered at angles of 60°. The plates were subjected to two heat treatments. This article analyzes the influence on weldability of the various types of electrodes and the effect of preheat treatments. Finally, a microstructure analysis is made of the material next to the weld in the metal-weld interface and in the weld itself. The microstructure produced is correlated with the strength of the welds. We treat an alloy with 97.6% Ni, which prevents the formation of carbides. With a heat treatment at 900 °C and 97.6% Ni, there is a dissolution of all carbides, forming nodules in ferritic matrix graphite.

  14. Effects of casting defects, matrix structures and loading conditions on the fatigue strength of ductile irons

    Directory of Open Access Journals (Sweden)

    Endo Masahiro

    2014-06-01

    Full Text Available A novel method is presented to estimate the lower bound of the scatter in fatigue limit of ductile iron based upon the information of microstructural in homogeneities and loading conditions. The predictive capability of the method was verified by comparing to the experimental data obtained by the rotating-bending, torsion and combined tension-torsion fatigue tests for ductile irons with ferritic, pearlitic and bulls-eye (ferritic/pearlitic microstructures.

  15. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    Directory of Open Access Journals (Sweden)

    Mustafa Merih Arıkan

    2015-06-01

    Full Text Available Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility were plotted for this material. Reduction of area (RA decreases and cracking susceptibility increases during cooling from solidification between certain temperatures depending on the cooling rate. Although the temperatures which fracture behavior change upon cooling during continuous casting may vary for different materials, it was found that the type of fracture was ductile at 1100 and 1050 °C; semi-ductile at 1000 °C, and brittle at 800 °C for the steel P245NB. There is a ductility trough between 1000 and 725 °C. The ductility trough gets slightly narrower as the cooling rate decreases.

  16. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    International Nuclear Information System (INIS)

    Peng Yuncheng; Jin Huijin; Liu Jinhai; Li Guolu

    2011-01-01

    Highlights: → Boron are applied to carbidic austempered ductile iron (CADI). → Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. → Addition of boron to CADI significantly improves hardenability. → Effect of boron on the CADI grinding ball were investigated. → Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  17. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  18. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  19. The Effect of Hydrogen on the Mechanical Properties of Cast Irons and ADI with Various Carbon Equivalent and Graphite Morphology

    International Nuclear Information System (INIS)

    Cho, Yong Gi; Lee, Kyung Sub

    1989-01-01

    The effect of hydrogen on the mechanical properties of cast irons, flake, CV graphite cast iron ductile iron and ADI have been investigated. The effects of various carbon equivalent, graphite morphology and matrix have been analyzed to determine the predominant factor which influences on the hydrogen embrittlement. The effect of various carbon equivalent on the embrittlement was little in the similar graphite morphology. The embrittlement of ferrite matrix changed by heat treatment was less than that of pearlite matrix. In the case of ADI, the tendency of hydrogen embrittlement of lower bainite matrix was less remarkable than that of upper banite matrix. As the result of hydrogen charging, the tendency of interface decohesion between matrix-graphite was increased in flake G.C.I., and the trend from ductile fracture mode to brittle fracture mode was observed in CV G.C.I and ductile iron. Lower bainite in ADI showed the ductile fracture mode. Hydrogen solubility of lower bainite was higher than that of upper bainite

  20. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    OpenAIRE

    Arıkan, Mustafa

    2015-01-01

    Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility) were plotted for this material. Reduction of area ...

  1. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  2. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading...... mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint....

  3. Prediction of hot-ductility of steels during continuous casting using artificial neural networks

    International Nuclear Information System (INIS)

    Liu, W.J.; Emadi, D.; Essadiqi, E.

    2000-01-01

    During continuous casting, transversal cracks can be developed due to tensile stress in temperature regions where the steel exhibits a low ductility. The cracking tendency during continuous casting depends on the steel chemistry and the casting parameters such as lubrication, mold type, secondary cooling and bending/unbending temperatures. To prevent cracking one needs to predict the hot-ductility of a material under continuous-casting conditions. However, hot-ductility is one of the poorly understood material behaviors and cannot be readily modeled using conventional techniques. In the present study, we used an alternative method, namely Artificial Neural Networks (ANN), to model the ductility of a steel under continuous casting conditions. A hot-ductility database was established based on published literature. Several standard three-layer ANN models were then trained using data randomly selected from the database. The outputs of the ANN models were subsequently compared with the remaining data in the database. The results indicate that ANN is a suitable modelling technique for hot-ductility prediction. (author)

  4. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  5. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  6. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  7. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  8. Estimation of integrity of cast-iron cask against impact due to free drop test, (1)

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    1988-01-01

    Ductile cast iron is examined to use for shipping and storage cask from a economic point of view. However, ductile cast iron is considered to be a brittle material in general. Therefore, it is very important to estimate the integrity of cast iron cask against brittle failure due to impact load at 9 m drop test and 1 m derop test on to pin. So, the F.E.M. analysis which takes nonlinearity of materials into account and the estimation against brittle failure by the method which is proposed in this report were carried out. From the analysis, it is made clear that critical flaw depth (the minimum depth to initiate the brittle failure) is 21.1 mm and 13.1 mm in the case of 9 m drop test and 1 m drop test on to pin respectively. These flaw depth can be detected by ultrasonic test. Then, the cask is assured against brittle failure due to impact load at 9 m drop test and 1 m drop test on to pin. (author)

  9. Sclero-topometry Metrology in Valorisation of Waste Oil for Micro-machining of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Eymard S.

    2013-12-01

    Full Text Available During the time, the specific characteristics and the efficient lifetime of oil progressively decrease, due to complex pollution, ultimately making the oil unsuitable for the initial applications. The strategy to regenerate and to valorise waste oils is investigated using improved combinations of sclerometric and topometric tests on ductile nodular cast iron. Tribo-abrasive tests are performed in critical conditions, with base oil, waste oil and regenerated oil, of similar viscosities in order to discriminate their interfacial performances. The forms of the scratch traces indicate wear resistance and tendency to elasto-plastic deformation. The mechanisms of deformation and frictional behaviours were evaluated using optical and Scanning Electron Microscopy and measured for various tribological conditions with tactile and optical profilometry. The Energy Dispersive X ray Spectroscopy completes the chemical superficial distribution of pertinent elements. The surface topography metrology is used to characterize the scratch profiles and to determine the volume of the displaced and removed material, as well as maximum pit height. The originality of this paper is that it is a unique approach specifically devoted to transformer oil concerning tribological conditions.

  10. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  11. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  12. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    solidification and growth continues throughout solid state cooling and the eutectoid transformation. Years of research have greatly improved the understanding of the basic mechanisms that control graphite growth as well as the ability to control graphite morphology during industrial production of cast components......, the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...... state growth presented in the present thesis. From the analysis it is clear that the presented data is of an unprecedented quality and that it represents a solid basis for validation of future models. Solidification simulations of a ductile cast iron component highlights the importance of the nucleation...

  13. Cellular automaton modeling of ductile iron microstructure in the thin wall

    Directory of Open Access Journals (Sweden)

    A.A. Burbelko

    2011-10-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the solidification of the ductile iron with different carbon equivalent in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Solidification of the DI with different carbon equivalents was analyzed. Obtained results were compared with the solidification path calculated by CALPHAD method.

  14. The effect of austenitizing conditions in the ductile iron hardening process on longitudinal ultrasonic wave velocity

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2014-04-01

    Full Text Available The paper presents results of a research on the effect of austenitizing temperature and time adopted in the hardening operation on the ultrasonic wave velocity in ductile iron. It has been found that with increasing austenitizing temperature and with the passage of the austenitizing time, a monotonic decrease of the ultrasonic longitudinal wave velocity value occurred. Implementation of ultrasonic testing of results obtained in the course of the cast iron hardening process both in production and as-cast conditions, requires development of a test methodology that must take into account the influence of base material structure (degree of nodularization, graphite precipitation count on the ultrasound wave velocity.

  15. The effects of boro-tempering heat treatment on microstructural properties of ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz

    2011-01-01

    In this study, the effects of boro-tempering heat treatment on microstructural properties of ductile iron were investigated. Test samples with dimensions of 10 x 10 x 55 mm were boronized at 900 o C for 1, 3 and 5 h and then tempered at four different temperatures (250, 300, 350 and 450 o C) for 1 h. Both optical microscopy and scanning electron microscopy were used to reveal the microstructural details of coating and matrix of boro-tempered ductile iron. X-ray diffraction was used to determine the constituents of the coating layer. The boride layer formed on the surface of boro-tempered ductile cast iron is tooth shape form and consisted of FeB and Fe 2 B phases. The thickness of boride layer increases as the boronizing time increases and tempering temperature decreases. Tempering temperature is more effective than boronizing time on the matrix structure. Boro-tempering heat treatment reduces the formation of lower and upper ausferritic matrix temperature according to classical austempering. This causes formation of upper ausferritic matrix in the sample when tempered at 300 o C. This is in contrast to general case which is the formation of lower ausferritic matrix via austempering at this temperature.

  16. Laser processing of cast iron for enhanced erosion resistance

    International Nuclear Information System (INIS)

    Chen, C.H.; Altstetter, C.J.; Rigsbee, J.M.

    1984-01-01

    The surfaces of nodular and gray cast iron have been modified by CO 2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used were 5 msec and 500 kW/cm 2 . Two basic kinds of microstructure can be produced-a feathery microstructure with high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and lower hardness (600 to 800 HV). Erosion testing was done using slurries of SiO 2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing

  17. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  18. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  19. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    International Nuclear Information System (INIS)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-01-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  20. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-10-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  1. Effects of matrix structures on fracture mechanisms of austempered ductile cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Shigeru; Matsufuji, Kenichi [Oita Univ. (Japan); Mitsunaga, Koichi [Kagoshima Junior Womens College (Japan); Takahara, Masao [Isuzu Motors, Kawasaki, Kanagawa (Japan)

    1995-12-31

    On the fatigue behavior of Austempered Ductile Iron (so called ADI), rotating fatigue tests in very high cycle region were performed. The S-N curve represented the double bending. This behavior is caused by the high cycle (>10{sup 7} cycles) fracture, and called the complex three region fractures. The main reason is the work hardening in the surface layer. Therefore, it was removed by electropolishing the surface layer with work hardening. The S-N curve did not show the double bending mentioned above. The fatigue strength with bainitic structure of electropolished ADI was higher than those of mother pearlitic structure.

  2. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  3. Nondestructive inspection of ductile cast iron by measurement of minor magnetic hysteresis loops

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2010-01-01

    Roč. 659, č. 9 (2010), 355-360 ISSN 0255-5476 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  5. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  6. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  7. Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangru, E-mail: cxr16@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, Jie, E-mail: shuxujie@163.com [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Hu, Henry, E-mail: huh@uwindsor.ca [Department of Mechanical, Automotive and Materials Engineering University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4 (Canada); Mohrbacher, Hardy, E-mail: hm@niobelcon.net [NiobelCon bvba, Swaenebeecklaan, 2970 Schilde (Belgium); Kang, Ming, E-mail: kangming@dfcv.com.cn [Dongfeng Commercial Vehicle Co., Ltd., Wuhan 430056 (China); Zhang, Wei, E-mail: zhangwei3@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Guo, Aimin, E-mail: guoam@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Zhai, Qijie, E-mail: qjzhai@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2017-03-14

    The effects of niobium addition up to 0.11 wt% on the microstructure and tensile properties of as-cast ductile iron (ACDI) were investigated. Metallographic analyses by both optical microscopy (OM) and scanning electron microscopy (SEM) indicated that niobium (Nb) promoted the formation of pearlite, reduced pearlite lamellar spacing and decreased the extent of graphitization taking place in the Nb-alloyed ACDI. The nodularity and nodule counts of graphite changed insignificantly when the Nb content was less than 0.08 wt% in the ACDI. The analysis of precipitates by transmission electron microscopy (TEM) revealed that nano and micro sized (Nb, Ti)C carbides acted as nucleation site for graphites, and promoted the formation of large graphite nodules with low roundnesses as Nb content rose above 0.08 wt%. The results of tensile testing showed that the yield strength, ultimate tensile strength and elongation of the ACDI with 0.08 wt% Nb increased by 12.1%, 11.2% and 14.3% over those of the Nb-free ACDI, respectively. The optimum values of the yield strength, tensile strength and elongation of the Nb-alloyed ACDI were found to be 418 MPa, 746.0 MPa and 8.0%, respectively, at the Nb content of 0.08 wt%. The high strain hardening rates of the Nb-containing ACDIs implied that they were capable of spontaneously strengthening itself increasingly to a large extent, in response to a slight plastic deformation after yielding.

  8. Production of spheroidal graphite cast iron (S. G. Iron) for an automobile brake drum

    International Nuclear Information System (INIS)

    Butt, M.T.Z.; Aziz, S.

    2005-01-01

    The role of automobile industry for any country has a great importance. Break drum is one of the essential parts of automobile car and its local casting is required in order to achieve the target for automobile industry because it has special significance. Break drum being the important constituent of the system of an automobile requires a great degree of accuracy and reliability. S. G. Iron is preferred because of its mechanical properties i.e., higher strength modulus, impact resistance and ductility along with excellent machinability and manufacturing ease. (author)

  9. Wear resistance of cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  10. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  11. Solution strengthened ferritic ductile iron ISO 1083/JS/500-10 provides superior consistent properties in hydraulic rotators

    Directory of Open Access Journals (Sweden)

    Dr. Richard Larker

    2009-11-01

    Full Text Available Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts. In the production of hydraulic rotators, dimensional tolerances are typically 20 μm to obtain designated performance. For castings where intermediate strength and ductility is required, it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations. These are mainly caused by the notoriously varying pearlite content, both at different locations within a part and between parts in the same or different batches. Cooling rate variations due to different wall thickness and position in the molding box, as well as varying amounts of pearlite-stabilizing elements, all contribute to detrimental hardness variations. The obvious remedy is to avoid pearlite formation, and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt% –3.8wt%. The Swedish development in this fi eld 1998 resulted in a national standardization as SS 140725, followed in 2004 by ISO 1083/JS/500-10. Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts. Improvements include reduction by 75% in hardness variations and increase by 30% in cutting tool life, combined with consistently better mechanical properties.

  12. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  13. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    ADI austempered at higher temperature showed better corrosion resistance than the ..... temperature and time on corrosion behaviour of ductile iron in chloride and acidic ... iron ore in ball mills, Transactions of the Indian Institute of Metals, Vol.

  14. Study of austempering reaction in austempered ductile iron

    International Nuclear Information System (INIS)

    Ja'far Farhan Al-Sharab; Sharma, D.G.R.; Samsul Bahar Sadli

    1996-01-01

    Austempered Ductile Iron (ADI) is an important engineering material which is gaining popularity. The conventional belief that austempered ductile iron, when heat treated satisfactorily, contains bainite, is now disproved by recent experiments. Our present work on the study of the reaction products of heat treated ADI by x-ray diffraction confirms the recent view. The results of x-ray diffraction studies on the structural constituents od ADI for various durations of austempering are presented and discussed

  15. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  16. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  17. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part II – Technological formula and value of diffusion coefficient

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2017-03-01

    Full Text Available The completed research presented in the first part of the article has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing. On the basis of these data simulations were carried out to examine the behaviour of zinc diffusion coefficient D in the galvanized coating. The adopted model of zinc coating growth helped to explain the cases of excessive growth of the intermetallic phases in this type of coating. The paper analyzes covered the relationship between the roughness and phase composition of the top layer of product and the thickness and kinetics of zinc coating growth referred to individual sub-layers of the intermetallic phases.Roughness and phase composition in the surface layer of product were next related to the diffusion coefficient D examined in respective sublayers of the intermetallic phases.

  18. Seal welded cast iron nuclear waste container

    International Nuclear Information System (INIS)

    Filippi, A.M.; Sprecace, R.P.

    1987-01-01

    An article of manufacture is described comprising a cast iron container having an opening at one end and a cast iron plug; a first nickel-carbon alloy fusion weldable insert surrounding the opening and metallurgically bonded to the cast iron container at the one end of the container; a second nickel-carbon alloy insert metallurgically bonded to the cast iron plug located within the opening and surrounded by the first insert the inserts being jointed by a fusion bond in the opening without heating the cast iron container to an austenite formation temperature thereby sealing the interior of the container from the exterior ambient outside the opening; the nickel-carbon alloy containing about 2 to 5 w% carbon; and both the nickel-carbon alloy insert and the cast iron container have a microstructure containing a graphite phase

  19. The structure of abrasion-resisting castings made of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-01-01

    Full Text Available In this study presents the analyse of chrome iron cast structure (as-cast condition which are used in rugged conditions abrasion-percussive and high temperature. While producing the casts of chrome iron major influence has been preserve the structure of technologi cal process parameters. The addition to Fe-C-Cr alloy Ni, Mo or Cu and then proper heat treatment leads to the improvement of functional and mechanical cast qualities. Then it is possible to develop high mechanical properties which are recommended by PN-EN12513. As can it be seen from the above research silicon is an adverse chemical element in this kind of alloy cast iron. However, the reason of cracksappearing in chrome iron casts are phosphorus eutectic microareas. When the compound of Si and P reach the critical point, described inPN-88/H-83144 outdated standard, the microareas might appear.

  20. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  1. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  2. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  3. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  4. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  5. Modern Cast Irons in Chemical Engineering

    Science.gov (United States)

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  6. Effect of shrinkage porosity on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    Wang Zehua

    2013-05-01

    Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.

  7. Cast Ductile Iron 155mm M804 Bodies

    Science.gov (United States)

    1990-07-12

    for the final delivery. The balance of the parts were returned to Wagner Castings for analysis, scrap, or de-militarization. The radiographic...as possible to avoid pre-cure. Mixing/ mulling time should be consistent with the system " worklife " or poor composite properties will result. Tensile...Burn-in on castings is caused by poor sand density, poor mixing, out of balance mix or improper drying of the wash. Long set times are an indication

  8. Experimental Investigation on Corrosion of Cast Iron Pipes

    Directory of Open Access Journals (Sweden)

    H. Mohebbi

    2011-01-01

    Full Text Available It is well known that corrosion is the predominant mechanism for the deterioration of cast iron pipes, leading to the reduction of pipe capacity and ultimate collapse of the pipes. In order to assess the remaining service life of corroded cast iron pipes, it is imperative to understand the mechanisms of corrosion over a long term and to develop models for pipe deterioration. Although many studies have been carried out to determine the corrosion behavior of cast iron, little research has been undertaken to understand how cast iron pipes behave over a longer time scale than hours, days, or weeks. The present paper intends to fill the gap regarding the long-term corrosion behaviour of cast iron pipes in the absence of historical data. In this paper, a comprehensive experimental program is presented in which the corrosion behaviour of three exservice pipes was thoroughly examined in three simulated service environments. It has been found in the paper that localised corrosion is the primary form of corrosion of cast iron water pipes. It has also been found that the microstructure of cast irons is a key factor that affects the corrosion behaviour of cast iron pipes. The paper concludes that long-term tests on corrosion behaviour of cast iron pipes can help develop models for corrosion-induced deterioration of the pipes for use in predicting the remaining service life of the pipes.

  9. Cast iron transport, storage and disposal containers for use in UK nuclear licensed sites - 59412

    International Nuclear Information System (INIS)

    Viermann, Joerg; Messer, Matthias P.

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Ductile Cast Iron Containers of the types GCVI (UK trademark -GNS YELLOW BOX R ) and MOSAIK R have been in use in Germany for transport, storage and disposal of intermediate level radioactive waste (ILW) for more than two decades. In 2009 a number of containers of these types were delivered to various Magnox sites as so called pathfinders to test their suitability for Magnox waste streams. The results were encouraging. Therefore the Letter of Compliance (LoC) procedure was started to prove the suitability of packages using these types of containers for the future UK Geological Disposal Facility (GDF) and a conceptual Letter of Compliance (cLoC) was obtained from RWMD in 2010. Waste stream specific applications for Interim Stage Letters of Compliance (ILoC) for a number of waste streams from different Magnox sites and from the UK's only pressurised water reactor, Sizewell B are currently being prepared and discussed with RWMD. In order to achieve a package suitable for interim storage and disposal the contents of a Ductile Cast Iron Container only has to be dried. Mobile drying facilities are readily available. Containers and drying facilities form a concerted system

  10. Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Chen, G.; Liu, C.T.

    2014-01-01

    Highlights: • Modified Ti64 alloys with improved ductility and oxidation resistance are developed. • B improves the ductility by refining grain size and enhancing boundary cohesion. • Y enhances the oxidation resistance by possibly slowing down the oxidation kinetics. - Abstract: The effects of B and Y on the mechanical properties and oxidation behavior of cast Ti–6Al–4V alloys were systematically investigated, and the new alloys with improved ductility and oxidation resistance are developed by the microalloying approach. The results indicate that boron is beneficial for improving the ductility by not only grain-size refinement but also grain-boundary enhancement, while yttrium is effective in increasing the oxidation resistance through possibly slowing down the oxidation kinetics. The improved properties, together with their high strength, make the microalloyed cast Ti–6Al–4V alloys competitive for practical engineering applications

  11. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  12. Colour Metallography of Cast Iron - Chapter 1: Introduction (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  13. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  14. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  15. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but

  16. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic casting...

  17. Geometrical size effect in high cycle fatigue strength of heavy-walled Ductile Cast Iron GJS400: Weakest link vs. defect-based approach

    Directory of Open Access Journals (Sweden)

    Cova Matteo

    2014-06-01

    Full Text Available Fatigue strength is known to decrease with increasing dimension of the component. This is due to a technological size effect, related to the production process, and to a geometrical size effect, due to a higher probability of finding a large defect. To investigate the latter, an heavy-walled component made of Ductile Cast Iron (DCI has been trepanned and a fatigue test plan has been carried out using 4 different specimen geometries. An attempt has been made to relate the resulting fatigue strength using a weakest-link approach based on the effective volumes and surfaces. This approach seems to work well only in cases of different specimen's lengths. Some of the fracture surfaces were analyzed by means of SEM and the initiating defects were identified and measured. An approach in which the defects population can be randomly distributed in the specimen has been tried. Virtual fatigue tests have been carried out by considering pure propagation of the worst defect. The resulting fatigue curves showed that this approach is promising but needs further description of the initiation phase.

  18. THE EFFECT OF PREPARATION CONDITIONS OF RAPIDLY SOLIDIFIED IRON BASED GRANULES ON PROPERTIES OF COMPOSITE MATERIAL FORMED BY CASTING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2017-01-01

    Full Text Available The variety of requirements for friction pairs requires the development of different technologies for the production of tribological materials with reference to the operation modes. Composite materials obtained by the casting technology have been successfully applied for the normalization of the thermomechanical state of the steam turbines. These composites consist of the matrix based on copper alloys reinforced with cast iron granules. Because the structure and properties of cast iron are determined by the conditions of their production studies have been conducted on determination of preparation conditions on grain structure and properties of the synthesized composite material. Using an upgraded unit for production of granules technological regimes were determined providing narrow fractional composition. It has been found that granules formed are characterized with typical microstructure of white cast iron containing perlite and ledeburite. Microhardness of pilot cast iron granules is characterized by high values (from 7450 up to 9450 MPa and depends on the size of the fraction. Composite materials obtained using experimental granules had a microhardness of the reinforcing cast iron granules about 3500 MPa, and a bronze matrix – 1220 MPa, which is higher than the hardness of the composite material obtained by using the annealed DCL-1granules (2250 MPa. Metal base of experimental granules in the composite material has the structure of perlitic ductile iron with inclusions of ferrite not exceeding 10–15% and set around a flocculent graphite. As a result, the increase of physical-mechanical properties of finished products made of composite material is observed. 

  19. 46 CFR 153.239 - Use of cast iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  20. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  1. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper...... the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the vis- coplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain...

  2. Compacted graphite iron: Cast iron makes a comeback

    Science.gov (United States)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  3. The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2007-12-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent E = (Si+2.5P.103, and coating thickness dependences were obtained.

  4. An attempt of assessing the production perspectives concerning malleable iron castings

    Directory of Open Access Journals (Sweden)

    M.S. Soiński

    2009-07-01

    Full Text Available The paper presents a historical outline of production of the malleable cast iron castings on the territory of Poland during the past over a hundred years. There have been also gathered data concerning the total quantity of castings and the quantity of malleable iron and nodular iron castings produced in twelve selected countries over the period from 1993 to 2006. The percentage of malleable iron to total production of castings, and for a purpose of comparison the percentage of nodular cast iron to total production of castings, has been determined for these countries. A distinct decreasing tendency can be seen with respect to the production of malleable iron castings, while an increasing trend exists in production of nodular iron castings.

  5. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  6. Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas

    International Nuclear Information System (INIS)

    Abboud, Jaafar Hadi

    2012-01-01

    Highlights: ► Local surface melting. ► Significant improvement in erosion resistance. ► The ductile behaviour was found. -- Abstract: The surface of nodular cast iron has been melted and rapidly solidified by Tungsten Inert Gas (TIG) process to produce a chilled structure of high hardness and better erosion resistance. Welding currents of magnitude 100, 150, and 200 A at a constant voltage of 72 have been used to melt the surface of nodular cast iron. Microstructural characterization, hardness measurements, and erosion wear tests have been performed on these modified surfaces as well as on the untreated material. Microstructural characterization has shown that surface melting resulted in complete or partial dissolution of the graphite nodules and resolidification of primary austenite dendrites, which undergo further decomposition into ferrite and cementite, and interdendritic of acicular eutectic; their microhardness measured across the melted depth ranged between 600 and 800 Hv. The scale of the dendrites and the interdendritic eutectic became coarser when a higher current is used. The results also indicated that remelting process by TIG improved erosion resistance by three to four times. Eroded surface observations of the as-received and TIG melted samples showed a ductile behavior with a maximum erosion rate at 30°. The fine microstructures obtained by the rapid cooling and the formation of a large amount of eutectic cementite instead of the graphite have contributed greatly to the plastic flow and consequently to the better erosion resistance of the TIG surface melted samples.

  7. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  8. Cast iron repair method of stitching pin

    International Nuclear Information System (INIS)

    Yun, In Sik; Yu, Yeong Chul; Kim, Steve S.; Reed, Gary J.

    2003-01-01

    Many cast iron parts are welded and suffer from improper pre-heating and poor welding skills which destroy the castings due to new cracks, deformations etc. This is due mainly to the lack of understanding of the properties of cast iron. Welding, however impractical, was the only alternative for many years. Locks are used to add strength across a crack. Special drilling jigs are used to create a precise hole pattern that locks are driven into. Our locks have a unique ability to pull the sides of a crack together. Bottom locks are stacked or laminated to a depth of 80% of the casting thickness. Thicker surface locks finish off lock installation, allowing repairs in irregular shapes and contours. Installing products can be done quickly with pneumatic tools. Up to one inch of repair can be done in 5 minutes in 1/4 inch thick cast iron.

  9. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    Science.gov (United States)

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  10. PhybalSIT — Fatigue Assessment and Life Time Calculation of the Ductile Cast Iron EN-GJS-600 at Ambient and Elevated Temperatures

    Science.gov (United States)

    Jost, Benjamin; Klein, Marcus; Eifler, Dietmar

    This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.

  11. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  12. Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys

    International Nuclear Information System (INIS)

    Luan, J.H.; Jiao, Z.B.; Heatherly, L.; George, E.P.; Chen, G.; Liu, C.T.

    2015-01-01

    Minor amounts of boron additions have been found to greatly enhance the ductility of cast Ti–6Al–4V alloys, which was considered to be due to the grain-size refinement. In this paper, we report our interesting finding that the beneficial effect of boron on the ductility of the cast titanium alloys is due not only to the grain-size refinement but the enhancement of the prior-β grain-boundary cohesion by boron segregation at the grain boundaries, as evidenced by Auger electron microscopy

  13. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  14. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  15. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  16. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  17. Effects of structure and defect on fatigue limit in high strength ductile irons

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits(σ ω ) and the maximum defect size(√area max ) was expressed as σ ω n · √area max =C 2 . Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates

  18. Cast iron for reactor technology - special structural and mechanical properties

    International Nuclear Information System (INIS)

    Janakiev, N.

    The graphitic phase, its formation and the effect on the mechanical properties of cast iron used for reactor shielding are described. Tensile strength, bending strength and Brinell hardness were studied. With the specimen wall thickness of 400 mm the average measured tensile strength was 180 N/mm 2 , which satisfies the given requirements as do the values of bending strength and material hardness. As against materials 200 mm in thickness, graphite was found by metallographic tests to be of a significantly coarser structure, which may be explained by slower cooling. Tensile strength was also tested for nodular cast irons and lamellar graphite cast irons. It was shown that compression increased with decreasing specimen diameter at constant pressure, at a constant diameter compression increased nearly in proportion to compressive stress. No significant differences were found if compressive stress was 80% of fracture stress. The modulus of elasticity was found to decrease with increasing graphite content while it was found to increase with fine graphite lamellae at the same carbon concentration. It also decreased with increasing straining. A Mo-alloyed cast iron was found to show slower creep rates at a compressive stress of up to 90 N/mm 2 (calculated to the same initial strengths) than Cu-alloyed cast iron. Upon increasing compressive stress to 140 N/mm 2 and creep time to more than 2000 hours, the creep behaviour of Cu-alloyed cast iron was better. Coarser perlite is likely to be more creep resistant than fine perlite. In neutron irradiation of cast iron a clear trend towards hardening was found due to the effect of neutrons on the cast iron structure. (J.B.)

  19. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  20. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  1. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  2. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  3. Development of acceptance criteria and damage tolerance analyzes of the ductile iron insert

    International Nuclear Information System (INIS)

    Dillstroem, Peter; Alverlind, Lars; Andersson, Magnus

    2010-01-01

    SKB intends to qualify a test system for detection and sizing of defects deemed to be relevant to the ductile iron insert. In support of this qualification, a damage tolerance analysis indicating the current qualification targets, given assumed damage and failure modes. This report describes the damage tolerance analyzes of different types of defects that are considered relevant of the ductile iron insert. The results are reported separately for each test area (zone) and type of insert (BWRs and PWRs)

  4. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  5. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  6. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2013-02-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  7. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2012-01-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  8. Structure and mechanical properties of ductile iron GJS-500-7; Estructura y propiedades mecánicas del hierro dúctil GJS-500-7

    Energy Technology Data Exchange (ETDEWEB)

    Kuryloa, P.; Tertela, E.

    2017-09-01

    The paper presents the results of research on mechanical properties (hardness distribution along the cross section towards the cast’s core) and on the structures of ductile iron GJS-500-7. The study defines the range and form of the surface layer of cast iron. It has been shown that the surface layer of the working surface of the cast may be shaped within its transition zone. [Spanish] El artículo presenta los resultados de la investigación sobre propiedades mecánicas (distribución de la dureza a lo largo de la sección transversal del núcleo de la fundición) y de las estructuras de hierro dúctil GJS-500-7. El estudio define el rango y la forma de la capa superficial de hierro fundido. Se ha mostrado que la capa superficial de la superficie del molde trabajado puede estar conformada dentro de su zona de transición.

  9. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  10. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  11. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Fischer, Sebastian F.; Muschna, Stefan; Bührig-Polaczek, Andreas; Bünck, Matthias

    2014-01-01

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV 0.1 ±52 HV 0.1 to 505 HV 0.1 ±87 HV 0.1 . Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  12. Technology for producing synthetic cast iron for nuclear power station parts

    International Nuclear Information System (INIS)

    Blozhko, N.K.; Kurochkin, V.S.; Narkevich, E.A.; Nikitin, L.A.; Petrov, L.A.

    1984-01-01

    A technology was developed and implemented for producing grades SCh-30 through SCh-40 synthetic cast iron in industrial-frequency induction melting furnaces. Alternative innoculations with ferrosilicon and silicocalcium and alloying with chrome and nickel were studied. The mechanical properties and structure of cast irons produced by various technological methods were studied. The research showed that the sector's plants, equipped with industrial-frequency induction furnaces, can produce high-quality synthetic cast irons containing flake graphite for nuclear-power-station casting, without the use of expensive innoculants. Careful observance of the melting and innoculating technologies makes it possible to produce SCh 40 cast iron, without cementite inclusions, by innoculating with FS 75 ferrosilicon in the amount of 0.7% of the total melt weight. Using an innoculant mixture of 0.2% FS 75 and 0.5% SK 30 and low alloying with nickel and chromium, the cast-iron strength can be increased to 440-450 MPa, although the danger of cementite inclusions increase

  13. Sliding wear and corrosion behaviour of alloyed austempered ductile iron subjected to novel two step austempering treatment

    Science.gov (United States)

    Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu

    2018-04-01

    Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.

  14. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    International Nuclear Information System (INIS)

    Sonne, M R; Hattel, J H; Frandsen, J O

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than for the chill casting, resulting in a very course microstructure. From the simulations the nodule count is found to be 17 nodules per mm 2 and 159 nodules per mm 2 for the sand and chill casting, respectively, in the critical region of the main bearing seat. This is verified from nodule counts performed on the real cast main shafts. Residual stress evaluations show an overall increase of the maximum principal stress field for the chill casting, which is expected. However, the stresses are found to be in compression on the surface of the chill cast main shaft, which is unforeseen. (paper)

  15. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on the real...... cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  16. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on castiron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of castiron with magnesium in reaction chamber depends on the flow of castiron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: castiron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid castiron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid castiron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full castiron spheroidization process.

  17. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    Castello Branco, C.H.; Beckert, E.A.

    1984-03-01

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author) [pt

  18. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary. - Mechanical properties under compressive stresses. - Material properties at elevated temperatures. - Influence of irradiation on mechanical and physical properties. - Production standards and quality control. The state of the research and the available data of the material testing program are reported. (Auth.)

  19. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary: mechanical properties under compressive stresses; material properties at elevated temperatures; influence of irradiation on mechanical and physical properties; production standards and quality control. The state of the research and the available data of the material testing program are reported

  20. Surface hardening of two cast irons by friction stir processing

    International Nuclear Information System (INIS)

    Fujii, Hidetoshi; Kikuchi, Toshifumi; Nogi, Kiyoshi; Yamaguchi, Yasufumi; Kiguchi, Shoji

    2009-01-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  1. Research of complex briquetted modifiers influence on cast iron properties

    Directory of Open Access Journals (Sweden)

    Наталя Валеріївна Сусло

    2016-07-01

    Full Text Available Such properties of cast iron as hardness and shock resistance are relevant and have been investigated. Some possible ways to improve these properties have been studied and solutions to the assigned tasks in accordance with modern trends have been found. The use of nano-dispersed modifiers is most promising in modification. The compositions of experimental complex briquetted modifiers have been developed. The technology of cast iron processing with complex briquetted modifiers has been developed. A series of experiments on the effect of a complex briquetted modifier introduced into cast iron on its properties were carried out. The rational content of components in the briquette that makes maximum use of the modifying effect and improves such service characteristics of cast iron as hardness, impact - and wear-resistance has been defined. Ways of a briquette destruction in metal have been explored. The effect of an organic binder amount on the destruction of a briquette and its dissolution in the melt has been investigated. Rational composition of the briquetted modifier that makes it possible to increase hardness and impact resistance of cast iron has been developed

  2. Innovative cast iron pipes. Part 1. Corrosion protection of buried cast iron pipes on the basis of a zinc-aluminium alloy 85-15; Gussrohr-Innovation. T. 1. Korrosionsschutz von erdueberdeckten Rohrleitungen aus duktilem Gusseisen auf Basis einer Zink-Aluminium-Legierung 85-15

    Energy Technology Data Exchange (ETDEWEB)

    Mischo, Michael [SAINT-GOBAIN PAM DEUTSCHLAND GmbH und Co. KG, Saarbruecken (Germany)

    2009-07-15

    On the basis of more than 50 years of experience with zinc-coated pipes and more than 25 years of experience with the alloy ZnAl 85-15, an innovative coating system was developed for pipes made of ductile cast iron. While the conventional system consists of a Zn coating of 200 g/m{sup 2} and a bitumen coating, the ZnAl 85-15 coating is twice as thick, i.e. 400 g/m{sup 2}, and has a blue epoxy resin cover coating which identifies the pipes as water pipes. (orig.)

  3. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    Science.gov (United States)

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  4. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  5. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Gheorghe Hutiu

    2018-02-01

    Full Text Available Some forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents or for parts working under harsh conditions (e.g., pipes or turbines would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM. However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography (OCT to perform fracture analysis by obtaining the topography of metallic surfaces. Several metals have been considered in this study: low soft carbon steels, lamellar graphite cast iron, an antifriction alloy, high-quality rolled steel, stainless steel, and ductile cast iron. An in-house developed Swept Source (SS OCT system, Master-Slave (MS enhanced is used, and height profiles of the samples’ surfaces were generated. Two configurations were used: one where the dimension of the voxel was 1000 μm3 and a second one of 160 μm3—with a 10 μm and a 4 μm transversal resolution, respectively. These height profiles allowed for concluding that the carbon steel samples were subject to ductile fracture, while the cast iron and antifriction alloy samples were subjected to brittle fracture. The validation of OCT images has been made with SEM images obtained with a 4 nm resolution. Although the OCT images are of a much lower resolution than the SEM ones, we demonstrate that they are sufficiently good to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures—especially with the higher resolution MS/SS-OCT system. The investigation is finally extended to the most useful case of

  6. X-ray fluorescence control of chemical composition of cast iron

    International Nuclear Information System (INIS)

    Prekina, I.M.; Rozova, O.F.; Loran, A.V.; Teplitskaya, G.A.; Smagunova, A.N.

    1995-01-01

    A method of x-ray fluorescence analysis developed for analytical set (KRF-18 diffractometer/DVK-3 computer) is used to control cast iron composition. A quantitative evaluation of errors attributed to the violation of conditions of cast iron sampling from the flow and to the quality of preparing samples for XFA is obtained. It is shown that the main component of the integral experimental error is attributed to nonuniformity of chemical composition of cast iron. Metrological studies show that reproductibility, convergence, accuracy, and sensitivity of the method match the requirements characteristic of the control process. 4 refs.; 2 tabs

  7. Investigation of friction and wear characteristics of cast iron material under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hoon; Kim, Chang Lae; Oh, Jeong Taek; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of); Nemati, Narguess [School of Materials and Metallurgy, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3D profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

  8. The micro-mechanisms of failure of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Alan Vaško

    2014-12-01

    Full Text Available The contribution deals with a comparison of the micro-mechanisms of failure of nodular cast irons at static, impact and fatigue stress. Several specimens of ferrite-pearlitic nodular cast irons with different content of ferrite in a matrix were used for metallographic analysis, mechanical tests and micro-fractographic analysis. Mechanical properties were found by static tensile test, impact bending test and fatigue tests. The micro-fractographic analysis was made with use of scanning electron microscope VEGA II LMU on fracture surfaces of the specimens fractured by these mechanical and fatigue tests. Fracture surfaces of analysed specimens are characteristic of mixed mode of fracture. Micro-mechanism of failure of nodular cast irons is dependent on the method of stress.

  9. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  10. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  11. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  12. The sort of carburization and the quality of obtained cast iron

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2008-12-01

    Full Text Available In the production of cast iron, the pig iron’s amount in charge material is more and more often limited, and replaced by steel scrap. That extorts the necessity of know-how the carburization and one is looking for carburizers, which ensure obtaining big carbon increment as quickly as possible with the high repeatability and the ones which ensure getting the adequate quality of cast iron. The object of presented research was definition of the influence of charge materials’ sort on the structure, course of solidification, and the effectiveness of process. The cast iron melts, which are presented below, are made only on the basis of steel scrap with portion of graphitoidal, coke and anthracite carburizers, which were added to the charge in solid. In the article one compared the carburizers in respect of their structure, chemical constitution and the effectiveness obtained during the carburization of liquid metal. The melting of cast iron, based on the special pig iron, was carried out as well. The course of melts, chemical constitution of obtained cast iron and its structure were presented. The comparison between quality distribution and the volume fraction of graphite in classes of size for the individual melts were achieved and the TDA curves were inserted.

  13. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  14. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  15. THE CORROSION BEHAVIOR AND WEAR RESISTANCE OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    Lina F. Kadhim

    2018-01-01

    Full Text Available Gray cast iron has many applications as pipes , pumps and valve bodies where it has influenced by heat and contact with other solutions . This research has studied the corrosion behavior and Vickers hardness of gray cast iron by immersion in four strong alkaline solutions (NaOH, KOH, Ca(OH2, LiOHwith three concentrations (1%,2%,3% of each solution. Dry sliding wear has carried out before and after the heat treatments (stress relief ,normalizing, hardening and tempering. In this work ,maximum wear strength has obtained at tempered gray cast iron and minimum corrosion rate has obtained in LiOH solution by forming protective white visible oxide layer.

  16. Oil quenched malleable iron, the strength of an old material in a “green cast” development and a new future

    Directory of Open Access Journals (Sweden)

    Cornelis J. van Ettinger

    2010-11-01

    Full Text Available Malleable iron lost the interest and the development stopped in the turbulent seventies of tremendous developments of new technologies. The personal computer, emission spectrometer, thermal analysis, cold-box core system and automatic vertical moulding were introduced into the foundry industry. Experience shows that these new technologies do not always match up with malleable iron. Solidification and mould filling simulation programs are not always capable to handle a low carbon equivalent iron like malleable iron. Recent developments show however by using these new technologies and combined with practical experience, it is possible to increase the casting yield of malleable iron to the same level as ductile iron. The mechanical properties, especially the yield strength of malleable iron according to the standard are equivalent to those of ductile iron, however the yield strength of oil quenched malleable iron is significantly higher than that of ductile iron. An extensive investigation is made between ductile iron, air quenched and oil quenched malleable irons based on the properties of more than 350 test bars produced under the same conditions. The results are compared with the existing international standards and discussed. Other properties like fatigue strength and response to surface treatments as induction hardening are also discussed. The costs of malleable iron are reviewed and compared with other ferro alloys. These recent developments in increasing the casting yield, the understanding of the strength, makes malleable iron competitive with ductile iron and cheaper than the first grade of ausferritic ductile iron, or steel qualities. It is possible to design lighter and save weight which is essential in the automotive industry. An example of “green cast” development for typical applications, used in automotive transmissions and engines are shown.

  17. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    Science.gov (United States)

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  18. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  19. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  20. Cast Iron in The 19th Century Building Equipment

    Science.gov (United States)

    Kwasek, Michał; Piwek, Aleksander

    2017-10-01

    Cast iron is a material, characteristics of which enable to receive extremely artistic elements. It maintains good strength properties at the same time. That combination of these seemingly contrary traits makes it a commodity that was widely used in the 19th century industry and architecture. These usages were not only as decorative elements, technical and structural ones. The production of new household utilities started, which made people’s lives more comfortable. Cast iron allowed for fast and cheap production while maintaining high aesthetic qualities. Useful elements, which often were ornamental parts of buildings were created. The aim of the article is to characterise elements of interior equipment of the 19th century building that are made of cast iron. As it appears from performed bibliography, archival and field studies, the ways of exploitation are very broad. Some were mounted into the building; the others were a mobile equipment. As it occurred they were most commonly used as functional items. Cast iron was used to produce the minor elements, which were only parts of the bigger wooden or stone items. Notwithstanding, there were also bigger ones casted as a whole, and frequently ones that were assembled from many elements. Nowadays, elements of an interior feature are one of the subjects of study during the restoration work of the buildings. They can provide important information about the building and the way people lived and are considered as the essential part of historical objects.

  1. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  2. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  3. Analysis of ductile cast iron for spent fuel cask

    International Nuclear Information System (INIS)

    Sakurai, D.; Minami, M.

    1993-01-01

    143 data from 12 Heavy Section D.C.I. Cast Bodies of 6 manufacturer in Japan were investigated and statistically analyzed about Mechanical Properties, Metallurgical Conditions and Manufacturing Processes. The following results were concluded. (1) The Mechanical Properties of J.I.S. are reasonable, reliable and reasonably achievable. (2) The Mechanical Properties of D.C.I. are reasonably achievable. (3) The Mechanical Properties of D.C.I. are easily controllable through metallurgical method. (4) D.C.I. (JIS G5504-92) is applicable to the material for spent fuel cask. (J.P.N.)

  4. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  5. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  6. Residual stresses in a cast iron automotive brake disc rotor

    International Nuclear Information System (INIS)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-01-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed

  7. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  8. The influence of selected elements upon mechanical properties of ductile iron EN-GJS-500-7

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-10-01

    Full Text Available On the basis of chemical composition and mechanical properties analyses of EN-GJS-500-7 spheroidal graphite cast iron (as per PN-EN1563 standard, an attempt to determine the relations between the changes in the contents of elements included in alloy (such as: C, Si, Mn, P, S, Cr, Ni, Mo, Cu, Mg, and its tensile strength (Rm, proof stress (Rp0,2, elongation (A5 and hardness (HB, has been made. Cast iron subjected to the tests came from 291 heats, conducted in one of the domestic foundries. Cast iron was melted in medium-frequency induction furnace, spheroidized with bell method and modified with “in-stream” method.It results from conducted calculations that in a number of cases even small changes of the elements contents lead to statistically significant increases or decreases in examined mechanical properties of cast iron.

  9. Developing high strength and ductility in biomedical Co-Cr cast alloys by simultaneous doping with nitrogen and carbon.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2016-02-01

    There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially

  10. Development of iron aluminides

    International Nuclear Information System (INIS)

    McKamey, C.G.; Viswanathan, S.; Goodwin, G.M.; Sikka, V.K.

    1994-01-01

    Recent studies demonstrating that improved engineering ductility (to 10-15% in Fe 3 Al) can be achieved in wrought Fe 3 Al-based iron aluminide alloys through control of composition and microstructure are discussed. Accompanying this improvement has been an increased understanding of the causes for ambient temperature embrittlement in this system. Because of these advances, iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. The understanding and control of cast structures are important steps in making iron-aluminide alloys viable engineering materials. This includes understanding the various components of cast structure, their evolution, their properties, their behavior during further processing, and, finally, their effect on mechanical properties. The first phase of the study of cast Fe 3 Al-based alloys characterized the various components of the cast structure in the FA-129 alloy, while the current phase of the research involves characterizing the as-cast mechanical properties of Fe 3 Al-based alloys. The investigation of the room temperature mechanical properties of as-cast Fe 3 Al, including tensile tests in air, oxygen, and water vapor environments is described. Studies have begun to refine the grain size of the cast structure. An investigation of the effect of environmental hydrogen embrittlement on the weldability of wrought alloys was also initiated during this period with the aim of understanding the role of environment in the cold-cracking of iron aluminides

  11. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  12. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysi...

  13. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  14. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  15. USE OF HIGH-STRENGTH BAINITIC CAST IRON FOR PRODUCING GEAR WHEELS

    Directory of Open Access Journals (Sweden)

    A. I. Pokrovskiy

    2015-01-01

    Full Text Available The advantages and drawbacks of high-strength cast irons with bainitic structure are reviewed basing on the authors’ own experience in the production of critical partsfrom this material and on the analysis of world trends. A possibility of the replacement of alloy steels by bainitic cast iron in manufacturing critical machine parts is discussed.

  16. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Chang, Hung-Tu; Wang, Chaur-Jeng; Cheng, Chin-Pao

    2014-01-01

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  17. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  18. Numerical simulation of ductile-brittle behaviour of cracks in aluminium and bcc iron

    International Nuclear Information System (INIS)

    Zacharopoulos, Marios

    2017-01-01

    The principal aim of the present dissertation is to investigate the role of sharp cracks on the mechanical behaviour of crystals under load at the atomic scale. The question of interest is how a pure crystal, which contains a single crack in mechanical equilibrium, deforms. Two metals were considered: aluminium, ductile at any temperature below its melting point, and iron, being transformed from ductile to brittle upon decreasing temperature below T=77 K. Cohesive forces in both metals were modeled via phenomenological n-body potentials. A (010)[001] mode I nano-crack was introduced in the perfect crystalline lattice of each of the studied metals by using appropriate displacements ascribed by anisotropic elasticity. At T=0 K, equilibrium crack configurations were obtained via energy minimization with a mixed type of boundary conditions. Both models revealed that the crack configurations remained stable under a finite range of applied stresses due to the lattice trapping effect. The present thesis proposes a novel approach to interpret the intrinsic mechanical behaviour of the two metallic systems under loading. In particular, the ductile or brittle response of a crystalline system can be determined by examining whether the lattice trapping barrier of a pre-existing crack is sufficient to cause the glide of pre-existing static dislocations on the available slip systems. Simulation results along with experimental data demonstrate that, according to the model proposed, aluminium and iron are ductile and brittle at T=0 K, respectively. (author) [fr

  19. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  20. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  1. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  2. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    OpenAIRE

    Kukla S.

    2016-01-01

    The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of wor...

  3. Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Qi, Xiaoben; Zhu, Shigen; Ding, Hao; Zhu, Zhengkun; Han, Zhibing

    2013-01-01

    WC–12%Co powders deposited on ductile iron by electric contact strengthening were studied. This technology was based on the application of the contact resistance heating between the electrode and work piece to form a wear resistant layer on ductile iron. The microstructure, microhardness distribution, phase transformation and wear behaviors of the coating were investigated using optical microscope, scanning electron microscope, Vickers hardness (HV 0.5 ), X-ray diffraction, rolling contact wear tests. The results showed that the WC–12%Co coating by electric contact strengthening was metallurgically bonded to the ductile iron. Additionally, the effect of experimental parameters on microhardness and wear resistance of coatings were studied using orthogonal experiment. The results showed that compared with (A) electric current and (B) rotating speed, (C) contact force displays the most significant effect on microhardness and wear resistance of coatings. The coatings produced at A = 19 kA, B = 0.3 r/min and C = 700 N possessed highest microhardness of 1073 HV 0.5 and wear resistance.

  4. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  5. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  6. Role of the preliminary heat treatment in anisothermic eutectoid change of the cast iron

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2011-07-01

    Full Text Available Preliminary heat treatment, preceding continuous cooling of the iron casting, assumed in the research, complies with the applied in prac- tice single normalization, double normalization or normalization with slow cooling. In each of these cases continuous cast iron cooling has been begun from the same temperature 925°C. CCT diagrams have been made with use of metallographic method. The mechanism, kinet- ics and the final structure of eutectoid change of the cast iron after such treatment have been traced.

  7. Effect of Microstructures on Working Properties of Nickel-Manganese-Copper Cast Iron

    Directory of Open Access Journals (Sweden)

    Daniel Medyński

    2018-05-01

    Full Text Available In the paper, the effects, on basic usable properties (abrasive wear and corrosion resistance, of solidification (acc. to the stable and non-stable equilibrium system and transformations occurring in the matrix during the cooling of castings of Ni-Mn-Cu cast iron were determined. Abrasive wear resistance was mainly determined by the types and arrangements of high-carbon phases (indicated by eutectic saturation degree, and the kinds of matrices (indicated by the nickel equivalent value, calculated from chemical composition. The highest abrasive wear resistance was found for white cast iron, with the highest degree of austenite to martensite transformation occurring in its matrix. Irrespective of solidification, a decrease of the equivalent value below a limit value resulted in increased austenite transformation, and thus, to a significant rise in hardness and abrasive wear resistance for the castings. At the same time, corrosion resistance of the alloy was slightly reduced. The examinations showed that corrosion resistance of Ni-Mn-Cu cast iron is, too a much lesser degree, decided by the means of solidification of the castings, rather than transformations occurring in the matrix, as controlled by nickel equivalent value (especially elements with high electrochemical potential.

  8. Application of complex inoculants in improving the process-ability of grey cast iron for cylinder blocks

    Directory of Open Access Journals (Sweden)

    LIU Wei-ming

    2006-05-01

    Full Text Available Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.

  9. Effect of Sr on the graphitisation of white cast iron

    International Nuclear Information System (INIS)

    Taran, Y.N.; Chernovol, A.; Kurepina, V.

    2001-01-01

    Graphitising annealing is the basis of the production of malleable cast iron. In this case, hypoeutectic low-silicon cast iron with a wide structure I use. A significant role in the precipitation of graphite may be played by the micropores of shrinkage energy and which usually formalism result of insufficient supply and feeding between the dendrite arms of the primary austenite and the eutectic component. The formation of additional graphitisation centres is strongly affected also by the preliminary low-temperature holding (or slow heating)

  10. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  11. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al 2 O 3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  12. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  13. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  14. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  15. Costs Analysis of Iron Casts Manufacturing

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2012-04-01

    Full Text Available The article presents the issues of costs analysis of iron casts manufacturing using automated foundry lines. Particular attention was paid to departmental costs, conversion costs and costs of in-plant transport. After the Pareto analysis had been carried out, it was possible to set the model area of the process and focus on improving activities related to finishing of a chosen group of casts. In order to eliminate losses, the activities realised in this domain were divided into activities with added value, activities with partially added value and activities without added value. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

  16. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  17. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  18. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  19. Effects of various austempering temperatures on fatigue properties in ductile iron

    International Nuclear Information System (INIS)

    Salman, S.; Findik, F.; Topuz, P.

    2007-01-01

    Austempering is an isothermal heat treatment which when applied to ferrous materials, produces a structure that is stronger and tougher than comparable structures produced with conventional heat treatments. In this paper, ductile iron specimens were applied to various austempering temperatures and interpreted fatigue properties. In this test, Denison 7615 fatigue machine was used for doing double sided bending stresses. The iron was austenitized at 900 deg. C and then austempered at 235, 300 and 370 deg. C for 2 h within a salt bath to obtain various austempered microstructures. Also, the fatigue properties of the bainitic structures which occurred by austempering are examined by scanning electron microscope

  20. Manufacture of Toothed Elements in Nanoausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available The technology currently used for the fabrication of toothed wheels, gear couplings and chain drums involves the induction hardening process or hardening and tempering after carburising. All these processes take a long time and cause adverse changes in the dimensions and surface quality of products, requiring post-treatment machining to remove the resulting cavities. The paper proposes the implementation of gear elements made of ductile iron with nanoausferritic matrix obtained by a new appropriate heat treatment process. The new material offers good performance characteristics and nearly no need for the application of other technological processes commonly used in the manufacture of gears.

  1. Maintenance system improvement in cast iron foundry

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2011-07-01

    Full Text Available The work presents the issue of technical equipment management in an iron foundry basing on the assumptions of the TPM system (Total Productive Maintenance. Exploitation analysis of automatic casting lines has been carried out and their work’s influence on the whole production system’s functioning has been researched. Within maintenance system improvement, implementation of autonomic service and planned lines’ review have been proposed in order to minimize the time of breakdown stoppages. The SMED method was used to optimize changeover time, and the OEE (Overall Equipment Effectiveness was applied to evaluate the level of resources usage before and after implementing changes. Further, the influence of the maintenance strategy of casting devices’ efficiency on own costs of casting manufac- ture was estimated.

  2. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  3. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  4. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  5. The microstructure of steels and cast irons. History and interpretation

    International Nuclear Information System (INIS)

    Durand-Charre, M.

    2003-01-01

    The microstructure of steels and cast irons is a monograph on the history and interpretation of the microstructure of steels and iron alloys. Its 400 pages are illustrated by a lot of micrographies of commercial alloys or model alloys at each the available scales with the modern investigations means of electronic microscopy and the optical macro/microscopy. The first part of this book is an historical introduction on the development of the metallurgical structures manually forged for the iron knowledge, in particular the famous structures called damask. The second part of this book deals with the fundamental notions in order to give all the reasoning bases required on the phases equilibria and the transformations kinetics. Concerning the phases equilibria, a lot of diagrams are included. The reading of ternary systems is analyzed for six systems representative of the reactions encountered in steels, Fe-Cr-C, Fe-Ni-Cr, Fe-Mn-S, Fe-Co-Cu, Fe-Mo-Cr and Fe-C-V. The solidification structures are studied through all the classical cases but in others too as the markings of peritectic or metatectic reactions or transformations in series. Solid phases transformations are illustrated and commented with recent interpretations, in particular in the case of bainitic structures. A lot of references allow to deepen the non developed aspects. The third part is a guide to understand and discuss on scientific bases the role of alloy elements and those of different specific treatments resulting to the optimisation of steels and iron casts, to define the micrographic characteristics in relation with the use properties. Steels are classified in series for the very low alloy steels to steels with high amounts in alloy elements resulting of a very fine composition adjustment. Cast irons are presented naturally according to their microstructure, classified in white irons, lamellar grey and nodular irons. (O.M.)

  6. Development of acceptance criteria and damage tolerance analyzes of the ductile iron insert; Framtagning av acceptanskriterier samt skadetaalighetsanalyser av segjaernsinsatsen

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Alverlind, Lars; Andersson, Magnus (Inspecta Technology AB (Sweden))

    2010-01-15

    SKB intends to qualify a test system for detection and sizing of defects deemed to be relevant to the ductile iron insert. In support of this qualification, a damage tolerance analysis indicating the current qualification targets, given assumed damage and failure modes. This report describes the damage tolerance analyzes of different types of defects that are considered relevant of the ductile iron insert. The results are reported separately for each test area (zone) and type of insert (BWRs and PWRs)

  7. Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available In many industrial areas the product quality can be unequivocally assigned to classes such as: “good”, “bad” or “to repair”. In case of casting processes, the product is approved to sales considering customer’s requirements. Except for common characteristics, such as structure, compactness and mechanical properties, physical state of the product is also important. This state is assessed by checking occurrence of specific kind of defects. They are often conditionally accepted by a customer if they do not have any influence on functionality of the product (e.g. negative adhesive and cohesive phenomena, fatigue strength, thermal shocks. Authors’ experience shows that current registering of the most frequently occurring defects and comparing them to customers’ requirements can be very useful and help a quality engineer to control the casting process. They suggest using the Demerit Control Chart (DCC, according to authors’ own methodology, in aspect of information about the castings accepted conditionally by a customer (DCC-recognition. DCC-recognition can be used to assess this quality by monitoring the value of just one aggregated measure for all kinds of defects instead of using a single attribute control chart for each of them. The test version of this tool considering severity of defects proved to be useful in one of the European foundries.

  8. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  9. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  10. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  11. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  12. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  13. The Tendencies of Piece Casting from Modified Irons

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2010-10-01

    Full Text Available In this paper we have presented the metalographic studies made on the grey cast irons treated with complex modifying substances, type FeSiMgRE (Mg alloy and their influence on the compactness degree of graphite separations. For research and experiments, a melt of grey iron was produced in an induction furnace of a capacity of 5to, starting with a metallic charge made from 100% synthetic pig iron. We realized eight practical charge made modification, by using different combinations of modifying substance and in different concentrations. The addition of carbon to the melt was performed using electrode graphite powder in the metallic charge.

  14. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  15. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  16. Application of welding technology TIG to cast iron repair

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-03-01

    Full Text Available Rcpnir nT cnst imn clcrncnts rcaEi7c in ordcr to cut out a sltpcrficial casting dcfcc~s, Dcrccis clccrcasc ;z usahiliny nt ca~rings torconsin~ciionaal pplication m d incrcasc a manufacturing costs. Thc pnpcr prcsclrls rcscarch rcsufts or itsc o r '1'IG - Tun~stcnI ncn Gas alsokncwn RS GTA - Gas Tunpstcn Arc surfacin: hy wclding on colt1 and half-hot to rcpnls chrninil~m cnsr iron EN-GJN-XCrlS withcliro~niurnc ontcnt nhout 3 5% and nodular ({vi~hF crritic-pcarli~ic matrix cast iron EN-GJS-500-7. Thc rcsttl~o r invcsiigations showpossibility of cns~ings rcpais hy put on derccts a good quality padding wclds, which havc compamhlc nr hcricr propcrtlcs than hnsc~naicrial.

  17. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  18. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  19. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  20. Standard test method for determining nodularity and nodule count in ductile iron using image analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method is used to determine the percent nodularity and the nodule count per unit area (that is, number of nodules per mm2) using a light microscopical image of graphite in nodular cast iron. Images generated by other devices, such as a scanning electron microscope, are not specifically addressed, but can be utilized if the system is calibrated in both x and y directions. 1.2 Measurement of secondary or temper carbon in other types of cast iron, for example, malleable cast iron or in graphitic tool steels, is not specifically included in this standard because of the different graphite shapes and sizes inherent to such grades 1.3 This standard deals only with the recommended test method and nothing in it should be construed as defining or establishing limits of acceptability or fitness for purpose of the material tested. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address al...

  1. Flake graphite cast iron investigated by a magnetic method

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2014-01-01

    Roč. 50, č. 4 (2014), s. 6200404 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : cast iron * magnetic adaptive testing (MAT) * magnetic nondestructive evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  2. Ameliorated Austenite Carbon Content Control in Austempered Ductile Irons by Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Chan-Yun Yang

    2013-01-01

    Full Text Available Austempered ductile iron has emerged as a notable material in several engineering fields, including marine applications. The initial austenite carbon content after austenization transform but before austempering process for generating bainite matrix proved critical in controlling the resulted microstructure and thus mechanical properties. In this paper, support vector regression is employed in order to establish a relationship between the initial carbon concentration in the austenite with austenization temperature and alloy contents, thereby exercising improved control in the mechanical properties of the austempered ductile irons. Particularly, the paper emphasizes a methodology tailored to deal with a limited amount of available data with intrinsically contracted and skewed distribution. The collected information from a variety of data sources presents another challenge of highly uncertain variance. The authors present a hybrid model consisting of a procedure of a histogram equalizer and a procedure of a support-vector-machine (SVM- based regression to gain a more robust relationship to respond to the challenges. The results show greatly improved accuracy of the proposed model in comparison to two former established methodologies. The sum squared error of the present model is less than one fifth of that of the two previous models.

  3. Methodology of Fault Diagnosis in Ductile Iron Melting Process

    Directory of Open Access Journals (Sweden)

    Perzyk M.

    2016-12-01

    Full Text Available Statistical Process Control (SPC based on the Shewhart’s type control charts, is widely used in contemporary manufacturing industry, including many foundries. The main steps include process monitoring, detection the out-of-control signals, identification and removal of their causes. Finding the root causes of the process faults is often a difficult task and can be supported by various tools, including data-driven mathematical models. In the present paper a novel approach to statistical control of ductile iron melting process is proposed. It is aimed at development of methodologies suitable for effective finding the causes of the out-of-control signals in the process outputs, defined as ultimate tensile strength (Rm and elongation (A5, based mainly on chemical composition of the alloy. The methodologies are tested and presented using several real foundry data sets. First, correlations between standard abnormal output patterns (i.e. out-of-control signals and corresponding inputs patterns are found, basing on the detection of similar patterns and similar shapes of the run charts of the chemical elements contents. It was found that in a significant number of cases there was no clear indication of the correlation, which can be attributed either to the complex, simultaneous action of several chemical elements or to the causes related to other process variables, including melting, inoculation, spheroidization and pouring parameters as well as the human errors. A conception of the methodology based on simulation of the process using advanced input - output regression modelling is presented. The preliminary tests have showed that it can be a useful tool in the process control and is worth further development. The results obtained in the present study may not only be applied to the ductile iron process but they can be also utilized in statistical quality control of a wide range of different discrete processes.

  4. Study of an Al-Si-Cu HPDC alloy with high Zn content for the production of components requiring high ductility and tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, Iban; Egizabal, Pedro; Galarraga, Haize; Plaza, Luis Maria; Crespo, Inigo [Fundacion Tecnalia Research and Innovation, Donostia-San Sebastien (Spain). Dept. of foundry processes

    2013-04-15

    Conventional high-pressure die casting aluminium components present certain limitations in terms of mechanical properties attainable due to the intrinsic porosity of the castings as well as the presence of iron-based brittle intermetallic phases. The present work approaches the increase in ductility and tensile strength through the analysis of the effect of the alloying elements of AlSi alloys used for high-pressure die casting. The combination of alloying elements providing the best results in terms of ductility and tensile strength were eventually selected to produce a batch of components that were thoroughly tested. The final alloy had a composition of Si 8.21, Fe 0.78, Cu 1.53, Mn 0.64, Mg 0.46, Ni 0.07, Zn 3.37, Pb 0.34, Sn 0.27, Ti 0.18 and Cr 0.04wt.%. The selected alloy performance was compared to that of the commercial AlSi9Cu3 and Silafont {sup registered} 36 alloys.

  5. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  6. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  7. Bilateral arrangement on cooperation and technical exchange between the USA and the FRG on research related to radioactive material transportation

    International Nuclear Information System (INIS)

    1991-01-01

    This publication presents six final reports of the Bundesanstalt fuer Materialforschung und -pruefung, BAM, on the subject area of transport and storage casks made of ductile cast iron for radioactive material. The individual topics of the final reports are: 1. Ductile cast iron with nodular graphite as a material for spent fuel transport and storage casks. 2. Status of ductile cast iron cask technology in the Federal Republic of Germany. 3. Materials testing of transport and storage casks made of GGG 40, in 1981-1987. 4. Behavior of unsound container bodies made of ductile cast iron under impact loads during drop tests. 5. Computer codes for the determination of stress conditions in relevant components of packagings containing radioactive material. 6. Computer-aided recording and evaluation of instrumented impact tests. (orig./MM) [de

  8. Investigation of effects of boron additives and heat treatment on carbides and phase transition of highly alloyed duplex cast iron

    International Nuclear Information System (INIS)

    Tasgin, Yahya; Kaplan, Mehmet; Yaz, Mehmet

    2009-01-01

    The effect of boron additives and heat treatment on the microstructural morphology of the transition zone in a duplex cast iron, which has an outer shell of white cast iron (with a high Cr-content and containing boron additives) and an inner side composed of normal gray cast iron, has been investigated. For this purpose, two experimental materials possessing different compositions of white-gray duplex cast iron were produced. Subsequently, metallographic investigations were carried out to study the effect of heat treatment applied to the experimental materials by using the scanning electron microscopy technique, along with optical microscopy and energy dispersive X-ray spectroscopy. Moreover, the formation of various phases and carbide composites in the samples and their effects on the hardness were also investigated using X-ray diffraction techniques. The results of investigations, and hardness showed that addition of the elements Cr and B to high-alloyed white cast iron affected carbide formation significantly, while simultaneously hardening the microstructure, and consequently the carbide present in the transition area of white-gray cast iron was spread out and became thinner. However, B additives and heat treatment did not cause any damage to the transition region of high Cr-content duplex cast iron.

  9. Selective Leaching of Gray Cast Iron: Electrochemical Aspects

    International Nuclear Information System (INIS)

    Na, Kyung Hwan; Yun, Eun Sub; Park, Young Sheop

    2010-01-01

    Currently, to keep step with increases in energy consumption, much attention has been paid to the construction of new nuclear power plants (NPPs) and to the continued operation of NPPs. For continued operation, the selective leaching of materials should be evaluated by visual inspections and hardness measurements as a part of One-Time Inspection Program according to the requirements of the guidelines for continued operation of pressured water reactors (PWRs) in Korea and license renewals in the United States, entitled the 'Generic Aging Lessons Learned (GALL) report.' However, the acceptance criteria for hardness have yet to be provided. Recently, USNRC released a new draft of the GALL report for comment and plans to publish its formal version by the end of 2010. In the new draft, the quantitative acceptance criteria for hardness are given at last: no more than a 20 percent decrease in hardness for gray cast iron and brass containing more than 15 percent zinc. Selective leaching is the preferential removal of one of the alloying elements from a solid alloy by corrosion processes, leaving behind a weakened spongy or porous residual structure. The materials susceptible to selective leaching include gray cast iron and brass, which are mainly used as pump casings and valve bodies in the fire protection systems of NPPs. Since selective leaching proceeds slowly during a long period of time and causes a decrease in strength without changing the overall dimensions of original material, it is difficult to identify. In the present work, the selective leaching of gray cast iron is investigated in terms of its electrochemical aspects as part of an ongoing research project to study the changes in metal properties by selective leaching

  10. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  11. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    Science.gov (United States)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods

  12. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  14. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  15. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  16. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  17. Effect of microstructure and surface features on wetting angle of a Fe-3.2 wt%C.E. cast iron with water

    Science.gov (United States)

    Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.

    2018-05-01

    In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.

  18. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-03-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters (i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  19. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  20. Investigation into the use of ductile cast iron and cast steel for transport containers with plastic flow shock absorbers

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Gray, I.L.S.; Sievwright, R.W.T.; Miles, J.C.; Egid, B.; Donelan, P.

    1993-01-01

    UK Nirex Ltd is responsible for the development of facilities for the disposal of low and intermediate level waste in the United Kingdom, including the development of the transport facilities for this waste. As part of the development programme Nirex is examining the feasibility of manufacturing these transport containers by means of casting instead of the more usual forging process, as this would bring advantages of lower cost and shorter manufacturing time. This paper describes the programme of work to date which has been aimed at establishing the feasibility of utilizing casting as the manufacturing method for the ILW transport containers and selecting one of the materials for further development work. (J.P.N.)

  1. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  2. Cast iron components for the wind power industry. Development of resource saving products and processes in global competition. Final report; Gjutgods till vindkraftsindustrin. Utveckling av resurssnaala produkter och processer i global konkurrens. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Conny; Gustafsson, Ingela; Petku, Damir [Swedish Foundry Association, Joenkoeping (SE)] [and others

    2006-01-15

    The demand for large cast components in ductile iron for wind power plants has increased strongly. As wind power plants become larger, today up to 4-5 MW, the components grow with them. Weights around 20 tons become common, and are demanded in growing numbers. For most Swedish foundries production of such size components is impossible, but for a few, accustomed to large castings a new growing market has opened. Higher prices for scrap and electricity is however a menace to profit. This project concentrates on factors that may optimize the flow in production, reduce rejections, reduce the consumption of new sand, and to reduce energy consumption in all processes. The project has resulted in ten separate reports, that are included in this publication.

  3. Formation of microstructure and properties on hot working and heat treatment of high strength modular cast iron

    International Nuclear Information System (INIS)

    Trajno, A.I.; Yusupov, V.S.; Kugushin, A.A.

    1999-01-01

    The possibility of plastic deformation of high strength modular cast iron (HSNCI) is under study. The microstructure and mechanical properties of hot worked and heat treated cast iron are investigated for the composition, %: Fe - 2.9 C - 2.4 Si - 0.7 Ni - 0.05 Mg - 0.04 Ce. It is stated that HSNCI can withstand various types of hot working without fracturing. Graphite inclusions lose their modular shape irreversibly during plastic deformation. Subsequent heat treatment affects the metal matrix only. The heating in oxidizing environment is noted to result in cast iron surface decarbonization [ru

  4. Ceramic port shields cast in an iron engine head

    Science.gov (United States)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  5. Trends in the Production of Castings in the World and in Poland in the XXI Century

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-06-01

    Full Text Available The paper presents data concerning the total production of castings over the 2000-2014 period, both on a global scale, and in Poland. The basic types of casting alloys were taken into account. Changes in the production volume and structure over the period of the analysed 15 years were pointed out with respect to countries leading in foundry production. The topmost position in the world foundry industry is held by China for several years (with almost 45% share in the foundry market, the second place is taken by India (with almost 9% share. A distinct reduction in the shares of the once significant producers of castings, such as USA, Japan, Germany, Russia, Italy, or France, was observed over the 2000-2014 period. Poland had a share of 1.16% in 2000, and of 1.02% in 2014. Comparing the detailed data concerning the years 2000 and 2014, one can see that the fractions of castings made of ductile iron, cast steel, aluminium alloys, or magnesium alloys increase on a global scale, while such alloys as grey cast iron or malleable are in decline.

  6. Microstructure and Mechanical Properties of Al-5Mg-0.8Mn Alloys with Various Contents of Fe and Si Cast under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2017-10-01

    Full Text Available Al-5Mg-0.8Mn alloys (AA5083 with various iron and silicon contents were cast under near-rapid cooling and rolled into sheets. The aim was to study the feasibility of minimizing the deteriorating level of the harmful Fe-rich phases on the mechanical properties through refining the intermetallics by significantly increasing the casting rate. The results showed that the size and density of the intermetallic particles that remained in the hot bands and the cold rolled sheets increased as the contents of iron and silicon in the alloys were increased. However, the increment of the particle sizes was limited due to the significant refinement of the intermetallics formed during casting under near-rapid cooling. The mechanical properties of the alloys reduced as the contents of iron and silicon in the alloys increased. However, the decrement of tensile strengths and ductility was quite small. Therefore, higher contents of iron and silicon could be used in the Al-5Mg-0.8Mn alloy (AA5083 alloy when the material is cast under near-rapid cooling, such as in the continuous strip casting process.

  7. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  8. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  9. Fatigue strength of nodular cast iron with regard to heavy-wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, Christoph; Wagener, Rainer; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); Melz, Tobias [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); TU Darmstadt (Germany). Faculty of Mechanical Engineering

    2015-11-01

    For a proper estimation of the fatigue life of a heavy-walled cast component made of nodular cast iron, sufficient knowledge regarding the cyclic properties of the material is necessary. Based on the material parameters at hand for component design, different fatigue analysis procedures can be used. Elastic and elastic-plastic approaches can be adopted, with the latter being reserved only for local approaches. The present publication summarizes the cyclic material parameters gained during a research project by extensive material tests under stress and strain controlled cyclic loading at different load ratios for three nodular cast iron grades. In addition to an improved knowledge of the cyclic material behavior, the notch, the size effects and the mean stress sensitivity were of special concern during the investigations in order to provide an entire overview of the tested materials and thus input information for both stress and strain based design approaches. Tests were performed for specimens taken from large cast blocks of the nodular cast iron grades EN-GJS-400-18U-LT and EN-GJS-450-18, both with ferritic matrices, and EN-GJS-700-2 with a pearlitic matrix. For some of these materials, mean stress sensitivities above 0.5 were obtained during the investigations. These values are not covered by the common standards, which calculate lower values for the mean stress sensitivity. Cyclic material parameters for stress and strain controlled tests are given in this paper as well as values for the size effect, based on the concept of the highly stressed volume. The effect of different specimen sizes could be shown not only by stress but also by strain controlled tests.

  10. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  11. Hot ductility of a microalloyed steel in the intermediate temperature range

    International Nuclear Information System (INIS)

    Darsouni, A.; Bouzabata, B.; Montheillet, F.

    1995-01-01

    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel: after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10 -4 s -1 to 10 -2 s -1 and temperatures from 750 C to 1100 C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in the as-cast samples due to the growth of large grain size. Also, precipitation makes the hot ductility curve wider and deeper around 900 C. The results show a decrease in hot ductility. Minimum values of hot ductility are determined for (ITC) treatment at 900 C and for (DTC) treatment at 800 C. For this second treatment another decrease in hot ductility was observed at 900 C. We can explain hot ductility losses by the presence of precipitates in the austenitic region and the presence of the two-phase structure in the intercritical region. (orig.)

  12. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  13. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  14. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    Science.gov (United States)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  15. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey...... iron microstructure. Both graphite flake formation and matrix formation are influenced. However, the obtained effects differ considerably between different reported investigations. This investigation deals with the combined effect of nitrogen and boron and how it is possible to utilize this effect...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  17. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  18. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  19. Ultrasonic testing of large blocks for prestressed cast iron pressure vessels

    International Nuclear Information System (INIS)

    Stelling, H.A.

    1979-01-01

    Ultrasonic tests were made on plate specimen and large blocks of perlit cast iron with lamellar graphite. Aims of the investigations were the control of material porperties, the flaw detection and flaw classification. The material properties were classified by sound velocity and attenuation measurements. Flaw detection and flaw size estimation methods were modified with regard to the acoustic properties, the microstructure and the reflectivity of typical flaws in castings. Special localisation and flaw size estimation techniques are discussed. (orig.)

  20. Partial electron beam hardening of cast iron camshafts

    Energy Technology Data Exchange (ETDEWEB)

    Csizmazia, A.; Reti, T. [Szechenyi Istvan Univ., Gyoer (Hungary); Horvath, M.; Olah, I. [Audi Hungaria Motor Kft., Gyoer (Hungary)

    2005-07-01

    In order to improve the local surface properties (hardness, wear and contact fatigue resistance) of cast iron camshafts, detailed experiments with partial electron beam hardening have been performed. It was found that the required case depth of 0.3-0.5 mm and surface hardness of 600-700 HV can be achieved by using appropriately selected, computer-controlled processing parameters (angular speed, specific energy input, beam deflection). (orig.)

  1. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed...

  2. Sputtering and emission intensity of cast irons with different metallurgical structures in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Fujita, M.; Kashima, J.; Naganuma, K.

    1981-01-01

    The cathodic sputtering and emission intensities for the white, gray and malleable cast irons in the Grimm glow lamp are discussed. The intensities of the Fe 247.98-nm line for the samples of the three types depend linearly on the electrical power but the slopes of the plots differ. The intensity of the carbon line at 247.86 nm for malleable cast iron is weaker than those for the others. Sputtering is influenced by the form of the graphite, which can lead to distortion of the electrical field. Graphite on malleable cast iron is sputtered not only as atomic carbon but also as moieties containing several carbon atoms. The higher the supplied voltage, the shorter the time for the intensities of the Fe I and C I lines to reach constant values. (Auth.)

  3. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  4. Evaluation of the Mechanical Properties of Gray Cast Iron Using Electrical Resistivity Measurement

    Directory of Open Access Journals (Sweden)

    Bieroński M.

    2016-12-01

    Full Text Available In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ. The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.

  5. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  6. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  7. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  8. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  9. Examination of Cast Iron Material Properties by Means of the Nanoindentation Method

    Directory of Open Access Journals (Sweden)

    Trytek A.

    2012-12-01

    Full Text Available The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

  10. The forty years of vermicular graphite cast iron development in China (PartⅠ

    Directory of Open Access Journals (Sweden)

    CHEN Zheng-de

    2007-05-01

    Full Text Available In China, the research and development of vermicular graphite cast iron (VGCI as a new type of engineering material, were started in the same period as in other developed countries; however, its actual industrial application was even earlier. In China, the deep and intensive studies on VGCI began as early as the 1960s. According to the incomplete statistics to date, more than 600 papers on VGCI have been published by Chinese researchers and scholars at national and international conferences, and in technical journals. More than ten types of production methods and more than thirty types of treatment alloy have been studied. Formulae for calculating the critical addition of treatment alloy required to produce VGCI have been put forward, and mechanisms for explaining the formation of dross during treatment were brought forward. The casting properties, metallographic structure, mechanical and physical properties and machining performance of VGCI, as well as the relationships between them, have all been studied in detail. The Chinese Standards for VGCI and VGCI metallographic structure have been issued. In China, the primary crystallization of VGCI has been studied by many researchers and scholars. The properties of VGCI can be improved by heat treatment and addition of alloying elements enabling its applications to be further expanded. Hundreds of kinds of VGCI castings have been produced and used in vehicles, engines, mining equipment, metallurgical products serviced under alternating thermal load, machinery, hydraulic components, textile machine parts and military applications. The heaviest VGCI casting produced is 38 tons and the lightest is only 1 kg. Currently, the annual production of the VGCI in China is about 200 000 tons. The majority of castings are made from cupola iron without pre-treatment, however, they are also produced from electric furnaces and by duplex melting from cupolaelectric furnaces or blast furnace-electric furnace

  11. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  12. Aspects of the design and structural analysis of the prestressed cast iron nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.

    1978-09-01

    The development of the prestressed cast iron nuclear reactor pressure vessel up to the present time is reviewed, and the current status is outlined of the techniques used for its structural analysis. Details of the manufacturing processes involved in the production of the castings, and problems of inspecting them to the standards required for a nuclear application are discussed. A method for the detailed modelling of the cast iron segments is proposed, using the finite element technique with plate bending elements, and criteria for obtaining accurate results are derived. The application of the technique to the analysis of a single cast segment situated in the wall of a PCIPV has enabled an accurate determination of the stress field to be made. Account is taken of the effect of the vessel displacements on the tendon stresses at normal vault pressure and at high overpressure. Studies by this method of several different casting designs have identified favourable features, which have been incorporated into an optimised design. The sensitivity of the structure to a machining error in a casting and to the failure or removal of circumferential and axial tendons is examined, making use of axisymmetric and three-dimensional global finite element solutions to provide boundary conditions for detailed local analyses. Some aspects of the economics of the cast iron reactor pressure vessel are discussed, and recommendations are made for further research in areas relevant to the assessment of the reliability of the vessel. (author)

  13. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  14. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  15. Shape Accuracy of Iron Precision Castings in Terms of Ceramic Moulds Physical Properties Anisotropy

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2014-03-01

    Full Text Available While analyzing shape accuracy of ferroalloy precision castings in terms of ceramic moulds physical anisotropy, low-alloy steel castings ("cover" and cast iron ("plate" were included. The basic parameters in addition to the product linear shape accuracy are flatness deviations, especially due to the expanded flat surface which is cast plate. For mentioned castings surface micro-geometry analysis was also carried, favoring surface load capacity tp50 for Rmax = 50%. Surface load capacity tp50 obtained for the cast cover was compared with machined product, and casting plate surface was compared with wear part of the conveyor belt. The results were referred to anisotropy of ceramic moulds physical properties, which was evaluated by studying ceramic moulds samples in computer tomography equipment Metrotom 800

  16. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  17. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  18. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  19. Effects of Si on microstructure and phase transformation at elevated temperatures in ferritic white cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Wiengmoon, A., E-mail: ampornw@nu.ac.th [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Pearce, J.T.H. [Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Nusen, S.; Chairuangsri, T. [Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-10-15

    The effects of Si on microstructure and phase transformation at elevated temperature of ferritic 31wt.%Cr-1.1wt.%C white cast irons with up to 3wt.%Si have been studied. Applications of these irons include parts requiring heat resistance at elevated temperature. The irons were produced by sand casting. The microstructure in as-cast condition and after being subjected to high temperature (700 to 1000 °C) was investigated by light microscopy, X-ray diffraction, and electron microscopy. The results revealed that the as-cast microstructure consisted mainly of primary ferrite dendrites and eutectic (ferrite + M{sub 7}C{sub 3}). Si promotes M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation in the irons subjected to transformation at elevated temperature, but no sigma phase was found. The extent of M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation increases proportional to the increasing transformation temperature, holding time and Si content in the irons. For the iron with 1.0wt.%Si content after holding at elevated temperatures, martensite was also found, which could be attributed to carbon accretion effects in eutectic ferrite. Si was incorporated in M{sub 23}C{sub 6} such that M{sub 23}C{sub 6} containing Si can show darker contrast under SEM-BEI as compared to M{sub 7}C{sub 3}; this is the opposite to what has been observed for the cases of typical M{sub 23}C{sub 6} and M{sub 23}C{sub 6} containing Mo or W. The results obtained are important to understand the change in properties of ferritic, high chromium irons containing Si subjected to elevated temperature.

  20. 77 FR 17119 - Pipeline Safety: Cast Iron Pipe (Supplementary Advisory Bulletin)

    Science.gov (United States)

    2012-03-23

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... national attention and highlight the need for continued safety improvements to aging gas pipeline systems... 26, 1992) covering the continued use of cast iron pipe in natural gas distribution pipeline systems...

  1. Effect of zirconium addition on the ductility and toughness of cast zinc-aluminum alloy5, zamak5, grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Adnan, I.O.

    2007-01-01

    Zinc-aluminum casting alloys are frequently employed in design. They are inexpensive and have mechanical properties in many respects superior to aluminum and copper alloys. Common applications of zinc-aluminum alloys are in the automobile industry for manufacturing carburetors bodies, fuel pump bodies, driving wheels and door handles. They are mainly used for die casting due to their low melting points which ranges from 375 to 487 degree C, good fluidity, pollution free melting in addition to their high corrosion resistance. Against these advantages there exists the deficiency as these alloys solidify in a coarse dentititic structure which tends to deteriorate the mechanical properties and impact strength. It was found that addition of some rare earth materials e.g. titanium or titanium plus boron results in modifying its structure into a petal-like or nodular type. The available literature reveals that most of the published work is directed towards the metallurgical aspects and little or no work is published on the effect of those elements on its mechanical strength, ductility, toughness and impact strength. In this paper, the effect of addition of Zirconium on the microstructure, mechanical behavior, hardness, ductility and impact strength of zinc-aluminum alloy5, Zamak5, is investigated. It was found that addition of Ti+B or Zr or Ti+B+Zr resulted in modifying the coarse dentritic structure of the Zamak5 alloy into a fine nodular one. Further more, addition of any of these elements alone or together resulted in enhancement of the mechanical strength, hardness, ductility, toughness and impact strength of this alloy, for example an increase of 11% in hardness was achieved in case of Zr addition and 100% increase of ductility and 12.5% increase in impact strength were achieved in case of Ti+B addition. (author)

  2. Electroerosion formation and technology of cast iron coatings on aluminum alloys

    Directory of Open Access Journals (Sweden)

    Smolentsev Vladislav P.

    2017-01-01

    Full Text Available At present in the course of designing basic production parts and industrial equipment designers pay more and more attention to aluminum alloys having a number of properties compared favorably with other materials. In particular, technological aluminum tool electrodes without coating in the presence of products of processing with alkali in the composition of operation environment are being destroyed at the expense of intensified material dissolution. It is shown in the paper that the method offered by the authors and covered by the patents on cast iron coating of products made of aluminum alloys, allows obtaining on a product surface the layers with high adhesion durability ensuring a high protection against destruction in the friction units including operation in hostile environment. Thereupon, aluminum, as compared with iron-based alloys used at manufacturing technological equipment for electrical methods of processing, has a high electrical and thermal conduction, its application will allow achieving considerable energy-saving in the course of parts production. A procedure for the design of a technological process of qualitative cast iron coatings upon aluminum tool electrodes and parts of basic production used in different branches of mechanical engineering is developed.

  3. Crystallization and structure of chromium cast iron with addition of Mo and Ni

    International Nuclear Information System (INIS)

    Pietrowski, S.

    1998-01-01

    The aim of the presented paper is to show the results of examination of the crystallization process using the method of thermal-derivative analysis (ATD) and the structure examination of chromium cast iron, chromium molybdenum c. i. and chromium molybdenum nickel c.i. It was found that molybdenum in amount over 2 wt % causes the crystallization of eutectic carbides M 23 C 6 and M 6 C. The M 23 C 6 carbide crystallizes upon the crystallization of eutectic carbides M 3 C and M 7 C 3 . It is shown that ATD method facilitates both interpretation and control of the crystallization as well as formation of the cast iron structure at the solid state. (author)

  4. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  5. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  6. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  7. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  8. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  9. A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete.

    Science.gov (United States)

    Fritz, Laura; Hadwiger, Markus; Geier, Georg; Pittino, Gerhard; Gröller, M Eduard

    2009-01-01

    This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of particles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete's application direction. This is a crucial step in assessing the material's behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industry. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessary analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.

  10. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  11. Effect of copper addition and section thickness on the mechanical and physical properties of grey cast iron

    International Nuclear Information System (INIS)

    Malik, F.A.; Zahid, M.; Hassan, M.A.; Sheikh, M.A.; Alam, S.; Qazi, M.A.

    1995-01-01

    Copper is a graphitizer at the stage of solidification and it acts as antiferritizer during transformation cooling range. Due to this, copper additions to grey cast iron prevent at formation of free ferrite in heavy sections. It also reduces the chilling in thin sections, therefore uniform structure is imparted to grey iron by the copper addition. This gives the appropriate strength and hardness properties to grey iron. Thus copper addition gives certain advantages in relation to the machinability and wear resistance which are important for many engineering properties requires by high duty cast iron. The application of copper as allying element is acceptable due to its price and availability as compared to other alloying elements. (author)

  12. Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings

    Directory of Open Access Journals (Sweden)

    Péter Svidró

    2017-07-01

    Full Text Available Shrinkage porosity and metal expansion penetration are two casting defects that appear frequently during the production of complex-shaped lamellar graphite iron components. These casting defects are formed during the solidification and usually form in the part of the casting which solidifies last. The position of the area that solidifies last is dependent on the thermal conditions. Test castings with thermal conditions like those existing in a complex-shaped casting were successfully applied to provoke a shrinkage porosity defect and a metal expansion penetration defect. The investigation of the primary dendrite morphology in the defected positions indicates a maximum intradendritic space, where the shrinkage porosity and metal expansion penetration defects appear. Moving away from the defect formation area, the intradendritic space decreases. A comparison of the intradendritic space with the simulated local solidification times indicates a strong relationship, which can be explained by the dynamic coarsening process. More specifically, long local solidification times facilitates the formation of a locally coarsened austenite morphology. This, in turn, enables the formation of a shrinkage porosity or a metal expansion penetration.

  13. Spot Feeding Spheroidal Graphite Iron with Exothermic and Insulating Ram-Up Sleeves in Vertically Parted Moulds: Efficiency, Microstructure, Dimensional Accuracy, Deformation, and Driving Force and Feeding Criteria Identification

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard

    feeders (ram-up sleeves) is investigated, showing that this new feeding approach can be used successfully to feed secluded sections inductile cast iron (EN-GJS-500-7). The feeder efficiency is tested using a high Silicon (Si) ductile iron (EN-GJS-450-10). The limits for the examined feeder configurations......Improvement of feeder technologies for energy savings in cast iron foundries is not only the title of the project behind this dissertation; it is a good idea that can improve casting yield and reduce production cost, and in turn strengthening the foundries competitive advantage. The approach...... of solidification. The dissertation provides a new approach to feeding secluded sections, a new characterisation of the underlying feeding forces, and new knowledge about the thermal deformation effects caused and controlled by feeding....

  14. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  15. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  17. Cold deformation of ADI castings: Martensitic transformation

    International Nuclear Information System (INIS)

    Navea, Lilian R; Mannheim, Rodolfo M; Garin, Jorge L

    2004-01-01

    Research and applications in austempered ductile iron (ADI castings) have recently undergone noticeable progress in the industrialized world, becoming a highly competitive engineering material. The notable properties of these castings derive from their austenitic matrix stabilized by carbon, a thermally stable austenite during the austenizing process but possibly turning into martensite when undergoing plastic deformation. This work aims to study the changing structure of an ADI casting caused by one directional cold lamination. The samples that were studied were obtained from two nodular castings, one without alloying and the other alloyed with Cu, Ni and Mo. The samples were austenized in the first stage of the austempering process at 910 o C for 80 min. Then in the second stage the unalloyed samples were austempered at 410 o C for 10 min and the alloyed samples for 120 min. After the thermal treatment, the test pieces were deformed 0% to 25% by cold lamination. The quantification of the phases was performed using x-ray diffraction and the metallographic study using optic and Scanning Electronic Microscopy. The results show that the martensitic phase obtained by deformation is a very fine structure that evolves into a thicker one when the deformation of the samples increases (CW)

  18. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of electromagnetic field parameters on the morphology of graphite in grey cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-01-01

    Full Text Available One way to improve the unification of the casting structure may be the application of forced convection of liquid metal during thecrystallization in the form or continuous casting mould. This paper presents the results describing the influence of selected parameters of rotating electromagnetic field enforcing the movement of liquid metal in the form on the morphology of graphite in grey cast iron. The results were fragmented graphite flakes in conditions of regulating the rate of cooling in the range of temperature TZAL

  20. Quantification of Feeding Effects of Spot Feeding Ductile Iron Castings made in Vertically Parted Moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat; Sällström, J.

    In vertically parted molds it is traditionally difficult to feed heavy sections that cannot be reached by traditional side/top feeders or other conventional methods. This project aims at quantifying the effects of using molded-in ram-up spot feeders as a means of feeding isolated sections in cast...

  1. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  2. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...

  3. The influence of selected elements on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-03-01

    Full Text Available An altcmpi of dcrcrinininp rhc relationship bcrwccn changcs of quantities of clcmcnts in the alloy (such 'as C, Si, Mn. P. S. Cr, Ni. CL~M.g and thc basic mcchanical propcrtics of thc matcrisl (R,, Rp,0,2r As, IIB, KCV has bccn undcstakcn on thc basis of data concerningproduction of fcrritic ductilc iron of thc EN-G1S-400-IRU-LT grndc (according 10 PN-EN 1563 Standard from about 300 hcars. Thccxamincd cast imn has hccn pmduccd by onc of thc domcstic roundrics in thc induction lurnacc of mcdium Srcqucncy. sphcroidizcd hy t hcplunging rncthod and thcn modified hy thc in-strcam rncthod whilc transferring Ihc cnst iron from thc tmumcnt *csscl to ~ h pco uring IadEc.Caaings havc hccn hcnt trcntcd in ordcr to achicvc khc fully fcrritic structure. Thc analysis of ~ h cco llcctcd data has shown that cvcn srnilllchangcs in cantcnt or n scrics afclc~ncnts( fdling within tlrc limits rcquircd For production of thc duciilc iron can lcnd tn t l~cst atisticallysignificant incrcascs or dccrcnscs in mcchanicnl propcrt ics of rcrriric ductilc iron.

  4. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    Science.gov (United States)

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  5. Effect of Titanium Inoculation on Tribological Properties of High Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Siekaniec D.

    2017-12-01

    Full Text Available The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.

  6. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process. Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting +5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5% bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  7. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  8. IX - MR Control Chart as a Tool in Assessment of the Cast Iron Properties Stability

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-07-01

    Full Text Available The study offers a statistical assessment of the stability of a technological process of melting and pouring low-carbon grey iron assigned for casting of brake discs. Some specific characteristics were presented that should be taken into consideration when statistical methods are used for technology improvement. The stability of the cast iron melting process was evaluated using data read out from the thermal analysis curve and true data, i.e. the results of spectrometric analysis of the chemical composition and measured values of the mechanical properties. The method for assessment of process stability was discussed on the example of carbon content and Brinell hardness. The examined parameters of the technological process of grey iron melting and casting are independent of each other (the results of carbon content determination in successive melts, the results of hardness measurements, etc.. Therefore, for analysis, the IX - MR type charts were chosen, where single measurements of the selected property (n = 1 serve as a measure of location, while a measure of variability are the, so called, Moving Ranges (MR, which are an absolute value of the difference between the two successive measurements.

  9. Optimization of casting defects analysis with supply chain in cast iron foundry process

    Directory of Open Access Journals (Sweden)

    C. Narayanaswamy

    2016-10-01

    Full Text Available Some of the foundries are in need of meeting production targets and due to the urgency they ignore the rejections. The objective of this paper is to analyze the various defects, [1] from molding process in a cast iron foundry. The Failure Mode Effects Analysis (FMEA in quality control [2-6] with suitable supply chain for mold making process considering rejection rates are identified and analyzed in terms of Risk Priority Number (RPN to prioritize the attention for each of the problem. The optimum levels of selected parameters [7] are obtained in this analysis.

  10. Thermodynamic Analysis of Cast Irons Solidification With Various Types of Graphite

    Directory of Open Access Journals (Sweden)

    Elbel T.

    2012-12-01

    Full Text Available The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

  11. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Hassen, F. [Ecole des Mines de Paris - CGES, 77 - Fontainebleau (France); Bienvenu, Y. [Ecole des Mines de Paris, CM, 91 - Evry (France); Noirel, J.F. [Charbonnages de France, DTN, 57 - Freyming Merlebach (France); Metz, M. [charbonnages de France, ESA, 57 - Freyming Merlebach (France)

    2005-07-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  12. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    International Nuclear Information System (INIS)

    Hadj-Hassen, F.; Bienvenu, Y.; Noirel, J.F.; Metz, M.

    2005-01-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  13. Prediction of Microstructure in ADI Castings

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2016-12-01

    Full Text Available Tests were carried out on samples of low-alloy ductile iron with additions of Ni, Cu and Mo, subjected to austempering heat treatment. The samples were austenitized at 850, 900 and 950 °C, and then austempered at T = 210, 240, 270, 300 and 330 °C. The ausferritizing treatment was carried out in a salt bath for the time τ = 2 - 8 hours. Additionally, tests and studies covered samples subjected to the ausferritizing treatment at 270 °C with the time of holding castings in a bath from 2 to 24 hours. Evaluation covered the results of the ADI microstructure examinations and hardness measurements. The ADI matrix morphology was identified counting the average number of ausferrite plates and measuring their width and spacing. The regression equations HB = f (τ, T and τ = f (HB, T were derived to establish the, so-called, “process window”, allowing obtaining a priori the required microstructure of ADI and, consequently, the required mechanical properties, mainly hardness, shaping the functional properties of castings, abrasion wear resistance – in particular.

  14. Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

    Directory of Open Access Journals (Sweden)

    Mičian M.

    2017-09-01

    Full Text Available The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy. The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1 or aluminium bronze (CuAl10Fe. TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

  15. Influence of New Sol-gel Refractory Coating on the Casting Properties of Cold Box and Furan Cores for Grey Cast iron

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Bischoff, C

    2010-01-01

    New Sol-Gel coated sand cores made from coldbox and furan binder systems were investigated. The idea of the coating was to improve the surface quality of castings. Grey iron was cast on the cores in a sand casting process. The effect of the high temperature of the melt on the cores was assessed...... by measuring the heating curves. The viscosity of the coating, moisture content and the permeability of the cores were evaluated. The surface quality of the castings was investigated using SEM and OM. The results show that the moisture content of the cores affected the permeability. In furan cores the vapour...... transport zone (VTZ) when in contact with the melt is larger than it is in a coldbox which means the furan cores have higher moisture content. The new sol-gel coating has the potential for improving the surface quality of castings without negative effects on the graphite distribution. The surface...

  16. Preliminary microstructural examination of high and low ductility type 316 creep rupture specimens

    International Nuclear Information System (INIS)

    Bolton, C.J.; Cordwell, J.E.; Hooper, A.J.; Marshall, P.; Steeds, J.; Wickens, A.

    1977-09-01

    A preliminary report is presented dealing with the examination of creep specimens from five casts of AISI Type 316 stainless steel which ruptured with variable ductility. Specimen microstructures and attempts to identify factors responsible for high or low creep ductility are discussed. (author)

  17. New sulphiding method for steel and cast iron parts

    Science.gov (United States)

    Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.

    2017-08-01

    A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.

  18. Ductile iron cask with encapsulated uranium, tungsten or other dense metal shielding

    International Nuclear Information System (INIS)

    Barnhart, V.J.; Anderson, R.T.

    1989-01-01

    In a cask for the transportation and storage of radioactive materials, an improvement in the shielding means which achieves significant savings in weight and increases in payload by the use of pipes of depleted uranium, tungsten or other dense metal, encapsulating polyethylene cores, dispersed in two to four rows of concentric boreholes around the periphery of the cask body which is preferably made of ductile iron. Alternatively, rods or small balls of these same shielding materials, alone or in combination, are placed in these bore holes. The thickness, number and arrangement of these shielding pipes or rods is varied to provide optimum protection against the neutrons and gamma radiation emitted by the particular radioactive material being transported or stored. (author) 4 figs

  19. Structural analysis of cellular blocks for a prestressed cast iron reactor pressure vessel

    International Nuclear Information System (INIS)

    Thomas, R.G.; Head, J.L.

    1979-01-01

    The cast segments from which the prestressed cast iron nuclear reactor pressure vessel may be constructed are not readily amenable to detailed three-dimensional finite element analysis because their complex internal web structure requires a very large number of elements if reasonable aspect ratios are to be retained. A technique has been developed of modelling these blocks using plate bending elements from the ASKA code. By this means it has been possible to study in detail several designs of casting and to identify favourable features. The results of these studies, and others in which assessments are made of the sensitivity of the structure to prestressing load changes and machining errors, are reported. (orig.)

  20. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey [Pryazovskyi State Technical Univ., Mariupol (Ukraine); Shimizu, Kazumichi; Kusumoto, Kenta [Muroran Institute of Technology, Hokkaido (Japan); Brykov, Michail [Zaporozhye National Technical Univ., Zaporozhye (Ukraine)

    2018-02-15

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M{sub 7}C{sub 3} carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  1. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  2. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  3. On some perculiarities of microstructure formation and the mechanical properties in thick-walled pieces of cast iron and their application as reactor structural materials

    International Nuclear Information System (INIS)

    Janakiev, N.

    1975-01-01

    The following problems are dealt with in the present work: Microstructure formation and mechanical properties of thick-walled cast pieces, influence of neutron irradiation on the mechanical properties, manufacture of thick-walled castings for reactor construction, application of cast iron as reactor structural material. It is shown that graphite formation plays an extremely important role regarding the mechanical properties. A new construction for vertically stressed pressure vessels is given. These vessels can be fabricated mainly of cast iron with graphite spheres, cast steel, or a combination of both depending on the operational pressure. (GSCH) [de

  4. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  5. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  6. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas; Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg

    2015-01-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [de

  7. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  8. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  9. 75 FR 54595 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China: Final...

    Science.gov (United States)

    2010-09-08

    ...] Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China: Final Results... construction castings from Brazil, Canada, and the People's Republic of China (PRC), pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). See Initiation of Five-year (``Sunset'') Review, 75...

  10. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Grindability of alpha-case formed on cast titanium.

    Science.gov (United States)

    Koike, Marie; Jacobson, David; Chan, Kwai S; Okabe, Toru

    2009-09-01

    The hardened alpha-case (alpha-case) layer inevitably forms on the surface of titanium castings when prepared by investment casting. Because the hardness of the alpha-case is incomparable to that of the interior structure, the perception exists that the alpha-case is difficult to remove during cutting, grinding and polishing. Grindability (ease of grinding) of cast cpTi and cast Ti-6Al-4V was evaluated by grinding cast specimens incrementally using a SiC abrasive wheel. The present study revealed that the presence of the brittle alpha-case with lower fracture toughness is beneficial in grinding titanium. The alpha-case on the ductile cpTi can be ground much easier than its bulk interior structure. In less ductile Ti-6Al-4V, the grinding rate is much higher than that of cpTi, and the alpha-case and its interior structure are at similar levels since the fracture toughness of its alpha-case and the bulk material is not large enough.

  12. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  13. Thermal analysis control of in-mould and ladle inoculated grey cast irons

    Directory of Open Access Journals (Sweden)

    Mihai Chisamera

    2009-05-01

    Full Text Available The effect of addition of 0.05wt.% to 0.25 wt.% Ca, Zr, Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated. In the present paper, the conclusions drawn are based on thermal analysis. For the solidification pattern, some specific cooling curves characteristics, such as the degree of undercooling at the beginning of eutectic solidifi cation and at the end of solidifi cation, as well as the recalescence level, are identifi ed to be more infl uenced by the inoculation technique. The degree of eutectic undercooling of the electrically melted base iron having 0.025% S, 0.003% Al and 3.5% Ce is excessively high (39–40℃, generating a relatively high need for inoculation. Under these conditions, the in-mould inoculation has a more signifi cant effect compared to ladle inoculation, especially at lower inoculant usage (less than 0.20 wt.%. Generally, the efficiency of 0.05wt.%–0.15wt.% of alloy for in-mould inoculation is comparable to, or better than, that of 0.15wt.%–0.25wt.% addition in ladle inoculation procedures. In order to secure stable and controlled processes, representative thermal analysis parameters could be used, especially in thin wall grey iron castings production.

  14. Study of strength of Dsub(y)150 gate valve case, manufactured by centrifugal casting

    International Nuclear Information System (INIS)

    Umanskaya, L.G.; Semenov, P.V.; Tinyakov, V.G.; Babkina, R.I.; Khatuntsev, Eh.V.

    1982-01-01

    A process for manufacturing centrifugal-cast gate valve body is developed. Structural strength of such items, homogeneity, ductile and strength properties over the cross section as well as the metal susceptibility to embrittlement have been investigated. Three cast gate valve bodies have been taken: one - of 20GSL steel - for hydraulic testing, and two - of 15Kh1MFL steel - for investigation into the metal properties across the valve thickness. The strength properties of the centrifugal-cast gate valve body of 15Kh1M1FL steel are stated to meet the specifications. The gate valve metal ductility (delta and PSI) is twice as high as that of a sand-cast valve. The microstructure, strength and ductility are uniform both over wall thickness and over different body cross sections

  15. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    International Nuclear Information System (INIS)

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  16. APPRAISAL OF APPLICATION OF WEAR-RESISTANT CHROMIC CAST IRONS FOR PRODUCTION OF MOULDED PIECES OF EQUIPMENT ON PRODUCTION OF BRICK OF CLAY

    Directory of Open Access Journals (Sweden)

    K. E. aranovkij

    2007-01-01

    Full Text Available The appraisal of application of wear-resistant chromic cast irons of different chemical compositions for production of moulded pieces of equipment on production of bricks of clay is carried out. It is determined that working resource of the details of test cast-irons is correlated with their hardness and not lower than of hardened steel.

  17. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    Science.gov (United States)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  18. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  19. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    Science.gov (United States)

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  20. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  1. Effects of heat treatment condition on the mechanical properties and weldability of 10Cr-1Mo-VNbN cast steel

    International Nuclear Information System (INIS)

    Shon, Dae Young; Bang, Kook Soo; Lee, Kyong Woon; Chi, Byung Ha

    2003-01-01

    Mechanical properties and weldability such as HAZ hardness, cold cracking susceptibility and hot ductility of two differently heat treated 10Cr-1Mo-VNbN cast steels were measured and compared. Because of high hardenability of the cast steel, as-annealed cast steel showed martensitic microstructure and thus had higher hardness than annealed-normalized-tempered cast steel which had tempered martensite. Because the welding electrode used resulted in a high hardness weld metal, both cast steels showed same weld metal cold cracking susceptibility even though the as-annealed cast steel had higher HAZ hardness than the annealed-normalized-tempered cast steel. Both cast steels had excellent hot ductility in high temperature range, indicating no risk of grain boundary liquation cracking in the HAZ. However, the as-annealed cast steel showed an inferior ductility in the intermediate temperature range of 1000∼1150 .deg. C because of larger unrecrystallized grain size

  2. On the Effect of Pouring Temperature on Spheroidal Graphite Cast Iron Solidification

    Directory of Open Access Journals (Sweden)

    Alex Escobar

    2015-04-01

    Full Text Available This work is focused on the effect of pouring temperature on the thermal-microstructural response of an eutectic spheroidal graphite cast iron (SGCI. To this end, experiments as well as numerical simulations were carried out. Solidification tests in a wedge-like part were cast at two different pouring temperatures. Five specific locations exhibiting distinct cooling rates along the sample were chosen for temperature measurements and metallographic analysis to obtain the number and size of graphite nodules at the end of the process. The numerical simulations were performed using a multinodular-based model. Reasonably good numerical-experimental agreements were obtained for both the cooling curves and the graphite nodule counts.

  3. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  4. ELABORATION OF MANAGEMENT PLAN OF SOLID WASTE FROM SMALL CAST IRON FOUNDRIES

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Mendes Moraes

    2013-12-01

    Full Text Available The foundry industry contributes to society meeting the demand of metal scrap recycling, but, at the same time, it brings a high risk of environmental impact for its many potentially pollutant wastes. Among these, there are slag and used foundry sand (cold cure molding. Through a survey about the production process of a small cast iron company, the collected data was compiled to determine the organizational setting in terms of generation and segregation of waste. From a complete environmental diagnosis carried out in eight small cast iron foundries, one of them was chosen to be a basis for the elaboration of an industrial solid waste management plan, which is becoming necessary to know and manage the generation of wastes qualitatively and quantitatively. A data assessment about the production process was carried out and compiled to determine the actual organizational scenario. As a result of that, it is possible to create a favorable environment to develop tools for environmental impacts prevention, which will permit the migration for more complex actions on the direction of more efficient process, cleaner production, and internal and external recycling of exceeding materials.

  5. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  6. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  7. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    International Nuclear Information System (INIS)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-01-01

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E a and ΔH * point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods

  8. Effect of Structure Factor on High-Temperature Ductility of Pipe Steels

    Science.gov (United States)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishnev, P. A.

    2016-05-01

    Effects of various factors such as the grain size, the morphology of nonmetallic inclusions, and joint microalloying with boron and titanium on the high-temperature ductility of pipe steels are studied. Physical modeling of the conditions of cooling of the skin of a continuous-cast preform in the zone of secondary cooling in a Gleeble facility is performed. Technical recommendations are given for raising the hot ductility of steels under industrial conditions.

  9. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  10. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  11. フェライト型球状黒鉛鋳鉄の低サイクル疲労寿命に及ぼす黒鉛粒数の影響

    OpenAIRE

    原田, 昭治; 秋庭, 義明; 植田, 隆浩; 矢野, 満

    1994-01-01

    This paper deals with the effect of nodule count on the low-cycle fatigue life of ferritic ductile cast iron. Stress amplitude-controlled fatigue tests are conducted on ferritic ductile cast iron with different nodule count, i. e. high nodule count (HNC), and low nodule count (LNC) with same chemical composition and heat treatment. The difference of nodule count yields difference of fatigue mechanism in HNC and LNC. The fatigue life of both materials satisfies the Manson-Coffin relationship a...

  12. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  13. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  14. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  15. The assessment of fire safety of cast iron structures in historical buildings: Theory and practice

    NARCIS (Netherlands)

    Twilt, L.; Hunen, M. van

    2000-01-01

    The assessment of structural fire safety of cast iron structures in historical buildings is difficult because the available information on the fire behaviour is limited, whilst the fire design assumptions (if any) often are not well docu-mented. A complicating factor with regard to protective

  16. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  17. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    International Nuclear Information System (INIS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-01-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  18. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiya, E-mail: flying850612@126.com; Tian, Yimei, E-mail: ymtian_2000@126.com; Wan, Jianmei, E-mail: 563926510@qq.com; Zhao, Peng, E-mail: zhpeng@tju.edu.cn

    2015-12-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  19. A highly ductile magnesium alloy system

    International Nuclear Information System (INIS)

    Gao, W; Liu, H

    2009-01-01

    Magnesium (Mg) alloys are finding increasing applications in industry mainly due to their high strength-to-weight ratio. However, they have intrinsically poor plastic deformation ability at room temperature. Therefore, the vast majority of Mg alloys are used only in cast state, severely limiting the development of their applications. We have recently discovered a new Mg alloy system that possesses exceptionally high ductility as well as good mechanical strength. The superior plasticity allows this alloy system to be mechanically deformed at room temperature, directly from an as-cast alloy plate, sheet or ingot into working parts. This type of cold mechanical forming properties has never been reported with any other Mg alloy systems.

  20. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    Science.gov (United States)

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-11-01

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  2. Ductility and resistance to deformation of EhP975 alloy during hot plastic working

    International Nuclear Information System (INIS)

    Baturin, A.I.; Martynov, A.I.

    1982-01-01

    Results of investigations into ductility and resistance to deformation of the EhP975 most heat-resistant difficult-to-form alloy of commercial melting in 1000-1200 deg C temperature range and at deformation rates epsilon = 0.1 - 25 s - 1 are presented. It is shown that ductility of EhP975 alloy grows rather slowly with increase of temperature approximately up to 1075 deg C, then sharp growth of ductility up to the maximum at 1120-1125 deg C is observed; ductility decreases above this temperature zone. It was also established that ductility of EhP975 alloy grows with increase of preliminary deformation degree. It is marked that high temperature annealing increases ductility of EhP975 alloy in comparison with (cast state), especially noticeably at high deformation rates

  3. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  4. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  5. THE RESULTS OF USING OF INDICATORS OF THE HIGH-TEST CAST IRON OF TYPE ICH STRUCTURE IN CONDITIONS OF PRODUCT

    Directory of Open Access Journals (Sweden)

    A. L. Majorov

    2006-01-01

    Full Text Available The results of development of the indicator of highstrength pig-iron are submitted in the report. The indicator using allows to carry out the testing of the pig-iron structure in conditions of manufacture without additional preparation of the casting surface.

  6. Theoretic and Experimental Studies on the Casting of Large Die-Type Parts Made of Lamellar Graphite Grey Pig Irons by Using the Technology of Polystyrene Moulds Casting from Two Sprue Cups

    Directory of Open Access Journals (Sweden)

    Constantin Marta

    2012-01-01

    Full Text Available This paper presents a comparative analysis between the practical results of pig iron die-type part casting and the results reached by simulation. The insert was made of polystyrene, and the casting was downward vertical. As after the part casting and heat treatment cracks were observed in the part, it became necessary to locate and identify these fissures and to establish some measures for eliminating the casting defects and for locating them. The research method was the comparisons of defects identified through verifications, measurements, and metallographic analyses applied to the cast part with the results of some criteria specific to simulation after simulating the casting process. In order to verify the compatibility between reality and simulation, we then simulated the part casting respecting the real conditions in which it was cast. By visualising certain sections of the cast part during solidification, relevant details occur about the possible evolution of defects. The simulation software was AnyCasting, the measurements were done through nondestructive methods.

  7. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  8. TECHNOLOGICAL PARAMETERS OF SLUGS CASTING OF GREY CAST IRON BY FROSTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The relation of geometrical parametres of casting with technological ones is shown. The monogram for definition of basic technological parametres of obtaining of castings by the method of continuously-cyclic iterative casting by freezing-up is presented.

  9. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  10. Physical modeling of spent-nuclear-fuel container

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2012-11-01

    Full Text Available A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h.

  11. Examination of the effect of graphitising modification of high-strength cast iron in liquid and solid-liquid states

    International Nuclear Information System (INIS)

    Kochegura, N.

    2001-01-01

    In this work, we present results of examination of the effect of the composition of graphitised in additions on the crystallisation and kinetics of the graphitisation of nodular cast iron produced by processing using a nickel-Mn master alloy. This in the experimentally used the modification agents melting on the basis of an iron-silicon melt with one of the active elements: titanium, aluminium, calcium or barium

  12. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    Science.gov (United States)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  14. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  16. Microstructural effects of ductile phase toughening of Nb-Nb silicide composites

    International Nuclear Information System (INIS)

    Lewandowski, J.J.; Dimiduk, D.; Kerr, W.; Menddiratta, M.G.

    1988-01-01

    In the Nb-Si system, the terminal Nb phase and Nb 5 Si 3 phase are virtually immiscible up to approximately 2033k. This system offers the potential of producing composites consisting of a ductile refractory metal phase and a strong intermetallic phase. In-situ composites containing different volume fractions of the ductile Nb phase were produced via vacuum arc-casting. Microhardness testing as well as smooth bend bar testing was conducted at temperatures ranging from 298k to 1673k in an attempt to determine microstructural effects on the yield strength and smooth bar fracture strength. Notched bend specimens were similarly tested to determine the effects of the ductile phase (i.e. Nb) on enhancing the notched bend toughness. It is shown that Nb phase often behaves in a ductile manner during testing, thereby toughening the in-situ composite. The mechanism of toughening appears to be due to crack bridging

  17. Carbidic Bainitic and Ausferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2013-12-01

    Full Text Available W arty kule przedstawiono nowe rodzaje żeliwa sferoidalnego z węglikami o różnej mikrostrukturze osnowy metalowej. Żeliwo to otrzymano stosując sferoidyzację metodą Inmold. zapewniającą dużą liczbę kulek grafitu i rozdrobnienie składników osnowy metalowej. Różną mikrostrukturę osnowy metalowej żeliwa otrzymywano bez stosowania obróbki cieplnej (w stanie surowym poprzez odpowiednią kombinację ilościową dodatków stopowych. Wykazano, że dodatek molibdenu, chromu, niklu i miedzi w żeliwie sferoidalnym pozwala uzyskać osnowę metalową złożoną z bainitu górnego, jego mieszaniny z dolnym lub ausferrytu w odlewach o grubości ściany 3^-25 mm. Proces krystalizacji żeliwa przedstawiono i opisano za pomocą krzywych analizy termicznej i derywacyjnej (ATD. Pokazano efekty cieplne od przemiany austenitu w stanie stałym

  18. Strength and Ductility of Forged 1200 Aluminum Alloy Reinforced ...

    African Journals Online (AJOL)

    With 50% reduction and fine-sized steel particles (512μm) in aluminum alloy, tensile strength dropped to 160MPa without significant decrease in ductility (1.7). Microstructure of cast samples show the presence of fine Fe particles at grain boundaries after annealing with most of the particles in solid solution. Al3Fe and AlFeSi ...

  19. FASHION THE KITCHEN: CAST IRON STOVES THE PROVINCE OF QUEBEC, 1900-1914

    Directory of Open Access Journals (Sweden)

    Lisa Baillargeon

    2010-01-01

    Full Text Available The role of aesthetics in the marketing strategies of Quebec’s foundries and retailers at the beginning of the 20th century is not well known. This qualitative analysis of published cast iron stove advertisements suggests that the use of aesthetics to market stoves was far more elaborate than the simple alignment with trendy or classic style categories. In fact, aesthetics were the cornerstone of advertising activities aimed at developing and capitalizing on various market segments at a time of burgeoning consumerism.

  20. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C...

  1. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  2. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neutralization of the negative influence of iron and silicon on the mechanical properties of aluminium casting alloys

    International Nuclear Information System (INIS)

    Zolotorevsky, V.S.; Axenov, A.A.; Belov, N.A.

    1990-01-01

    In most of casting aluminium alloys iron is a harmful impurity due to the appearance of rough particles with needle, plate or sceleton shapes of intermetallic compounds during crystallization. As a result of it the plasticity, fracture toughness and sometimes the strength are decreased

  4. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  5. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  6. Correlation of nodular austempered ductile iron (ADI) microstructural parameters and fatigue properties using an approach based on fracture mechanics

    International Nuclear Information System (INIS)

    Dias, Jose Felipe; Fonseca, Vinicius Rizzuti; Godefroid, Leonardo Barbosa; Ribeiro, Gabriel de Oliveira

    2010-01-01

    An investigation has been accomplished to check the effect of temperature and austempering time on austempered ductile iron (ADI) properties by means of fracture toughness (K_C) and fatigue threshold (∆K_t_h) tests. The correlation of ADI microstructural parameters and ADI two mechanical parameters: KC and Kth, is evaluated. Three sets of samples have ben extracted from ADI casting Y blocks produced in industrial conditions.and austenitized at 900°C for 1.5 hour. The austempering process has been performed in the following ways: the first set was austenitized at 300 deg C for 4 hours, the second set at 360°C for 1.5 hour and the third at 360°C for 0.6 hour. These distinct austempering processes have been adopted in order to obtain distinct microstructures containing austenite with two different carbon rates and two ferritic cell sizes. The materials have been characterized by means of optical and electronic microscopy, X-ray diffraction and mechanical tests. All materials have presented equivalent fatigue crack propagation rates, fracture toughness in the range between 94 and 128 MPa·m"1"/"2 and ∆K_t_h in the range between 5,7 and 6,4 MPa·m"1"/"2. The experimental results have confirmed the effect of microstructural properties (austenitic volumetric rate, austenitic carbon rate, ferritic cell size, total matrix carbon content) on fracture toughness (K_C) and fatigue threshold (∆K_t_h). Further, it was found that following parameters: fracture toughness (K_C), fatigue threshold ((∆K_t_h) and impact strength are correlated with the total matrix carbon content and ferritic cell size. (author)

  7. Impact of as-cast structure on structure and properties of twin-roll cast AA8006 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Slamova, M.; Ocenasek, V. [Vyzkumny Ustav Kovu, Panenske Brezany (Czechoslovakia); Juricek, Z.

    2000-07-01

    Sheet production by twin-roll casting (TRC) process is a well established practice in the aluminium industry because it offers several advantages in comparison with DC casting and hot rolling, esp. lower production and investment costs. Thin strips exhibiting a combination of good strength and high ductility are required for various applications and for this reason alloys with higher Fe and Mn content such as AA 8006 displace AA 1xxx or AA 8011 alloys. However, TRC of AA 8006 strips involves several problems, e.g. casting conditions and subsequent treatment procedures need fine tuning. The results of an investigation of the effect of casting conditions on structure and properties of AA 8006 strips are presented. The influence of casting speed, grain refiner addition, molten metal level in the tundish, tip setback and roll separating force was investigated. The impact of imperfect as-cast structure on structure and properties of thin strips in H22 and O tempers was evaluated and compared with strips from good as-cast material. (orig.)

  8. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  9. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  10. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  11. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  12. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  13. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  14. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  15. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  16. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  17. The dependence of tensile ductility on investment casting parameters in gamma titanium aluminides

    International Nuclear Information System (INIS)

    Raban, R.; Rishel, L.L.; Pollock, T.M.

    1999-01-01

    Plates of three gamma titanium aluminide alloys have been investment cast with a wide variety of casting conditions designed to influence cooling rates. These alloys include Ti-48Al-2Cr-2Nv, Ti-47Al-2Cr-2Nb+0.5at%B and Ti-45Al-2Cr-2Nb+0.9at%B. Cooling rates have been estimated with the use of thermal data from casting experiments, along with the UES ProCAST simulation package. Variations in cooling rate significantly influenced the microstructure and tensile properties of all three alloys

  18. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    Science.gov (United States)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  19. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  20. Cast iron cutting with nano TiN and multilayer TiN-CrN coated inserts

    Science.gov (United States)

    Perucca, M.; Durante, S.; Semmler, U.; Rüger, C.; Fuentes, G. G.; Almandoz, E.

    2012-09-01

    During the past decade great success has been achieved in the development of duplex and multilayer multi-functional surface systems. Among these surface systems outstanding properties have nanoscale multilayer coatings. Within the framework of the M3-2S project funded in the 7th European Framework Programme, several nanoscale multilayer coatings have been developed and investigated for experimental and industrial validation. This paper shows the performance of TiN and TiN/CrN nanoscale multilayer coatings on WC cutting inserts when machining GJL250 cast iron. The thin films have been deposited by cathodic arc evaporation in an industrial PVD system. The multilayer deposition characteristic and its properties are shown. The inserts have been investigated in systematic cutting experiments of cast iron bars on a turning machine specifically equipped for force measurements, accompanied by wear determination. Furthermore, equivalent experiments have been carried out on an industrial turning unit. Industrial validation criteria have been applied to assess the comparative performance of the coatings. The choice of the material and the machined parts is driven by an interest in automotive applications. The industrial tests show the need to further optimise the multi-scale modelling approach in order to reduce the lead time of the coating development as well as to improve simulation reliability.