WorldWideScience

Sample records for duality

  1. Evasive Duality

    International Nuclear Information System (INIS)

    Zakharov, V.I.

    2009-01-01

    A mini-review concerning the duality between higher orders in perturbative expansions and the quadratic power corrections to the parton model. The note contains no new results and is prompted by a continuing controversy in the literature. Sometimes one considers the two ways of describing QCD observables - in terms of a long perturbative series and in terms of the leading quadratic power correction - as contradicting to each other. While they are in fact dual to each other

  2. Duality Quantum Information and Duality Quantum Communication

    International Nuclear Information System (INIS)

    Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.

    2011-01-01

    Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.

  3. Dealing with dualities

    NARCIS (Netherlands)

    Dittrich, K.; Jaspers, F.P.H.; Valk, van der W.; Wynstra, J.Y.F.

    2006-01-01

    This paper introduces the topic of dealing with dualities, which is the theme of this special issue. We first give a short review of the notion of paradox and duality in management research. After this, we discuss the relevance of dualities for the IMP approach of analyzing industrial networks.

  4. Unification of string dualities

    International Nuclear Information System (INIS)

    Sen, A.

    1997-01-01

    We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)

  5. Duality in vector optimization

    CERN Document Server

    Bot, Radu Ioan

    2009-01-01

    This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. After a preliminary chapter dedicated to convex analysis and minimality notions of sets with respect to partial orderings induced by convex cones a chapter on scalar conjugate duality follows. Then investigations on vector duality based on scalar conjugacy are made. Weak, strong and converse duality statements are delivered and connections to classical results from the literature are emphasized. One chapter is exclusively consecrated to the s

  6. Duality and supersymmetric monopoles

    International Nuclear Information System (INIS)

    Gauntlett, J.P.

    1998-01-01

    Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)

  7. Duality ensures modular covariance

    International Nuclear Information System (INIS)

    Li Miao; Yu Ming

    1989-11-01

    We show that the modular transformations for one point functions on the torus, S(n), satisfy the polynomial equations derived by Moore and Seiberg, provided the duality property of the model is ensured. The formula for S(n) is derived by us previously and should be valid for any conformal field theory. As a consequence, the full consistency conditions for modular invariance at higher genus are completely guaranteed by duality of the theory on the sphere. (orig.)

  8. Duality and 'particle' democracy

    Science.gov (United States)

    Castellani, Elena

    2017-08-01

    Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.

  9. Duality in linearized gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Teitelboim, Claudio

    2005-01-01

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case

  10. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  11. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  12. Entanglement entropy and duality

    Energy Technology Data Exchange (ETDEWEB)

    Radičević, Ðorđe [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)

    2016-11-22

    Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.

  13. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  14. From 3 d duality to 2 d duality

    Science.gov (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  15. Duality and quantum groups

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Gomez, C.; Sierra, G.

    1990-01-01

    We show that the duality properties of Rational Conformal Field Theories follow from the defining relations and the representation theory of quantum groups. The fusion and braiding matrices are q-analogues of the 6j-symbols and the modular transformation matrices are obtained from the properties of the co-multiplication. We study in detail the Wess-Zumino-Witten models and the rational gaussian models as examples, but carry out the arguments in general. We point out the connections with the Chern-Simons approach. We give general arguments of why the general solution to the polynomial equations of Moore and Seiberg describing the duality properties of Rational Conformal Field Theories defines a Quantum Group acting on the space of conformal blocks. A direct connection between Rational Theories and knot invariants is also presented along the lines of Jones' original work. (orig.)

  16. Fracton-Elasticity Duality

    Science.gov (United States)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  17. On confinement and duality

    Energy Technology Data Exchange (ETDEWEB)

    Strassler, M J [University of Pennsylvania, Philadelphia, PA (United States)

    2002-05-15

    Confinement in four-dimensional gauge theories is considered from several points of view. General features are discussed, and the mechanism of confinement is investigated. Dualities between field theories, and duality between field theory and string theory, are both put to use. In these lectures I have given an overview of some of the key ideas underlying confinement as a property of field theory, and now, of string theory as well. This is a tiny fraction of what field theory (and now string theory) is capable of, and we are still uncovering new features on a monthly basis. In fact, most field theories do not have confinement, for reasons entirely different from those of QCD. Many become nontrivial conformal field theories at low energy. Others become composite, weakly-coupled gauge theories. Dualities of many stripes are found everywhere. Ordinary dimensional analysis in string theory is totally wrong in the regime where it looks like weakly-coupled field theory, and ordinary dimensional analysis in field theory is totally wrong in the regime where it looks like weakly-coupled supergravity.

  18. Duality and topology

    Science.gov (United States)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  19. Unity from duality

    International Nuclear Information System (INIS)

    Townsend, P.

    1995-01-01

    The author suggest that the discovery of ''hidden'' symmetries in the subatomic world will, in due time succeed in uniting the strong and weak nuclear forces and the electromagnetic force (already successfully united in the Standard Model) with the fourth universal force, gravity, to produce a ''unified theory of everything''. Concepts such as groups, in the context of quantum field theory, supersymmetry and superstrings are explained to back this contention. Recent work on the nature of electromagnetic duality, may, it is argued, increase our comprehension to a level where ''theories of everything'' may emerge. (UK)

  20. Duality after supersymmetry breaking

    International Nuclear Information System (INIS)

    Shadmi, Yael; Cheng, Hsin-Chia

    1998-05-01

    Starting with two supersymmetric dual theories, we imagine adding a chiral perturbation that breaks supersymmetry dynamically. At low energy we then get two theories with soft supersymmetry-breaking terms that are generated dynamically. With a canonical Kaehler potential, some of the scalars of the ''magnetic'' theory typically have negative mass-squared, and the vector-like symmetry is broken. Since for large supersymmetry breaking the ''electric'' theory becomes ordinary QCD, the two theories are then incompatible. For small supersymmetry breaking, if duality still holds, the magnetic theory analysis implies specific patterns of chiral symmetry breaking in supersymmetric QCD with small soft masses

  1. Duality and quarks

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    As it has shown, the study of vacuum transitions in dual models makes it possible to establish certain relations between duality, on the one hand, and the quark structure of resonances and the internal symmetries, on the other. In the case of Veneziano model the corresponding quark structure of resonances is determined by the infinity number of quarks of increasing mass. The intercents of the main trajectory and all adopted trajectories are additive with respect to squares of mass-forming quarks. The latter circumstance results in a number of important consequences: the presence of quadratic mass formulas for resonance states; the exact SU(infinity)-symmetry for the three-resonance coupling constants; the validity of Adler's self-consistency principle for external particles composed of different quarks and anti-quarks, etc

  2. Topological field theories and duality

    International Nuclear Information System (INIS)

    Stephany, J.; Universidad Simon Bolivar, Caracas

    1996-05-01

    Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs

  3. Dualities and emergent gravity: Gauge/gravity duality

    Science.gov (United States)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  4. String dualities and superpotential

    International Nuclear Information System (INIS)

    Ha, Tae-Won

    2010-09-01

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  5. Anatomy of a duality

    International Nuclear Information System (INIS)

    Johnson, C.V.

    1998-01-01

    The nature of M-theory on K3 x I, where I is a line interval, is considered, with a view towards formulating a ''matrix theory'' representation of that situation. Various limits of this compactification of M-theory yield a number of well known N=1 six-dimensional compactifications of the heterotic and type I string theories. Geometrical relations between these limits give rise to string/string dualities between some of these compactifications. At a special point in the moduli space of compactifications, this motivates a partial definition of the matrix theory representation of the M-theory on K3 x I as the large N limit of a certain type IA orientifold model probed by a conglomerate of N D-branes. Such a definition in terms of D-branes and orientifold planes is suggestive, but necessarily incomplete, due to the low amount of supersymmetry. It is proposed - following hints from the orientifold model - that the complete matrix theory representation of the K3 x I compactified M-theory is given by the large N limit of compactification - on a suitable ''dual'' surface - of the ''little heterotic string'' N=1 six-dimensional quantum theories. (orig.)

  6. String dualities and superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Won

    2010-09-15

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  7. M-theory and Dualities

    International Nuclear Information System (INIS)

    Paulot, Louis

    2003-01-01

    In their search for a unified theory of fundamental interactions, with quantum gravity, physicists introduced superstring theories. In addition to the fundamental strings, they contain extended objects of diverse dimensions, exchanged by U-duality groups. There is also a conjectured mother theory, called 'M-theory', which would give eleven-dimensional supergravity in the low energy limit. In this work, we show that one can construct from del Pezzo surfaces generalized Kac-Moody super-algebras which extend U-duality groups. These super-algebras give the bosonic fields content of M-theory dimensional reductions. We recover the fields equations of motion as a self-duality condition, related to a symmetry of the Picard lattice of the corresponding del Pezzo surface. This allows to explain the symmetry of the 'magic triangle' of Cremmer, Julia, Lue and Pope. (author) [fr

  8. Duality rotations for interacting fields

    International Nuclear Information System (INIS)

    Gaillard, M.K.; Zumino, Bruno

    1981-05-01

    We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the equations of motion requires that the Lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energy momentum tensor, and also in the general construction of the Lagrangian. Finally we comment on the existence of zero mass spin one bound states in N=8 supergravity, which possesses a non-compact E 7 dual invariance

  9. Killings, duality and characteristic polynomials

    Science.gov (United States)

    Álvarez, Enrique; Borlaf, Javier; León, José H.

    1998-03-01

    In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998

  10. Lectures on strings and dualities

    International Nuclear Information System (INIS)

    Vafa, C.

    1997-01-01

    In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)

  11. A duality web in condensed matter systems

    Science.gov (United States)

    Ma, Chen-Te

    2018-03-01

    We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.

  12. From Koszul duality to Poincaré duality

    Indian Academy of Sciences (India)

    2012-06-09

    Jun 9, 2012 ... Our aim here is to describe elements of the formulation of the Koszul duality and ... Throughout this paper K denotes a (commutative) field and all vector ... the form A = T(E)/I where E is a finite-dimensional vector space and I is a finitely gen- .... for any n ∈ N. The Koszul complex of A is then defined to be the ...

  13. Imaginary Schur-Weyl duality

    CERN Document Server

    Kleshchev, Alexander

    2017-01-01

    The authors study imaginary representations of the Khovanov-Lauda-Rouquier algebras of affine Lie type. Irreducible modules for such algebras arise as simple heads of standard modules. In order to define standard modules one needs to have a cuspidal system for a fixed convex preorder. A cuspidal system consists of irreducible cuspidal modules-one for each real positive root for the corresponding affine root system {\\tt X}_l^{(1)}, as well as irreducible imaginary modules-one for each l-multiplication. The authors study imaginary modules by means of "imaginary Schur-Weyl duality" and introduce an imaginary analogue of tensor space and the imaginary Schur algebra. They construct a projective generator for the imaginary Schur algebra, which yields a Morita equivalence between the imaginary and the classical Schur algebra, and construct imaginary analogues of Gelfand-Graev representations, Ringel duality and the Jacobi-Trudy formula.

  14. Thermal duality and gravitational collapse

    International Nuclear Information System (INIS)

    Hewitt, Michael

    2015-01-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)

  15. Holographic duality: Stealing dimensions from metals

    Science.gov (United States)

    Zaanen, Jan

    2013-10-01

    Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.

  16. Morita duality for monoids / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1990-01-01

    In this paper Morita duality for monoids is introduced. Necessary and sufficient conditions for two monoids S and T to be Morita dual are given. Moreover, it is shown that if S and T are Morita dual monoids, then S and U are Moriaddition, every finite monoid having Morita duality is selfdual and even reflexive.

  17. Duality for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We give a proof of the duality relation approx. = for nonrelativistic potential models, using Feynman propagators. There are important and calculable corrections to the duality relation, both for smooth long-range potentials and for singular short-range potentials. We illustrate the corrections for the exactly solvable harmonic-oscillator, linear, and Hulthen potentials

  18. Duality in non-linear programming

    Science.gov (United States)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  19. A Metrized Duality Theorem for Markov Processes

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...

  20. Prime Factorization in the Duality Computer

    International Nuclear Information System (INIS)

    Wang Wanying; Wang Chuan; Long Guilu; Shang Bin

    2007-01-01

    We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms may be polynomial in the input size.

  1. Supersymmetry: Compactification, flavor, and dualities

    Science.gov (United States)

    Heidenreich, Benjamin Jones

    N = 1 gauge theory dualities relating different world-volume gauge theories of D3 branes probing an orientifold singularity. We argue that these dualities originate from the S-duality of type IIB string theory, much like electromagnetic dualities of N = 4 gauge theories.

  2. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  3. General Duality for Perpetual American Options

    OpenAIRE

    Alfonsi, Aurélien; Jourdain, Benjamin

    2006-01-01

    In this paper, we investigate the generalization of the Call-Put duality equality obtained in Alfonsi and Jourdain (preprint, 2006, available at ) for perpetual American options when the Call-Put payoff (y - x)+ is replaced by ϕ(x,y). It turns out that the duality still holds under monotonicity and concavity assumptions on ϕ. The specific analytical form of the Call-Put payoff only makes calculations easier but is not crucial unlike in the derivation of the Call-Put duality equality for Europ...

  4. Aspects of space-time dualities

    CERN Document Server

    Giveon, Amit

    1996-01-01

    Duality groups of Abelian gauge theories on four manifolds and their reduction to two dimensions are considered. The duality groups include elements that relate different space-times in addition to relating different gauge-coupling matrices. We interpret (some of) such dualities as the geometrical symmetries of compactified theories in higher dimensions. In particular, we consider compactifications of a (self-dual) 2-form in 6-D, and compactifications of a self-dual 4-form in 10-D. Relations with a self-dual superstring in 6-D and with the type IIB superstring are discussed.

  5. Freudenthal duality and generalized special geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio, E-mail: sergio.ferrara@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Marrani, Alessio, E-mail: Alessio.Marrani@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); Yeranyan, Armen, E-mail: ayeran@lnf.infn.it [INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics, Yerevan State University, Alex Manoogian St. 1, Yerevan, 0025 (Armenia)

    2011-07-27

    Freudenthal duality, introduced in Borsten et al. (2009) and defined as an anti-involution on the dyonic charge vector in d=4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N>2 supergravities, as well as N=2 generic special geometry, not necessarily having a coset space structure.

  6. Dualities in CHL-models

    Science.gov (United States)

    Persson, Daniel; Volpato, Roberto

    2018-04-01

    We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\

  7. Duality and the Deck effect

    CERN Document Server

    Törnqvist, N A

    1972-01-01

    As shown by Deck, the double-peripheral model for three-particle final states gives a substantial low-mass enhancement over phase space in two-body subchannels. With the advent of duality it was conjectured that the Deck effect and a true resonance are just different manifestations of the same phenomena. Thus the presence of a Deck enhancement could be interpreted as evidence for the existence of the A/sub 1/ resonance. The conjecture has been subject to criticism of two different kinds. These two points are clarified by constructing a counter example to the conjecture of Chew and Pignotti, using the five-point amplitude (B/sub 5/) of the generalized Veneziano model. (8 refs).

  8. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  9. Direct mediation, duality and unification

    International Nuclear Information System (INIS)

    Abel, Steven; Khoze, Valentin V.

    2008-01-01

    It is well-known that in scenarios with direct gauge mediation of supersymmetry breaking the messenger fields significantly affect the running of Standard Model couplings and introduce Landau poles which are difficult to avoid. Among other things, this appears to remove any possibility of a meaningful unification prediction and is often viewed as a strong argument against direct mediation. We propose two ways that Seiberg duality can circumvent this problem. In the first, which we call 'deflected-unification', the SUSY-breaking hidden sector is a magnetic theory which undergoes a Seiberg duality to an electric phase. Importantly, the electric version has fewer fundamental degrees of freedom coupled to the MSSM compared to the magnetic formulation. This changes the β-functions of the MSSM gauge couplings so as to push their Landau poles above the unification scale. We show that this scenario is realised for recently suggested models of gauge mediation based on a metastable SCQD-type hidden sector directly coupled to MSSM. The second possibility for avoiding Landau poles, which we call 'dual-unification', begins with the observation that, if the mediating fields fall into complete SU(5) multiplets, then the MSSM+messengers exhibits a fake unification at unphysical values of the gauge couplings. We show that, in known examples of electric/magnetic duals, such a fake unification in the magnetic theory reflects a real unification in the electric theory. We therefore propose that the Standard Model could itself be a magnetic dual of some unknown electric theory in which the true unification takes place. This scenario maintains the unification prediction (and unification scale) even in the presence of Landau poles in the magnetic theory below the GUT scale. We further note that this dual realization of grand unification can explain why Nature appears to unify, but the proton does not decay.

  10. Quark-Hadron Duality in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wally Melnitchouk; Rolf Ent; Cynthia Keppel

    2004-08-01

    The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.

  11. Color-kinematic duality for form factors

    International Nuclear Information System (INIS)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang

    2012-12-01

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  12. Color-kinematic duality for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  13. Fourier duality as a quantization principle

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Saeger, L.A.

    1996-08-01

    The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs

  14. Introduction to dualities in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, Marco A.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: kneipp@cbpf.br

    2000-12-01

    These notes present a pedagogical introduction to magnetic monopoles, supersymmetry and dualities in gauge theories. They are based on lectures given at the X Jorge Andre Swieca Summer School on Particles and Fields. (author)

  15. Can (electric-magnetic) duality be gauged?

    International Nuclear Information System (INIS)

    Bunster, Claudio; Henneaux, Marc

    2011-01-01

    There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

  16. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  17. SLE local martingales, reversibility and duality

    Energy Technology Data Exchange (ETDEWEB)

    Kytoelae, Kalle; Kemppainen, Antti [Department of Mathematics and Statistics, PO Box 68, FIN-00014 University of Helsinki (Finland)

    2006-11-17

    We study Schramm-Loewner evolutions (SLEs) reversibility and duality using the Virasoro structure of the space of local martingales. For both problems we formulate a setup where the questions boil down to comparing two processes at a stopping time. We state algebraic results showing that local martingales for the processes have enough in common. When one has in addition integrability, the method gives reversibility and duality for any polynomial expected value. (letter to the editor)

  18. SLE local martingales, reversibility and duality

    International Nuclear Information System (INIS)

    Kytoelae, Kalle; Kemppainen, Antti

    2006-01-01

    We study Schramm-Loewner evolutions (SLEs) reversibility and duality using the Virasoro structure of the space of local martingales. For both problems we formulate a setup where the questions boil down to comparing two processes at a stopping time. We state algebraic results showing that local martingales for the processes have enough in common. When one has in addition integrability, the method gives reversibility and duality for any polynomial expected value. (letter to the editor)

  19. Deconfined Quantum Critical Points: Symmetries and Dualities

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-09-01

    Full Text Available The deconfined quantum critical point (QCP, separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N_{f}=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4×Z_{2}^{T} symmetry. We propose several dualities for the deconfined QCP with SU(2 spin symmetry which together make natural the emergence of a previously suggested SO(5 symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.

  20. Nonlinear self-duality and supergravity

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M.; McCarthy, Shane A.

    2003-01-01

    The concept of self-dual supersymmetric nonlinear electrodynamics is generalized to a curved superspace of N=1 supergravity, for both the old minimal and the new minimal versions of N=1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and construct a family of self-dual nonlinear models. This family includes a curved superspace extension of the N=1 super Born-Infeld action. The supercurrent and supertrace in such models are proved to be duality invariant. The most interesting and unexpected result is that the requirement of nonlinear self-duality yields nontrivial couplings of the vector multiplet to Kaehler sigma models. We explicitly derive the couplings to general Kaehler sigma models in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). (author)

  1. Nonlinear self-duality in even dimensions

    International Nuclear Information System (INIS)

    Aschieri, Paolo; Brace, Daniel; Morariu, Bogdan; Zumino, Bruno

    2000-01-01

    We show that the Born-Infeld theory with n complex abelian gauge fields written in an auxiliary field formulation has a U(n, n) duality group. We conjecture the form of the Lagrangian obtained by eliminating the auxiliary fields and then introduce a new reality structure leading to a Born-Infeld theory with n real gauge fields and an Sp(2n, IR) duality symmetry. The real and complex constructions are extended to arbitrary even dimensions. The maximal noncompact duality group is U(n, n) for complex fields. For real fields the duality group is Sp(2n, IR) if half of the dimension of space-time is even and O(n, n) if it is odd. We also discuss duality under the maximal compact subgroup, which is the self-duality group of the theory obtained by fixing the expectation value of a scalar field. Supersymmetric versions of self-dual theories in four dimensions are also discussed

  2. A demonstration of particle duality of light

    Science.gov (United States)

    Jiang, Haili; Liu, Zhihai; Sun, Qiuhua; Zhao, Yancheng

    2017-08-01

    The need of understanding and teaching about wave-particle duality if light with gets more and more apparent in the background of the attention of modern physics. As early as the beginning of twentieth Century, Einstein dared to "deny" the development of a very perfect light electromagnetic theory, so that the quantum of light can be developed. In 1924, De Broglie put forward wave-particle duality if light to other micro particles and the concept of matter wave, pointed out that all micro particle has wave-particle duality. This is a very abstract concept for students, most college physics teaching all lack of demonstration about particle duality of light. The present article aims to contribute to demonstrate the wave-particle duality of light at the same time using a simple way based on fiber optical tweezers. It is hoped that useful lesson can be absorbed so that students can deepen the understanding of the particle and wave properties of light. To complement the demonstration experiment for this attribute light has momentum.

  3. General Quantum Interference Principle and Duality Computer

    International Nuclear Information System (INIS)

    Long Guilu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  4. Organizational identity construction in family businesses a dualities perspective

    OpenAIRE

    Boers, Börje

    2013-01-01

    This dissertation is about organizational identity construction with a dualities perspective. By taking a dualities perspective the focus shifts from assuming that organizational identity actually is in place towards organizational identity construction where identities are socially constructed. A dualities perspective is very suitable for studying family business where family and business are seen as interdependent and interconnected forming a duality. Family business is an identity statemen...

  5. Residues and duality for projective algebraic varieties

    CERN Document Server

    Kunz, Ernst; Dickenstein, Alicia

    2008-01-01

    This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of K�hler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations. The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership. D. A. Cox explains toric residues and relates them to the earlier text. The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given.

  6. Duality property for a hermitian scalar field

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1975-01-01

    A general hermitian scalar Wightman field is considered. On the Hilbert space of physical states ''natural'' domains for certain complex Lorentz transformations are constructed, and a theorem relating these transformations to the TCP symmetry is stated and proved. Under the additional assumption that the field is ''locally'' essentially self-adjoint, duality is considered for the algebras generated by spectral projections of smeared fields. For a class of unbounded regions duality is proved, and for certain bounded regions ''local'' extensions of the algebras are constructed which satisfy duality. The relationship of the arguments presented to the Tomita--Takesaki theory of modular Hilbert algebras is discussed. A separate analysis for the free field is also given. (auth)

  7. The FZZ-duality conjecture. A proof

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-05-15

    We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)

  8. Projective Fourier duality and Weyl quantization

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Saeger, L.A.

    1996-08-01

    The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs

  9. An uplifting discussion of T-duality

    Science.gov (United States)

    Harvey, Jeffrey A.; Moore, Gregory W.

    2018-05-01

    It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W ( G) which act at points of enhanced G symmetry have canonical lifts to order four elements of G, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.

  10. The FZZ-duality conjecture. A proof

    International Nuclear Information System (INIS)

    Hikida, Y.; Schomerus, V.

    2008-05-01

    We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)

  11. Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials

    International Nuclear Information System (INIS)

    Dunne, Gerald V.; Shifman, M.

    2002-01-01

    A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation interchanges bands at the bottom (top) of the spectrum of one potential with gaps at the top (bottom) of the spectrum of the other, dual, potential. Thus, the duality transformation provides an exact mapping between the weak coupling (perturbative) and semiclassical (nonperturbative) sectors

  12. Self-duality in generalized Lorentz superspaces

    International Nuclear Information System (INIS)

    Devchand, C.; Nuyts, J.

    1996-12-01

    We extend the notion of self-duality to spaces built from a set of representations of the Lorentz group with bosonic or fermionic behaviour, not having the traditional spin-one upper-bound of super Minkowski space. The generalized derivative vector fields on such superspace are assumed to form a superalgebra. Introducing corresponding gauge potentials and hence covariant derivatives and curvatures, we define generalized self-duality as the Lorentz covariant vanishing of certain irreducible parts of the curvatures. (author). 4 refs

  13. On the duality condition for quantum fields

    International Nuclear Information System (INIS)

    Bisognano, J.J.; Wichmann, E.H.

    1976-01-01

    A general quantum field theory is considered in which the fields are assumed to be operator-valued tempered distributions. The system of fields may include any number of boson fields and fermion fields. A theorem which relates certain complex Lorentz transformations to the TCP transformation is stated and proved. With reference to this theorem, duality conditions are considered, and it is shown that such conditions hold under various physically reasonable assumptions about the fields. Extensions of the algebras of field operators are discussed with reference to the duality conditions. Local internal symmetries are discussed, and it is shown that these commute with the Poincare group and with the TCP transformation

  14. Duality invariant class of exact string backgrounds

    CERN Document Server

    Klimcík, C

    1994-01-01

    We consider a class of $2+D$ - dimensional string backgrounds with a target space metric having a covariantly constant null Killing vector and flat `transverse' part. The corresponding sigma models are invariant under $D$ abelian isometries and are transformed by $O(D,D)$ duality into models belonging to the same class. The leading-order solutions of the conformal invariance equations (metric, antisymmetric tensor and dilaton), as well as the action of $O(D,D)$ duality transformations on them, are exact, i.e. are not modified by $\\a'$-corrections. This makes a discussion of different space-time representations of the same string solution (related by $O(D,D|Z)$ duality subgroup) rather explicit. We show that the $O(D,D)$ duality may connect curved $2+D$-dimensional backgrounds with solutions having flat metric but, in general, non-trivial antisymmetric tensor and dilaton. We discuss several particular examples including the $2+D=4$ - dimensional background that was recently interpreted in terms of a WZW model.

  15. Global-local duality in eternal inflation

    International Nuclear Information System (INIS)

    Bousso, Raphael; Yang, I-S.

    2009-01-01

    We prove that the light-cone time cutoff on the multiverse defines the same probabilities as a causal patch with initial conditions in the longest-lived metastable vacuum. This establishes the equivalence of two measures of eternal inflation which naively appear very different (though both are motivated by holography). The duality can be traced to an underlying geometric relation which we identify.

  16. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  17. Duality properties of Gorringe Leach equations

    Science.gov (United States)

    Grandati, Yves; Bérard, Alain; Mohrbach, Hervé

    2009-02-01

    In the category of motions preserving the angular momentum direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold Vassiliev type. The specific associated conserved quantities (Laplace Runge Lenz vector and Fradkin Jauch Hill tensor) are then dual reflections of each other.

  18. Duality for Z(N) gauge theories

    International Nuclear Information System (INIS)

    Korthals Altes, C.P.

    1978-01-01

    The duality properties of simple Z(N) gauge theories are discussed. For N 4 these systems are not self dual. Also, the order parameter is discussed. The general Z(N) gauge theory is found to be self dual for all N. (Auth.)

  19. A CMB/Dark Energy Cosmic Duality

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon...

  20. AdS/CFT duality user guide

    CERN Document Server

    Natsuume, Makoto

    2015-01-01

    This book describes applications of the AdS/CFT duality to the "real world." The AdS/CFT duality is an idea that originated from string theory and is a powerful tool for analyzing strongly-coupled gauge theories using classical gravitational theories. In recent years, it has been shown that one prediction of AdS/CFT is indeed close to the experimental result of the real quark–gluon plasma. Since then, the AdS/CFT duality has been applied to various fields of physics; examples are QCD, nuclear physics, condensed-matter physics, and nonequilibrium physics.   The aim of this book is to provide background materials such as string theory, black holes, nuclear physics, condensed-matter physics, and nonequilibrium physics as well as key applications of the AdS/CFT duality in a single volume. The emphasis throughout the book is on a pedagogical and intuitive approach focusing on the underlying physical concepts. It also includes step-by-step computations for important results, which are useful for beginners.   Th...

  1. Refined large N duality for knots

    DEFF Research Database (Denmark)

    Kameyama, Masaya; Nawata, Satoshi

    We formulate large N duality of U(N) refined Chern-Simons theory with a torus knot/link in S³. By studying refined BPS states in M-theory, we provide the explicit form of low-energy effective actions of Type IIA string theory with D4-branes on the Ω-background. This form enables us to relate...

  2. Ashoke Sen and S-Duality

    Indian Academy of Sciences (India)

    IAS Admin

    QCD, grand unified theories, magnetic monopoles and string theory. a flavour of some of these works in this article. ..... gular momentum of the charged particle due to the mag- netic field .... put to good use for testing duality. He showed that if.

  3. Magnetic monopoles, duality and cosmological phase transitions

    International Nuclear Information System (INIS)

    Escobar, C.O.; Natale, A.A.; Marques, G.C.

    1981-06-01

    Is is shown that duality for magnetic monopoles, as proposed by Montonen and Olive, does not hold in quatum field theory at finite temperatures. Furthermore, the evolution picture of the Universe looks different when analyzed in the original 'electric' theory or in its dual 'magnetic' counterpart. (Author) [pt

  4. Discussion of the duality in three dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chen-Te, E-mail: yefgst@gmail.com

    2017-05-10

    We discuss the duality in three dimensional quantum field theory at infrared limit. The starting point is to use a conjecture of a duality between the free fermion and the interacting scalar field theories at the Wilson–Fisher fixed point. The conjecture is useful for deriving various dualities in three dimensions to obtain a duality web. The study is also interesting for understanding the dualities, or equivalence of different theories from the perspective of the renormalization group flow. We first discuss the “derivation” without losing the holonomy. Furthermore, we also derive these dualities from the mean-field study, and consider the extension of the conjecture or dualities at finite temperature.

  5. On the universe's cybernetics duality behavior

    Science.gov (United States)

    Feria, Erlan H.

    2015-05-01

    Universal cybernetics is the study of control and communications in living and non-living systems. In this paper the universal cybernetics duality principle (UCDP), first identified in control theory in 1978 and expressing a cybernetic duality behavior for our universe, is reviewed. The review is given on the heels of major prizes given to physicists for their use of mathematical dualities in solving intractable problems in physics such as those of cosmology's `dark energy', an area that according to a recent New York Times article has become "a cottage industry in physics today". These dualities are not unlike those of our UCDP that are further enhanced with physical dualities. For instance, in 2008 the UCDP guided us to the derivation of the laws of retention in physics as the space-penalty dual of the laws of motion in physics, including the dark energy thought responsible for the observed increase of the volume of our Universe as it ages. The UCDP has also guided us to the discovery of significant results in other fields such as: 1) in matched processors for quantized control with applications in the modeling of central nervous system (CNS) control mechanisms; 2) in radar designs where the discovery of latency theory, the time-penalty dual of information-theory, has led us to high-performance radar solutions that evade the use of `big data' in the form of SAR imagery of the earth; and 3) in unveiling biological lifespan bounds where the life-expectancy of an organism is sensibly predicted through lingerdynamics, the identified time-penalty dual of thermodynamics, which relates its adult lifespan to either: a. the ratio of its body size to its nutritional consumption rate; or b. its specific heat-capacity; or c. the ratio of its nutritional consumption rate energy to its entropic volume energy, a type of dark energy that is consistent with the observed decrease in the mass density of the organism as it ages.

  6. Of gluons and gravitons. Exploring color-kinematics duality

    International Nuclear Information System (INIS)

    Isermann, Reinke Sven

    2013-06-01

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  7. Of gluons and gravitons. Exploring color-kinematics duality

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, Reinke Sven

    2013-06-15

    In this thesis color-kinematics duality will be investigated. This duality is a statement about the kinematical dependence of a scattering amplitude in Yang-Mills gauge theories obeying group theoretical relations similar to that of the color gauge group. The major consequence of this duality is that gravity amplitudes can be related to a certain double copy of gauge theory amplitudes. The main focus of this thesis is on exploring the foundations of color-kinematics duality and its consequences. It is shown how color-kinematics duality can be made manifest at the one-loop level for rational amplitudes. A Lagrangian-based argument will be given for the validity of the double copy construction for these amplitudes including explicit examples at four points. Secondly, it is studied how color-kinematics duality can be used to improve powercounting in gravity theories. To this end the duality is reformulated in terms of linear maps. It is shown as an example how this can be used to derive the large BCFW shift behavior of a gravity integrand constructed through the duality to any loop order up to subtleties inherent to the duality that is addressed. As it becomes clear the duality implies massive cancellations with respect to the usual powercounting of Feynman graphs indicating that gravity theories are much better behaved than naively expected. As another example the linear map approach will be used to investigate the question of UV-finiteness of N=8 supergravity, and it is seen that the amount of cancellations depends on the exact implementation of the duality at loop level. Lastly, color-kinematics duality is considered from a Feynman-graph perspective reproducing some of the results of the earlier chapters thus giving non-trivial evidence for the duality at the loop level from a different perspective.

  8. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  9. Conference on Strings, Duality, and Geometry

    CERN Document Server

    Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV

    2002-01-01

    This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...

  10. Mordell integrals and Giveon-Kutasov duality

    Energy Technology Data Exchange (ETDEWEB)

    Giasemidis, Georgios [CountingLab LTD & Centre for the Mathematics of Human Behaviour (CMoHB),Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX (United Kingdom); Tierz, Miguel [Departamento de Matemática, Grupo de Física Matemática, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edifício C6, Lisboa, 1749-016 (Portugal); Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas,Universidad Complutense de Madrid, Madrid, 28040 (Spain)

    2016-01-12

    We solve, for finite N, the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N{sub f} massive hypermultiplets of R-charge (1/2), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N{sub f}−1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N{sub f}=12 flavours).

  11. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  12. Mordell integrals and Giveon-Kutasov duality

    Science.gov (United States)

    Giasemidis, Georgios; Tierz, Miguel

    2016-01-01

    We solve, for finite N, the matrix model of supersymmetric U( N) Chern-Simons theory coupled to N f massive hypermultiplets of R-charge 1/2 , together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N f - 1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N f = 12 flavours).

  13. Mordell integrals and Giveon-Kutasov duality

    International Nuclear Information System (INIS)

    Giasemidis, Georgios; Tierz, Miguel

    2016-01-01

    We solve, for finite N, the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N_f massive hypermultiplets of R-charge (1/2), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N_f−1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N_f=12 flavours).

  14. T-Duality for open strings

    International Nuclear Information System (INIS)

    Borlaf, J.

    1997-01-01

    We study T-duality for open strings in arbitrary background fields including the abelian electromagnetic one. We focus in the mapping of the boundary conditions in the disk and the crosscap topologies and we discuss in detail the consistency of the gauging procedure for the bosonic and the N = 1 supersymmetric theories. A brief account is made on the dilaton transformation and global issues in higher genus. (orig.)

  15. Managing dualities in organizational change projects

    OpenAIRE

    Shaw, David

    2016-01-01

    When managers want to change their organisation they often set up a project to do it, in the belief that doing so simplifies and focuses the change initiative and brings greater assurance of success. Case studies of three organisational change projects undertaken by Arts Council England during 2006-2007 are used to examine the notion of project management and change management as a duality. It is argued that the structured, systematic approach associated with project management needs to be ba...

  16. Strong Stationary Duality for Diffusion Processes

    OpenAIRE

    Fill, James Allen; Lyzinski, Vince

    2014-01-01

    We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...

  17. On Berenstein-Douglas-Seiberg duality

    International Nuclear Information System (INIS)

    Braun, Volker

    2003-01-01

    I review the proposal of Berenstein-Douglas for a completely general definition of Seiberg duality. To give evidence for their conjecture I present the first example of a physical dual pair and explicitly check that it satisfies the requirements. Then I explicitly show that a pair of toric dual quivers is also dual according to their proposal. All these computations go beyond tilting modules, and really work in the derived category. I introduce all necessary mathematics where needed. (author)

  18. Aspects of some dualities in string theory

    Science.gov (United States)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  19. Dynamic Convex Duality in Constrained Utility Maximization

    OpenAIRE

    Li, Yusong; Zheng, Harry

    2016-01-01

    In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of FBSDEs plus additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. Moreover, we also...

  20. Canonical Duality Theory for Topology Optimization

    OpenAIRE

    Gao, David Yang

    2016-01-01

    This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization pro...

  1. Dual projection and self duality in three dimensions

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Wotzasek, Clovis

    2000-01-01

    Full text follows: We discuss the notion of duality and self duality in the context of the dual projection operation that creates an internal space of potentials. This technique is applicable to both even and odd dimensions. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and self duality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z 2 symmetries, contrary to conventional results. (author)

  2. Patching DFT, T-duality and gerbes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, P.S.; Papadopoulos, G. [Department of Mathematics, King’s College London,Strand, London WC2R 2LS (United Kingdom)

    2017-04-12

    We clarify the role of the dual coordinates as described from the perspectives of the Buscher T-duality rules and Double Field Theory. We show that the T-duality angular dual coordinates cannot be identified with Double Field Theory dual coordinates in any of the proposals that have been made in the literature for patching the doubled spaces. In particular, we show with explicit examples that the T-duality angular dual coordinates can have non-trivial transition functions over a spacetime and that their identification with the Double Field Theory dual coordinates is in conflict with proposals in which the latter remain inert under the patching of the B-field. We then demonstrate that the Double Field Theory coordinates can be identified with some C-space coordinates and that the T-dual spaces of a spacetime are subspaces of the gerbe in C-space. The construction provides a description of both the local O(d,d) symmetry and the T-dual spaces of spacetime.

  3. Patching DFT, T-duality and gerbes

    International Nuclear Information System (INIS)

    Howe, P.S.; Papadopoulos, G.

    2017-01-01

    We clarify the role of the dual coordinates as described from the perspectives of the Buscher T-duality rules and Double Field Theory. We show that the T-duality angular dual coordinates cannot be identified with Double Field Theory dual coordinates in any of the proposals that have been made in the literature for patching the doubled spaces. In particular, we show with explicit examples that the T-duality angular dual coordinates can have non-trivial transition functions over a spacetime and that their identification with the Double Field Theory dual coordinates is in conflict with proposals in which the latter remain inert under the patching of the B-field. We then demonstrate that the Double Field Theory coordinates can be identified with some C-space coordinates and that the T-dual spaces of a spacetime are subspaces of the gerbe in C-space. The construction provides a description of both the local O(d,d) symmetry and the T-dual spaces of spacetime.

  4. Electric magnetic duality in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1992-07-01

    The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs

  5. Color-Kinematics Duality for QCD Amplitudes

    CERN Document Server

    Johansson, Henrik

    2016-01-01

    We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and (n-2k) gluons, are taken in the (n-2)!/k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluo...

  6. Building up reggeons and the pomeron from duality and unitarity

    International Nuclear Information System (INIS)

    Sakai, N.

    1975-07-01

    The subject is treated under the following headings: duality; unitarity; duality and unitarity; 1/N expansion; Reggeon bootstrap; Pomeron equation; triple Pomeron. The results are summarized: (1) combining duality with unitarity, powerful constraints are obtained; (2) many phenomenological successes have been obtained since some practical methods of calculation were devised; and (3) even the complete unitarization is hopeful; 1/N expansion may be useful for this purpose. (author)

  7. T-Duality Group for Open String Theory

    OpenAIRE

    Kajiura, Hiroshige

    2001-01-01

    We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...

  8. Duality and calculus of convex objects (theory and applications)

    International Nuclear Information System (INIS)

    Brinkhuis, Ya; Tikhomirov, V M

    2007-01-01

    A new approach to convex calculus is presented, which allows one to treat from a single point of view duality and calculus for various convex objects. This approach is based on the possibility of associating with each convex object (a convex set or a convex function) a certain convex cone without loss of information about the object. From the duality theorem for cones duality theorems for other convex objects are deduced as consequences. The theme 'Duality formulae and the calculus of convex objects' is exhausted (from a certain precisely formulated point of view). Bibliography: 5 titles.

  9. Duality results for co-compact Gabor systems

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2015-01-01

    In this paper we give an account of recent developments in the duality theory of Gabor frames. We prove the Wexler-Raz biorthogonality relations and the duality principle for co-compact Gabor systems on second countable, locally compact abelian groups G. Our presentation does not rely on the exis...

  10. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if 'torus' is replaced by 'pro-torus'. Keywords. Pro-torus; Poincaré duality space; local weight. 1. Introduction. In the theory of linear representations of compact connected Lie groups, the crucial first step is restriction to the ...

  11. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  12. Dualities in M-theory and Born-Infeld Theory

    International Nuclear Information System (INIS)

    Brace, Daniel M.

    2001-01-01

    We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime

  13. Duality in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  14. Duality in supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs

  15. Pouliot type duality via a-maximization

    International Nuclear Information System (INIS)

    Kawano, Teruhiko; Ookouchi, Yutaka; Tachikawa, Yuji; Yagi, Futoshi

    2006-01-01

    We study four-dimensional N=1Spin(10) gauge theory with a single spinor and N Q vectors at the superconformal fixed point via the electric-magnetic duality and a-maximization. When gauge invariant chiral primary operators hit the unitarity bounds, we find that the theory with no superpotential is identical to the one with some superpotential at the infrared fixed point. The auxiliary field method in the electric theory offers a satisfying description of the infrared fixed point, which is consistent with the better picture in the magnetic theory. In particular, it gives a clear description of the emergence of new massless degrees of freedom in the electric theory

  16. Seiberg duality and e+e- experiments

    International Nuclear Information System (INIS)

    De Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-01-01

    Seiberg duality in supersymmetric gauge theories is the claim that two different theories describe the same physics in the infrared limit. However, one cannot easily work out physical quantities in strongly coupled theories and hence it has been difficult to compare the physics of the electric and magnetic theories. In order to gain more insight into the equivalence of two theories, we study the ''e + e - '' cross sections into ''hadrons'' for both theories in the superconformal window. We describe a technique which allows us to compute the cross sections exactly in the infrared limit. They are indeed equal in the low-energy limit and the equality is guaranteed because of the anomaly matching condition. The ultraviolet behavior of the total ''e + e - '' cross section is different for the two theories. We comment on proposed nonsupersymmetric dualities. We also analyze the agreement of the ''γγ'' and ''WW'' scattering amplitudes in both theories, and in particular try to understand if their equivalence can be explained by the anomaly matching condition

  17. Scale factor duality for conformal cyclic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)

    2016-11-16

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  18. Scale factor duality for conformal cyclic cosmologies

    International Nuclear Information System (INIS)

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M.

    2016-01-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  19. Fundamental vortices, wall-crossing, and particle-vortex duality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)

    2017-05-18

    We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.

  20. Transformation of Black-Hole Hair under Duality and Supersymmetry

    CERN Document Server

    Alvarez, Enrique; Ortín, Tomas; Alvarez, Enrique; Meessen, Patrick; Ortin, Tomas

    1997-01-01

    We study the transformation under the String Theory duality group of the observable charges (mass, angular momentum, NUT charge, electric, magnetic and different scalar charges) of four dimensional point-like objects whose asymptotic behavior constitutes a subclass closed under duality. The charges fall into two complex four-dimensional representations of the duality group. T duality (including Buscher's) has an O(1,2) action on them and S duality a U(1) action. The generalized Bogomol'nyi bound is an U(2,2)-invariant built out of one representations while the other representation (which includes the angular momentum) never appears in it. The bound is manifestly duality-invariant. Consistency between T duality and supersymmetry requires that primary scalar hair is included in the Bogomol'nyi bound. Four-dimensional supersymmetric massless black holes are the T duals in time of massive supersymmetric black holes. Non-extreme massless ``black holes'' are the T duals of the non-extreme black holes and have prima...

  1. Anisotropic phenomena in gauge/gravity duality

    International Nuclear Information System (INIS)

    Zeller, Hansjoerg

    2014-01-01

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  2. Anisotropic phenomena in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Hansjoerg

    2014-05-26

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  3. Review of lattice supersymmetry and gauge-gravity duality

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2015-12-01

    We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.

  4. Bubbling surface operators and S-duality

    International Nuclear Information System (INIS)

    Gomis, Jaume; Matsuura, Shunji

    2007-01-01

    We construct smooth asymptotically /ADS solutions of Type IIB supergravity corresponding to all the half-BPS surface operators in N = 4 SYM. All the parameters labeling a half-BPS surface operator are identified in the corresponding bubbling geometry. We use the supergravity description of surface operators to study the action of the SL(2,Z) duality group of N 4 SYM on the parameters of the surface operator, and find that it coincides with the recent proposal by Gukov and Witten in the framework of the gauge theory approach to the geometrical Langlands with ramification. We also show that whenever a bubbling geometry becomes singular that the path integral description of the corresponding surface operator also becomes singular

  5. Gauge/string duality in confining theories

    International Nuclear Information System (INIS)

    Edelstein, J.D.; Portugues, R.

    2006-01-01

    This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Gauge/string duality in confining theories

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2006-07-03

    This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. New dualities of supersymmetric gauge theories

    CERN Document Server

    2016-01-01

    This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...

  8. Virtual Gravity and the Duality of Reality

    CERN Document Server

    Harokopos, E

    2003-01-01

    It is shown that a hypothesis about gravity having a virtual cause implies there are two primary reference frames, a reality and a functional virtual reality and an equivalence principle relating the two is postulated. A mathematical expression relating the primary reference frames to the state of reality provides an explanation of particle-wave duality and resolves the controversy about the speed of gravity. A model for motion, time and particle formation is briefly discussed, in which the hypothesis about the virtual cause of gravity and supporting postulates are valid. It is further shown that such model provides solutions to unsolved paradoxes and a unification of consistent but contradictory ancient theories of matter and motion. Finally, a reference is made about the basis for devising experiments and testing the predictions of the model.

  9. Duality transformations for general abelian systems

    International Nuclear Information System (INIS)

    Savit, R.

    1982-01-01

    We describe the general structure of duality transformations for a very broad set of abelian statistical and field theoretic systems. This includes theories with many different types of fields and a large variety of kinds of interactions including, but not limited to nearest neighbor, next nearest neighbor, multi-spin interactions, etc. We find that the dual form of a theory does not depend directly on the dimensionality of the theory, but rather on the number of fields and number of different kinds of interactions. The dual forms we find have a generalized gauge symmetry and posses the usual property of having a temperature (or coupling constant) which is inverted from that of the original theory. Our results reduce to the well-known results in those particular cases that have heretofore been studied. Our procedure also suggests variations capable of generating other forms of the dual theory which may be useful in various specific cases. (orig.)

  10. Plane wave limits and T-duality

    International Nuclear Information System (INIS)

    Guven, R.

    2000-04-01

    The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)

  11. Quiver gauge theory and extended electric-magnetic duality

    International Nuclear Information System (INIS)

    Maruyoshi, Kazunobu

    2009-01-01

    We construct N = 1 A-D-E quiver gauge theory with the gauge kinetic term which depends on the adjoint chiral superfields, as a low energy effective theory on D5-branes wrapped on 2-cycles of Calabi-Yau 3-fold in IIB string theory. The field-dependent gauge kinetic term can be engineered by introducing B-field which holomorphically varies on the base space (complex plane) of Calabi-Yau. We consider Weyl reflection on A-D-E node, which acts non-trivially on the gauge kinetic term. It is known that Weyl reflection is related to N = 1 electric-magnetic duality. Therefore, the non-trivial action implies an extension of the electric-magnetic duality to the case with the field-dependent gauge kinetic term. We show that this extended duality is consistent from the field theoretical point of view. We also consider the duality map of the operators.

  12. The Duality Principle in Teaching Arithmetic and Geometric Series

    Science.gov (United States)

    Yeshurun, Shraga

    1978-01-01

    The author discusses the use of the duality principle in combination with the hierarchy of algebraic operations in helping students to retain and use definitions and rules for arithmetic and geometric sequences and series. (MN)

  13. Particle-vortex duality in topological insulators and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, Jeff [The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town,Private Bag, Rondebosch, 7700 (South Africa); School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Nastase, Horatiu [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil)

    2017-05-31

    We investigate the origins and implications of the duality between topological insulators and topological superconductors in three and four spacetime dimensions. In the latter, the duality transformation can be made at the level of the path integral in the standard way, while in three dimensions, it takes the form of “self-duality in odd dimensions'. In this sense, it is closely related to the particle-vortex duality of planar systems. In particular, we use this to elaborate on Son’s conjecture that a three dimensional Dirac fermion that can be thought of as the surface mode of a four dimensional topological insulator is dual to a composite fermion.

  14. New evidence for (0,2) target space duality

    International Nuclear Information System (INIS)

    Anderson, Lara B; Feng, He

    2017-01-01

    In the context of (0, 2) gauged linear sigma models, we explore chains of perturbatively dual heterotic string compactifications. The notion of target space duality originates in non-geometric phases and can be used to generate distinct GLSMs with shared geometric phases leading to apparently identical target space theories. To date, this duality has largely been studied at the level of counting states in the effective theories. We extend this analysis to the effective potential and loci of enhanced symmetry in dual theories. By engineering vector bundles with non-trivial constraints arising from slope-stability (i.e. D-terms) and holomorphy (i.e. F-terms) the detailed structure of the vacuum space of the dual theories can be explored. Our results give new evidence that GLSM target space duality may provide important hints towards a more complete understanding of (0, 2) string dualities. (paper)

  15. Wave–particle duality in a Raman atom interferometer

    International Nuclear Information System (INIS)

    Jia Ai-Ai; Yang Jun; Yan Shu-Hua; Hu Qing-Qing; Luo Yu-Kun; Zhu Shi-Yao

    2015-01-01

    We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ − π − π/2 type of atom interferometer, we find that the visibility (V) and predictability (P) still satisfy the duality relation, P 2 + V 2 ≤ 1. (paper)

  16. Tree-loop duality relation beyond single poles

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Buchta, Sebastian; Draggiotis, Petros; Malamos, Ioannis; Rodrigo, German [Valencia Univ. Paterna (Spain). Inst. de Fisica Corpuscular

    2012-11-15

    We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

  17. Duality symmetries and the Type II string effective action

    International Nuclear Information System (INIS)

    Bergshoeff, E.

    1996-01-01

    We discuss the duality symmetries of Type II string effective actions in nine, ten and eleven dimensions. As a by-product we give a covariant action underlying the ten-dimensional Type IIB supergravity theory. We apply duality symmetries to construct dyonic Type II string solutions in six dimensions and their reformulation as solutions of the ten-dimensional Type IIB theory in ten dimensions. (orig.)

  18. Dualities for multi-state probabilistic cellular automata

    International Nuclear Information System (INIS)

    López, F Javier; Sanz, Gerardo; Sobottka, Marcelo

    2008-01-01

    In this paper a new form of duality for probabilistic cellular automata (PCA) is introduced. Using this duality, an ergodicity result for processes having a dual is proved. Also, conditions on the probabilities defining the evolution of the processes for the existence of a dual are provided. The results are applied to wide classes of PCA which include multi-opinion voter models, competition models and the Domany–Kinzel model

  19. Efficiency and Generalized Convex Duality for Nondifferentiable Multiobjective Programs

    Directory of Open Access Journals (Sweden)

    Bae KwanDeok

    2010-01-01

    Full Text Available We introduce nondifferentiable multiobjective programming problems involving the support function of a compact convex set and linear functions. The concept of (properly efficient solutions are presented. We formulate Mond-Weir-type and Wolfe-type dual problems and establish weak and strong duality theorems for efficient solutions by using suitable generalized convexity conditions. Some special cases of our duality results are given.

  20. Duality quantum algorithm efficiently simulates open quantum systems

    Science.gov (United States)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  1. Magnetic vortices in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Migael

    2014-07-18

    We study strongly-coupled phenomena using gauge/gravity duality, with a particular focus on vortex solutions produced by magnetic field and time-dependent problems in holographic models. The main result is the discovery of a counter-intuitive effect where a strong non-abelian magnetic field induces the formation of a triangular vortex lattice ground state in a simple holographic model. Gauge/gravity duality is a powerful theoretical tool that has been used to study strongly-coupled systems ranging from the quark-gluon plasma produced at particle colliders to condensed matter theories. The most important idea is that of duality: a strongly coupled quantum field theory can be studied by investigating the properties of a particular gravity background described by Einstein's equations. One gravity background we study in this dissertation is AdS-Schwarzschild with an SU(2) gauge field. We switch on the gauge field component that gives the field theory an external magnetic field. When the magnetic field is above a critical value, we find that the system is unstable, indicating a superconducting phase transition. We find the instability in two ways. Firstly, we do a quasinormal mode analysis, studying fluctuations about the background. Secondly, we rewrite the equations in Schroedinger form and numerically find that, as the magnetic field is increased, the potential deepens until it is capable of supporting a bound state. Next we show that the resulting superconducting ground state is a triangular vortex lattice. This is done by performing a perturbative expansion in a small parameter proportional to the condensate size. After solving the equations to third order, we use the holographic dictionary to calculate the total energy of different lattice solutions and identify the minimum energy state. In addition, we show that the result holds in an AdS-hard wall model as well, which is dual to a confining theory. Next we extend the simple gravity model to include a

  2. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-02

    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  3. Heterotic-type II string duality and the H-monopole problem

    CERN Document Server

    Girardello, L; Zaffaroni, A

    1996-01-01

    Since T-duality has been proved only perturbatively and most of the heterotic states map into solitonic, non-perturbative, type II states, the 6-dimensional string-string duality between the heterotic string and the type II string is not sufficient to prove the S-duality of the former, in terms of the known T-duality of the latter. We nevertheless show in detail that perturbative T-duality, together with the heterotic-type II duality, does imply the existence of heterotic H-monopoles, with the correct multiplicity and multiplet structure. This construction is valid at a generic point in the moduli space of heterotic toroidal compactifications.

  4. Disentangling the f(R)-duality

    Energy Technology Data Exchange (ETDEWEB)

    Broy, Benedict J.; Westphal, Alexander [Deutsches Elektronen-Synchrotron DESY, Theory Group, Hamburg, 22603 Germany (Germany); Pedro, Francisco G., E-mail: benedict.broy@desy.de, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049 Spain (Spain)

    2015-03-01

    Motivated by UV realisations of Starobinsky-like inflation models, we study generic exponential plateau-like potentials to understand whether an exact f(R)-formulation may still be obtained when the asymptotic shift-symmetry of the potential is broken for larger field values. Potentials which break the shift symmetry with rising exponentials at large field values only allow for corresponding f(R)-descriptions with a leading order term R{sup n} with 1duality is exact or approximate. The R{sup 2}-term survives as part of a series expansion of the function f(R) and thus cannot maintain a plateau for all field values. We further find a lean and instructive way to obtain a function f(R) describing m{sup 2}φ{sup 2}-inflation which breaks the shift symmetry with a monomial, and corresponds to effectively logarithmic corrections to an R+R{sup 2} model. These examples emphasise that higher order terms in f(R)-theory may not be neglected if they are present at all. Additionally, we relate the function f(R) corresponding to chaotic inflation to a more general Jordan frame set-up. In addition, we consider f(R)-duals of two given UV examples, both from supergravity and string theory. Finally, we outline the CMB phenomenology of these models which show effects of power suppression at low-ℓ.

  5. Disentangling the f(R)-duality

    Energy Technology Data Exchange (ETDEWEB)

    Broy, Benedict J. [Deutsches Elektronen-Synchrotron DESY, Theory Group, Hamburg, 22603 (Germany); Pedro, Francisco G. [Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049 (Spain); Westphal, Alexander [Deutsches Elektronen-Synchrotron DESY, Theory Group, Hamburg, 22603 (Germany)

    2015-03-16

    Motivated by UV realisations of Starobinsky-like inflation models, we study generic exponential plateau-like potentials to understand whether an exact f(R)-formulation may still be obtained when the asymptotic shift-symmetry of the potential is broken for larger field values. Potentials which break the shift symmetry with rising exponentials at large field values only allow for corresponding f(R)-descriptions with a leading order term R{sup n} with 1duality is exact or approximate. The R{sup 2}-term survives as part of a series expansion of the function f(R) and thus cannot maintain a plateau for all field values. We further find a lean and instructive way to obtain a function f(R) describing m{sup 2}ϕ{sup 2}-inflation which breaks the shift symmetry with a monomial, and corresponds to effectively logarithmic corrections to an R+R{sup 2} model. These examples emphasise that higher order terms in f(R)-theory may not be neglected if they are present at all. Additionally, we relate the function f(R) corresponding to chaotic inflation to a more general Jordan frame set-up. In addition, we consider f(R)-duals of two given UV examples, both from supergravity and string theory. Finally, we outline the CMB phenomenology of these models which show effects of power suppression at low-ℓ.

  6. S-duality in Twistor Space

    CERN Document Server

    Alexandrov, Sergei

    2012-01-01

    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space $M_H$ must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of $M_H$, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include $M_H$ corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.

  7. S-duality in twistor space

    Science.gov (United States)

    Alexandrov, Sergei; Pioline, Boris

    2012-08-01

    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space {{M}_H} must carry an isometric action of the modular group SL(2 , {Z} ), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of {{M}_H} , and construct a general class of SL(2 , {Z} )-invariant quaternion-Kähler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include {{M}_H} corrected by D3-D1-D(-1)-instantons (with five-brane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional {N} = {2} gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.

  8. Multiple fibrations in Calabi-Yau geometry and string dualities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lara B.; Gao, Xin; Gray, James; Lee, Seung-Joo [Physics Department, Virginia Tech,Robeson Hall, Blacksburg, VA 24061 (United States)

    2016-10-19

    In this work we explore the physics associated to Calabi-Yau (CY) n-folds that can be described as a fibration in more than one way. Beginning with F-theory vacua in various dimensions, we consider limits/dualities with M-theory, type IIA, and heterotic string theories. Our results include many M-/F-theory correspondences in which distinct F-theory vacua — associated to different elliptic fibrations of the same CY n-fold — give rise to the same M-theory limit in one dimension lower. Examples include 5-dimensional correspondences between 6-dimensional theories with Abelian, non-Abelian and superconformal structure, as well as examples of higher rank Mordell-Weil geometries. In addition, in the context of heterotic/F-theory duality, we investigate the role played by multiple K3- and elliptic fibrations in known and novel string dualities in 8-, 6- and 4-dimensional theories. Here we systematically summarize nested fibration structures and comment on the roles they play in T-duality, mirror symmetry, and 4-dimensional compactifications of F-theory with G-flux. This investigation of duality structures is made possible by geometric tools developed in a companion paper http://arxiv.org/abs/1608.07554.

  9. Stringy horizons and generalized FZZ duality in perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2017-02-14

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  10. S-duality constraint on higher-derivative couplings

    International Nuclear Information System (INIS)

    Garousi, Mohammad R.

    2014-01-01

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e"−"2"ϕ(t_8t_8R"4+(1/4)ϵ_8ϵ_8R"4). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t_2_n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality

  11. Unification of type-II strings and T duality.

    Science.gov (United States)

    Hohm, Olaf; Kwak, Seung Ki; Zwiebach, Barton

    2011-10-21

    We present a unified description of the low-energy limits of type-II string theories. This is achieved by a formulation that doubles the space-time coordinates in order to realize the T-duality group O(10,10) geometrically. The Ramond-Ramond fields are described by a spinor of O(10,10), which couples to the gravitational fields via the Spin(10,10) representative of the so-called generalized metric. This theory, which is supplemented by a T-duality covariant self-duality constraint, unifies the type-II theories in that each of them is obtained for a particular subspace of the doubled space. © 2011 American Physical Society

  12. Heterotic/Type-II duality and its field theory avatars

    International Nuclear Information System (INIS)

    Kiritsis, Elias

    1999-01-01

    In these lecture notes, I will describe heterotic/type-II duality in six and four dimensions. When supersymmetry is the maximal N=4 it will be shown that the duality reduces in the field theory limit to the Montonen-Olive duality of N=4 Super Yang-Mills theory. We will consider further compactifications of type II theory on Calabi-Yau manifolds. We will understand the physical meaning of geometric conifold singularities and the dynamics of conifold transitions. When the CY manifold is a K3 fibration we will argue that the type-II ground-state is dual to the heterotic theory compactified on K3xT 2 . This allows an exact computation of the low effective action. Taking the field theory limit, α ' →0, we will recover the Seiberg-Witten non-perturbative solution of N=2 gauge theory

  13. p-brane dyons and electric-magnetic duality

    International Nuclear Information System (INIS)

    Deser, S.; Henneaux, M.; Teitelboim, C.

    1998-01-01

    We discuss dyons, charge quantization and electric-magnetic duality for self-interacting, abelian, p-form theories in the space-time dimensions D=2(p+1) where dyons can be present. The corresponding quantization conditions and duality properties are strikingly different depending on whether p is odd or even. If p is odd one has the familiar e anti g-g anti e=2πnℎ, whereas for even p one finds the opposite relative sign, e anti g+g anti e=2πnℎ. These conditions are obtained by introducing Dirac strings and taking due account of the multiple connectedness of the configuration space of the strings and the dyons. A two-potential formulation of the theory that treats the electric and magnetic sources on the same footing is also given. Our results hold for arbitrary gauge invariant self-interaction of the fields and are valid irrespective of their duality properties. (orig.)

  14. Duality for heavy-quark systems. II. Coupled channels

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We derive the duality relation approx. = which relates a suitable energy average of the physical coupled-channel cross section sigma=sigma(e + e - →hadrons) to the same average of the cross section sigma/sub bound/ for the production of bound qq-bar states in a single-channel confining potential. The average is equated by our previous work to the average cross section for production of a qq-bar pair moving freely in the nonconfining color Coulomb potential. Thus, approx. = . The corrections to these duality relations are calculable. We give an exactly solvable coupled-two-channel model and use it to verify duality for both weak and strong coupling

  15. S-duality constraint on higher-derivative couplings

    Energy Technology Data Exchange (ETDEWEB)

    Garousi, Mohammad R. [Department of Physics, Ferdowsi University of Mashhad,P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2014-05-22

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e{sup −2ϕ}(t{sub 8}t{sub 8}R{sup 4}+(1/4)ϵ{sub 8}ϵ{sub 8}R{sup 4}). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t{sub 2n} from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  16. Canonical duality theory unified methodology for multidisciplinary study

    CERN Document Server

    Latorre, Vittorio; Ruan, Ning

    2017-01-01

    This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization.  With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in comp...

  17. On Various R-duals and the Duality Principle

    DEFF Research Database (Denmark)

    Stoeva, Diana T.; Christensen, Ole

    2016-01-01

    to a characterization of frames in terms of associated Riesz sequences; however, it is still an open question whether this abstract theory is a generalization of the duality principle. In this paper we prove that a modified version of the R-duals leads to a generalization of the duality principle that keeps all......The duality principle states that a Gabor system is a frame if and only if the corresponding adjoint Gabor system is a Riesz sequence. In general Hilbert spaces and without the assumption of any particular structure, Casazza, Kutyniok and Lammers have introduced the so-called R-duals that also lead...... the attractive properties of the R-duals. In order to provide extra insight into the relations between a given sequence and its R-duals, we characterize all the types of R-duals that are available in the literature for the special case where the underlying sequence is a Riesz basis....

  18. N = (4,4 Supersymmetry and T-Duality

    Directory of Open Access Journals (Sweden)

    Malin Göteman

    2012-10-01

    Full Text Available A sigma model with four-dimensional target space parametrized by chiral and twisted chiral N =(2,2 superfields can be extended to N =(4,4 supersymmetry off-shell, but this is not true for a model of semichiral fields, where the N = (4,4 supersymmetry can only be realized on-shell. The two models can be related to each other by T-duality. In this paper we perform a duality transformation from a chiral and twisted chiral model with off-shell N = (4,4 supersymmetry to a semichiral model. We find that additional non-linear terms must be added to the original transformations to obtain a semichiral model with N =(4,4 supersymmetry, and that the algebra closes on-shell as a direct consequence of the T-duality.

  19. DUALITY IN SMALL AND MEDIUM ENTERPRISE ACCOUNTING PRACTICES

    Directory of Open Access Journals (Sweden)

    Fadilla Cahyaningtyas

    2017-12-01

    Full Text Available This research is aimed to comprehend the accounting practice and its benefit in triggering one of the most credible SMEs in Malang City to succeed, SME Garuda Jaya. The analytical tool used in this research is transcendental phenomenology. Based on data analysis, two kinds of accounting practices are: (1 accounting practice of mind and memory; and (2 accounting notation to the arrangement of basic financial statements in the form of balance sheets and Profit/ Loss (L / R. both practical accounting establishes duality practices, a practice that combines two distinct and different things into integral and appropriate things to do an accounting practice. Therefore, first, duality practices seek to make synergistic social and economic value. Second, the practice of duality establishes the integration of "masculine" and "feminist" characters to achieve business success, which not only places the orientation into the material aspects of earning income but also on environmental and social responsibility.

  20. Hyperasymptotics and quark-hadron duality violations in QCD

    Science.gov (United States)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  1. Aspects of U-duality in matrix theory

    International Nuclear Information System (INIS)

    Blau, M.; O'Loughlin, M.

    1997-12-01

    We explore various aspects of implementing the full M-theory U-duality group E d+1 , and thus Lorentz invariance, in the finite N matrix theory (DLCQ of M-theory) describing toroidal IIA-compactifications on d-tori: (1) We generalize the analysis of Elitzur et al. (hep-th/9707217) from E d to E d+1 and identify the highest weight states unifying the momentum and flux E d -multiplets into one E d+1 -orbit, (2) We identify the new symmetries, in particular the Weyl group symmetry associated to the (d+1)'th node of the E d+1 Dynkin diagram, with Nahm-duality-like symmetries (N-duality) exchanging the rank N of the matrix theory gauge group with other (electric, magnetic, ...) quantum numbers. (3) We describe the action of N-duality on BPS bound states, thus making testable predictions for the Lorentz invariance of matrix theory. (4) We discuss the problems that arise in the matrix theory limit for BPS states with no top-dimensional branes, i.e. configurations with N = 0. (5) We show that N-duality maps the matrix theory SYM picture to the matrix string picture and argue that, for d even, the latter should be thought of as an M-theory membrane description (which appears to be well defined even for d > 5). (6) We find a compact and unified expression for a U-duality invariant of E d+1 for all d and show that in d = 5,6 it reduces to the black hole entropy cubic E 6 - and quartic E 7 -invariants respectively. (7) Finally, we describe some of the solitonic states in d = 6,7 and give an example (a 'rolled-up' Taub-NUT 6-brane) of a configuration exhibiting the unusual 1/g 3 s -behaviour. (author)

  2. N = 1 quasi self-duality in the N = 2 Yang-Mills theory

    International Nuclear Information System (INIS)

    Pavlik, O.V.; Yatsun, V.A.

    1998-01-01

    The system of first-order equations-quasi self-duality equations-for component fields of the N = 2 SUSY Yang-Mills theory is suggested, which leads to equations of motion and reduces to self-duality equations if scalar fields vanish. The symmetries of quasi self-duality equations are studied

  3. Duality and bosonization in Schwinger–Keldysh formulation

    International Nuclear Information System (INIS)

    Saraví, R E Gamboa; Naón, C M; Schaposnik, F A

    2014-01-01

    We present a path-integral bosonization approach for systems out of equilibrium based on a duality transformation of the original Dirac fermion theory combined with the Schwinger–Keldysh time closed contour technique, to handle the non-equilibrium situation. The duality approach to bosonization that we present is valid for D ≥ 2 space–time dimensions leading for D = 2 to exact results. In this last case we present the bosonization rules for fermion currents, calculate current–current correlation functions and establish the connection between the fermionic and bosonic distribution functions in a generic, non-equilibrium situation. (paper)

  4. Thermal duality and Hagedorn transition from p-adic strings.

    Science.gov (United States)

    Biswas, Tirthabir; Cembranos, Jose A R; Kapusta, Joseph I

    2010-01-15

    We develop the finite temperature theory of p-adic string models. We find that the thermal properties of these nonlocal field theories can be interpreted either as contributions of standard thermal modes with energies proportional to the temperature, or inverse thermal modes with energies proportional to the inverse of the temperature, leading to a thermal duality at leading order (genus one) analogous to the well-known T duality of string theory. The p-adic strings also recover the asymptotic limits (high and low temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings surrounding the nature of the Hagedorn transition.

  5. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    Science.gov (United States)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  6. Path integral formulation of the Hodge duality on the brane

    International Nuclear Information System (INIS)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai; Oh, Phillial

    2001-01-01

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework

  7. Quark-hadron duality of nucleon spin structure function

    International Nuclear Information System (INIS)

    Dong, Y.B.

    2005-01-01

    Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)

  8. Interpreting multiple dualities conjectured from superconformal index identities

    CERN Document Server

    Khmelnitsky, A

    2010-01-01

    We consider field theory side of new multiple Seiberg dualities conjectured within superconformal index matching approach. We study the case of SU(2) supersymmetric QCD and find that the numerous conjectured duals are different faces of handful of master theories. These different faces are inequivalent to each other in a very peculiar sense. Some master theories are fully known; we construct superpotentials for others. We confirm that all index identities correspond to theories flowing to one and the same theory in the infrared, thus supporting the conjecture of index matching for Seiberg dual theories. However, none of the index identities considered in this paper actually implies an entirely new, unknown duality.

  9. Entanglement entropy and duality in AdS4

    Directory of Open Access Journals (Sweden)

    Ioannis Bakas

    2015-07-01

    Full Text Available Small variations of the entanglement entropy δS and the expectation value of the modular Hamiltonian δE are computed holographically for circular entangling curves in the boundary of AdS4, using gravitational perturbations with general boundary conditions in spherical coordinates. Agreement with the first law of thermodynamics, δS=δE, requires that the line element of the entangling curve remains constant. In this context, we also find a manifestation of electric–magnetic duality for the entanglement entropy and the corresponding modular Hamiltonian, following from the holographic energy–momentum/Cotton tensor duality.

  10. Duality of female employment in Pakistan.

    Science.gov (United States)

    Kazi, S; Raza, B

    1991-01-01

    The trends in the level and pattern of women's employment in Pakistan in terms of supply and demand factors which influence women's participation in the labor market are discussed. Women's labor participation is underestimated in official sources such as the Labor Force Survey (LFS) and the Population Census. Figures which were obtained from micro level surveys and the Agricultural Census, show the duality of employment at the top and bottom socioeconomically. LFS data show the female share of the professional work force to have risen from 15.5% to 18.3% between 1984-95 and 1987-88, which translates to 33% of teachers and 25% of physicians being women. Urban female participation rates have increased only slightly from 3 to 5% between 1971 and 72 and 1987-88, based on LFS data, while informal sector surveys have shown an increase of workers who are women who have never worked before in the formal sector. In manufacturing, the female work force remains low at 5% in factories in the Punjab and Sindh, but only 20% were in regular employment compared with 50% of men. Agricultural work on the family farm has increased from 35% in 1972 and 42% in 1980. Increases are also shown in more recent LF surveys. Constraints on both male and female employment are the recent (1978-79 and 1986-87) shift to capital investment in agriculture with tubewells and tractors and in manufacturing. Women's movement into agriculture may be precipitated by men's out migration to urban areas or the Gulf region into other nonfarm occupations. In manufacturing there is exploitation of workers through low overhead costs of temporary or part time help. Supply constraints for women involve cultural restrictions, household responsibilities, and low levels of education and skills. Women enter the work force out of financial need. Data on female-headed households are scarce, but a Karachi survey finds that most female-headed households belong to the poorest strata and women work when family size

  11. Superstrings, conformal field theories and holographic duality

    International Nuclear Information System (INIS)

    Benichou, R.

    2009-06-01

    The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting

  12. Applications of Space-Time Duality

    Science.gov (United States)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms

  13. Dualities in five dimensions and charged string solutions

    International Nuclear Information System (INIS)

    Kar, S.; Maharana, J.

    1996-01-01

    We consider an eleven dimensional supergravity compactified on K3 x T 2 and show that the resulting five dimensional theory has identical massless states as that of a heterotic string compactified on a specific five torus T 5 . The strong-weak coupling duality of the five dimensional theory is argued to represent a ten dimensional Type IIA string compactified on K3 x S 1 , supporting the conjecture of string-string duality in six dimensions. In this perspective, we present a magnetically charged solution of the low energy heterotic string effective action in five dimensions with a charge defined on a three sphere S 3 due to the two form potential. We use the Poincare duality to replace the antisymmetric two form with a gauge field in the effective action and obtain a string solution with charge on a two sphere S 2 instead of that on a three sphere S 3 in the five dimensional spacetime. We note that the string-particle duality is accompanied by a change of topology from S 3 to S 2 and vice versa. (orig.)

  14. Electric-magnetic duality in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mizrachi, L.

    1982-03-01

    The duality transformation of the vacuum expectation value of the operator which creates magnetic vortices (the 't Hooft loop operator in the Higgs phase) is performed in the radial gauge (xsub(μ)Asub(μ)sup(a)(x)=0). It is found that in the weak coupling region (small g) of a pure Yang-Mills theory the dual operator creates electric vortices whose strength is 1/g. The theory is self dual in this region, and the effective coupling of the dual Lagrangian is 1/g. Thus the above duality transformation reduces to electric-magnetic duality where the electric field in the 't Hooft loop operator transforms into a magnetic field in the dual operator. In a spontaneously broken gauge theory these results are valid only within the region where the vortices (or the monopoles) are concentrated, or in directions of the algebra space of unbroken symmetry, as self duality holds only for this subset of fields. In the strong coupling region a strong coupling expansion in powers of 1/g is suggested. (author)

  15. On R-duals and the duality principle

    DEFF Research Database (Denmark)

    Christensen, Ole; Stoeva, Diana

    2015-01-01

    . In this paper we discuss the relationship between the R-duals and a variant, called R-duals of type III, introduced in 2014. In contrast to the original R-duals, it is known that the R-duals of type III generalize the duality principle for all Gabor frames, but we believe that a smaller and more convenient...

  16. Electric–magnetic duality of lattice systems with topological order

    Energy Technology Data Exchange (ETDEWEB)

    Buerschaper, Oliver [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Kong, Liang, E-mail: kong.fan.liang@gmail.com [Institute for Advanced Study (Science Hall), Tsinghua University, Beijing 100084 (China); Department of Mathematics and Statistics University of New Hampshire, Durham, NH 03824 (United States); Aguado, Miguel [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany)

    2013-11-11

    We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev's quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen's string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.

  17. Strong Duality and Optimality Conditions for Generalized Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    D. H. Fang

    2013-01-01

    Full Text Available We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.

  18. A D-induced duality and its applications

    NARCIS (Netherlands)

    J. Brinkhuis (Jan); S. Zhang (Shuzhong)

    2003-01-01

    textabstractThis paper attempts to extend the notion of duality for convex cones, by basing it on a predescribed conic ordering and a fixed bilinear mapping. This is an extension of the standard definition of dual cones, in the sense that the nonnegativity of the inner-product is replaced by a

  19. Duality and modular class of a Nambu-Poisson structure

    International Nuclear Information System (INIS)

    Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E.

    2001-01-01

    In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author)

  20. Duality and hidden symmetries in interacting particle systems

    NARCIS (Netherlands)

    Giardinà, C.; Kurchan, J.; Redig, F.H.J.; Vafayi, K.

    2009-01-01

    In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the "hidden" symmetries are easily derived.

  1. Gaugino condensation, loop corrections and S-duality constraint

    International Nuclear Information System (INIS)

    Saririan, K.; California Univ., Berkeley, CA

    1996-11-01

    This talk is a brief review of gaugino condensation in superstring effective field theories and some related issues (such as renormalization of the gauge coupling in the effective supergravity theories and modular anomaly cancellation). As a specific example, we discuss a model containing perturbative (1-loop) corrections to the Kaehler potential and approximate S-duality symmetry

  2. Duality of roles and corporate governance in Greece

    Directory of Open Access Journals (Sweden)

    Themistokles Lazarides

    2009-01-01

    Full Text Available Duality of the role of President of the Board of Directors (BoD and CEO has been regarded as a good practice of corporate governance. These two roles are the ones with the most power an authority within the corporation. The paper depicts the formulating factors of duality of roles in Greece. Literature has linked duality with performance, organizational stability, ownership concentration and balance of power and control within the firm. The paper, using a Probit regression analysis, examines whether these relationships are valid in Greece. Statistical – econometric analysis has shown that financial performance is not related with concentration of power and control. The same conclusion is can be drawn for ownership concentration. There is a trend of change but this trend hasn’t the same dynamic or driving factors as the ones that are reported by Kirkbride and Letza (2002 and Muth and Donaldson (1998. The hypothesis posed by Heracleous (2001 and Baliga, 6oyer and Rao (1996 are more likely to be true in the case of Greece. Overall, duality in Greece is affected by the historical development of the firm, its organizational scheme and even more by the balance of power and control within the firm.

  3. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  4. Superspace actions and duality transformations for N=2 tensor multiplets

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.

    1985-01-01

    General actions for self-interacting N=2 tensor multiplets are considered in the harmonic superspace approach. All of them are shown to be equivalent, by superfield duality transformations, to some restricted class of the hypermultiplets actions. In particular, the improved tensor multiplet theory is dual to a free hypermultiplet one. Superspace couplings of these improved matter multiplets against conformal supergravity are also constructed

  5. Some remarks on defects and T-duality

    DEFF Research Database (Denmark)

    Sarkissian, Gor; Schweigert, Christoph

    2009-01-01

    The equations of motion for a conformal field theory in the presence of defect lines can be derived from an action that includes contributions from bibranes. For T-dual toroidal compactifications, they imply a direct relation between Poincaré line bundles and the action of T-duality on boundary...

  6. A one-loop test of string duality

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side. (orig.)

  7. Wave-particle duality in a quark model

    International Nuclear Information System (INIS)

    Gudder, S.P.

    1984-01-01

    A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)

  8. Superdualities, brane tensions and massive IIA/IIB duality

    International Nuclear Information System (INIS)

    Lavrinenko, I.V.; Lue, H.; Pope, C.N.; Stelle, K.S.

    1999-01-01

    The gauge transformations of p-form fields in supergravity theories acquire a non-commuting character when one introduces potentials both for the theory's original field strengths and for their duals. This has previously been shown in the 'doubled' formalism for maximal supergravities, where a generalised duality relation between original and dual field strengths replaces the equations of motion. In the doubled formalism, the gauge transformations generate a superalgebra, and the corresponding symmetries have accordingly been called 'superdualities'. The corresponding Noether charges form a representation of the cohomology ring on the space-time manifold. In this paper, we show that the gauge symmetry superalgebra implies certain non-trivial relations among the various p-brane tensions, which can straightforwardly be read off from the superalgebra commutation relations. This provides an elegant derivation of the brane-tension relations purely within a given theory, without the need to make use of duality relations between different theories, such as the type IIA/IIB T-duality, although the results are consistent with such dualities. We present the complete set of brane-tension relations in M-theory, in the type IIA and type IIB theories, and in all the lower-dimensional maximal supergravities. We also construct a doubled formalism for massive type IIA supergravity, and this enables us to obtain the brane-tension relations involving the D8-brane, purely within the framework of the massive IIA theory. We also obtain explicit transformations for the nine-dimensional T-duality between the massive type IIA theory and the Scherk-Schwarz reduced type IIB theory

  9. On the Duality Principle by Casazza, Kutyniok, and Lammers

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2011-01-01

    The R-dual sequences of a frame {f i } i∈I , introduced by Casazza, Kutyniok and Lammers in (J. Fourier Anal. Appl. 10(4):383–408, 2004), provide a powerful tool in the analysis of duality relations in general frame theory. In this paper we derive conditions for a sequence {ω j } j∈I to be an R......-dual of a given frame {f i } i∈I . In particular we show that the R-duals {ω j } j∈I can be characterized in terms of frame properties of an associated sequence {n i } i∈I . We also derive the duality results obtained for tight Gabor frames in (Casazza et al. in J. Fourier Anal. Appl. 10(4):383–408, 2004...

  10. Pure Gravities via Color-Kinematics Duality for Fundamental Matter

    CERN Document Server

    Johansson, Henrik

    2015-01-01

    We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in supergravities. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.

  11. Gauge theories, duality relations and the tensor hierarchy

    International Nuclear Information System (INIS)

    Bergshoeff, Eric A.; Hohm, Olaf; Hartong, Jelle; Huebscher, Mechthild; OrtIn, Tomas

    2009-01-01

    We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge transformations. We show how these tensor hierarchies can be put on-shell by introducing a set of duality relations, thereby introducing additional scalars and a metric tensor. These so-called duality hierarchies encode the equations of motion of the bosonic part of the most general gauged supergravity theories in those dimensions, including the (projected) scalar equations of motion. We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of the same fields in the tensor hierarchy.

  12. Topological T-duality for torus bundles with monodromy

    Science.gov (United States)

    Baraglia, David

    2015-05-01

    We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.

  13. On the duality-transformed Wilson loop operator

    International Nuclear Information System (INIS)

    Mizrachi, L.

    1981-08-01

    Duality transformation of the vacuum expectation value of the Wilson loop operator is performed in the radial gauge (xsub(μ)Asub(μ)sup(a)(x) = 0). It is found to be equal, up to a multiplicative constant, to , where O(c) is a line integral along the loop c (defining the Wilson loop operator) of a function of the dual field variables. In the weak coupling region self duality is recovered in the sense that the Lagrangian is local gauge invariant defined in terms of the dual gauge potentials but with g (the coupling constant) replaced by 1/g, and O(c) is simply the line integral of the dual gauge potentials. For large g, a strong coupling expansion is suggested (but the theory is not local gauge invariant). (author)

  14. Duality transformation of a spontaneously broken gauge theory

    International Nuclear Information System (INIS)

    Mizrachi, L.

    1981-04-01

    Duality transformation for a spontaneously broken gauge theory is constructed in the CDS gauge (xsub(μ)Asub(μ)sup(a)=0). The dual theory is expressed in terms of dual potentials which satisfy the same gauge condition, but with g→ 1 /g. Generally the theory is not self dual but in the weak coupling region (small g), self duality is found for the subgroup which is not spontaneously broken or in regions where monopoles and vortices are concentrated (in agreement with t'Hooft's ideas that monopoles and vortices in the Georgi-Glashow model make it self dual). In the strong coupling regime a systematic strong coupling expansion can be written. For this region the dual theory is generally not local gauge invariant, but it is invariant under global gauge transformations. (author)

  15. On Λ-Type Duality of Frames in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Renu Chugh

    2013-11-01

    Full Text Available Frames are redundant system which are useful in the reconstruction of certain classes of spaces. The dual of a frame (Hilbert always exists and can be obtained in a natural way. Due to the presence of three Banach spaces in the definition of retro Banach frames (or Banach frames duality of frames in Banach spaces is not similar to frames for Hilbert spaces. In this paper we introduce the notion of Λ-type duality of retro Banach frames. This can be generalized to Banach frames in Banach spaces. Necessary and sufficient conditions for the existence of the dual of retro Banach frames are obtained. A special class of retro Banach frames which always admit a dual frame is discussed.

  16. Heterotic/type I duality and D-brane instantons

    Science.gov (United States)

    Bachas, C.; Fabre, C.; Kiritsis, E.; Obers, N. A.; Vanhove, P.

    1998-01-01

    We study heterotic/type I duality in d = 8, 9 uncompactified dimensions. We consider the special ("BPS-saturated") F4 and R4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side.

  17. Heterotic/type I duality and D-brane instantons

    International Nuclear Information System (INIS)

    Bachas, C.; Fabre, C.; Vanhove, P.

    1998-01-01

    We study heterotic/type I duality in d=8,9 uncompactified dimensions. We consider the special (''BPS-saturated'') F 4 and R 4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side. (orig.)

  18. Heterotic / type-I duality and D-brane instantons

    CERN Document Server

    Bachas, C P; Kiritsis, Elias B; Obers, N A; Vanhove, P

    1998-01-01

    We study heterotic/type-I duality in d=8,9 uncompactified dimensions. We consider the special (``BPS saturated'') F^4 and R^4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be recognized easily as arising from a D-brane instanton calculation on the type-I side.

  19. Gauge symmetry, T-duality and doubled geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hull, C.M. [Imperial College London (United Kingdom). Inst. for Mathematical Sciences]|[Imperial College London (United Kingdom). Blackett Laboratory; Reid-Edwards, R.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-11-15

    String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)

  20. U-duality and D-brane combinatorics

    CERN Document Server

    Pioline, B

    1998-01-01

    We investigate D-brane instanton contributions to R^4 couplings in any toroidal compactification of type II theories. Starting from the 11D supergravity one-loop four-graviton amplitude computed by Green, Gutperle and Vanhove, we derive the non-perturbative O(e^{-1/\\lambda}) corrections to R^4 couplings by a sequence of T-dualities, and interpret them as precise configurations of bound states of D-branes wrapping cycles of the compactification torus. Dp-branes explicitely appear as fluxes on D(p+2)-branes, and as gauge instantons on D(p+4)-branes. Specific rules for weighting these contributions are obtained, which should carry over to more general situations. Furthermore, it is shown that U-duality in D<=6 relates these D-brane configurations to O(e^{-1/\\lambda^2}) instantons for which a geometric interpretation is still lacking.

  1. Supersymmetry, p-brane duality, and hidden spacetime dimensions

    International Nuclear Information System (INIS)

    Bars, I.

    1996-01-01

    A global superalgebra with 32 supercharges and all possible central extensions is studied in order to extract some general properties of duality and hidden dimensions in a theory that treats p-branes democratically. The maximal number of dimensions is 12, with signature (10,2), containing one space and one time dimension that are hidden from the point of view of perturbative ten-dimensional string theory or its compactifications. When the theory is compactified on R d-1,1 circle-times T c+1,1 with d+c+2=12, there are isometry groups that relate to the hidden dimensions as well as to duality. Their combined intersecting classification schemes provide some properties of nonperturbative states and their couplings. copyright 1996 The American Physical Society

  2. Experimental observation of entanglement duality for identical particles

    International Nuclear Information System (INIS)

    Ma, J-J; Yuan, X-X; Zu, C; Chang, X-Y; Hou, P-Y; Duan, L-M

    2014-01-01

    It was shown recently that entanglement of identical particles has a feature called dualism (Bose and Home 2013 Phys. Rev. Lett. 110 140404), which is fundamentally connected with quantum indistinguishability. Here we report an experiment that observes the entanglement duality for the first time with two identical photons, which manifest polarization entanglement when labeled by different paths or path entanglement when labeled by polarization states. By adjusting the mismatch in frequency or arrival time of the entangled photons, we tune the photon indistinguishability from the quantum to the classical limit and observe that the entanglement duality disappears under the emergence of classical distinguishability, confirming it as a characteristic feature of quantum indistinguishable particles. (paper)

  3. Gauge symmetry, T-duality and doubled geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    2007-11-01

    String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)

  4. A Call-Put Duality for Perpetual American Options

    OpenAIRE

    Alfonsi, Aurélien; Jourdain, Benjamin

    2006-01-01

    International audience; It is well known that in models with time-homogeneous local volatility functions and constant interest and dividend rates, the European Put prices are transformed into European Call prices by the simultaneous exchanges of the interest and dividend rates and of the strike and spot price of the underlying. This paper investigates such a Call Put duality for perpetual American options. It turns out that the perpetual American Put price is equal to the perpetual American C...

  5. Dualities and signatures of G++-invariant theories

    International Nuclear Information System (INIS)

    Buyl, Sophie de; Houart, Laurent; Tabti, Nassiba

    2005-01-01

    The G ++ -content of the formulation of gravity and M-theories as very-extended Kac-Moody invariant theories is further analysed. The different exotic phases of all the G ++ B -theories, which admit exact solutions describing intersecting branes smeared in all directions but one, are derived. This is achieved by analysing for all G ++ the signatures which are related to the conventional one (1,D-1) by 'dualities' generated by the Weyl reflections

  6. Duality relation between charged elastic strings and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Carter, B.

    1989-01-01

    The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)

  7. Nucleon structure functions, resonance form factors, and duality

    International Nuclear Information System (INIS)

    Davidovsky, V.V.; Struminsky, B.V.

    2003-01-01

    The behavior of nucleon structure functions in the resonance region is explored. For form factors that describe resonance production, expressions are obtained that are dependent on the photon virtuality Q 2 , which have a correct threshold behavior, and which take into account available experimental data on resonance decay. Resonance contributions to nucleon structure functions are calculated. The resulting expressions are used to investigate quark-hadron duality in electron-nucleon scattering by taking the example of the structure function F 2

  8. The duality of tensions at the workplace for female leaders

    OpenAIRE

    Haidinger, Julia

    2017-01-01

    The qualitative research undertaken was set out to understand the challenges experienced by female leaders at the workplace. Therefore, semi-structured interviews with 12 female leaders in top management positions from different industries were conducted. As a consequence, a duality between tensions concerning 1) character traits, 2) beauty and 3) motherhood was confirmed through the experiences shared by the participants. Women identified these tensions as highly challenging and difficult to...

  9. Dualities in ABJM matrix model from closed string viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshige, Kazuki; Moriyama, Sanefumi [Department of Physics, Graduate School of Science, Osaka City University,3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-11-17

    We propose a new formalism to study the ABJM matrix model. Contrary to expressing the fractional brane background with the Wilson loops in the open string formalism, we formulate the Wilson loop expectation value from the viewpoint of the closed string background. With this new formalism, we can prove some duality relations in the matrix model. /includegraphics[scale=0.7]{abstract.eps}.

  10. Duality and corrections to the van Royen-Weisskopf formula

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We propose that duality can be used in conjunction with QCD calculations of the cross section for e + e - → qanti q - to evaluate relativistic and radiative corrections to the leptonic widths of the psi and UPSILON states. We use this method to discuss relativistic corrections to the van Royen-Weisskopf formula for leptonic widths. We also point out that this formula is in error by an important factor 4m 2 sub(q)/M 2 sub(n). (orig.)

  11. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  12. Trigonometric version of quantum–classical duality in integrable systems

    Directory of Open Access Journals (Sweden)

    M. Beketov

    2016-02-01

    Full Text Available We extend the quantum–classical duality to the trigonometric (hyperbolic case. The duality establishes an explicit relationship between the classical N-body trigonometric Ruijsenaars–Schneider model and the inhomogeneous twisted XXZ spin chain on N sites. Similarly to the rational version, the spin chain data fixes a certain Lagrangian submanifold in the phase space of the classical integrable system. The inhomogeneity parameters are equal to the coordinates of particles while the velocities of classical particles are proportional to the eigenvalues of the spin chain Hamiltonians (residues of the properly normalized transfer matrix. In the rational version of the duality, the action variables of the Ruijsenaars–Schneider model are equal to the twist parameters with some multiplicities defined by quantum (occupation numbers. In contrast to the rational version, in the trigonometric case there is a splitting of the spectrum of action variables (eigenvalues of the classical Lax matrix. The limit corresponding to the classical Calogero–Sutherland system and quantum trigonometric Gaudin model is also described as well as the XX limit to free fermions.

  13. Dualities in the analysis of phage DNA packaging motors

    Science.gov (United States)

    Serwer, Philip; Jiang, Wen

    2012-01-01

    The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204

  14. Precision studies of duality in the 't Hooft model

    International Nuclear Information System (INIS)

    Lebed, Richard F.; Uraltsev, Nikolai G.

    2000-01-01

    We address the numerical aspects of local quark-hadron duality using the example of the exactly solvable 't Hooft model, two-dimensional QCD with N c →∞. The primary focus of these studies is the total semileptonic decay widths relevant for extracting |V cb | and |V ub |. We compare the exact channel-by-channel sum of exclusive modes to the corresponding rates obtained in the standard 1/m Q expansion arising from the operator product expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds of duality-violating oscillations. We find the ''small velocity'' sum rules to be exceptionally well saturated already by the first excited state. We also obtain a convincing degree of duality in the differential distributions and in an analogue of R e + e - (s). Finally, we discuss possible lessons for semileptonic decays of actual heavy quarks in QCD

  15. Precision Studies of Duality in the 't Hooft Model

    International Nuclear Information System (INIS)

    Richard F. Lebed; Nikolai G. Uraltsev

    2000-01-01

    The authors address numerical aspects of local quark-hadron duality using the example of the exactly solvable 't Hooft model, two-dimensional QCD with Nc ?8. The primary focus of these studies is total semileptonic decay widths relevant for extracting (Vcb) and (Vub). They compare the exact channel-by-channel sum of exclusive modes to the corresponding rates obtained in the standard 1/mQ expansion arising from the Operator Product Expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds of duality-violating oscillations. They find the ''Small Velocity'' sum rules to be exceptionally well saturated already by the first excited state. They also obtain a convincing degree of duality in the differential distributions and in an analogue of Re+e-(s). Finally, they discuss possible lessons for semileptonic decays of actual heavy quarks in QCD

  16. Open string T-duality in double space

    Energy Technology Data Exchange (ETDEWEB)

    Sazdovic, B. [University of Belgrade, Institute of Physics, Belgrade (Serbia)

    2017-09-15

    The role of double space is essential in the new interpretation of T-duality and consequently in an attempt to construct M-theory. The case of the open string is missing in such an approach because until now there has been no appropriate formulation of open string T-duality. In the previous paper (Sazdovic, From geometry to non-geometry via T-duality, arXiv:1606.01938, 2017), we showed how to introduce vector gauge fields A{sup N}{sub a} and A{sup D}{sub i} at the end-points of an open string in order to enable open string invariance under local gauge transformations of the Kalb-Ramond field and its T-dual ''restricted general coordinate transformations''. We demonstrated that gauge fields A{sup N}{sub a} and A{sup D}{sub i} are T-dual to each other. In the present article we prove that all above results can be interpreted as coordinate permutations in double space. (orig.)

  17. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  18. Five-brane superpotentials and heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Ha, Tae-Won; Klemm, Albrecht; Klevers, Denis

    2010-01-01

    Under heterotic/F-theory duality it was argued that a wide class of heterotic five-branes is mapped into the geometry of an F-theory compactification manifold. In four-dimensional compactifications this identifies a five-brane wrapped on a curve in the base of an elliptically fibered Calabi-Yau threefold with a specific F-theory Calabi-Yau fourfold containing the blow-up of the five-brane curve. We argue that this duality can be reformulated by first constructing a non-Calabi-Yau heterotic threefold by blowing up the curve of the five-brane into a divisor with five-brane flux. Employing heterotic/F-theory duality this leads us to the construction of a Calabi-Yau fourfold and four-form flux. Moreover, we obtain an explicit map between the five-brane superpotential and an F-theory flux superpotential. The map of the open-closed deformation problem of a five-brane in a compact Calabi-Yau threefold into a deformation problem of complex structures on a dual Calabi-Yau fourfold with four-form flux provides a powerful tool to explicitly compute the five-brane superpotential.

  19. S-matrix elements from T-duality

    International Nuclear Information System (INIS)

    Babaei Velni, Komeil; Garousi, Mohammad R.

    2013-01-01

    Recently it has been speculated that the S-matrix elements satisfy the Ward identity associated with the T-duality. This indicates that a group of S-matrix elements is invariant under the linear T-duality transformations on the external states. If one evaluates one component of such T-dual multiplet, then all other components may be found by the simple use of the linear T-duality. The assumption that fields must be independent of the Killing coordinate, however, may cause, in some cases, the T-dual multiplet not to be gauge invariant. In those cases, the S-matrix elements contain more than one T-dual multiplet which are intertwined by the gauge symmetry. In this paper, we apply the T-dual Ward identity on the S-matrix element of one RR (p−3)-form and two NSNS states on the world volume of a D p -brane to find its corresponding T-dual multiplet. In the case that the RR potential has two transverse indices, the T-dual multiplet is gauge invariant, however, in the case that it has one transverse index the multiplet is not gauge invariant. We find a new T-dual multiplet in this case by imposing the gauge symmetry. We show that the multiplets are reproduced by explicit calculation, and their low energy contact terms at order α ′2 are consistent with the existing couplings in the literature

  20. Leo Esakia on duality in modal and intuitionistic logics

    CERN Document Server

    Bezhanishvili, Guram

    2014-01-01

    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia's original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations to weak Heyting algebras and implicative semilattices. The book also dives into the Blok-Esakia theorem and provides an outline of the intuitionistic modal logic KM which is closely related to the Gödel-Löb provability logic GL. One chapter scrutinizes Esakia's work interpreting modal diamond as the derivative of a topological space within the setting of point-free topology. The final chapter in the volume is dedicated to the derivational semantics of modal logic and other re...

  1. Open string T-duality in double space

    International Nuclear Information System (INIS)

    Sazdovic, B.

    2017-01-01

    The role of double space is essential in the new interpretation of T-duality and consequently in an attempt to construct M-theory. The case of the open string is missing in such an approach because until now there has been no appropriate formulation of open string T-duality. In the previous paper (Sazdovic, From geometry to non-geometry via T-duality, arXiv:1606.01938, 2017), we showed how to introduce vector gauge fields A"N_a and A"D_i at the end-points of an open string in order to enable open string invariance under local gauge transformations of the Kalb-Ramond field and its T-dual ''restricted general coordinate transformations''. We demonstrated that gauge fields A"N_a and A"D_i are T-dual to each other. In the present article we prove that all above results can be interpreted as coordinate permutations in double space. (orig.)

  2. Trigonometric version of quantum–classical duality in integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Beketov, M., E-mail: beketov@phystech.edu [MIPT, Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Liashyk, A., E-mail: a.liashyk@gmail.com [National Research University Higher School of Economics, Myasnitskaya str. 20, 101000, Moscow (Russian Federation); BITP, Metrolohichna str. 14-b, 03680, Kiev (Ukraine); Zabrodin, A., E-mail: zabrodin@itep.ru [National Research University Higher School of Economics, Myasnitskaya str. 20, 101000, Moscow (Russian Federation); Institute of Biochemical Physics, Kosygina str. 4, 119991, Moscow (Russian Federation); ITEP, Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); Zotov, A., E-mail: zotov@mi.ras.ru [Steklov Mathematical Institute, RAS, Gubkina str. 8, 119991, Moscow (Russian Federation); ITEP, Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT, Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation)

    2016-02-15

    We extend the quantum–classical duality to the trigonometric (hyperbolic) case. The duality establishes an explicit relationship between the classical N-body trigonometric Ruijsenaars–Schneider model and the inhomogeneous twisted XXZ spin chain on N sites. Similarly to the rational version, the spin chain data fixes a certain Lagrangian submanifold in the phase space of the classical integrable system. The inhomogeneity parameters are equal to the coordinates of particles while the velocities of classical particles are proportional to the eigenvalues of the spin chain Hamiltonians (residues of the properly normalized transfer matrix). In the rational version of the duality, the action variables of the Ruijsenaars–Schneider model are equal to the twist parameters with some multiplicities defined by quantum (occupation) numbers. In contrast to the rational version, in the trigonometric case there is a splitting of the spectrum of action variables (eigenvalues of the classical Lax matrix). The limit corresponding to the classical Calogero–Sutherland system and quantum trigonometric Gaudin model is also described as well as the XX limit to free fermions.

  3. Temperature duality on Riemann surface and cosmological solutions for genus g = 1 and 2

    International Nuclear Information System (INIS)

    Yan Jun; Wang Shunjin

    1999-01-01

    A bosonic string model at finite temperature on the gravitation g μν and the dilaton φ background field is examined. Moreover, the duality relation of energy momentum tensor on high genus Riemann surface is derived. At the same time, the temperature duality invariance for the action of string gas matter is proved in 4-D Robertson-Walker metric, the string cosmological solutions and temperature duality of the equations of motion for genus g = 1 and 2 are also investigated

  4. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.

    2018-01-01

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  5. Electric-magnetic duality as a secondary symmetry

    International Nuclear Information System (INIS)

    Brandt, R.A.; Young, K.

    1980-01-01

    In both the abelian and non-abelian classical point magnetic monopole theories, electric current conservation is a consequence of gauge invariance, but, since there is no magnetic gauge group, magnetic current conservation is not a Noether-type conservation law. In the abelian models, the equations of motion (but not the lagrangian) are invariant to the duality rotations in electric-magnetic charge space, but this is not the case in the non-abelian models. In an attempt to understand these and related points, we introduce a generalization of Noether's theorem. Consider a physical system described by a set of variables THETA and characterized by a lagrangian density L(THETA). A transormation law THETA → G THETA which leaves L invariant leads to a conserved current Jsub(μ)(THETA). We then call G a primary symmetry. A second transformation law THETA → D THETA which leaves the equations of motion, but not L, invariant then leads to another conserved current Jsub(μ)(D THETA). We then call D a secondary symmetra. Our main point is that Jsub(μ) (D THETA) may be conserved even if the equations of motion are not invariant under D. All that is required is that the change of the equations of motion under D is perpendicular (in the field space) to the change of the fields under G. Then we call D an incomplete secondary symmetry. We show that in both the abelian and non-abelian monopole theories, duality is an incomplete secondary symmetry whose associated conservation law is magnetic current conservation. Thus it is the interpretation of duality as a secondary symmetry which explains magnetic current conservation and which generalizes from the abelian theories to the non-abelian ones. This suggests that magnetic current conservation may remain valid in quantum field theory. (orig.)

  6. Duality in an asset exchange model for wealth distribution

    Science.gov (United States)

    Li, Jie; Boghosian, Bruce M.

    2018-05-01

    Asset exchange models are agent-based economic models with binary transactions. Previous investigations have augmented these models with mechanisms for wealth redistribution, quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by a parameter ζ. By deriving and analyzing a Fokker-Planck equation for a particular asset exchange model thus augmented, it has been shown that it exhibits a second-order phase transition at ζ / χ = 1, between regimes with and without partial wealth condensation. In the "subcritical" regime with ζ / χ 1, a fraction 1 - χ / ζ of the wealth is condensed. Intuitively, one may associate the supercritical, wealth-condensed regime as reflecting the presence of "oligarchy," by which we mean that an infinitesimal fraction of the total agents hold a finite fraction of the total wealth in the continuum limit. In this paper, we further elucidate the phase behavior of this model - and hence of the generalized solutions of the Fokker-Planck equation that describes it - by demonstrating the existence of a remarkable symmetry between its supercritical and subcritical regimes in the steady-state. Noting that the replacement { ζ → χ , χ → ζ } , which clearly has the effect of inverting the order parameter ζ / χ, provides a one-to-one correspondence between the subcritical and supercritical states, we demonstrate that the wealth distribution of the subcritical state is identical to that of the corresponding supercritical state when the oligarchy is removed from the latter. We demonstrate this result analytically, both from the microscopic agent-level model and from its macroscopic Fokker-Planck description, as well as numerically. We argue that this symmetry is a kind of duality, analogous to the famous Kramers-Wannier duality between the subcritical and supercritical states of the Ising model, and to the Maldacena duality that underlies AdS/CFT theory.

  7. In search of balance – managing the dualities of HRM: an overview of the issues

    NARCIS (Netherlands)

    Boselie, J.P.P.E.F.|info:eu-repo/dai/nl/177012277; Brewster, C.; Paauwe, J.

    2009-01-01

    Purpose – The purpose of this paper is to provide an overview of the human resource management (HRM) literature that builds up to our current concern with dualities, paradoxes, ambiguities, and balance issues; and to introduce the six papers in this special issue on managing the dualities in HRM.

  8. Metaphorical Duality: High School Subject Departments as Both Communities and Organizations

    Science.gov (United States)

    Melville, Wayne; Wallace, John

    2007-01-01

    This article investigates the metaphorical duality that exists when school subject departments are concurrently conceptualized as both communities and organizations. Employing a narrative methodology, we use the metaphorical duality to examine the manner in which science teachers negotiate two key aspects of their work; professional learning and…

  9. A penalization approach to linear programming duality with application to capacity constrained transport

    OpenAIRE

    Korman, Jonathan; McCann, Robert J.; Seis, Christian

    2013-01-01

    A new approach to linear programming duality is proposed which relies on quadratic penalization, so that the relation between solutions to the penalized primal and dual problems becomes affine. This yields a new proof of Levin's duality theorem for capacity-constrained optimal transport as an infinite-dimensional application.

  10. S-duality in N = 4 supersymmetric gauge theories with arbitrary gauge group

    International Nuclear Information System (INIS)

    Dorey, Nicholas; Fraser, Christophe; Hollowood, Timothy J.; Kneipp, Marco A.C.

    1996-12-01

    The Goddard, Nuyts and Olive conjecture for electric-magnetic duality in the Yang-Mills theory with an arbitrary gauge group G is extended by including a non-vanishing vacuum angle θ. This extended S-duality conjecture includes the case when the unbroken gauge group in non-Abelian and a definite prediction for the spectrum of dyons results. (author)

  11. A case study of an organisation development of duality

    DEFF Research Database (Denmark)

    Andreassen, Mads R.; Gertsen, Frank

    2008-01-01

    This paper seeks to comprehend what the organisational circumstances (conditions) look like that induces an organisation to develop its exploitation and exploration capabilities to duality. This is done by studying changes in the organisational characteristics in a Danish manufacturer...... of accessories for house windows during the expansion leading to global operation. The study comprises 2½ years of detailed study and a retrospective study of approximately 30 years. The data collection was mainly based on semi-structured interviews. The findings add a new approach to continuous innovation...... theory by uncovering how organisational conditions affect the development and integration of exploitation and exploration capabilities....

  12. The Bloom-Gilman duality and leading logarithms

    International Nuclear Information System (INIS)

    Carlson, C.E.; Mukhopadhyay, N.C.

    1994-01-01

    The existing inclusive electroproduction data base allows the authors a look at the issue of the relative behaviors of background and resonance excitations, a part of the Bloom-Gilman duality. These data lack accuracy at high Q 2 but establish PQCD scaling in the resonance region and even allow the authors a glimpse at the leading logarithmic corrections due to the gluon radiation and its possible quenching at large W and x. These should inspire better quality experimental tests at facilities like CEBAF II

  13. Numerical implementation of the loop-tree duality method

    Energy Technology Data Exchange (ETDEWEB)

    Buchta, Sebastian; Rodrigo, German [Universitat de Valencia-Consejo Superior de Investigaciones Cientificas, Parc Cientific, Instituto de Fisica Corpuscular, Valencia (Spain); Chachamis, Grigorios [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Draggiotis, Petros [Institute of Nuclear and Particle Physics, NCSR ' ' Demokritos' ' , Agia Paraskevi (Greece)

    2017-05-15

    We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs. (orig.)

  14. Legendre Duality of Spherical and Gaussian Spin Glasses

    International Nuclear Information System (INIS)

    Genovese, Giuseppe; Tantari, Daniele

    2015-01-01

    The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model

  15. N=1 field theory duality from M theory

    International Nuclear Information System (INIS)

    Schmaltz, M.; Sundrum, R.

    1998-01-01

    We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society

  16. Coherence Generalises Duality: A Logical Explanation of Multiparty Session Types

    DEFF Research Database (Denmark)

    Carbone, Marco; Lindley, Sam; Montesi, Fabrizio

    2016-01-01

    the duality of classical linear logic (relating two types) with a more general notion of coherence (relating an arbitrary number of types). This paper introduces variants of CP and MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show a tight relation between......Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types correspondence between propositions of classical linear logic and session types. Carbone et al. introduced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types, by replacing...

  17. Legendre Duality of Spherical and Gaussian Spin Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Genovese, Giuseppe, E-mail: giuseppe.genovese@math.uzh.ch [Universität Zürich, Institut für Mathematik (Switzerland); Tantari, Daniele, E-mail: daniele.tantari@sns.it [Scuola Normale Superiore di Pisa, Centro Ennio de Giorgi (Italy)

    2015-12-15

    The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model.

  18. Absolute X-distribution and self-duality

    OpenAIRE

    Alexandru, Andrei; Horváth, Ivan

    2011-01-01

    Various models of QCD vacuum predict that it is dominated by excitations that are predominantly self-dual or anti-self-dual. In this work we look at the tendency for self-duality in the case of pure-glue SU(3) gauge theory using the overlap-based definition of the field-strength tensor. To gauge this property, we use the absolute X-distribution method which is designed to quantify the dynamical tendency for polarization for arbitrary random variables that can be decomposed in a pair of orthog...

  19. Topological twist in four dimensions, R-duality and hyperinstantons

    International Nuclear Information System (INIS)

    Anselmi, D.; Fre, P.

    1993-01-01

    In this paper we continue the programme of topologically twisting N=2 theories in D=4, focusing on the coupling of vector multiplets to N=2 supergravity. We show that in the minimal case, namely when the special gometry prepotential F(X) is a quadratic polynomial, the theory has a so far unknown on-shell U(1) symmetry, that we name R-duality. R-duality is a generalization of the chiral-dual on-shell symmetry of N=2 pure supergravity and of the R-symmetry of N=2 super Yang-Mills theory. Thanks to this, the theory can be topologically twisted and topologically shifted, precisely as pure N=2 supergravity, to yield a natural coupling of topological gravity to topological Yang-Mills theory. The gauge-fixing condition that emerges from the twisting is the self-duality condition on the gauge field strength and on the spin connection. Hence our theory reduces to intersection theory in the moduli-space of gauge instantons living in gravitational instanton backgrounds. We remark that, for deep properties of the parent N=2 theory, the topological Yang-Mills theory we obtain by taking the flat space limit of our gravity-coupled lagrangian is different from the Donaldson theory constructed by Witten. Whether this difference is substantial and what its geometrical implications may be is yet to be seen. We also discuss the topological twist of the hypermultiplets leading to topological quaternionic sigma-models. The instantons of these models, named by us hyperinstantons, correspond to a notion of triholomorphic mappings discussed in the paper. In all cases the new ghost number is the sum of the old ghost number plus the R-duality charge. The observables described by the theory are briefly discussed. In conclusion, the topological twist of the complete N=2 theory defines intersection theory in the moduli-space of gauge instantons plus gravitational instantons plus hyperinstantons. This is possibly a new subject for further mathematical investigation. (orig.)

  20. Duality and BPS spectra in N = 2 supersymmetric QCD

    International Nuclear Information System (INIS)

    Ferrari, F.

    1997-01-01

    I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.)

  1. Geometric approach to a massive p form duality

    International Nuclear Information System (INIS)

    Arias, Pio J.; Leal, Lorenzo; Perez-Mosquera, J. C.

    2003-01-01

    Massive theories of Abelian p forms are quantized in a generalized path representation that leads to a description of the phase space in terms of a pair of dual nonlocal operators analogous to the Wilson loop and the 't Hooft disorder operators. Special attention is devoted to the study of the duality between the topologically massive and self-dual models in 2+1 dimensions. It is shown that these models share a geometric representation in which just one nonlocal operator suffices to describe the observables

  2. Causality and unitarity via the tree-loop duality relation

    Energy Technology Data Exchange (ETDEWEB)

    Tomboulis, E.T. [Mani L. Bhaumik Institute for Theoretical Physics,Department of Physics and Astronomy, UCLA,Los Angeles, CA 90095-1547 (United States)

    2017-05-29

    The tree-loop duality relation is used as a starting point to derive the constraints of causality and unitarity. Specifically, the Bogoliubov causality condition is ab initio derived at the individual graph level. It leads to a representation of a graph in terms of lower order cut graphs. Extracting the absorptive part gives then the general unitarity relation (Cutkosky rule). The derivation, being carried out directly in momentum space, holds for any local (polynomial) hermitian interaction vertices. This is in contrast to the technical difficulties arising from contact terms in the spacetime approach based on the largest time equation.

  3. Orientifolds and duality cascades: confinement before the wall

    Science.gov (United States)

    Argurio, Riccardo; Bertolini, Matteo

    2018-02-01

    We consider D-branes at orientifold singularities and discuss two properties of the corresponding low energy four-dimensional effective theories which are not shared, generically, by other Calabi-Yau singularities. The first property is that duality cascades are finite and, unlike ordinary ones, do not require an infinite number of degrees of freedom to be UV-completed. The second is that orientifolds tend to stabilize runaway directions. These two properties can have interesting implications and widen in an intriguing way the variety of gauge theories one can describe using D-branes.

  4. Supersymmetric quantum corrections and Poisson-Lie T-duality

    International Nuclear Information System (INIS)

    Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-07-01

    The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)

  5. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  6. Punctuated eternal inflation via AdS/CFT duality

    International Nuclear Information System (INIS)

    Lowe, David A.; Roy, Shubho

    2010-01-01

    The work is an attempt to model a scenario of inflation in the framework of anti-de Sitter/conformal field theory duality, a potentially complete nonperturbative description of quantum gravity. We study bubble geometries with de Sitter interiors within an ambient Schwarzschild anti-de Sitter black hole spacetime and the properties of the corresponding states in the dual conformal field theory. It is argued the viable bubble states can be identified with a subset of the black hole microstates. Consistency checks are performed and a number of implications regarding cosmology are discussed including how the key problems or paradoxes of conventional eternal inflation are overcome in this scenario.

  7. Short-time perturbation theory and nonrelativistic duality

    International Nuclear Information System (INIS)

    Whitenton, J.B.; Durand, B.; Durand, L.

    1983-01-01

    We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers

  8. Duality and BPS spectra in N = 2 supersymmetric QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, F. [Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique

    1997-05-01

    I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.).

  9. Duality in a Supersymmetric Gauge Theory From a Perturbative Viewpoint

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications......We study duality in N ¼ 1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a, c, a=c, and b at superconformal fixed...

  10. The Bloom-Gilman duality and leading logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Mukhopadhyay, N.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The existing inclusive electroproduction data base allows the authors a look at the issue of the relative behaviors of background and resonance excitations, a part of the Bloom-Gilman duality. These data lack accuracy at high Q{sup 2} but establish PQCD scaling in the resonance region and even allow the authors a glimpse at the leading logarithmic corrections due to the gluon radiation and its possible quenching at large W and x. These should inspire better quality experimental tests at facilities like CEBAF II.

  11. The Hall module of an exact category with duality

    OpenAIRE

    Young, Matthew B.

    2012-01-01

    We construct from a finitary exact category with duality a module over its Hall algebra, called the Hall module, encoding the first order self-dual extension structure of the category. We study in detail Hall modules arising from the representation theory of a quiver with involution. In this case we show that the Hall module is naturally a module over the specialized reduced sigma-analogue of the quantum Kac-Moody algebra attached to the quiver. For finite type quivers, we explicitly determin...

  12. Duality of quasilocal gravitational energy and charges with nonorthogonal boundaries

    International Nuclear Information System (INIS)

    Kim, Sung-Won; Kim, Won Tae; Oh, John J.; Yee, Ki Hyuk

    2003-01-01

    We study the duality of quasilocal energy and charges with nonorthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in previous work and also some new variables arising from considering the nonorthogonal boundaries are presented, and the boost relations between these quantities are discussed. Moreover, we show that the dual properties of quasilocal variables, such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neveu-Schwarz charge density, are still valid in the moving observer's frame

  13. Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity

    CERN Document Server

    Ceresole, Anna T; Ferrara, Sergio; Van Proeyen, A; Ceresole, A; D'Auria, R; Ferrara, S; Van Proeyen, A

    1995-01-01

    We consider duality transformations in N=2, d=4 Yang-Mills theory coupled to N=2 supergravity. A symplectic and coordinate covariant framework is established, which allows one to discuss stringy `classical and quantum duality symmetries' (monodromies), incorporating T and S dualities. In particular, we shall be able to study theories (like N=2 heterotic strings) which are formulated in symplectic basis where a `holomorphic prepotential' F does not exist, and yet give general expressions for all relevant physical quantities. Duality transformations and symmetries for the N=1 matter coupled Yang--Mills supergravity system are also exhibited. The implications of duality symmetry on all N>2 extended supergravities are briefly mentioned. We finally give the general form of the central charge and the N=2 semiclassical spectrum of the dyonic BPS saturated states (as it comes by truncation of the N=4 spectrum).

  14. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    Science.gov (United States)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  15. New Results on Testing Duality in Spin Structure from Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nilanga Liyanage

    2005-10-01

    The Bloom-Gilman duality has been experimentally demonstrated for spin independent structure functions. Duality is observed when the smooth scaling curve at high momentum transfer is an average over the resonance bumps at lower momentum transfer, but at the same value of scaling variable x. Signs of quark-hadron duality for the spin Dependant structure function g1 of the proton has been recently reported by the Hermes collaboration. Experimental Halls A, B and C at Jefferson lab have recently measured spin structure functions in the resonance region for the proton and the neutron. Data from these experiments combined with Deep-Inelastic-Scattering data provide a precision test of quark-hadron duality predictions for spin structure functions for both the proton and the neutron. This will be one of the first precision tests of spin and flavor dependence of quark-hadron duality.

  16. Bukhvostov–Lipatov model and quantum-classical duality

    Directory of Open Access Journals (Sweden)

    Vladimir V. Bazhanov

    2018-02-01

    Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  17. U-duality multiplets and nonperturbative superstring states

    International Nuclear Information System (INIS)

    Bars, I.; Yankielowicz, S.

    1996-01-01

    We employ an algebraic approach for unifying perturbative and nonperturbative superstring states on an equal footing, in the form of U-duality multiplets, at all excited string levels. In compactified type-IIA supertring theory we present evidence that the multiplet is labeled by two spaces, open-quote open-quote index close-quote close-quote space and open-quote open-quote base close-quote close-quote space, on which U acts without mixing them. Both spaces are nonperturbative extensions of similar spaces that label perturbative T-duality multiplets. Base space consists of all the central charges of the 11D SUSY algebra, while index space corresponds to representations of the maximal compact subgroup K improper-subset U. This structure predicts the quantum numbers of the nonperturbative states. We also discuss whether and how U multiplets may coexist with 11-dimensional multiplets that are associated with an additional nonperturbative 11D structure that seems to be lurking behind in the underlying theory. copyright 1996 The American Physical Society

  18. Bukhvostov-Lipatov model and quantum-classical duality

    Science.gov (United States)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  19. S-duality invariant perturbation theory improved by holography

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Abhishek [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Honda, Masazumi [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Thakur, Somyadip [Tata Institute of Fundamental Research,Mumbai 400005 (India)

    2017-04-26

    We study anomalous dimensions of unprotected low twist operators in the four-dimensional SU (N)N=4 supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling τ. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the N=4 superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points τ=i and τ=e{sup iπ/3}. It turns out that our interpolating functions have maximum at τ=e{sup iπ/3}, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.

  20. Duality covariant type IIB supersymmetry and nonperturbative consequences

    CERN Document Server

    Bars, Itzhak

    1997-01-01

    Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U-duality, which controls the non-perturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet fivebranes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the non-perturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal blackholes constructed from D-1-branes and D-5-branes. In the latter case the non-perturbative coupling dependence of the BPS mass and metric is comput...

  1. Duality covariant type-IIB supersymmetry and nonperturbative consequences

    International Nuclear Information System (INIS)

    Bars, I.

    1997-01-01

    Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U duality, which controls the nonperturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet five-branes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the nonperturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal black holes constructed from D-1-branes and D-5-branes. In the latter case the nonperturbative coupling dependence of the BPS mass and renormalization is computed for the first time in this paper. It is further argued that the moduli dependence of the superalgebra provides hints for four more dimensions beyond ten, such that the superalgebra is embedded in a fundamental theory which would be covariant under SO(11,3). An outline is given for a matrix theory in 14 dimensions that would be consistent with M(atrix) theory as well as with the above observations. copyright 1997 The American Physical Society

  2. Heterotic String/F-theory Duality from Mirror Symmetry

    CERN Document Server

    Berglund, Per

    1998-01-01

    We use local mirror symmetry in type IIA string compactifications on Calabi-Yau n+1 folds $X_{n+1}$ to construct vector bundles on (possibly singular) elliptically fibered Calabi-Yau n-folds Z_n. The interpretation of these data as valid classical solutions of the heterotic string compactified on Z_n proves F-theory/heterotic duality at the classical level. Toric geometry is used to establish a systematic dictionary that assigns to each given toric n+1-fold $X_{n+1}$ a toric n fold Z_n together with a specific family of sheafs on it. This allows for a systematic construction of phenomenologically interesting d=4 N=1 heterotic vacua, e.g. on deformations of the tangent bundle, with grand unified and SU(3)\\times SU(2) gauge groups. As another application we find non-perturbative gauge enhancements of the heterotic string on singular Calabi-Yau manifolds and new non-perturbative dualities relating heterotic compactifications on different manifolds.

  3. Duality between k-essence and Rastall gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, Kirill A. [VNIIMS, Moscow (Russian Federation); RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Fabris, Julio C. [National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Universidade Federal do Espirito Santo, Vitoria, ES (Brazil); Piattella, Oliver F.; Rodrigues, Denis C.; Santos, Edison C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil)

    2017-06-15

    The k-essence theory with a power-law function of (∂φ){sup 2} and Rastall's non-conservative theory of gravity with a scalar field are shown to have the same solutions for the metric under the assumption that both the metric and the scalar fields depend on a single coordinate. This equivalence (called k-R duality) holds for static configurations with various symmetries (spherical, plane, cylindrical, etc.) and all homogeneous cosmologies. In the presence of matter, Rastall's theory requires additional assumptions on how the stress-energy tensor non-conservation is distributed between different contributions. Two versions of such non-conservation are considered in the case of isotropic spatially flat cosmological models with a perfect fluid: one (R1) in which there is no coupling between the scalar field and the fluid, and another (R2) in which the fluid separately obeys the usual conservation law. In version R1 it is shown that k-R duality holds not only for the cosmological models themselves but also for their adiabatic perturbations. In version R2, among other results, a particular model is singled out that reproduces the same cosmological expansion history as the standard ΛCDM model but predicts different behaviors of small fluctuations in the k-essence and Rastall frameworks. (orig.)

  4. Duality and modular invariance in rational conformal field theories

    International Nuclear Information System (INIS)

    Li Miao.

    1990-03-01

    We investigate the polynomial equations which should be satisfied by the duality data for a rational conformal field theory. We show that by these duality data we can construct some vector spaces which are isomorphic to the spaces of conformal blocks. One can construct explicitly the inner product for the former if one deals with a unitary theory. These vector spaces endowed with an inner product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons theory. As by-products, we show that the polynomial equations involving the modular transformations for the one-point blocks on the torus are not independent. And along the way, we discuss the reconstruction of the quantum group in a rational conformal theory. Finally, we discuss the solution of structure constants for a physical theory. Making some assumption, we obtain a neat solution. And this solution in turn implies that the quantum groups of the left sector and of the right sector must be the same, although the chiral algebras need not to be the same. Some examples are given. (orig.)

  5. T-duality orbifolds of heterotic Narain compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Nibbelink, Stefan Groot [School of Engineering and Applied Sciences, Rotterdam University of Applied Sciences,G.J. de Jonghweg 4-6, 3015 GG Rotterdam (Netherlands); Vaudrevange, Patrick K.S. [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Physik Department T30, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)

    2017-04-06

    To obtain a unified framework for symmetric and asymmetric heterotic orbifold constructions we provide a systematic study of Narain compactifications orbifolded by finite order T-duality subgroups. We review the generalized vielbein that parametrizes the Narain moduli space (i.e. the metric, the B-field and the Wilson lines) and introduce a convenient basis of generators of the heterotic T-duality group. Using this we generalize the space group description of orbifolds to Narain orbifolds. This yields a unified, crystallographic description of the orbifold twists, shifts as well as Narain moduli. In particular, we derive a character formula that counts the number of unfixed Narain moduli after orbifolding. Moreover, we develop new machinery that may ultimately open up the possibility for a full classification of Narain orbifolds. This is done by generalizing the geometrical concepts of ℚ-, ℤ- and affine classes from the theory of crystallography to the Narain case. Finally, we give a variety of examples illustrating various aspects of Narain orbifolds, including novel T-folds.

  6. Gauge/gravity duality. A road towards reality

    International Nuclear Information System (INIS)

    Kerner, Patrick

    2012-01-01

    In this dissertation we use gauge/gravity duality to investigate various phenomena of strongly coupled systems. In particular, we consider applications of the duality to real-world systems such as condensed matter systems and the quark-gluon plasma created by heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Gauge/gravity duality which originates from string theory relates strongly coupled gauge theories to weakly coupled gravity theories. This duality allows for computations of non-perturbative results on the field theory side by perturbative calculations on the gravity side. As we have learned in the recent years, the duality is especially suitable to describe hot and dense plasmas as well as real-time processes related to transport properties or spectral functions. Unfortunately, so far there is no dual gravity description modeling every aspect of a strongly coupled real-world system. However, there are many gravity duals which describe several phenomena. The general idea of this thesis is to study different gravity duals in order to develop a gravity description of hot and dense plasmas. In particular, we focus on physics in thermal equilibrium and close to equilibrium. Motivated by the experimentally observed mesonic resonances in the quark-gluon plasma, we first study quasinormal modes of a gravity dual which contains such resonances. The quasinormal modes on the gravity side are identified with the poles of the Green's function on the field theory side. By studying these quasinormal modes, we observe how quasiparticle resonances develop in a hot and dense plasma. We find interesting trajectories of quasinormal frequencies which may be found experimentally as the temperature and density is varied. In addition, we find an instability in the quasinormal mode spectrum at large chemical potential or magnetic field. At large chemical potential, this instability triggers the condensation of a field which breaks

  7. Gauge/gravity duality. A road towards reality

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Patrick

    2012-02-23

    In this dissertation we use gauge/gravity duality to investigate various phenomena of strongly coupled systems. In particular, we consider applications of the duality to real-world systems such as condensed matter systems and the quark-gluon plasma created by heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Gauge/gravity duality which originates from string theory relates strongly coupled gauge theories to weakly coupled gravity theories. This duality allows for computations of non-perturbative results on the field theory side by perturbative calculations on the gravity side. As we have learned in the recent years, the duality is especially suitable to describe hot and dense plasmas as well as real-time processes related to transport properties or spectral functions. Unfortunately, so far there is no dual gravity description modeling every aspect of a strongly coupled real-world system. However, there are many gravity duals which describe several phenomena. The general idea of this thesis is to study different gravity duals in order to develop a gravity description of hot and dense plasmas. In particular, we focus on physics in thermal equilibrium and close to equilibrium. Motivated by the experimentally observed mesonic resonances in the quark-gluon plasma, we first study quasinormal modes of a gravity dual which contains such resonances. The quasinormal modes on the gravity side are identified with the poles of the Green's function on the field theory side. By studying these quasinormal modes, we observe how quasiparticle resonances develop in a hot and dense plasma. We find interesting trajectories of quasinormal frequencies which may be found experimentally as the temperature and density is varied. In addition, we find an instability in the quasinormal mode spectrum at large chemical potential or magnetic field. At large chemical potential, this instability triggers the condensation of a field which

  8. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  9. Superconformal quantum field theories in string. Gauge theory dualities

    International Nuclear Information System (INIS)

    Wiegandt, Konstantin

    2012-01-01

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  10. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    Science.gov (United States)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  11. Chief Executive Officer Duality And Financial Performance of Firms In Nigeria

    Directory of Open Access Journals (Sweden)

    Dominic Ose Erah (B.Sc, M.Sc

    2013-07-01

    Full Text Available the work is centred on CEO Duality and Financial Performance of Firms in Nigeria. The objective of the study is to find out the relationship between CEO Duality and the Financial Performance of Firm. We adopted the use of secondary data from the Nigerian Stock Exchange Fact book drawn from various industries during the period 2001 – 2010 and the regression analysis with its Best Linear Unbiased Estimate (BLUES was employed to test our hypothesis. The findings of the study revealed that CEO Duality is harmful to the Financial Performance of a firm. The study proffered useful recommendations, which when implemented will help improve financial performance of firms in Nigeria.

  12. On R-Duals and the Duality Principle in Gabor Analysis

    DEFF Research Database (Denmark)

    Stoeva, Diana T.; Christensen, Ole

    2015-01-01

    The concept of R-duals of a frame was introduced by Casazza, Kutyniok and Lammers in 2004, with the motivation to obtain a general version of the duality principle in Gabor analysis. For tight Gabor frames and Gabor Riesz bases the three authors were actually able to show that the duality principle...... these classes coincide with the R-duals by Casazza et al., which is desirable in the sense that the motivating case of tight Gabor frames already is well covered by these R-duals. On the other hand, all the introduced types of R-duals generalize the duality principle for larger classes of Gabor frames than just...

  13. The inside–outside duality for inverse scattering problems with near field data

    International Nuclear Information System (INIS)

    Lechleiter, Armin; Peters, Stefan

    2015-01-01

    We derive an inside–outside duality for near field scattering data generated by time-harmonic scattering of acoustic point sources from a sound-soft scatterer. This duality in particular rigorously characterizes interior Dirichlet eigenvalues of the scattering object by near field operators for an interval of wave numbers. As a crucial new concept to prove this duality we exploit the numerical ranges of certain modifications of these near field operators. We also show that our theoretical results can be numerically used to approximate interior Dirichlet eigenvalues from multi-frequency near field measurements. (paper)

  14. A Duality Theory for Non-convex Problems in the Calculus of Variations

    Science.gov (United States)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  15. M5-branes, orientifolds, and S-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yoonseok [Department of Physics and Astronomy & Center for Theoretical Physics,Seoul National University, 1 Gwanak-ro, Seoul (Korea, Republic of); Kim, Joonho [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Seoul (Korea, Republic of); Kim, Seok [Department of Physics and Astronomy & Center for Theoretical Physics,Seoul National University, 1 Gwanak-ro, Seoul (Korea, Republic of)

    2016-12-29

    We study the instanton partition functions of 5d maximal super Yang-Mills theories with all classical gauge groups. They are computed from the ADHM quantum mechanics of the D0-D4-O4 systems. Our partition functions respect S-dualities of the circle compactified Yang-Mills theories and various orientifold backgrounds. We also compute and study the S{sup 5} partition functions that correspond to the 6d (2,0) superconformal indices. Our SO(2N) index takes the form of the vacuum character of W{sub D} algebra in a special limit, supporting the W algebra conjecture. We propose new indices for (2,0) theories with outer automorphism twists along the temporal circle, obtained from non-simply-laced SYMs on S{sup 5}.

  16. Duality in Left-Right Symmetric Seesaw Mechanism

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Frigerio, M.

    2006-01-01

    We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m ν and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution f-circumflex=m ν /v L -f, where v L is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2 n . We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f

  17. Two-field Born–Infeld with diverse dualities

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2016-11-01

    Full Text Available We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born–Infeld Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2, SU(2 and U(1×U(1. For each class, we also construct an explicit example. They all involve an overall square root and reduce to the Born–Infeld model if the two fields are identified, but differ in quartic and higher interactions. The U(1×U(1 and SU(2 examples recover some recent results obtained with different techniques, and we show that the U(1×U(1 model admits an N=1 supersymmetric completion. The U(2 example includes some unusual terms that are not analytic at the origin of field space.

  18. Eisenstein series for infinite-dimensional U-duality groups

    Science.gov (United States)

    Fleig, Philipp; Kleinschmidt, Axel

    2012-06-01

    We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the E n series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E 9, E 10 and E 11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D < 3 space-time dimensions.

  19. De Sitter space in gauge/gravity duality

    Directory of Open Access Journals (Sweden)

    Lilia Anguelova

    2015-10-01

    Full Text Available We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena–Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of the scalars along the fifth (radial direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (AdS4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.

  20. Superconductivity from gauge/gravity duality with flavor

    International Nuclear Information System (INIS)

    Ammon, Martin; Erdmenger, Johanna; Kaminski, Matthias; Kerner, Patrick

    2009-01-01

    We consider thermal strongly-coupled N=2 SYM theory with fundamental matter at finite isospin chemical potential. Using gauge/gravity duality, i.e. a probe of two flavor D7-branes embedded in the AdS black hole background, we find a critical temperature at which the system undergoes a second order phase transition. The critical exponent of this transition is one half and coincides with the result from mean field theory. In the thermodynamically favored phase, a flavor current acquires a vev and breaks an Abelian symmetry spontaneously. This new phase shows signatures known from superconductivity, such as an infinite dc conductivity and a gap in the frequency-dependent conductivity. The gravity setup allows for an explicit identification of the degrees of freedom in the dual field theory, as well as for a dual string picture of the condensation process.

  1. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  2. Coupling a QFT to a TQFT and duality

    International Nuclear Information System (INIS)

    Kapustin, Anton; Seiberg, Nathan

    2014-01-01

    We consider coupling an ordinary quantum field theory with an infinite number of degrees of freedom to a topological field theory. On ℝ d the new theory differs from the original one by the spectrum of operators. Sometimes the local operators are the same but there are different line operators, surface operators, etc. The effects of the added topological degrees of freedom are more dramatic when we compactify ℝ d , and they are crucial in the context of electric-magnetic duality. We explore several examples including Dijkgraaf-Witten theories and their generalizations both in the continuum and on the lattice. When we couple them to ordinary quantum field theories the topological degrees of freedom allow us to express certain characteristic classes of gauge fields as integrals of local densities, thus simplifying the analysis of their physical consequences

  3. Inflationary susceptibilities, duality and large-scale magnetic fields generation

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We investigate what can be said about the interaction of scalar fields with Abelian gauge fields during a quasi-de Sitter phase of expansion and under the assumption that the electric and the magnetic susceptibilities do not coincide. The duality symmetry, transforming the magnetic susceptibility into the inverse of the electric susceptibility, exchanges the magnetic and electric power spectra. The mismatch between the two susceptibilities determines an effective refractive index affecting the evolution of the canonical fields. The constraints imposed by the duration of the inflationary phase and by the magnetogenesis requirements pin down the rate of variation of the susceptibilities that is consistent with the observations of the magnetic field strength over astrophysical and cosmological scales but avoids back-reaction problems. The parameter space of this magnetogenesis scenario is wider than in the case when the susceptibilities are equal, as it happens when the inflaton or some other spectator field is ...

  4. Origin of Money: Dynamic Duality Between Necessity and Unnecessity

    Science.gov (United States)

    Tauchi, Yuka; Kamiura, Moto; Haruna, Taichi; Gunji, Yukio-Pegio

    2008-10-01

    We propose a mathematical model of economic agents to study origin of money. This multi-agent model is based on commodity theory of money, which says that a commodity used as money emerges from barter transaction. Each agent has a different value system which is given by a Heyting algebra, and exchanges one's commodities based on the value system. In each value system, necessity and unnecessity of commodities are expressed by some elements and their compliments on a Heyting Algebra. Moreover, the concept of the compliment is extended. Consequently, the duality of the necessity-unnecessity is weakened, and the exchanges of the commodities are promoted. The commodities which keeps being exchanged for a long time can correspond to money.

  5. Fundamentals of convex analysis duality, separation, representation, and resolution

    CERN Document Server

    Panik, Michael J

    1993-01-01

    Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and comple...

  6. Proving AGT conjecture as HS duality: Extension to five dimensions

    International Nuclear Information System (INIS)

    Mironov, A.; Morozov, A.; Shakirov, Sh.; Smirnov, A.

    2012-01-01

    We extend the proof from Mironov et al. (2011) , which interprets the AGT relation as the Hubbard-Stratonovich duality relation to the case of 5d gauge theories. This involves an additional q-deformation. Not surprisingly, the extension turns out to be straightforward: it is enough to substitute all relevant numbers by q-numbers in all the formulas, Dotsenko-Fateev integrals by the Jackson sums and the Jack polynomials by the MacDonald ones. The problem with extra poles in individual Nekrasov functions continues to exist, therefore, such a proof works only for β=1, i.e. for q=t in MacDonald's notation. For β≠1 the conformal blocks are related in this way to a non-Nekrasov decomposition of the LMNS partition function into a double sum over Young diagrams.

  7. Brane configurations and 4D field theory dualities

    International Nuclear Information System (INIS)

    Brandhuber, A.; Sonnenschein, J.; Yankielowicz, S.

    1997-01-01

    We study brane configurations which correspond to field theories in four dimension with N=2 and N=1 supersymmetry. In particular we discuss brane motions that translate to Seiberg's duality in N=1 models recently studied by Elitzur, Giveon and Kutasov. We investigate, using the brane picture, the moduli spaces of the dual theories. Deformations of these models like mass terms and vacuum expectation values of scalar fields can be identified with positions of branes. The map of these deformations between the electric and dual magnetic theories is clarified. The models we study reproduce known field theory results and we provide an example of new dual pairs with N=1 supersymmetry. Possible relations between brane configurations and non-supersymmetric field theories are discussed. (orig.)

  8. N=1 Mirror Symmetry and Open/Closed String Duality

    CERN Document Server

    Mayr, Peter

    2002-01-01

    We show that the exact N=1 superpotential of a class of 4d string compactifications is computed by the closed topological string compactified to two dimensions. A relation to the open topological string is used to define a special geometry for N=1 mirror symmetry. Flat coordinates, an N=1 mirror map for chiral multiplets and the exact instanton corrected superpotential are obtained from the periods of a system of differential equations. The result points to a new class of open/closed string dualities which map individual string world-sheets with boundary to ones without. It predicts an mathematically unexpected coincidence of the closed string Gromov-Witten invariants of one Calabi-Yau geometry with the open string invariants of the dual Calabi-Yau.

  9. On hyperbolic U4 manifolds with local duality

    International Nuclear Information System (INIS)

    Wallner, R.P.

    1982-01-01

    We use the decomposition of the Riemann/Cartan curvature 2-forms Ωsup(ij) in terms of their irreducible parts under the Lorentz group to examine the irreducible content of self- and anti-self double dual curvature forms Ωsup(+-ij) and their further refinements involving left and right duals. In the case of local duality (i.e. Ωsup(ij) = Ωsup(+-ij) locally), some consequences to curvature and torsion are easily derived in this way. As Riemann/Cartan space-times (U 4 -space-times) are subject to generalized gravity theories, some (vacuum) field equations proposed there are also taken into considerations. As an application to the various decompositions of curvature and torsion we point out their utility in the search of exact solutions of U 4 -field equations. To simplify notations and calculations, the calculus of exterior forms is used throughout. (Author)

  10. Deeply virtual Compton scattering from gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)

    2013-04-15

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  11. Deeply virtual Compton scattering from gauge/gravity duality

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Djurić, Marko

    2013-01-01

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  12. Duality reconstruction algorithm for use in electrical impedance tomography

    International Nuclear Information System (INIS)

    Abdullah, M.Z.; Dickin, F.J.

    1996-01-01

    A duality reconstruction algorithm for solving the inverse problem in electrical impedance tomography (EIT) is described. In this method, an algorithm based on the Geselowitz compensation (GC) theorem is used first to reconstruct an approximate version of the image. It is then fed as a first guessed data to the modified Newton-Raphson (MNR) algorithm which iteratively correct the image until a final acceptable solution is reached. The implementation of the GC and MNR based algorithms using the finite element method will be discussed. Reconstructed images produced by the algorithm will also be presented. Consideration is also given to the most computationally intensive aspects of the algorithm, namely the inversion of the large and sparse matrices. The methods taken to approximately compute the inverse ot those matrices will be outlined. (author)

  13. Approaches to emergent spacetime in gauge/gravity duality

    Science.gov (United States)

    Sully, James Kenneth

    2013-08-01

    In this thesis we explore approaches to emergent local spacetime in gauge/gravity duality. We first conjecture that every CFT with a large-N type limit and a parametrically large gap in the spectrum of single-trace operators has a local bulk dual. We defend this conjecture by counting consistent solutions to the four-point function in simple scalar models and matching to the number of local interaction terms in the bulk. Next, we proceed to explicitly construct local bulk operators using smearing functions. We argue that this construction allows one to probe inside black hole horizons for only short times. We then suggest that the failure to construct bulk operators inside a black hole at late times is indicative of a break-down of local effective field theory at the black hole horizon. We argue that the postulates of black hole complementarity are inconsistent and cannot be realized within gauge/gravity duality. We argue that the most conservative solution is a firewall at the black hole horizon and we critically explore alternative resolutions. We then examine the CGHS model of two-dimensional gravity to look for dynamical formation of firewalls. We find that the CGHS model does not exhibit firewalls, but rather contains long-lived remnants. We argue that, while this is consistent for the CGHS model, it cannot be so in higher-dimensional theories of gravity. Lastly, we turn to F-theory, and detail local and global obstructions to writing elliptic fibrations in Tate form. We determine more general possible forms.

  14. Logic, algebra and topology: investigations into canonical extensions, duality theory and point-free topology

    NARCIS (Netherlands)

    Vosmaer, J.

    2010-01-01

    In this dissertation we discuss three subjects: canonical extensions of lattice-based algebras, Stone duality for distributive lattices with operators, and a generalization of the point-free Vietoris powerlocale construction.

  15. Self-duality in Maxwell-Chern-Simons theories with non minimal coupling with matter field

    CERN Document Server

    Chandelier, F; Masson, T; Wallet, J C

    2000-01-01

    We consider a general class of non-local MCS models whose usual minimal coupling to a conserved current is supplemented with a (non-minimal) magnetic Pauli-type coupling. We find that the considered models exhibit a self-duality whenever the magnetic coupling constant reaches a special value: the partition function is invariant under a set of transformations among the parameter space (the duality transformations) while the original action and its dual counterpart have the same form. The duality transformations have a structure similar to the one underlying self-duality of the (2+1)-dimensional Z sub n - Abelian Higgs model with Chern-Simons and bare mass term.

  16. Nuclearity, split-property and duality for the Klein-Gordon field in curved spacetime

    International Nuclear Information System (INIS)

    Verch, R.

    1993-05-01

    Nuclearity, Split-Property and Duality are establihed for the nets of von Neumann algebras associated with the representations of distinguished states of the massive Klein-Gordon field propagating in particular classes of curved spacetimes. (orig.)

  17. String duality transformations in f(R) gravity from Noether symmetry approach

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gionti, Gabriele S.J. [Specola Vaticana, Vatican City, V-00120, Vatican City State (Vatican City State, Holy See); Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr [Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d' Astrophysique de Paris, GReCO, 98bis Bd Arago, 75014 Paris (France)

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion.

  18. String duality transformations in f(R) gravity from Noether symmetry approach

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion

  19. Tunneling time distribution by means of Nelson's quantum mechanics and wave-particle duality

    International Nuclear Information System (INIS)

    Hara, Koh'ichiro; Ohba, Ichiro

    2003-01-01

    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the existence of 'wave-particle duality' in the tunneling phenomena

  20. Duality for Multitime Multiobjective Ratio Variational Problems on First Order Jet Bundle

    Directory of Open Access Journals (Sweden)

    Mihai Postolache

    2012-01-01

    Full Text Available We consider a new class of multitime multiobjective variational problems of minimizing a vector of quotients of functionals of curvilinear integral type. Based on the efficiency conditions for multitime multiobjective ratio variational problems, we introduce a ratio dual of generalized Mond-Weir-Zalmai type, and under some assumptions of generalized convexity, duality theorems are stated. We prove our weak duality theorem for efficient solutions, showing that the value of the objective function of the primal cannot exceed the value of the dual. Direct and converse duality theorems are stated, underlying the connections between the values of the objective functions of the primal and dual programs. As special cases, duality results of Mond-Weir-Zalmai type for a multitime multiobjective variational problem are obtained. This work further develops our studies in (Pitea and Postolache (2011.

  1. Introduction of the chronon in the theory of electron and the wave-particle duality

    International Nuclear Information System (INIS)

    Caldirola, P.

    1984-01-01

    The author summarizes the more important results obtained in the electron theory based on the chronon and stresses some peculiarities of the wave-particle duality directly connected with the introduction of the chronon. (Auth.)

  2. Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2010-01-01

    Full Text Available We apply the quadratic penalization technique to derive strong Lagrangian duality property for an inequality constrained invex program. Our results extend and improve the corresponding results in the literature.

  3. CEO Duality e performance. Il ruolo del controllo familiare in periodi di crisi

    OpenAIRE

    Tenuta, Paolo; Cambrea, Domenico Rocco; Iusi, Giorgio

    2016-01-01

    There are several studies in the literature which analyse the effect of CEO duality on corporate performance, reaching mixed conclusions. Using agency theory, stewardship theory and socio-emotional wealth theory perspectives, we examine the relationship between CEO duality and the performance of Italian publicly listed companies over the period 2003–2013. In addition, considering the presence of conflicting empirical evidence, which could lead to a positive effect rather than a negative one, ...

  4. Reduction of the Poincare gauge field equations by means of a duality rotation

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-10-01

    A rather general procedure is developed in order to reduce the two field equations of the Poincare gauge theory of gravity by a modified ansatz for the curvature tensor involving double duality. In the case of quasi-linear Lagrangians of the Yang-Mills type it is shown that non-trivial torsion solutions with duality properties necessarily ''live'' on an Einstein space as metrical background. (author)

  5. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  6. S- and T-self-dualities in dilatonic f(R) theories

    Energy Technology Data Exchange (ETDEWEB)

    Rador, Tonguc [Bogazici University, Department of Physics, Istanbul (Turkey); Izmir Institute of Technology, Department of Physics, Izmir (Turkey)

    2017-12-15

    We search for theories, in general spacetime dimensions, that would incorporate a dilaton and higher powers of the scalar Ricci curvature such that they have exact S- or T-self-dualities. The theories we find are free of Ostrogradsky instabilities. We also show that within the framework we are confining ourselves, a theory of the form mentioned above cannot have both T- and S-dualities except for the case where the action is linear in the scalar curvature. (orig.)

  7. Challenges in assessing college students' conception of duality: the case of infinity

    Science.gov (United States)

    Babarinsa-Ochiedike, Grace Olutayo

    Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study

  8. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  9. The quantum poisson-Lie T-duality and mirror symmetry

    International Nuclear Information System (INIS)

    Parkhomenko, S.E.

    1999-01-01

    Poisson-Lie T-duality in quantum N=2 superconformal Wess-Zumino-Novikov-Witten models is considered. The Poisson-Lie T-duality transformation rules of the super-Kac-Moody algebra currents are found from the conjecture that, as in the classical case, the quantum Poisson-Lie T-duality transformation is given by an automorphism which interchanges the isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of the model. It is shown that quantum Poisson-Lie T-duality acts on the N=2 super-Virasoro algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors it is a trivial transformation while in another chirality sector it changes the sign of the U(1) current and interchanges the spin-3/2 currents. A generalization of Poisson-Lie T-duality for the quantum Kazama-Suzuki models is proposed. It is shown that quantum Poisson-Lie T-duality acts in these models as a mirror symmetry also

  10. A requiem for AdS4×C P3 fermionic self-T duality

    Science.gov (United States)

    O'Colgáin, E.; Pittelli, A.

    2016-11-01

    Strong evidence for dual superconformal symmetry in N =6 superconformal Chern-Simons theory has fueled expectations that the AdS /CFT dual geometry AdS4×C P3 is self-dual under T duality. We revisit the problem to identify commuting bosonic and fermionic isometries in a systematic fashion and show that fermionic T duality, a symmetry originally proposed by Berkovits and Maldacena, inevitably leads to a singularity in the dilaton transformation. We show that TsT deformations commute with fermionic T duality and comment on T duality in the corresponding sigma model. Our results rule out self-duality based on fermionic T duality for AdS4×C P3 or its TsT deformations but leave the door open for new possibilities.

  11. R4 terms in supergravities via T -duality constraint

    Science.gov (United States)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-05-01

    It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.

  12. Analytic continuation by duality estimation of the S parameter

    International Nuclear Information System (INIS)

    Ignjatovic, S. R.; Wijewardhana, L. C. R.; Takeuchi, T.

    2000-01-01

    We investigate the reliability of the analytic continuation by duality (ACD) technique in estimating the electroweak S parameter for technicolor theories. The ACD technique, which is an application of finite energy sum rules, relates the S parameter for theories with unknown particle spectra to known OPE coefficients. We identify the sources of error inherent in the technique and evaluate them for several toy models to see if they can be controlled. The evaluation of errors is done analytically and all relevant formulas are provided in appendixes including analytical formulas for approximating the function 1/s with a polynomial in s. The use of analytical formulas protects us from introducing additional errors due to numerical integration. We find that it is very difficult to control the errors even when the momentum dependence of the OPE coefficients is known exactly. In realistic cases in which the momentum dependence of the OPE coefficients is only known perturbatively, it is impossible to obtain a reliable estimate. (c) 2000 The American Physical Society

  13. Duality, exchange-degeneracy breaking, and exotic states

    International Nuclear Information System (INIS)

    Goldstein, G.R.; Haridas, P.

    1979-01-01

    We study the connection between exchange-degeneracy breaking and multiquark states within the framework of a highly constrained dual approach. We show that M 4 (baryonium) states emerge at the daughter trajectory level as a consequence of small exchange-degeneracy breaking in the meson-meson system (approx.delta) and larger exchange-degeneracy breaking of the baryon trajectories in the meson-baryon system (approx.epsilon). The M 4 states are coupled weakly to external mesons in proportion to the breaking parameter delta. Assuming M 4 couplings to B-barB channels are strong, as determined by duality with normal mesons in the B-barB system, consistency requires epsilon approx. √delta-bar, thereby relating the larger breaking of baryon trajectories to the violation of the Okubo-Zweig-Iizuka-type rule for M 4 . It is shown that exotic baryon states, B 5 , also emerge from this scheme at the daughter level and that dibaryons will appear at the second daughter level

  14. Census taking in the hat: FRW/CFT duality

    International Nuclear Information System (INIS)

    Sekino, Yasuhiro; Susskind, Leonard

    2009-01-01

    In this paper a holographic description of eternal inflation is developed. We focus on the description of an open Friedmann-Robertson-Walker (FRW) universe that results from a tunneling event in which a false vacuum with positive vacuum energy decays to a supersymmetric vacuum with vanishing cosmological constant. The observations of a 'census taker' in the final vacuum can be organized into a holographic dual conformal field theory that lives on the asymptotic boundary of space. We refer to this bulk-boundary correspondence as FRW/CFT duality. The dual conformal field theory (CFT) is a Euclidean two-dimensional theory that includes a Liouville 2D gravity sector describing geometric fluctuations of the boundary. The renormalization-group flow of the theory is richer than in the AdS/CFT correspondence, and generates two space-time dimensions--one spacelike and one timelike. We discuss a number of phenomena such as bubble collisions, and the Garriga, Guth Vilenkin 'persistence of memory', from the dual viewpoint.

  15. Hyperunified field theory and gravitational gauge-geometry duality

    International Nuclear Information System (INIS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  16. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  17. Probing the cosmic distance duality relation using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi 110078 (India); Holanda, R.F.L., E-mail: montirana1992@gmail.com, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Aracaju—SE (Brazil)

    2017-07-01

    The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η( z ) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ{sub 0} and Einstein radius θ {sub E} . In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance D {sub A} {sub ol} of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.

  18. T-duality and α{sup ′}-corrections

    Energy Technology Data Exchange (ETDEWEB)

    Marqués, Diego [Instituto de Astronomía y Física del Espacio (IAFE-CONICET-UBA),Buenos Aires (Argentina); Nuñez, Carmen A. [Instituto de Astronomía y Física del Espacio (IAFE-CONICET-UBA),Buenos Aires (Argentina); Departamento de Física, FCEyN, Universidad de Buenos Aires (UBA),Buenos Aires (Argentina)

    2015-10-13

    We construct an O(d,d) invariant universal formulation of the first-order α{sup ′}-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z{sub 2}-parity transformation that changes the sign of the two-form field. The Z{sub 2}-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z{sub 2}-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O(d,d) structure of the theory and the (non-)covariance of the required field redefinitions.

  19. Fuzzy bags, Polyakov loop and gauge/string duality

    Directory of Open Access Journals (Sweden)

    Zuo Fen

    2014-01-01

    Full Text Available Confinement in SU(N gauge theory is due to the linear potential between colored objects. At short distances, the linear contribution could be considered as the quadratic correction to the leading Coulomb term. Recent lattice data show that such quadratic corrections also appear in the deconfined phase, in both the thermal quantities and the Polyakov loop. These contributions are studied systematically employing the gauge/string duality. “Confinement” in N${\\cal N}$ = 4 SU(N Super Yang-Mills (SYM theory could be achieved kinematically when the theory is defined on a compact space manifold. In the large-N limit, deconfinement of N${\\cal N}$ = 4 SYM on S3${{\\Bbb S}^3}$ at strong coupling is dual to the Hawking-Page phase transition in the global Anti-de Sitter spacetime. Meantime, all the thermal quantities and the Polyakov loop achieve significant quadratic contributions. Similar results can also be obtained at weak coupling. However, when confinement is induced dynamically through the local dilaton field in the gravity-dilaton system, these contributions can not be generated consistently. This is in accordance with the fact that there is no dimension-2 gauge-invariant operator in the boundary gauge theory. Based on these results, we suspect that quadratic corrections, and also confinement, should be due to global or non-local effects in the bulk spacetime.

  20. Hyperunified field theory and gravitational gauge-geometry duality

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)

    2018-01-15

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  1. Critical behavior and duality in extended Sine-Gordon theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Holman, R.

    1991-01-01

    We study the critical properties of vectorial sine-Gordon theories based on the root system of simply-laced Lie algebras. We introduce the dual operators and study the renormalization aspects of these theories. These models are identified with vectorial Coulomb gas models of electric and magnetic charges and generalized Toda field theories. We prove that these theories are consistently renormalizable for simply-laced Lie algebras, but non-renormalizable in general in the non-simply-laced case. These models provide a description for the statistical mechanics of melting in the SU(3) case. They also provide a simplified model for strings compactified on root lattices. We compute the RG beta functions to quadratic order for general simply-laced algebras and find that in general there is a Weyl singlet, self-dual fixed point. This fixed point describes a critical theory with condensates of electric and magnetic charges corresponding to tachyonic and winding modes in string language. The different phases are related by Weyl and duality symmetry. The phase structure is conjectured in the general case, and analyzed in detail for SU(3) and SO(6). We compute Zamolodchikov's c-function to cubic order in the couplings in the general case and the conformal anomaly at the self-dual fixed point for SU(N). (orig.)

  2. Finite Heisenberg groups and Seiberg dualities in quiver gauge theories

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.

    2006-01-01

    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers

  3. Non-Abelian duality in N = 4 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.

    1996-03-01

    A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs

  4. Improvising information technology projects through the duality of structure

    Directory of Open Access Journals (Sweden)

    Tiko Iyamu

    2017-08-01

    Full Text Available Background: There is always emphasis on information technology (IT projects because of their significance in organisations. Thus, efforts and resources are reciprocally committed to ensure the successes. Still, failure of IT projects in many organisations remains high and affects competitiveness. As recourse for remedy, different techniques and approaches have been employed. However, little or no progress has been made in increasing the success rate of IT projects in many organisations. Objectives: The objective of this study was to examine the factors that influence and impact IT projects, improvisation and how improvisation manifests. Method: The study was carried out using a single case study approach. Qualitative data were collected and duality of structure from the perspective of structuration theory was used as lens to guide the analysis. Results: Findings from this study reveal how reproduction of actions manifests from non-technical factors, such as cultural value, organisational structure, power relationship, human capacity, know-how and change management. These factors help to gain a more constructive and better understanding of how IT projects improvisation is influenced or impacted by non-technical factors in organisations. Conclusion: The study is intended to benefit both practitioners and academics. Some of the benefits will be gained from fresh perspectives on the complexities of IT projects improvisation, which are often caused by various seen and unforeseen non-technical factors. This includes how actions from relationship, know-how about facilities and communicative scheme are produced and reproduced.

  5. On the Duality of Forward and Inverse Light Transport.

    Science.gov (United States)

    Chandraker, Manmohan; Bai, Jiamin; Ng, Tian-Tsong; Ramamoorthi, Ravi

    2011-10-01

    Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, it can be shown that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large light transport matrix, which is impractical for realistic resolutions using standard techniques. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion--analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering--that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation, to display images free of global illumination artifacts in real-world environments.

  6. Hyperunified field theory and gravitational gauge-geometry duality

    Science.gov (United States)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  7. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  8. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    Science.gov (United States)

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  9. Power centroid radar and its rise from the universal cybernetics duality

    Science.gov (United States)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  10. Probing the distance-duality relation with high- z data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande—PB (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CEP 05508-090, São Paulo—SP (Brazil); Lima, F.S. [Departamento de Física, Universidade Federal de Campina Grande, 58429-900, Campina Grande—PB (Brazil); Alcaniz, J.S., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: limasdl@bol.com.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro—RJ (Brazil)

    2017-09-01

    Measurements of strong gravitational lensing jointly with type Ia supernovae (SNe Ia) observations have been used to test the validity of the cosmic distance duality relation (CDDR), D{sub L}( z )/[(1+ z ){sup 2D{sub A}}( z )]=η=1, where D{sub L}(z) and D{sub A}(z) are the luminosity and the angular diameter distances to a given redshift z , respectively. However, several lensing systems lie in the interval 1.4 ≤ z ≤ 3.6 i.e., beyond the redshift range of current SNe Ia compilations ( z ≈ 1.50), which prevents this kind of test to be fully explored. In this paper, we circumvent this problem by testing the CDDR considering observations of strong gravitational lensing along with SNe Ia and (a subsample from) the latest gamma-ray burst distance modulus data, whose redshift range is 0.033 ≤ z ≤ 9.3. We parameterize their luminosity distances with a second degree polynomial function and search for possible deviations from the CDDR validity by using four different η( z ) functions: η( z )=1+η{sub 0z}, η( z )=1+η{sub 0z}/(1+ z ), η( z )=(1+ z ){sup η{sub 0}} and η( z )=1+η{sub 0ln}(1+ z ). Unlike previous tests done at redshifts lower than 1.50, the likelihood for η{sub 0} depends strongly on the η( z ) function considered, but we find no significant deviation from the CDDR validity (η{sub 0}=0). However, our analyses also point to the fact that caution is needed when one fits data in higher redshifts to test the CDDR as well as a better understanding of the mass distribution of lenses also is required for more accurate results.

  11. Gauge/gravity duality. Exploring universal features in quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Klug, Steffen

    2013-07-09

    In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS{sub 5}/CFT{sub 4} correspondence between N=4 supersymmetric SU(N{sub c}) Yang-Mills theory in four dimensions with vanishing β-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS{sub 5} x S{sup 5} spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N{sub c} limit is equal to the on-shell supergravity partition evaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite

  12. Gauge/gravity duality. Exploring universal features in quantum matter

    International Nuclear Information System (INIS)

    Klug, Steffen

    2013-01-01

    In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS 5 /CFT 4 correspondence between N=4 supersymmetric SU(N c ) Yang-Mills theory in four dimensions with vanishing β-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS 5 x S 5 spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N c limit is equal to the on-shell supergravity partition evaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite density states. Thus, all aspects

  13. An easy way to obtain strong duality results in linear, linear semidefinite and linear semi-infinite programming

    NARCIS (Netherlands)

    Pop, P.C.; Still, Georg J.

    1999-01-01

    In linear programming it is known that an appropriate non-homogeneous Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite

  14. Horizon-preserving dualities and perturbations in non-canonical scalar field cosmologies

    International Nuclear Information System (INIS)

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2012-01-01

    We generalize the cosmological duality between inflation and cyclic contraction under the interchange a↔H to the case of non-canonical scalar field theories with varying speed of sound. The single duality in the canonical case generalizes to a family of three dualities constructed to leave the cosmological acoustic horizon invariant. We find three classes of models: (I) DBI inflation, (II) the non-canonical generalization of cyclic contraction, and (III) a new cosmological solution with rapidly decreasing speed of sound and relatively slowly growing scale factor, which we dub stalled cosmology. We construct dual analogs to the inflationary slow roll approximation, and solve for the curvature perturbation in all three cases. Both cyclic contraction and stalled cosmology predict a strongly blue spectrum for the curvature perturbations inconsistent with observations

  15. Level-rank duality of untwisted and twisted D-branes

    International Nuclear Information System (INIS)

    Naculich, Stephen G.; Schnitzer, Howard J.

    2006-01-01

    Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases

  16. On the duality in CPT-even Lorentz-breaking theories

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, A.P.B. [Departamento de Policia Federal, Sao Paulo (Brazil); Ribeiro, R.F.; Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica (Brazil)

    2015-07-15

    We generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is shown using the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical. (orig.)

  17. Splitting spacetime and cloning qubits: linking no-go theorems across the ER=EPR duality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Pollack, Jason; Remmen, Grant N. [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-15

    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Some statistical aspects of the spinor field Fermi-Bose duality

    Directory of Open Access Journals (Sweden)

    V.M. Simulik

    2012-12-01

    Full Text Available The structure of 29-dimensional extended real Clifford-Dirac algebra, which has been introduced in our paper Phys. Lett. A, 2011, Vol. 375, 2479, is considered in brief. Using this algebra, the property of Fermi-Bose duality of the Dirac equation with nonzero mass is proved. It means that Dirac equation can describe not only the fermionic but also the bosonic states. The proof of our assertion based on the examples of bosonic symmetries, solutions and conservation laws is given. Some statistical aspects of the spinor field Fermi-Bose duality are discussed.

  19. On the duality in CPT-even Lorentz-breaking theories

    International Nuclear Information System (INIS)

    Scarpelli, A.P.B.; Ribeiro, R.F.; Nascimento, J.R.; Petrov, A.Yu.

    2015-01-01

    We generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is shown using the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical. (orig.)

  20. The connexion of duality and causal properties for generalized free fields

    International Nuclear Information System (INIS)

    Garber, W.D.

    1975-01-01

    It is shown that the time-slice axiom and the diamond property are equivalent for the generalized free field. If, in addition, there is a mass gap, duality is equivalent to either causality requirement. It is further shown that the local rings associated with certain space-time regions are factors in the case of causal generalized free fields with mass gap. Necessary and sufficient conditions for causality and duality and some examples for causal and acausal generalized free fields are also given. (orig.) [de

  1. Impact of Duality Violations on Spectral Sum Rule analyses

    International Nuclear Information System (INIS)

    Cata, Oscar

    2007-01-01

    Recent sum rule analyses on the two-point correlator have led to significant discrepancies in the values found for the OPE condensates, most dramatically in the dimension eight condensate and to a lesser extent in the dimension six one [R. Barate et al., ALEPH Collaboration, Eur. Phys. J. C 4 (1998) 409; K. Ackerstaff et al., OPAL Collaboration, Eur. Phys. J. C 7 (1999) 571, (arXiv:hep-ex/9808019); S. Peris, B. Phily and E. de Rafael, Phys. Rev. Lett. 86 (2001) 14, (arXiv:hep-ph/0007338); S. Friot, D. Greynat and E. de Rafael, JHEP 0410 (2004) 043, (arXiv:hep-ph/0408281); M. Davier, L. Girlanda, A. Hocker and J. Stern, Phys. Rev. D 58 (1998) 096014, (arXiv:hep-ph/9802447); B.L. Ioffe and K.N. Zyablyuk, Nucl. Phys. A 687 (2001) 437, (arXiv:hep-ph/0010089). K.N. Zyablyuk, Eur. Phys. J. C 38 (2004) 215, (arXiv:hep-ph/0404230); J. Bijnens, E. Gamiz and J. Prades, JHEP 0110 (2001) 009, (arXiv:hep-ph/0108240); C.A. Dominguez and K. Schilcher, Phys. Lett. B 581 (2004) 193, (arXiv:hep-ph/0309285); J. Rojo and J. I. Latorre, JHEP 0401 (2004) 055, (arXiv:hep-ph/0401047); V. Cirigliano, E. Golowich and K. Maltman, Phys. Rev. D 68 (2003) 054013, (arXiv:hep-ph/0305118); S. Ciulli, C. Sebu, K. Schilcher and H. Spiesberger, Phys. Lett. B 595 (2004) 359, (arXiv:hep-ph/0312212). S. Narison, (arXiv:hep-ph/0412152)]. Precise knowledge of these condensates is of relevance in kaon decays [M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 457 (1999) 227, (arXiv:hep-ph/9812471); J.F. Donoghue and E. Golowich, Phys. Lett. B 478 (2000) 172, (arXiv:hep-ph/9911309); M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 508 (2001) 117, (arXiv:hep-ph/0102017)] and therefore it seems mandatory to assess the actual impact of what is commonly neglected in spectral sum rules, most prominently the issue of duality violations. We will explicitly compute them in a toy model and show that they are a priori non-negligible

  2. Method of analytic continuation by duality in QCD: Beyond QCD sum rules

    International Nuclear Information System (INIS)

    Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.

    1986-01-01

    We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features

  3. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    Science.gov (United States)

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  4. Quasi-elastic neutrino production of charmed baryons from the point of view of local duality

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1990-01-01

    The cross sections of quasi-elastic neutrino production of Λ c + , Σ c + , Σ c ++ - charmed baryons have been obtained on the basis of Bloom-Gilman local duality and approximate SU 4 -symmetry of strong interactions. 17 refs.; 3 figs

  5. Tension Awareness of Stakeholders in Large Technology Projects : A Duality Perspective

    NARCIS (Netherlands)

    Boonstra, Albert; van Offenbeek, Marjolein; Vos, Janita F.J.

    2017-01-01

    This article analyzes the tensions evolving from project management dilemmas and how they relate to stakeholders in large technology projects. The study addresses an organization-wide electronic health record implementation in a large hospital. It adopts a duality lens in exploring whether and how

  6. How to Teach Hicksian Compensation and Duality Using a Spreadsheet Optimizer

    Science.gov (United States)

    Ghosh, Satyajit; Ghosh, Sarah

    2007-01-01

    Principle of duality and numerical calculation of income and substitution effects under Hicksian Compensation are often left out of intermediate microeconomics courses because they require a rigorous calculus based analysis. But these topics are critically important for understanding consumer behavior. In this paper we use excel solver--a…

  7. T-duality transformation and universal structure of noncritical string field theory

    International Nuclear Information System (INIS)

    Asatani, T.; Kuroki, T.; Okawa, Y.; Sugino, F.; Yoneya, T.

    1997-01-01

    We discuss a T-duality transformation for the c=1/2 matrix model for the purpose of studying duality transformations in a possible toy example of nonperturbative frameworks of string theory. Our approach is to first investigate the scaling limit of the Schwinger-Dyson equations and the stochastic Hamiltonian in terms of the dual variables and then compare the results with those using the original spin variables. It is shown that the c=1/2 model in the scaling limit is T-duality symmetric in the sphere approximation. In the case of the standard two-matrix model, however, the duality symmetry is violated when the higher-genus effects are taken into account, due to the nonsymmetrical appearence of global Z 2 vector fields corresponding to nontrivial homology cycles. Some universal properties of the stochastic Hamiltonians which play an important role in discussing the scaling limit and have been discussed in a previous work by Sugino and Yoneya are refined in both the original and dual formulations. We also report a number of new explicit results for various amplitudes containing macroscopic loop operators. copyright 1997 The American Physical Society

  8. Equivariant Homotopy Theory and K-Theory of Exact Categories with Duality

    DEFF Research Database (Denmark)

    Moi, Kristian Jonsson

    This thesis has two main parts. The first part, which consists of two papers, is concerned with the role of equivariant loop spaces in the K-theory of exact categories with duality. We prove a group completion-type result for topological monoids with anti-involution. The methods in this proof als...

  9. Time scales: from Nabla calculus to Delta calculus and vice versa via duality

    OpenAIRE

    Caputo, M. Cristina

    2009-01-01

    In this note we show how one can obtain results from the nabla calculus from results on the delta calculus and vice versa via a duality argument. We provide applications of the main results to the calculus of variations on time scales.

  10. Geometric representation of the generator of duality in massless and massive p-form field theories

    International Nuclear Information System (INIS)

    Contreras, Ernesto; Martinez, Yisely; Leal, Lorenzo

    2010-01-01

    We study the invariance under duality transformations in massless and massive p-form field theories and obtain the Noether generators of the infinitesimal transformations that correspond to this symmetry. These generators can be realized in geometrical representations that generalize the loop representation of the Maxwell field, allowing for a geometrical interpretation which is studied.

  11. Wave-particle duality through an extended model of the scale relativity theory

    International Nuclear Information System (INIS)

    Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P

    2008-01-01

    Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.

  12. Induced deformation of the canonical structure and UV/IR duality in (1+1)D

    International Nuclear Information System (INIS)

    Grigorio, L. S.; Guimaraes, M. S.; Wotzasek, C.

    2008-01-01

    The purpose of this work is twofold. Working in the framework of (1+1)D Lorentz violating field theories, we will investigate first the general claim that fermionic interactions may be equivalent to a deformation of the canonical structure of the theory. Second, the deformed theory will be studied using duality reasoning to address the behavior of the infrared and ultraviolet regimes

  13. Duality walls and defects in 5dN=1 theories

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kim, Hee-Cheol

    2017-01-01

    We propose an explicit description of “duality walls” which encode at low energy the global symmetry enhancement expected in the UV completion of certain five-dimensional gauge theories. The proposal is supported by explicit localization computations and implies that the instanton partition function of these theories satisfies novel and unexpected integral equations.

  14. (Non-)Abelian Kramers-Wannier duality and topological field theory

    CERN Document Server

    Severa, Pavol

    2002-01-01

    We study a connection between duality and topological field theories. First, 2d Kramers-Wannier duality is formulated as a simple 3d topological claim (more or less Poincare duality), and a similar formulation is given for higher-dimensional cases. In this form they lead to simple TFTs with boundary coloured in two colours. The statistical models live on the boundary of these TFTs, as in the CS/WZW or AdS/CFT correspondence. Classical models (Poisson-Lie T-duality) suggest a non-abelian generalization in the 2dcase, with abelian groups replaced by quantum groups. Amazingly, the TFT formulation solves the problem without computation: quantum groups appear in pictures, independently of the classical motivation. Connection with Chern-Simons theory appears at the symplectic level, and also in the pictures of the Drinfeld double: Reshetikhin-Turaev invariants of links in 3-manifolds, computed from the double, are included in these TFTs. All this suggests nice phenomena in higher dimensions.

  15. Observations on Integral and Continuous U-duality Orbits in N=8 Supergravity

    CERN Document Server

    Borsten, L; Duff, M J; Ferrara, S; Marrani, A; Rubens, W

    2010-01-01

    One would often like to know when two a priori distinct extremal black p-brane solutions are in fact U-duality related. In the classical supergravity limit the answer for a large class of theories has been known for some time. However, in the full quantum theory the U-duality group is broken to a discrete subgroup and the question of U-duality orbits in this case is a nuanced matter. In the present work we address this issue in the context of N=8 supergravity in four, five and six dimensions. The purpose of this note is to present and clarify what is currently known about these discrete orbits while at the same time filling in some of the details not yet appearing in the literature. To this end we exploit the mathematical framework of integral Jordan algebras and Freudenthal triple systems. The charge vector of the dyonic black string in D=6 is SO(5,5;Z) related to a two-charge reduced canonical form uniquely specified by a set of two arithmetic U-duality invariants. Similarly, the black hole (string) charge ...

  16. Duality in the U(1) Higgs model with an external field

    International Nuclear Information System (INIS)

    Damgaard, P.H.

    1988-07-01

    An external electromagnetic field is coupled to the lattice U(1) Higgs model in a Villain form. Duality transformations are then used to express the partition function in terms of an effective Lagrangian of topological excitations and their couplings to the external field. Consequences for the phase diagram are derived. (orig.)

  17. The origins of duality of patterning in artificial whistled languages

    NARCIS (Netherlands)

    Verhoef, T.

    2012-01-01

    In human speech, a finite set of basic sounds is combined into a (potentially) unlimited set of well-formed morphemes. Hockett (1960) placed this phenomenon under the term 'duality of patterning' and included it as one of the basic design features of human language. Of the thirteen basic design

  18. Non-geometric flux vacua, S-duality and algebraic geometry

    International Nuclear Information System (INIS)

    Guarino, Adolfo; Weatherill, George James

    2009-01-01

    The four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactified on a T 6 /Z 2 x Z 2 orientifold with O3/O7-planes. We build upon the results of recent works and develop a systematic method for solving all the flux constraints based on the algebra structure underlying the fluxes. Starting with the T-duality invariant supergravity, we find that the fluxes needed to restore S-duality can be simply implemented as linear deformations of the gauge subalgebra by an element of its second cohomology class. Algebraic geometry techniques are extensively used to solve these constraints and supersymmetric vacua, centering our attention on Minkowski solutions, become systematically computable and are also provided to clarify the methods.

  19. Six-dimensional Origin of $\\mathcal{N}=4$ SYM with Duality Defects

    CERN Document Server

    Assel, Benjamin

    2016-12-14

    We study the topologically twisted compactification of the 6d $(2,0)$ M5-brane theory on an elliptically fibered K\\"ahler three-fold preserving two supercharges. We show that upon reducing on the elliptic fiber, the 4d theory is $\\mathcal{N}=4$ Super-Yang Mills, with varying complexified coupling $\\tau$, in the presence of defects. For abelian gauge group this agrees with the so-called duality twisted theory, and we determine a non-abelian generalization to $U(N)$. When the elliptic fibration is singular, the 4d theory contains 3d walls (along the branch-cuts of $\\tau$) and 2d surface defects, around which the 4d theory undergoes $SL(2,\\mathbb{Z})$ duality transformations. Such duality defects carry chiral fields, which from the 6d point of view arise as modes of the two-form $B$ in the tensor multiplet. Each duality defect has a flavor symmetry associated to it, which is encoded in the structure of the singular elliptic fiber above the defect. Generically 2d surface defects will intersect in points in 4d, wh...

  20. Local quark-hadron duality of nucleon spin structure functions with target mass corrections

    International Nuclear Information System (INIS)

    Dong, Y.B. . E-mail dongyb@mail.ihep.ac.cn; Chen, D.Y.

    2007-01-01

    Target mass corrections to nucleon spin structure functions are analyzed. Our results show that the corrections are important to the structure functions in a large x region. Moreover, they play a remarkable role to the local quark-hadron duality of the nucleon spin structure functions in three individual inelastic resonance production regions

  1. Duality walls and defects in 5dN=1 theories

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide; Kim, Hee-Cheol [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2017-01-05

    We propose an explicit description of “duality walls” which encode at low energy the global symmetry enhancement expected in the UV completion of certain five-dimensional gauge theories. The proposal is supported by explicit localization computations and implies that the instanton partition function of these theories satisfies novel and unexpected integral equations.

  2. Las dualidades de la educación The dualities of education

    Directory of Open Access Journals (Sweden)

    Juan Fernando Sellés

    2007-06-01

    Full Text Available Este trabajo sostiene que el método de estudio de la educación humana no puede suponer que el hombre sea simple, puesto que está conformado por pluralidad de dualidades. Encuadra la educación dentro de las dualidades radicales humanas. Primero, distingue entre acto de ser y esencia en el hombre. Tras mostrar las dualidades del acto de ser humano (las trascendentales y las de la esencia, se centra en la exposición de las dualidades educación-amor personal, educación-familia, las de varón-mujer, las de educación masculina-educación femenina, las de padres-hijos y la consecuente dualidad educativa paterno-filial, la dualidad hogar-colegio, la de educar-aprender, las de empresa-universidad, y por último, la de educación personal humana-educación personal divina.This paper claims that the study method of human education cannot not assume that man is a single entity, as man is composed by multiple dualities. Education is framed within radical human realities. First, a distinction is made between act of being and essence. After showing the dualities of the act of being human (or transcendental dualities and those of essence, the paper highlights the dualities: education-personal love, education-family, male-female, masculine education-feminine education, parents-children and the consequent dualities: paternal-filial, home-school, educate-learn, enterprise-university and finally human personal education-divine personal education.

  3. Accounting, accountability and ethics in public sector organizations: towards a duality between instrumental accountability and relational response-ability

    NARCIS (Netherlands)

    Vosselman, E.G.J.

    2016-01-01

    This article challenges the performativity of organizational economics in the construction of “nexus-of-contract” organizations (or market bureaucracies) and inherent frames of instrumental accountability in the public sector. It argues for a duality between instrumental accountability and

  4. Accounting, accountability and ethics in public sector organizations: towards a duality between instrumental accountability and relational response-ability.

    NARCIS (Netherlands)

    Vosselman, E.G.J.

    2016-01-01

    This article challenges the performativity of organizational economics in the construction of “nexus-of-contract” organizations (or market bureaucracies) and inherent frames of instrumental accountability in the public sector. It argues for a duality between instrumental accountability and

  5. M2-brane surface operators and gauge theory dualities in Toda

    International Nuclear Information System (INIS)

    Gomis, Jaume; Floch, Bruno Le

    2016-01-01

    We give a microscopic two dimensional N=(2,2) gauge theory description of arbitrary M2-branes ending on N _f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional N=2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation R of SU(N _f), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including N=(2,2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  6. Inverse dualization and non-local dualities between Einstein gravity and supergravities

    International Nuclear Information System (INIS)

    Chen Chiangmei; Gal'tsov, Dmitri V; Sharakin, Sergei A

    2002-01-01

    We investigate non-local dualities between suitably compactified higher dimensional Einstein gravity and supergravities which can be revealed if one reinterprets the dualized Kaluza-Klein 2-forms in D>4 as antisymmetric forms belonging to supergravities. We find several examples of such a correspondence including one between the six-dimensional Einstein gravity and the four-dimensional Einstein-Maxwell-dilaton-axion theory (truncated N=4 supergravity), and others between the compactified eleven- and ten-dimensional supergravities and the eight- or ten-dimensional pure gravity. The Killing spinor equation of the D=11 supergravity is shown to be equivalent to the geometric Killing spinor equation in the dual gravity. We give several examples of using new dualities for solution generation and demonstrate how p-branes can be interpreted as non-local duals of pure gravity solutions. New supersymmetric solutions are presented including M2 subset of 5-brane with two rotation parameters

  7. New dualities and misleading anomaly matchings from outer-automorphism twists

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Song, Jaewon [Department of Physics, University of California, San Diego,La Jolla, CA 92093 (United States)

    2017-03-29

    We study four-dimensional N=1,2 superconformal theories in class S obtained by compactifying the 6d N=(2,0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomalies as the ones without the twist line, whereas the superconformal indices differ. This provides a large set of examples where the anomaly matching is insufficient to test dualities.

  8. S-duality as Fourier transform for arbitrary ϵ1, ϵ2

    International Nuclear Information System (INIS)

    N Nemkov

    2014-01-01

    The Alday–Gaiotto–Tachikawa relations reduce S-duality to the modular transformations of conformal blocks. It was recently conjectured that, for the four-point conformal block, the modular transform up to the non-perturbative contributions can be written in the form of the ordinary Fourier transform when β ≡ −ϵ 1 /ϵ 2 = 1. Here I extend this conjecture to general values of ϵ 1 , ϵ 2 . Namely, I argue that, for a properly normalized four-point conformal block the S-duality is perturbatively given by the Fourier transform for arbitrary values of the deformation parameters ϵ 1 , ϵ 2 . The conjecture is based on explicit perturbative computations in the first few orders of the string coupling constant g 2 ≡ −ϵ 1 ϵ 2 and hypermultiplet masses. (paper)

  9. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Ayan [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Institut de Physique Théorique, CEA, CNRS URA 2306,91191 Gif-sur-Yvette (France); Petkou, Anastasios C. [Institute of Theoretical Physics, Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece); Petropoulos, P. Marios; Pozzoli, Valentina [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Siampos, Konstadinos [Service de Mécanique et Gravitation, Université de Mons, UMONS,20 Place du Parc, 7000 Mons (Belgium)

    2014-04-23

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D{sub t}. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.

  10. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    International Nuclear Information System (INIS)

    Mukhopadhyay, Ayan; Petkou, Anastasios C.; Petropoulos, P. Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2014-01-01

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D t . Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality

  11. Duality symmetry of N=4 Yang-Mills theory on T3

    International Nuclear Information System (INIS)

    Hacquebord, F.; Verlinde, H.

    1997-01-01

    We study the spectrum of BPS states in N=4 supersymmetric U(N) Yang-Mills theory. This theory has been proposed to describe M-theory on T 3 in the discrete light-cone formalism. We find that the degeneracy of irreducible BPS bound states in this model exhibits a (partially hidden) SL(5,Z) duality symmetry. Besides the electro-magnetic symmetry, this duality group also contains Nahm-like transformations that interchange the rank N of the gauge group with some of the magnetic or electric fluxes. In the M-theory interpretation, this mapping amounts to a reflection that interchanges the longitudinal direction with one of the transverse directions. (orig.)

  12. Modular anomaly equations and S-duality in N=2 conformal SQCD

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.K. [Institute of Mathematical Sciences, C.I.T. Campus,Taramani, Chennai, 600113 (India); Billò, M. [Università di Torino, Dipartimento di Fisica and I.N.F.N. - sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy); Dell’Aquila, E. [Institute of Mathematical Sciences, C.I.T. Campus,Taramani, Chennai, 600113 (India); Frau, M. [Università di Torino, Dipartimento di Fisica and I.N.F.N. - sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy); Lerda, A. [Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica andI.N.F.N. - Gruppo Collegato di Alessandria - sezione di Torino,Viale T. Michel 11, I-15121 Alessandria (Italy); Università di Torino, Dipartimento di Fisica and I.N.F.N. - sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy); Raman, M. [Institute of Mathematical Sciences, C.I.T. Campus,Taramani, Chennai, 600113 (India)

    2015-10-14

    We use localization techniques to study the non-perturbative properties of an N=2 superconformal gauge theory with gauge group SU(3) and six fundamental flavours. The instanton corrections to the prepotential, the dual periods and the period matrix are calculated in a locus of special vacua possessing a ℤ{sub 3} symmetry. In a semi-classical expansion, we show that these observables are constrained by S-duality via a modular anomaly equation which takes the form of a recursion relation. The solutions of the recursion relation are quasi-modular functions of Γ{sub 1}(3), which is a subgroup of the S-duality group and is also a congruence subgroup of SL(2,ℤ).

  13. Matching conditions and duality in N=1 SUSY gauge theories in the conformal window

    International Nuclear Information System (INIS)

    Kogan, I.I.; Shifman, M.; Vainshtein, A.

    1996-01-01

    We discuss duality in N=1 SUSY gauge theories in Seiberg close-quote s conformal window, 3N c /2 f c . The close-quote t Hooft consistency conditions, the basic tool for establishing the infrared duality, are considered taking into account higher order α corrections. The conserved (anomaly-free) R current is built to all orders in α. Although this current contains all orders in α the close-quote t Hooft consistency conditions for this current are shown to be one loop. This observation thus justifies Seiberg close-quote s matching procedure. We also briefly discuss the inequivalence of the open-quote open-quote electric close-quote close-quote and open-quote open-quote magnetic close-quote close-quote theories at short distances. copyright 1996 The American Physical Society

  14. 'Duality twisted'boundary conditions in n-state Potts Models

    International Nuclear Information System (INIS)

    Schuetz, G.

    1992-11-01

    We discuss a new class of toroidal boundary conditions for one-dimensional quantum Hamiltonian with S n symmetry which are related to two-dimensional n-state Potts models in the extreme anisotropic Hamiltonian limit. At their self-dual point (a point were a second-order phase transition occurs for n=2,3,4) the duality transformation is shown to be an additional symmetry giving rise to a new class of 'duality twisted' toroidal boundary conditions. This corresponding Hamiltonians are given in terms of generators of the periodic Temprely-Lieb algebra with an odd number of generators. We discuss as an example the critical Ising model. Here the complete spectrum for the new boundary conditions can be obtained from a projection mechanism in the spin-1/2 XXZ Heisenberg chain. (author)

  15. Self-duality for coupled Potts models on the triangular lattice

    International Nuclear Information System (INIS)

    Richard, Jean-Francois; Jacobsen, Jesper Lykke; Picco, Marco

    2004-01-01

    We present self-dual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows us to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating self-dual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

  16. On electromagnetic duality in locally supersymmetric N = 2 Yang-Mills theory

    CERN Document Server

    Ceresole, Anna; Ferrara, S.; Van Proeyen, Antoine; Ceresole, A; D'Auria, R; Ferrara, S; Van Proeyen, A

    1995-01-01

    We consider duality transformations in N=2 Yang--Mills theory coupled to N=2 supergravity, in a manifestly symplectic and coordinate covariant setting. We give the essential of the geometrical framework which allows one to discuss stringy classical and quantum monodromies, the form of the spectrum of BPS saturated states and the Picard--Fuchs identities encoded in the special geometry of N=2 supergravity theories.

  17. Symmetric webs, Jones-Wenzl recursions and q-Howe duality

    DEFF Research Database (Denmark)

    Rose, David; Tubbenhauer, Daniel

    We define and study the category of symmetric sl2-webs. This category is a combinatorial description of the category of all finite dimensional quantum sl2-modules. Explicitly, we show that (the additive closure of) the symmetric sl2-spider is (braided monoidally) equivalent to the latter. Our mai...... tool is a quantum version of symmetric Howe duality. As a corollary of our construction, we provide new insight into Jones-Wenzl projectors and the colored Jones polynomials....

  18. Comments on global symmetries, anomalies, and duality in (2+1)d

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); SISSA & INFN,via Bonomea 265, 34136 Trieste (Italy); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-04-21

    We analyze in detail the global symmetries of various (2+1)d quantum field theories and couple them to classical background gauge fields. A proper identification of the global symmetries allows us to consider all non-trivial bundles of those background fields, thus finding more subtle observables. The global symmetries exhibit interesting ’t Hooft anomalies. These allow us to constrain the IR behavior of the theories and provide powerful constraints on conjectured dualities.

  19. Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Lowe, D.A.; Maldacena, J.M.

    1996-01-01

    We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states. copyright 1996 The American Physical Society

  20. A note on T-duality, open strings in B-field background and canonical transformations

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.

    1999-11-01

    In this paper we study T-duality for open strings ending on branes with non-zero B-field on them from the point of view of canonical transformations. For the particular case of type II strings on the two torus we show that the Sl(2, Z) N transformations can be understood as a sub-class of canonical transformations on the open strings in the B-field background. (author)

  1. Management Consultancy As Practice: A Study Of The Duality Of The Management Consultants' Role

    OpenAIRE

    Hartley, Jeanette

    2017-01-01

    The central question addressed in this research is: “How do practicing management consultants cope with the duality of their role?” Management consultants are often responsible for internal business leadership roles as well as developing business, people and knowledge alongside client delivery (Richter et al., 2008). The research sought to understand the nature of the potentially conflicting demands of their client-facing and consultancy-facing roles on management consultants, how conflicts a...

  2. A Potential Reduction Method for Canonical Duality, with an Application to the Sensor Network Localization Problem

    OpenAIRE

    Latorre, Vittorio

    2014-01-01

    We propose to solve large instances of the non-convex optimization problems reformulated with canonical duality theory. To this aim we propose an interior point potential reduction algorithm based on the solution of the primal-dual total complementarity (Lagrange) function. We establish the global convergence result for the algorithm under mild assumptions and demonstrate the method on instances of the Sensor Network Localization problem. Our numerical results are promising and show the possi...

  3. Solving and Interpreting Large-scale Harvest Scheduling Problems by Duality and Decomposition

    OpenAIRE

    Berck, Peter; Bible, Thomas

    1982-01-01

    This paper presents a solution to the forest planning problem that takes advantage of both the duality of linear programming formulations currently being used for harvest scheduling and the characteristics of decomposition inherent in the forest land class-relationship. The subproblems of decomposition, defined as the dual, can be solved in a simple, recursive fashion. In effect, such a technique reduces the computational burden in terms of time and computer storage as compared to the traditi...

  4. Systematic classical continuum limits of integrable spin chains and emerging novel dualities

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia; Sfetsos, Konstadinos

    2010-01-01

    We examine certain classical continuum long wave-length limits of prototype integrable quantum spin chains. We define the corresponding construction of classical continuum Lax operators. Our discussion starts with the XXX chain, the anisotropic Heisenberg model and their generalizations and extends to the generic isotropic and anisotropic gl n magnets. Certain classical and quantum integrable models emerging from special 'dualities' of quantum spin chains, parametrized by c-number matrices, are also presented.

  5. (4,0) supersymmetric sigma-model and t-duality

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1997-08-01

    The conserved supercurrents J ++ and J -- are deduced for the (4,0) supersymmetric sigma model on harmonic superspace with arbitrary background gauge connection. These are introduced in the Lagrangian density of the model by their couplings to the analytic gauge superfields Γ -- and Γ ++ . The T-duality transformations are obtained by integrating out the analytic gauge superfields. Finally the (4,0) supersymmetric anomaly is derived. (author). 20 refs

  6. The duality in using information and communication technology in elder care.

    Science.gov (United States)

    Sävenstedt, Stefan; Sandman, P O; Zingmark, Karin

    2006-10-01

    The aim of this paper is to report a study illuminating values and perceptions held by professional carers of older people about the use of information and communication technology applications. Various information and communication technology applications have successfully been developed to help solve a variety of problems in elder care. Beside different technical barriers and the assumed negative attitudes among older people, staff values and attitudes have been found to be an important cause of resistance to change and slowness in introduction of information and communication technology in health care of older people. An interview study was conducted in 2004 with 10 healthcare personnel with 3-26 years experience of working in home care and nursing homes in Northern Sweden. Qualitative content analysis was used to identify recurring themes in the data. The interpretation of values and perceptions among carers revealed a duality where the carers perceived information and communication technology as a promoter of both inhumane and humane care, a duality that seemed to make them defensive and resistant to change. Within the overall duality, other dualities were embedded that described both perceptions about the care of older people and about being a carer. There was evidence of resistance among professional carers towards an introduction of information and communication technology applications in elder care. Carers considered that the same attributes of information and communication technology that could promote humane care could also lead to dehumanized care. There should be an ethical discussion when introducing information and communication technology applications in elder care. The best caring alternative for all those concerned should be considered. It should promote aspects of wellbeing and dignity for frail older people and fears of inhumane care among carers must be recognized and discussed.

  7. Properties of an associative algebra of tensor fields. Duality and Dirac identities

    International Nuclear Information System (INIS)

    Salingaros, N.; Dresden, M.

    1979-01-01

    An algebra of forms in Minkowski space has been constructed. A multiplication between forms is defined as an extension of the quaternionic multiplications. The algebra obtained is associative with respect to this multiplication of order 16. Duality is expressed as (new) multiplication by a basis element. Vector identities in the algebra lead to a number of new trace identities. A new derivative operator expresses the four Maxwell equations in an especially transparent form

  8. Duality and the geometric measure of entanglement of general multiqubit W states

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova; Sudbery, Anthony; Tamaryan, Levon

    2010-01-01

    We find the nearest product states for arbitrary generalized W states of n qubits, and show that the nearest product state is essentially unique if the W state is highly entangled. It is specified by a unit vector in Euclidean n-dimensional space. We use this duality between unit vectors and highly entangled W states to find the geometric measure of entanglement of such states.

  9. Target-space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism. Pt. 1. Remnants of duality at the classic level

    International Nuclear Information System (INIS)

    Alvarez, O.; Liu Chienhao

    1996-01-01

    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group G with a bi-invariant metric and a generating function Γ suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ generated by Γ together with an Ad-invariant metric and a B-field on the associated Lie algebra g of G so that G and g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ including a careful analysis of its domain and image. The geometry of the T-dual structure on g is lightly touched. We leave the task of tracing back the Hamiltonian formalism at the quantum level to the sequel of this paper. (orig.). With 4 figs

  10. Poisson-Lie T-duality open strings and D-branes

    CERN Document Server

    Klimcik, C.

    1996-01-01

    Global issues of the Poisson-Lie T-duality are addressed. It is shown that oriented open strings propagating on a group manifold G are dual to D-brane - anti-D-brane pairs propagating on the dual group manifold \\ti G. The D-branes coincide with the symplectic leaves of the standard Poisson structure induced on the dual group \\ti G by the dressing action of the group G. T-duality maps the momentum of the open string into the mutual distance of the D-branes in the pair. The whole picture is then extended to the full modular space M(D) of the Poisson-Lie equivalent \\si-models which is the space of all Manin triples of a given Drinfeld double.T-duality rotates the zero modes of pairs of D-branes living on targets belonging to M(D). In this more general case the D-branes are preimages of symplectic leaves in certain Poisson homogeneous spaces of their targets and, as such, they are either all even or all odd dimensional.

  11. Duality in twisted N=4 supersymmetric gauge theories in four dimensions

    CERN Document Server

    Labastida, J.M.F.; Lozano, Carlos

    1999-01-01

    We consider a twisted version of the four-dimensional N=4 supersymmetric Yang-Mills theory with gauge groups SU(2) and SO(3), and bare masses for two of its chiral multiplets, thereby breaking N=4 down to N=2. Using the wall-crossing technique introduced by Moore and Witten within the u-plane approach to twisted topological field theories, we compute the partition function and all the topological correlation functions for the case of simply-connected spin four-manifolds of simple type. By including 't Hooft fluxes, we analyse the properties of the resulting formulae under duality transformations. The partition function transforms in the same way as the one first presented by Vafa and Witten for another twist of the N=4 supersymmetric theory in their strong coupling test of S-duality. Both partition functions coincide on K3. The topological correlation functions turn out to transform covariantly under duality, following a simple pattern which seems to be inherent in a general type of topological quantum field ...

  12. U-duality transformation of membrane on T{sup n} revisited

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shan [Department of Physics and Electronic Technology, Hubei University,Wuhan 430062 (China); Li, Tianjun [Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,Beijing 100049 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China)

    2016-08-24

    The problem with the U-duality transformation of membrane on T{sup n} is recently addressed in [https://arxiv.org/abs/1509.02915]. We will consider the U-duality transformation rule of membrane on T{sup n}×R. It turns out that winding modes on T{sup n} should be taken into account, since the duality transformation may bring the membrane configuration without winding modes into the one with winding modes. With the winding modes added, the membrane worldvolume theory in lightcone gauge is equivalent to the n+1 dimensional super-Yang-Mills (SYM) theory in T̃{sup n}, which has SL(2,Z)×SL(3,Z) and SL(5,Z) symmetries for n=3 and n=4, respectively. The SL(2,Z)×SL(3,Z) transformation can be realized classically, making the on-shell field configurations transformed into each other. However, the SL(5,Z) symmetry may only be realized at the quantum level, since the classical 5d SYM field configurations cannot form the representation of SL(5,Z).

  13. Conformal covariance, modular structure, and duality for local algebras in free massless quantum field theories

    International Nuclear Information System (INIS)

    Hislop, P.D.

    1988-01-01

    The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc

  14. M-theory and U-duality on Td with gauge backgrounds

    International Nuclear Information System (INIS)

    Obers, N.A.; Pioline, B.; Rabinovici, E.

    1998-01-01

    The full U-duality symmetry of toroidally compactified M-theory can only be displayed by allowing non-rectangular tori with expectation values of the gauge fields. We construct an E d (Z) U-duality invariant mass formula incorporating non-vanishing gauge backgrounds of the M-theory three-form C. We interpret this mass formula from the point of view of the matrix gauge theory, and identify the coupling of the three-form to the gauge theory as a topological theta term, in agreement with earlier conjectures. We give a derivation of this fact from D-brane analysis, and obtain the matrix gauge theory description of other gauge backgrounds allowed by the discrete light-cone quantization. We further show that the conjectured extended U-duality symmetry of matrix theory on T d in the discrete light-cone quantization has an implementation as an action of E d+1 (Z) on the BPS spectrum. Some implications for the proper interpretation of the rank N of the matrix gauge theory are discussed. (orig.)

  15. Board of Commisioner Duality Role, Governance and Earnings Management of Initial Public Offerings in Indonesia

    Directory of Open Access Journals (Sweden)

    Widi Prasetiawati

    2011-09-01

    Full Text Available Public firm is required to implement good corporate governance as assurance to reduce information asymmetry between firm and its stockholders. Corporate governance mechanism should be able to limit any improper actions of the firm’s management. This study investigates whether the duality role of the board affects earnings management practice of firms making initial public offering at Indonesian Stock Exchange. The study also examines other corporate governance mechanism factors, namely the number of board of commission-ners, the proportion of independent board of commissioners, size of firm, financial leverage, and profitability. Earnings management was measured using Cross-Sectional Modified Jones model. The study employs a total of 60 firms that went public from 2000 to 2006. The results show that duality status of board of commissioners positively and significantly affects earnings management in IPO firms. This could be interpreted that board of directors with duality role had a lower function in monitoring the firms’ performance so that management have opportunity to manage reported earnings. When board of commissioners have dual role, the level of earnings management is getting intense, and vice versa. Size of board of commissioners and profitability are positively related to earnings management.

  16. Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups

    International Nuclear Information System (INIS)

    Gunaydin, Murat; Pavlyk, Oleksandr

    2005-01-01

    We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E 8(-24) in SU*(8) as well as SU(6,2) covariant bases. E 8(-24) has E 7 x SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E 8(8) of the maximal supergravity theory the minimal realization was given. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E 8(-24) and E 8(8) . By further truncation one can obtain the minimal unitary realizations of all the groups of the 'Magic Triangle'. We give explicitly the minimal unitary realizations of the exceptional subgroups of E 8(-24) as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups. (author)

  17. Duality based direct resolution of unique profiles using zero concentration region information.

    Science.gov (United States)

    Tavakkoli, Elnaz; Rajkó, Róbert; Abdollahi, Hamid

    2018-07-01

    Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with estimating pure profiles underlying a set of measurements on chemical systems. In general, the estimated profiles are ambiguous (non-unique) except if some special conditions fulfilled. Implementing the adequate information can reduce the so-called rotational ambiguity effectively, and in the most desirable cases lead to the unique solution. Therefore, studies on circumstances resulting in unique solution are of particular importance. The conditions of unique solution can particularly be studied based on duality principle. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural duality between its row and column vector spaces using minimal constraints (non-negativity of concentrations and absorbances). In this article, the conditions of the unique solution according to duality concept and using zero concentration region information is intended to show. A simulated dataset of three components and an experimental system with synthetic mixtures containing three amino acids tyrosine, phenylalanine and tryptophan are analyzed. It is shown that in the presence of sufficient information, the reliable unique solution is obtained that is valuable in analytical qualification and for quantitative verification analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    Science.gov (United States)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  19. Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition

    Directory of Open Access Journals (Sweden)

    Yan Qi Qin

    2017-09-01

    Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined

  20. Non-Abelian duality and confinement in N=2 supersymmetric QCD

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2009-01-01

    In N=2 supersymmetric QCD with the U(N) gauge group and N f >N we study the crossover transition from the weak coupling regime at large ξ to strong coupling at small ξ, where ξ is the Fayet-Iliopoulos parameter. We find that at strong coupling a dual non-Abelian weakly coupled N=2 theory exists, which describes low-energy physics at small ξ. The dual gauge group is U(N f -N), and the dual theory has N f flavors of light dyons, to be compared with N f quarks in the originalU(N) theory. Both, the original and dual theories are Higgsed and share the same global symmetry SU(N)xSU(N f -N)xU(1), albeit the physical meaning of the SU(N) and SU(N f -N) factors is different in the large- and small-ξ regimes. Both regimes support non-Abelian semilocal strings. In each of these two regimes particles that are in the adjoint representations with respect to one of the factor groups exist in two varieties: elementary fields and composite states bound by strings. These varieties interchange upon transition from one regime to the other. We conjecture that the composite stringy states can be related to Seiberg's M fields. The bulk duality that we observed translates into a two-dimensional duality on the world sheet of the non-Abelian strings. At large ξ the internal dynamics of the semilocal non-Abelian strings is described by the sigma model of N orientational and (N f -N) size moduli, while at small ξ the roles of orientational and size moduli interchange. The Bogomol'nyi-Prasad-Sommerfield spectra of two dual sigma models (describing confined monopoles/dyons of the bulk theory) coincide. It would be interesting to trace parallels between the non-Abelian duality we found and string theory constructions.

  1. Correcting Improper Uses of Perspectives, Pronouns, and Dualities in Wilberian Integral Theory: An Application of Holarchical Field Theory

    Directory of Open Access Journals (Sweden)

    Kevin J. Bowman

    2014-03-01

    Full Text Available This article uses my pre-existing extension of Wilberian metatheory, holarchical field theory, to diagnose and work towards overcoming the confusion within attempts to analyze action, events, and communication using Ken Wilber’s AQAL model. In holarchical field theory, holarchical fields become the fundamental component of reality. These fields comprise 1 holons in relation to one another and to their potential, and 2 their interpenetrating forces engaged by their interactions. In light of the theory, problems in the Wilberian literature have included inconsistent uses of certain dualities (subject-object, interior-exterior, and inside-outside as well as person perspectives and pronouns. Previous attempts to overcome these issues without precise diagnoses suffer from a conflation of the dual definitions of the subjective-objective duality, one a philosophical definition, the other grammatical. State versus action language is classified within the dualities of holarchical field theory.

  2. Duality between SU(N)k and SU(k)N WZW models

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    We exhibit a duality of the SU(N) k WZW model under interchange of the group parameter N and the level k. The primary fields of SU(N) k and SU(k) N are related by transposition of their associated Young tableaux. The holomorphic blocks of the four-point functions of the primary fields are in one-to-one correspondence, and satisfy orthogonality and completeness relations with respect to one another. We derive these relations through a path integral realization of the SU(N) k WZW model in terms of a theory of constrained Dirac fermions. (orig.)

  3. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    Science.gov (United States)

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  4. Duality-Based Nonlinear Quadratic Control: Application to Mobile Robot Trajectory-Following

    Czech Academy of Sciences Publication Activity Database

    Arnesto, L.; Girbés, V.; Sala, A.; Zima, M.; Šmídl, Václav

    2015-01-01

    Roč. 23, č. 4 (2015), s. 1494-1504 ISSN 1063-6536 R&D Projects: GA ČR(CZ) GAP102/11/0437 Grant - others:GA MŠk(CZ) CZ.1.05/2.1.00/03.0094 Institutional support: RVO:67985556 Keywords : trajectory planning * duality of estimation and control Subject RIV: BC - Control Systems Theory Impact factor: 2.818, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/smidl-0445192.pdf

  5. Central charges, S-duality and massive vacua of N=1* super-Yang-Mills

    International Nuclear Information System (INIS)

    Ritz, Adam

    2006-01-01

    We provide a simple derivation of the extremal values of the superpotential in massive vacua of N=1* SYM, making use of the required modular weight for the central charge of BPS walls interpolating between these vacua. This modular weight descends from the action of S-duality on the N=4 superalgebra which in turn is inherited from its classical action on the dyon spectrum. We show that this kinematic information, combined with minimal knowledge of the weak coupling asymptotics, is sufficient to determine the exact vacuum superpotentials in terms of Eisenstein series

  6. On the amplitude/Wilson loop duality in N=2 SCQCD

    Directory of Open Access Journals (Sweden)

    Marta Leoni

    2015-07-01

    Full Text Available We compute the four-point amplitude with external adjoint particles in N=2 SCQCD at two loops using N=1 superspace Feynman diagrams, extending the results of arXiv:1406.7283. We consider the diagrammatic difference with the corresponding process of N=4 SYM finding a non-vanishing result, which is a non-trivial function of the kinematic variables. This demonstrates that in N=2 SCQCD, even in the sector with external particles in the vector multiplet, the amplitude/Wilson loop duality is inevitably broken at two loops.

  7. Zero-point length, extra-dimensions and string T-duality

    OpenAIRE

    Spallucci, Euro; Fontanini, Michele

    2005-01-01

    In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...

  8. Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences

    Directory of Open Access Journals (Sweden)

    Thabet Abdeljawad

    2017-07-01

    Full Text Available A discrete version of the symmetric duality of Caputo–Torres, to relate left and right Riemann–Liouville and Caputo fractional differences, is considered. As a corollary, we provide an evidence to the fact that in case of right fractional differences, one has to mix between nabla and delta operators. As an application, we derive right fractional summation by parts formulas and left fractional difference Euler–Lagrange equations for discrete fractional variational problems whose Lagrangians depend on right fractional differences.

  9. Differential Calculus on the Quantum Sphere and Deformed Self-Duality Equation

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1994-01-01

    We discuss the left-covariant 3-dimensional differential calculus on the quantum sphere SU q (2)/U(1). The SU q (2)-spinor harmonics are treated as coordinates of the quantum sphere. We consider the gauge theory for the quantum group SU q (2) x U(1) on the deformed Euclidean space E q (4). A q-generalization of the harmonic-gauge-field formalism is suggested. This formalism is applied for the harmonic (Twistor) interpretation of the quantum-group self-duality equation (QGSDE). We consider the zero-curvature representation and the general construction of QGSDE-solutions in terms of the analytic pre potential. 24 refs

  10. Two new tests to the distance duality relation with galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santos-da-Costa, Simony [Departamento de Astronomia, Observatório Nacional, Street General José Cristino, Rio de Janeiro (Brazil); Busti, Vinicius C. [Department of Mathematics and Applied Mathematics, Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Rondebosch, Cape Town (South Africa); Holanda, Rodrigo F.L., E-mail: simonycosta.nic@gmail.com, E-mail: vcbusti@astro.iag.usp.br, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Estadual da Paraíba, Street Baraúnas, Campina Grande (Brazil)

    2015-10-01

    The cosmic distance duality relation is a milestone of cosmology involving the luminosity and angular diameter distances. Any departure of the relation points to new physics or systematic errors in the observations, therefore tests of the relation are extremely important to build a consistent cosmological framework. Here, two new tests are proposed based on galaxy clusters observations (angular diameter distance and gas mass fraction) and H(z) measurements. By applying Gaussian Processes, a non-parametric method, we are able to derive constraints on departures of the relation where no evidence of deviation is found in both methods, reinforcing the cosmological and astrophysical hypotheses adopted so far.

  11. Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Zenkevich, Yegor [ITEP,25 Bolshaya Cheremushkinskaya street, Moscow (Russian Federation); Institute for Nuclear Research of the Russian Academy of Sciences,7a Prospekt 60-letiya Oktyabrya, Moscow (Russian Federation); NRNU Moscow Engineering Physics Institute,31 Kasirskoe chaussee, Moscow (Russian Federation)

    2015-05-26

    We study five dimensional AGT correspondence by means of the q-deformed beta-ensemble technique. We provide a special basis of states in the q-deformed CFT Hilbert space consisting of generalized Macdonald polynomials, derive the loop equations for the beta-ensemble and obtain the factorization formulas for the corresponding matrix elements. We prove the spectral duality for SU(2) Nekrasov functions and discuss its meaning for conformal blocks. We also clarify the relation between topological strings and q-Liouville vertex operators.

  12. Duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory

    International Nuclear Information System (INIS)

    Dayi, Oemer F.; Kelleyane, Lara T.; Uelker, Kayhan

    2005-01-01

    A parent action is introduced to formulate (S-) dual of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory. Partition function for parent action in phase space is utilized to establish the equivalence of partition functions of the theories which this parent action produces. Thus, duality invariance of non-anticommutative N = 1/2 supersymmetric U(1) gauge theory follows. The results which we obtained are valid at tree level or equivalently at the first order in the nonanticommutativity parameter C μν

  13. Exact results for ABJ Wilson loops and open-closed duality

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Département de Physique Théorique et section de Mathématiques, Université de Genève,Genève, CH-1211 (Switzerland); Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan)

    2016-10-24

    We find new exact relations between the partition function and vacuum expectation values (VEVs) of 1/2 BPS Wilson loops in ABJ theory, which allow us to predict the large N expansions of the 1/2 BPS Wilson loops from known results of the partition function. These relations are interpreted as an open-closed duality where the closed string background is shifted by the insertion of Wilson loops due to a back-reaction. Using the connection between ABJ theory and the topological string on local ℙ{sup 1}×ℙ{sup 1}, we explicitly write down non-trivial relations between open and closed string amplitudes.

  14. Rapidity distribution and duality of a phase-space branching model for multiparticle production

    International Nuclear Information System (INIS)

    Hwa, R.C.; Lam, C.S.

    1985-11-01

    A branching model is developed for the description of multiparticle production processes at high energy. The starting point is the essential phenomenological validity of approximate KNO scaling. A quasirapidity variable is introduced, in terms of which the exclusive distribution of the produced particles can be calculated. The model is then described in the context of s- and t-channel duality. The dual picture lends itself to a physical interpretation of the model, the contrast of which from dual topological unitarization is pointed out

  15. Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions

    International Nuclear Information System (INIS)

    Zenkevich, Yegor

    2015-01-01

    We study five dimensional AGT correspondence by means of the q-deformed beta-ensemble technique. We provide a special basis of states in the q-deformed CFT Hilbert space consisting of generalized Macdonald polynomials, derive the loop equations for the beta-ensemble and obtain the factorization formulas for the corresponding matrix elements. We prove the spectral duality for SU(2) Nekrasov functions and discuss its meaning for conformal blocks. We also clarify the relation between topological strings and q-Liouville vertex operators.

  16. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    International Nuclear Information System (INIS)

    Natsuume, Makoto; Okamura, Takashi

    2008-01-01

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  17. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

    Science.gov (United States)

    Nishiyama, Yoshihiro

    2017-09-01

    The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.

  18. Duality on Geodesics of Cartan Distributions and Sub-Riemannian Pseudo-Product Structures

    Directory of Open Access Journals (Sweden)

    Ishikawa Goo

    2015-06-01

    Full Text Available Given a five dimensional space endowed with a Cartan distribution, the abnormal geodesics form another five dimensional space with a cone structure. Then it is shown in (15, that, if the cone structure is regarded as a control system, then the space of abnormal geodesics of the cone structure is naturally identified with the original space. In this paper, we provide an exposition on the duality by abnormal geodesics in a wider framework, namely, in terms of quotients of control systems and sub-Riemannian pseudo-product structures. Also we consider the controllability of cone structures and describe the constrained Hamiltonian equations on normal and abnormal geodesics.

  19. Minimal duality breaking in the Kallen-Lehman approach to 3D Ising model: A numerical test

    International Nuclear Information System (INIS)

    Astorino, Marco; Canfora, Fabrizio; Martinez, Cristian; Parisi, Luca

    2008-01-01

    A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed

  20. Supersymmetric Lorentz-covariant hyperspaces and self-duality equations in dimensions greater than (4 vertical stroke 4)

    International Nuclear Information System (INIS)

    Devchand, C.; Nuyts, J.

    1997-01-01

    We generalise the notions of supersymmetry and superspace by allowing generators and coordinates transforming according to more general Lorentz representations than the spinorial and vectorial ones of standard lore. This yields novel SO(3,1)-covariant superspaces, which we call hyperspaces, having dimensionality greater than (4 vertical stroke 4) of traditional super-Minkowski space. As an application, we consider gauge fields on complexifications of these superspaces; and extending the concept of self-duality, we obtain classes of completely solvable equations analogous to the four-dimensional self-duality equations. (orig.)

  1. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge

    International Nuclear Information System (INIS)

    Ionescu, G.

    1998-01-01

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  2. Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures

    Directory of Open Access Journals (Sweden)

    Yoshihiro Maruyama

    2014-12-01

    Full Text Available Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras, which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functor parts. We systematically investigate into the categorical logics of dual adjunctions by utilising Johnstone-Dimov-Tholen's duality-theoretic framework. Our set-theoretical duality-based hyperdoctrines for quantum logic have both universal and existential quantifiers (and higher-order structures, giving rise to a universe of Takeuti-Ozawa's quantum sets via the tripos-to-topos construction by Hyland-Johnstone-Pitts. The set-theoretical hyperdoctrinal models of quantum logic, as well as all quantum hyperdoctrines with cartesian base categories, turn out to give sound and complete semantics for Faggian-Sambin's first-order quantum sequent calculus over cartesian type theory; in addition, quantum hyperdoctrines with monoidal base categories are sound and complete for the calculus over linear type theory. We finally consider how to reconcile Birkhoff-von Neumann's quantum logic and Abramsky-Coecke's categorical quantum mechanics (which is modernised quantum logic as an antithesis to the traditional one via categorical universal logic.

  3. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    International Nuclear Information System (INIS)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    1995-01-01

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor T μν of the Freedman-Townsend-type. Though not itself functioning as such, T μν gives rise to a dual parallel transport A μ for the phase of the wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of A μ . At the same time, the gauge symmetry is found doubled from say SU(N) to SU(N)xSU(N). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ''universal'' principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov

  4. Boundary conditions and dualities: vector fields in AdS/CFT

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simo F.

    2006-01-01

    In AdS, scalar fields with masses slightly above the Breitenlohner-Freedman bound admit a variety of possible boundary conditions which are reflected in the Lagrangian of the dual field theory. Generic small changes in the AdS boundary conditions correspond to deformations of the dual field theory by multi-trace operators. Here we extend this discussion to the case of vector gauge fields in the bulk spacetime using the results of Ishibashi and Wald [hep-th/0402184]. As in the context of scalar fields, general boundary conditions for vector fields involve multi-trace deformations which lead to renormalization-group flows. Such flows originate in ultra-violet CFTs which give new gauge/gravity dualities. At least for AdS 4 /CFT 3 , the dual of the bulk photon appears to be a propagating gauge field instead of the usual R-charge current. Applying similar reasoning to tensor fields suggests the existence of a duality between string theory on AdS 4 and a quantum gravity theory in three dimensions

  5. U-duality and symplectic formulation of dilaton-axion gravity

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Kechkin, O.V.

    1995-07-01

    We study a bosonic four-dimensional effective action corresponding to the heterotic string compactified on a 6-torus (dilaton-axion gravity with one vector field) on a curved space-time manifold possessing a time-like Killing vector field. Previously an existence of the SO(2,3) ∼ Sp(4,R) global symmetry (U-duality) as well as the symmetric space property of the corresponding σ-model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2 x 2 matrix Z (''matrix dilaton - axion'') is then introduced for which U-duality takes the matrix valued SL(2,R) form. In terms of this matrix the theory is further presented as a Kaehler σ-model. This leads to a more concise 2 x 2 formulation which opens new ways to construct exact classical solution. New solution (corresponding to constant ImZ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space-time is locally flat but possess multiple Taub-NUT singularities. (author). 35 refs

  6. Colour-kinematics duality and the Drinfeld double of the Lie algebra of diffeomorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chih-Hao; Krasnov, Kirill [School of Mathematical Sciences, The University of Nottingham,University Park, Nottingham NG7 2RD (United Kingdom)

    2017-01-17

    Colour-kinematics duality suggests that Yang-Mills (YM) theory possesses some hidden Lie algebraic structure. So far this structure has resisted understanding, apart from some progress in the self-dual sector. We show that there is indeed a Lie algebra behind the YM Feynman rules. The Lie algebra we uncover is the Drinfeld double of the Lie algebra of vector fields. More specifically, we show that the kinematic numerators following from the YM Feynman rules satisfy a version of the Jacobi identity, in that the Jacobiator of the bracket defined by the YM cubic vertex is cancelled by the contribution of the YM quartic vertex. We then show that this Jacobi-like identity is in fact the Jacobi identity of the Drinfeld double. All our considerations are off-shell. Our construction explains why numerators computed using the Feynman rules satisfy the colour-kinematics at four but not at higher numbers of points. It also suggests a way of modifying the Feynman rules so that the duality can continue to hold for an arbitrary number of gluons. Our construction stops short of producing explicit higher point numerators because of an absence of a certain property at four points. We comment on possible ways of correcting this, but leave the next word in the story to future work.

  7. Toward a proof of Montonen-Olive duality via multiple M2-branes

    International Nuclear Information System (INIS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-01-01

    We derive 4-dimensional N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N)) 2n . The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g 2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  8. Toward a proof of Montonen-Olive duality via multiple M2-branes

    Science.gov (United States)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  9. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  10. Semiotic systems with duality of patterning and the issue of cultural replicators.

    Science.gov (United States)

    Schaden, Gerhard; Patin, Cédric

    2017-11-14

    Two major works in recent evolutionary biology have in different ways touched upon the issue of cultural replicators in language, namely Dawkins' Selfish Gene and Maynard Smith and Szathmáry's Major Transitions in Evolution. In the latter, the emergence of language is referred to as the last major transition in evolution (for the time being), a claim we argue to be derived from a crucial property of language, called Duality of Patterning. Prima facie, this property makes natural language look like a structural equivalent to DNA, and its peer in terms of expressive power. We will argue that, if one takes seriously Maynard Smith and Szathmáry's outlook and examines what has been proposed as linguistic replicators, amongst others phonemes and words, the analogy meme-gene becomes problematic. A key issue is the fact that genes and memes are assumed to carry and transmit information, while what has been described as the best candidate for replicatorhood in language, i.e. the phoneme, does by definition not carry meaning. We will argue that semiotic systems with Duality of Pattering (like natural languages) force us to reconsider either the analogy between replicators in the biological and the cultural domain, or what it is to be a replicator in linguistics.

  11. Naming a structured world: a cultural route to duality of patterning.

    Directory of Open Access Journals (Sweden)

    Francesca Tria

    Full Text Available The lexicons of human languages organize their units at two distinct levels. At a first combinatorial level, meaningless forms (typically referred to as phonemes are combined into meaningful units (typically referred to as morphemes. Thanks to this, many morphemes can be obtained by relatively simple combinations of a small number of phonemes. At a second compositional level of the lexicon, morphemes are composed into larger lexical units, the meaning of which is related to the individual meanings of the composing morphemes. This duality of patterning is not a necessity for lexicons and the question remains wide open regarding how a population of individuals is able to bootstrap such a structure and the evolutionary advantages of its emergence. Here we address this question in the framework of a multi-agents model, where a population of individuals plays simple naming games in a conceptual environment modeled as a graph. We demonstrate that errors in communication as well as a blending repair strategy, which crucially exploits a shared conceptual representation of the environment, are sufficient conditions for the emergence of duality of patterning, that can thus be explained in a pure cultural way. Compositional lexicons turn out to be faster to lead to successful communication than purely combinatorial lexicons, suggesting that meaning played a crucial role in the evolution of language.

  12. S-duality, triangle groups and modular anomalies in N=2 SQCD

    International Nuclear Information System (INIS)

    Ashok, S. K.; Dell’Aquila, E.; Lerda, A.; Raman, M.

    2016-01-01

    We study N=2 superconformal theories with gauge group SU(N) and 2N fundamental flavours in a locus of the Coulomb branch with a ℤ_N symmetry. In this special vacuum, we calculate the prepotential, the dual periods and the period matrix using equivariant localization. When the flavors are massless, we find that the period matrix is completely specified by [(N/2)] effective couplings. On each of these, we show that the S-duality group acts as a generalized triangle group and that its hauptmodul can be used to write a non-perturbatively exact relation between each effective coupling and the bare one. For N=2,3,4 and 6, the generalized triangle group is an arithmetic Hecke group which contains a subgroup that is also a congruence subgroup of the modular group PSL(2,ℤ). For these cases, we introduce mass deformations that respect the symmetries of the special vacuum and show that the constraints arising from S-duality make it possible to resum the instanton contributions to the period matrix in terms of meromorphic modular forms which solve modular anomaly equations.

  13. S-duality, triangle groups and modular anomalies in N=2 SQCD

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S. K.; Dell’Aquila, E. [Institute of Mathematical Sciences, C.I.T. Campus,Taramani, Chennai, 600113 (India); Lerda, A. [Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica,and INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Viale T. Michel 11, I-15121 Alessandria (Italy); Raman, M. [Institute of Mathematical Sciences, C.I.T. Campus,Taramani, Chennai, 600113 (India)

    2016-04-19

    We study N=2 superconformal theories with gauge group SU(N) and 2N fundamental flavours in a locus of the Coulomb branch with a ℤ{sub N} symmetry. In this special vacuum, we calculate the prepotential, the dual periods and the period matrix using equivariant localization. When the flavors are massless, we find that the period matrix is completely specified by [(N/2)] effective couplings. On each of these, we show that the S-duality group acts as a generalized triangle group and that its hauptmodul can be used to write a non-perturbatively exact relation between each effective coupling and the bare one. For N=2,3,4 and 6, the generalized triangle group is an arithmetic Hecke group which contains a subgroup that is also a congruence subgroup of the modular group PSL(2,ℤ). For these cases, we introduce mass deformations that respect the symmetries of the special vacuum and show that the constraints arising from S-duality make it possible to resum the instanton contributions to the period matrix in terms of meromorphic modular forms which solve modular anomaly equations.

  14. Analytical method for analysis of electromagnetic scattering from inhomogeneous spherical structures using duality principles

    Science.gov (United States)

    Kiani, M.; Abdolali, A.; Safari, M.

    2018-03-01

    In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.

  15. Poisson-Lie T-duality of string effective actions: A new approach to the dilaton puzzle

    Czech Academy of Sciences Publication Activity Database

    Jurčo, B.; Vysoký, Jan

    2018-01-01

    Roč. 130, August (2018), s. 1-26 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Poisson-Lie T-duality * string effective actions * dilaton field Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 https://www.sciencedirect.com/science/article/pii/S0393044018301748?via%3Dihub

  16. Action-angle duality between the Cn-type hyperbolic Sutherland and the rational Ruijsenaars-Schneider-van Diejen models

    International Nuclear Information System (INIS)

    Pusztai, B.G.

    2011-01-01

    In a symplectic reduction framework we construct action-angle systems of canonical coordinates for both the hyperbolic Sutherland and the rational Ruijsenaars-Schneider-van Diejen integrable models associated with the C n root system. The presented dual reduction picture permits us to establish the action-angle duality between these many-particle systems.

  17. Cluster duality

    OpenAIRE

    Afonin, S. S.

    2006-01-01

    It is well known that the linear mass spectrum of light mesons in the large-N_c limit is dual to the perturbative QCD continuum. We find the form of the linear spectrum which is maximally dual to the perturbation theory. The obtained ansatz turns out to be the spectrum of the Lovelace-Shapiro dual amplitude. This spectrum is chirally symmetric in the sense that it corresponds to zero values for the order parameters of chiral symmetry breaking in QCD. We further assume that the actual spectrum...

  18. ((F, D1), D3) bound state, S-duality and noncommutative open string/Yang-Mills theory

    International Nuclear Information System (INIS)

    Lu, J.X.; Roy, S.; Singh, H.

    2000-01-01

    We study decoupling limits and S-dualities for noncommutative open string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant supergravity solution of the form ((F, D1), D3) bound state of type IIB string theory. This configuration can be regarded as D3-branes with both electric and magnetic fields turned on along one of the spatial directions of the brane and preserves half of the space-time supersymmetries of the string theory. Our study indicates that there exists a decoupling limit for which the resulting theory is an open string theory defined in a geometry with noncommutativity in both space-time and space-space directions. We study S-duality of this noncommutative open string (NCOS) and find that the same decoupling limit in the S-dual description gives rise to a space-space noncommutative Yang-Mills theory (NCYM). We also discuss independently the decoupling limit for NCYM in this D3 brane background. Here we find that S-duality of NCYM theory does not always give a NCOS theory. Instead, it can give an ordinary Yang-Mills with a singular metric and an infinitely large coupling. We also find that the open string coupling relation between the two S-duality related theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills theory does not necessarily give a weakly coupled theory. The relevant gravity dual descriptions of NCOS/NCYM are also given. (author)

  19. New N=1 dualities from M5-branes and outer-automorphism twists

    International Nuclear Information System (INIS)

    Agarwal, Prarit; Song, Jaewon

    2014-01-01

    We generalize recent construction of four-dimensional N=1 SCFT from wrapping six-dimensional N=(2,0) theory on a Riemann surface to the case of D-type with outer-automorphism twists. This construction allows us to build various dual theories for a class of N=1 quiver theories of SO-USp type. In particular, we find there are five dual frames to SO(2N)/USp(2N−2)/G 2 gauge theories with (4N−4)/(4N)/8 fundamental flavors, where three of them being non-Lagrangian. We check the dualities by computing the anomaly coefficients and the superconformal indices. In the process we verify that the index of D 4 theory on a certain three punctured sphere with ℤ 2 and ℤ 3 twist lines exhibits expected symmetry enhancement from G 2 ×USp(6) to E 7

  20. On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2010-10-01

    Full Text Available Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor √1-n2, in terms of magnitude n ε [0,1] of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.

  1. S-duality and the prepotential in N=2⋆ theories (I): the ADE algebras

    International Nuclear Information System (INIS)

    Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J.F.

    2015-01-01

    The prepotential of N=2 ⋆ supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2 ⋆ theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2,ℤ). The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  2. S-duality and the prepotential in N={2}^{star } theories (I): the ADE algebras

    Science.gov (United States)

    Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.

    2015-11-01

    The prepotential of N={2}^{star } supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N={2}^{star } theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2, {Z}) . The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  3. S and U-duality constraints on IIB S-matrices

    International Nuclear Information System (INIS)

    Chalmers, Gordon

    2000-01-01

    S- and U-duality dictate that graviton scattering amplitudes in IIB superstring theory be automorphic functions on the appropriate fundamental domain which describe the inequivalent vacua of (compactified) theories. A constrained functional form of graviton scattering is proposed using Eisenstein series and their generalizations compatible with: (a) two-loop supergravity, (b) genus one superstring theory, (c) the perturbative coupling dependence of the superstring, and (d) with the unitarity structure of the massless modes. The form has a perturbative truncation in the genus expansion at a given order in the derivative expansion. Comparisons between graviton scattering S-matrices and effective actions for the first quantized superstring are made at the quantum level. Possible extended finiteness properties of maximally extended quantum supergravity theories in different dimensions is implied by the perturbative truncation of the functional form of graviton scattering in IIB superstring theory

  4. Evidence for quark-hadron duality in the proton spin asymmetry A1

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Avakian, R.; Avetissian, A.; Avetissian, E.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Rostomyan, A.; Taroian, S.; Zohrabian, H.; Amarian, M.; Ammosov, V.V.; Gapienko, V.; Aschenauer, E.C.; Boettcher, H.; Ehrenfried, M.; Ellinghaus, F.; Jung, P.

    2003-01-01

    Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A 1 . Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q 2 between 1.2 and 12 GeV 2 and values of W 2 between 1 and 4 GeV 2 . The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A 1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q 2 above 1.6 GeV 2

  5. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled self-interaction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore, the particular field self-regularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C,P,T, although its individual interaction terms are of V-A and thus C,P nonconserving type

  6. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled selfinteraction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore the particular field selfregularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C, P, T although its individual interaction terms are of V - A and thus C, P nonconserving type

  7. Dr Brasilia and Mr. Nacala: the apparent duality behind the Brazilian state-capital nexus

    Directory of Open Access Journals (Sweden)

    TOMASO FERRANDO

    2015-06-01

    Full Text Available In August 2010 Brazil decided to limit foreign direct investments (FDIs in land, and attracted the attention of politicians as much as the fears of businessmen. However, few months before, in September 2009, it had concluded a trilateral agreement with Japan and Mozambique to implement agribusiness and contract farming on an area of ten million hectares in the Mozambican region of Nacala. In light of that, the paper analyses the apparent duality of the Brazilian politics, and concludes that, exactly like in the case of the novel by Robert Louis Stevenson, it is not a matter of pathology, but a voluntarily induced double personality which is strategic in positioning Brazil at the core of the global capitalist system.

  8. T-duality simplifies bulk-boundary correspondence: the noncommutative case

    Science.gov (United States)

    Hannabuss, Keith C.; Mathai, Varghese; Thiang, Guo Chuan

    2018-05-01

    We state and prove a general result establishing that T-duality, or the Connes-Thom isomorphism, simplifies the bulk-boundary correspondence, given by a boundary map in K-theory, in the sense of converting it to a simple geometric restriction map. This settles in the affirmative several earlier conjectures of the authors and provides a clear geometric picture of the correspondence. In particular, our result holds in arbitrary spatial dimension, in both the real and complex cases, and also in the presence of disorder, magnetic fields, and H-flux. These special cases are relevant both to string theory and to the study of the quantum Hall effect and topological insulators with defects in condensed matter physics.

  9. A non-supersymmetric open-string theory and S-duality

    International Nuclear Information System (INIS)

    Bergman, O.; Gaberdiel, M.R.

    1997-01-01

    A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)

  10. On the Octonionic Self Duality equations of 3-brane Instantons arXiv

    CERN Document Server

    Floratos, Emmanuel

    We study the octonionic selfduality equations for $p=3$-branes in the light cone gauge and we construct explicitly, instanton solutions for spherical and toroidal topologies in various flat spacetime dimensions $(D=5+1,7+1,8+1,9+1)$, extending previous results for $p=2$ membranes. Assuming factorization of time we reduce the self-duality equations to integrable systems and we determine explicitly periodic, in Euclidean time, solutions in terms of the elliptic functions. These solutions describe 4d associative and non-associative calibrations in $D=7,8$ dimensions. It turns out that for spherical topology the calibration is non compact while for the toroidal topology is compact. We discuss possible applications of our results to the problem of 3-brane topology change and its implications for a non-perturbative definition of the 3-brane interactions.

  11. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations

    Science.gov (United States)

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  12. Non-linear gauge transformations in D=10 SYM theory and the BCJ duality

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungjin [Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut,14476 Potsdam (Germany); Mafra, Carlos R. [Institute for Advanced Study, School of Natural Sciences,Einstein Drive, Princeton, NJ 08540 (United States); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut,14476 Potsdam (Germany)

    2016-03-14

    Recent progress on scattering amplitudes in super Yang-Mills and superstring theory benefitted from the use of multiparticle superfields. They universally capture tree-level subdiagrams, and their generating series solve the non-linear equations of ten-dimensional super Yang-Mills. We provide simplified recursions for multiparticle superfields and relate them to earlier representations through non-linear gauge transformations of their generating series. Moreover, we discuss the gauge transformations which enforce their Lie symmetries as suggested by the Bern-Carrasco-Johansson duality between color and kinematics. Another gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest components. The findings of this work tremendously simplify the component extraction from kinematic factors in pure spinor superspace.

  13. Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges

    International Nuclear Information System (INIS)

    Klemm, D.

    2001-01-01

    The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS 2 . Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS 3 x S 2 , which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)

  14. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    Science.gov (United States)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  15. Gauge/gravity duality for interactions of spherical membranes in 11-dimensional pp-wave

    International Nuclear Information System (INIS)

    Lee, Hok Kong; McLoughlin, Tristan; Wu Xinkai

    2005-01-01

    We investigate the gauge/gravity duality in the interaction between two spherical membranes in the 11-dimensional pp-wave background. On the supergravity side, we find the solution to the field equations at locations close to a spherical source membrane, and use it to obtain the light-cone Lagrangian of a spherical probe membrane very close to the source, i.e., with their separation much smaller than their radii. On the gauge theory side, using the BMN matrix model, we compute the one-loop effective potential between two membrane fuzzy spheres. Perfect agreement is found between the two sides. Moreover, the one-loop effective potential we obtain on the gauge theory side is valid beyond the small-separation approximation, giving the full interpolation between interactions of membrane-like objects and that of graviton-like objects

  16. The anisotropic Ising correlations as elliptic integrals: duality and differential equations

    International Nuclear Information System (INIS)

    McCoy, B M; Maillard, J-M

    2016-01-01

    We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers–Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorized in a very simple way, in operators of decreasing orders. (paper)

  17. Taking an electron-magnon duality shortcut from electron to magnon transport

    Science.gov (United States)

    Mook, Alexander; Göbel, Börge; Henk, Jürgen; Mertig, Ingrid

    2018-04-01

    The quasiparticles in insulating magnets are the charge-neutral magnons, whose magnetic moments couple to electromagnetic fields. For collinear easy-axis magnets, this coupling can be mapped elegantly onto the scenario of charged particles in electromagnetic fields. From this mapping we obtain equations of motion for magnon wave packets equal to those of electron wave packets in metals. Thus, well-established electronic transport phenomena can be carried over to magnons: this duality shortcut facilitates the discussion of magnon transport. We identify the magnon versions of normal and anomalous Hall, Nernst, Ettingshausen, and Righi-Leduc effects. They are discussed for selected types of easy-axis magnets: ferromagnets, antiferromagnets, and ferrimagnets. Besides a magnon Wiedemann-Franz law and the magnon counterpart of the negative magnetoresistance of electrons in Weyl semimetals, we predict that certain low-symmetry ferrimagnets exhibit a nonlinear version of the anomalous magnon Hall-effect family.

  18. The duality of health technology in chronic illness: how designers envision our future.

    Science.gov (United States)

    Lehoux, Pascale

    2008-06-01

    This essay critically explores the role of technological innovation in the constitution of chronic states and illness. Drawing on the co-construction of technology and society perspective, it focuses more specifically on the way in which innovation designers envisage the enhancement of the chronically ill and build certain kinds of socio-technical configuration to deal with chronic illness. Using the case of ;intelligent distance patient monitoring' as an illustration, the paper argues that technology creates as much as it solves the problem of chronic illness. Technology is recursively embedded in chronic illness and it generates dual effects: it constrains and sustains users' daily practices. Only by recognizing technology's duality and eventually transcending it will research and policy initiatives be able to deal creatively and responsibly with the design of our future health experiences.

  19. THE DUALITY OF CREATIVITY AND TECHNOLOGY IN IS AND ISD ORGANIZATIONS

    DEFF Research Database (Denmark)

    Mengiste, Shegaw Anagaw; Ulrich, Frank

    2014-01-01

    Information Systems (IS) has become an increasing necessity in most organizations to achieve competitive advantages. In this article, we address the use of IS in creative sensemaking processes by presenting the notion of ergodic connections in the sensemaking process and a framework of the iterat......Information Systems (IS) has become an increasing necessity in most organizations to achieve competitive advantages. In this article, we address the use of IS in creative sensemaking processes by presenting the notion of ergodic connections in the sensemaking process and a framework...... of the iterative cycle of ideation and innovation in IS and ISD organizations. To create the framework, we have used Weick et al. (2005) view on sensemaking and Orlikowski's (1992) duality of technology theory. The theoretical framework, with the notion of ergodic connections suggests that sensemaking will cause...

  20. Duality of the magnetic flux tube and electric current descriptions magnetospheric plasma and energy flow

    International Nuclear Information System (INIS)

    Atkinson, G.

    1981-01-01

    The duality between electric current and magnetic flux tubes is outlined for the magnetosphere. Magnetic flux tubes are regarded as fluid elements subjected to various stresses. Current closure then becomes the dual of stress balance, and Poynting vector energy flow a dual of J x E dissipation. The stresses acting on a flux tube are magnetic stresses, which correspond to currents at a distance, and plasma stresses, which correspond to local currents. The duality between current and stress is traced for ionospheric ion drag forces, solar wind stresses at the magnetopause, inertial effects, and the effects of energetic plasma on flux tubes. The stress balance and dual current systems are outlined for idealized magnetospheres of increasing complexity. For a simple magnetosphere with no convective flow, the balance stresses are solar wind pressure and neutral sheet plasma pressure. The corresponding current systems are the Chapman-Ferraro magnetopause currents and the magetotail current system. The introduction of convective flow introduces further stresses: ionospheric ion drag. Alfven layer shielding, and an imbalance in day-night magnetic stresses due to transport of flux tubes to the nightside by the solar wind. These stresses balance, and hence the corresponding additional currents (the ionospheric Pedersen current and the electrojets, the partial ring current, and two other current systems from the magnetopause and tail) must form a closed current system and do so by the region I and II field-aligned currents of Iijima and Potemra. The energy flow in the above models is described in terms of both Poynting vectors and the above current systems. Temporal variations examined are (1) an increase in dayside merging and/or nightside reconnection, (2) an increase in the energy density of plasma in the plasma sheet, (3) an increase in ionospheric conductivity, and (4) an increase in solar wind pressure

  1. Gauge-string duality for superconformal deformations of N = 4 Super Yang-Mills theory

    International Nuclear Information System (INIS)

    Frolov, Sergey A.; Roiban, Radu; Tseytlin, Arkady A.

    2005-01-01

    We analyze in detail the relation between an exactly marginal deformation of N = 4 SYM - the Leigh-Strassler or 'β-deformation' - and its string theory dual (recently constructed in hep-th/0502086) by comparing energies of semiclassical strings to anomalous dimensions of gauge-theory operators in the two-scalar sector. We stress the existence of integrable structures on the two sides of the duality. In particular, we argue that the integrability of strings in AdS 5 x S 5 implies the integrability of the deformed world sheet theory with real deformation parameter. We compare the fast string limit of the worldsheet action in the sector with two angular momenta with the continuum limit of the coherent state action of an anisotropic XXZ spin chain describing the one-loop anomalous dimensions of the corresponding operators and find a remarkable agreement for all values of the deformation parameter. We discuss some of the properties of the Bethe Ansatz for this spin chain, solve the Bethe equations for small number of excitations and comment on higher loop properties of the dilatation operator. With the goal of going beyond the leading order in the 't Hooft expansion we derive the analog of the Bethe equations on the string-theory side, and show that they coincide with the thermodynamic limit of the Bethe equations for the spin chain. We also compute the 1/J corrections to the anomalous dimensions of operators with large R-charge (corresponding to strings with angular momentum J) and match them to the 1-loop corrections to the fast string energies. Our results suggest that the impressive agreement between the gauge theory and semiclassical strings in AdS 5 x S 5 is part of a larger picture underlying the gauge/gravity duality

  2. Infinitely many N=1 dualities from m+1−m=1

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon [Department of Physics, University of California,San Diego, La Jolla, CA 92093 (United States)

    2015-10-06

    We discuss two infinite classes of 4d supersymmetric theories, T{sub N}{sup (m)} and U{sub N}{sup (m)}, labelled by an arbitrary non-negative integer, m. The T{sub N}{sup (m)} theory arises from the 6d, A{sub N−1} type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m+1,−m); the m=0 case is the N=2 supersymmetric T{sub N} theory. The novelty is the negative-degree line bundle. The U{sub N}{sup (m)} theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T{sub N}{sup (m)} theories. The T{sub N}{sup (m)} and U{sub N}{sup (m)} theories can be represented, in various duality frames, as quiver gauge theories, built from T{sub N} components via gauging and nilpotent Higgsing. We analyze the RG flow of the U{sub N}{sup (m)} theories, and find that, for all integer m>0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The U{sub N}{sup (m)} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N{sub f}=2N{sub c}. The U{sub N}{sup (m)} duals have different duality frame quiver representations, with 2m+1 gauge nodes.

  3. Dynamical duality of type- and token-computation as an abstract brain

    Energy Technology Data Exchange (ETDEWEB)

    Gunji, Yukio-Pegio [Department of Earth and Planetary Sciences, Faculty of Science, Kobe University (Japan); Graduate School of Science and Technology, Kobe University (Japan)] e-mail: yukio@kobe-u.ac.jp; Miyoshi, Hiroyuki [Department of Computer Sciences, Faculty of Science, Kyoto Sangyo University (Japan); Takahashi, Tatsuji [Graduate School of Science and Technology, Kobe University (Japan); Kamiura, Moto [Graduate School of Science and Technology, Kobe University (Japan)

    2006-03-01

    In brain science, there are few researches focusing on the theoretical relation between cognition (top-down processing) and perception (bottom-up processing). Philosophically they were regarded as the alternative leading to the dualism of mind and body, while it is an adequate problem for the endo-physics. Qualia are conjectured as the hard problem under those situations. To overcome such an impasse, we propose an abstract brain model featuring the dynamical duality of two parts of computations in a brain, in a term of endo-physics and internal measurement. Two parts of computations are expressed as binary relations, and the relationship between them is expressed as a pair of maps, called an infomorphism [Barwise J, Seligman J. Information flow, the logic of distributed systems. Cambridge University Press 1997]. Dynamical duality is implemented by the interaction between a binary relation and an infomorphism, and that leads to a dynamical change of a pair of binary relations. When a binary relation is expressed as a partial ordered set, one can check whether a part of computation is closed with respect to logical operations (i.e., a lattice) or not. By estimating a binary relation in terms of properties of lattice, we show that dynamical infomorphism robustly develops to a pair of logical computations corresponding to type cognition and non-logical one corresponding to qualia perception. It implies origin of differentiation and robust co-existence of type-cognition and qualia-perception. It is easy to see that dynamical infomorphism can also develop to a pair of singleton sets corresponding to savants' special cognitive style.

  4. Noncommutative duality of Gelfand-Naimark and applications in gauge theory and spinc structure

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2004-01-01

    We use the GN (Gelfand-Naimark) duality and its generalizations in order to describe some physical constructions, our main tool is the categorical formalism. We start with the first GN theorem, a duality between a category of commutative unital C*-algebras and a category of compact Hausdorff spaces, which we interpret as equivalence between classical observables and classical states. Then, we give the GNS construction providing the 'Fock space' in Quantum Field Theory, and which is the constructive proof of the second GN theorem. A particular formulation of this latter, the Serre-Swan theorem introduces vector bundle structure, a new kind of classical states space. And this lead to K-theory, which we show compatible with a noncommutative concept : the Morita equivalence. From these ideas of Noncommutative geometry, we meet two important applications in QFT : Gauge theory and Spin c structure.The first application begin with the origin of gauge theory: it permit to obtain the interaction lagrangian term from the gauge non invariance of the free lagrangian of matter. Thanks to theories of principal bundles, the gauge potential and the gauge transformation are represented by connection and bundle G-automorphism on the identity of a principal bundle over the spacetime manifold. Finally, the Serre-Swan theorem gives the step of Connes's generalization to noncommutative case. In the second application, we show that the construction of Dirac operator lead to the definitions of Clifford algebra and spinor space. A categorical equivalent definition, similar to those of the Grothendieck group, is done. At the end, we make use of the structure of Clifford algebra and the Morita equivalence to reconstruct Plymen's definition of the spin c structure [fr

  5. Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model

    Science.gov (United States)

    Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.

    Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.

  6. Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model

    International Nuclear Information System (INIS)

    Estienne, Benoit; Pasquier, Vincent; Santachiara, Raoul; Serban, Didina

    2012-01-01

    We study the properties of the conformal blocks of the conformal field theories with Virasoro or W-extended symmetry. When the conformal blocks contain only second-order degenerate fields, the conformal blocks obey second order differential equations and they can be interpreted as ground-state wave functions of a trigonometric Calogero-Sutherland Hamiltonian with non-trivial braiding properties. A generalized duality property relates the two types of second order degenerate fields. By studying this duality we found that the excited states of the Calogero-Sutherland Hamiltonian are characterized by two partitions, or in the case of WA k-1 theories by k partitions. By extending the conformal field theories under consideration by a u(1) field, we find that we can put in correspondence the states in the Hilbert state of the extended CFT with the excited non-polynomial eigenstates of the Calogero-Sutherland Hamiltonian. When the action of the Calogero-Sutherland integrals of motion is translated on the Hilbert space, they become identical to the integrals of motion recently discovered by Alba, Fateev, Litvinov and Tarnopolsky in Liouville theory in the context of the AGT conjecture. Upon bosonization, these integrals of motion can be expressed as a sum of two, or in general k, bosonic Calogero-Sutherland Hamiltonian coupled by an interaction term with a triangular structure. For special values of the coupling constant, the conformal blocks can be expressed in terms of Jack polynomials with pairing properties, and they give electron wave functions for special Fractional Quantum Hall states.

  7. Dynamical duality of type- and token-computation as an abstract brain

    International Nuclear Information System (INIS)

    Gunji, Yukio-Pegio; Miyoshi, Hiroyuki; Takahashi, Tatsuji; Kamiura, Moto

    2006-01-01

    In brain science, there are few researches focusing on the theoretical relation between cognition (top-down processing) and perception (bottom-up processing). Philosophically they were regarded as the alternative leading to the dualism of mind and body, while it is an adequate problem for the endo-physics. Qualia are conjectured as the hard problem under those situations. To overcome such an impasse, we propose an abstract brain model featuring the dynamical duality of two parts of computations in a brain, in a term of endo-physics and internal measurement. Two parts of computations are expressed as binary relations, and the relationship between them is expressed as a pair of maps, called an infomorphism [Barwise J, Seligman J. Information flow, the logic of distributed systems. Cambridge University Press 1997]. Dynamical duality is implemented by the interaction between a binary relation and an infomorphism, and that leads to a dynamical change of a pair of binary relations. When a binary relation is expressed as a partial ordered set, one can check whether a part of computation is closed with respect to logical operations (i.e., a lattice) or not. By estimating a binary relation in terms of properties of lattice, we show that dynamical infomorphism robustly develops to a pair of logical computations corresponding to type cognition and non-logical one corresponding to qualia perception. It implies origin of differentiation and robust co-existence of type-cognition and qualia-perception. It is easy to see that dynamical infomorphism can also develop to a pair of singleton sets corresponding to savants' special cognitive style

  8. TESTING THE DISTANCE-DUALITY RELATION WITH GALAXY CLUSTERS AND TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Holanda, R. F. L.; Lima, J. A. S.; Ribeiro, M. B.

    2010-01-01

    In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, η = D L (z)(1 + z) -2 /D A (z) = 1, where D L and D A are, respectively, the luminosity and angular diameter distances. For D L we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D A distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Δz A (z) ape D L (z), we have tested the DD relation by assuming that η is a function of the redshift parameterized by two different expressions: η(z) = 1 + η 0 z and η(z) = 1 + η 0 z/(1 + z), where η 0 is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (η 0 = 0). In the best scenario (linear parameterization), we obtain η 0 = -0.28 +0.44 -0.44 (2σ, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is η 0 = -0.42 +0.34 -0.34 (3σ, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.

  9. M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems

    Science.gov (United States)

    Tan, Meng-Chwan

    2013-07-01

    In part I, we extend our analysis in [arXiv:0807.1107], and show that a mathematically conjectured geometric Langlands duality for complex surfaces in [1], and its generalizations — which relate some cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine (sub) G-algebras, where G is any compact Lie group — can be derived, purely physically, from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part II, to the setup in part I, we introduce Omega-deformation via fluxbranes and add half-BPS boundary defects via M9-branes, and show that the celebrated AGT correspondence in [2, 3], and its generalizations — which essentially relate, among other things, some equivariant cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine -algebras — can likewise be derived from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part III, we consider various limits of our setup in part II, and connect our story to chiral fermions and integrable systems. Among other things, we derive the NekrasovOkounkov conjecture in [4] — which relates the topological string limit of the dual Nekrasov partition function for pure G to the integrable representations of the Langlands dual of an affine G-algebra — and also demonstrate that the Nekrasov-Shatashvili limit of the "fullyramified" Nekrasov instanton partition function for pure G is a simultaneous eigenfunction of the quantum Toda Hamiltonians associated with the Langlands dual of an affine G-algebra. Via the case with matter, we also make contact with Hitchin systems and the "ramified" geometric Langlands correspondence for curves.

  10. Management controls of liberalised state owned entities: duality of the rational–legal (modern–neoliberal) and the patrimonial–feudal (traditional)

    OpenAIRE

    Hewege, Chandana Rathnasiri

    2017-01-01

    This thesis explores management controls and the consequences of dysfunctions in the operation of management controls in liberalised State Owned Enterprises (SOEs) in Sri Lanka. The thesis argues that there is a duality of traditional (feudal–patrimonial) and modern (rational–neoliberal) control elements, and that this duality can better explain management control issues of developing countries such as Sri Lanka. In the process, it aims to extend management control theory relating to SOEs in ...

  11. Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Marc Andre [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Noriaki [Department of Mathematical Sciences, Ritsumeikan University,Kusatsu, Shiga 525-8577 (Japan); Watamura, Satoshi [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan)

    2017-02-15

    We give a systematic derivation of the local expressions of the NS H-flux, geometric F- as well as non-geometric Q- and R-fluxes in terms of bivector β- and two-form B-potentials including vielbeins. They are obtained using a supergeometric method on QP-manifolds by twist of the standard Courant algebroid on the generalized tangent space without flux. Bianchi identities of the fluxes are easily deduced. We extend the discussion to the case of the double space and present a formulation of T-duality in terms of canonical transformations between graded symplectic manifolds. Thus, we find a unified description of geometric as well as non-geometric fluxes and T-duality transformations in double field theory. Finally, the construction is compared to the formerly introduced Poisson Courant algebroid, a Courant algebroid on a Poisson manifold, as a model for R-flux.

  12. Sound topology, duality, coherence and wave-mixing an introduction to the emerging new science of sound

    CERN Document Server

    Deymier, Pierre

    2017-01-01

    This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).  The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...

  13. Non-Abelian T-duality and the AdS/CFT correspondence: New N=1 backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Itsios, Georgios, E-mail: gitsios@upatras.gr [Department of Engineering Sciences, University of Patras, 26110 Patras (Greece); Department of Mathematics, University of Surrey, Guildford GU2 7XH (United Kingdom); Núñez, Carlos, E-mail: c.nunez@swansea.ac.uk [Swansea University, School of Physical Sciences, Singleton Park, Swansea SA2 8PP (United Kingdom); Sfetsos, Konstadinos, E-mail: k.sfetsos@surrey.ac.uk [Department of Mathematics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Engineering Sciences, University of Patras, 26110 Patras (Greece); Thompson, Daniel C., E-mail: dthompson@tena4.vub.ac.be [Theoretische Natuurkunde, Vrije Universiteit Brussel (Belgium); International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2013-08-01

    We consider non-Abelian T-duality on N=1 supergravity backgrounds possessing well understood field theory duals. For the case of D3-branes at the tip of the conifold, we dualise along an SU(2) isometry. The result is a type-IIA geometry whose lift to M-theory is of the type recently proposed by Bah et al. as the dual to certain N=1 SCFT quivers produced by M5-branes wrapping a Riemann surface. In the non-conformal cases we find smooth duals in massive IIA supergravity with a Romans mass naturally quantised. We initiate the interpretation of these geometries in the context of AdS/CFT correspondence. We show that the central charge and the entanglement entropy are left invariant by this dualisation. The backgrounds suggest a form of Seiberg duality in the dual field theories which also exhibit domain walls and confinement in the infrared.

  14. What Is Light?. Students' Reflections on the Wave-Particle Duality of Light and the Nature of Physics

    Science.gov (United States)

    Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit

    2018-03-01

    Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.

  15. Pion form factor in QCD sum rules, local duality approach, and O(A2) fractional analytic perturbation theory

    International Nuclear Information System (INIS)

    Bakulev, Alexander P.

    2010-01-01

    Using the results on the electromagnetic pion Form Factor (FF) obtained in the O(α s ) QCD sum rules with non-local condensates [A.P. Bakulev, A.V. Pimikov, and N.G. Stefanis, Phys. Rev. D79 (2009) 093010] we determine the effective continuum threshold for the local duality approach. Then we apply it to construct the O(α s 2 ) estimation of the pion FF in the framework of the fractional analytic perturbation theory.

  16. The hyperbolic BCn Sutherland and the rational BCn Ruijsenaars-Schneider-van Diejen models: Lax matrices and duality

    International Nuclear Information System (INIS)

    Pusztai, B.G.

    2012-01-01

    In this paper, we construct canonical action-angle variables for both the hyperbolic BC n Sutherland and the rational BC n Ruijsenaars-Schneider-van Diejen models with three independent coupling constants. As a byproduct of our symplectic reduction approach, we establish the action-angle duality between these many-particle systems. The presented dual reduction picture builds upon the construction of a Lax matrix for the BC n -type rational Ruijsenaars-Schneider-van Diejen model.

  17. Duality and free measures in vector spaces, the spectral theory of actions of non-locally compact groups

    OpenAIRE

    Vershik, A.

    2017-01-01

    The paper presents a general duality theory for vector measure spaces taking its origin in the author's papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and the properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.

  18. Supersymmetric and non-supersymmetric Seiberg-like dualities for gauged Wess–Zumino–Witten theories, realised on branes

    Directory of Open Access Journals (Sweden)

    E. Ireson

    2016-01-01

    Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.

  19. Boxes, Boosts, and Energy Duality: Understanding the Galactic-Center Gamma-Ray Excess through Dynamical Dark Matter

    CERN Document Server

    Boddy, Kimberly K.

    2017-03-28

    Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...

  20. Wilson loops in 5d $\\mathcal{N}=1$ theories and S-duality arXiv

    CERN Document Server

    Assel, Benjamin

    We study the action of S-duality on half-BPS Wilson loop operators in 5d $\\mathcal{N}=1$ theories. The duality is the statement that different massive deformations of a single 5d SCFT are described by different gauge theories, or equivalently that the SCFT points in parameter space of two gauge theories coincide. The pairs of dual theories that we study are realized by brane webs in type IIB string theory that are S-dual to each other. We focus on $SU(2)$ SQCD theories with $N_f \\le 4$ flavors, which are self-dual, and on $SU(3)$ SQCD theories, which are dual to $SU(2)^2$ quiver theories. From string theory engineering we predict that Wilson loops are mapped to dual Wilson loops under S-duality. We confirm the predictions with exact computations of Wilson loop VEVs, which we extract from the 5d half-index in the presence of auxiliary loop operators (also known as higher qq-characters) sourced by D3 branes placed in the brane webs. A special role is played by Wilson loops in tensor products of the (anti)fundam...

  1. Neutrino Masses in the Landscape and Global-Local Dualities in Eternal Inflation

    Science.gov (United States)

    Mainemer Katz, Dan

    In this dissertation we study two topics in Theoretical Cosmology: one more formal, the other more phenomenological. We work in the context of eternally inflating cosmologies. These arise in any fundamental theory that contains at least one stable or metastable de Sitter vacuum. Each topic is presented in a different chapter: Chapter 1 deals with the measure problem in eternal inflation. Global-local duality is the equivalence of seemingly different regulators in eternal inflation. For example, the light- cone time cutoff (a global measure, which regulates time) makes the same predictions as the causal patch (a local measure that cuts off space). We show that global-local duality is far more general. It rests on a redundancy inherent in any global cutoff: at late times, an attractor regime is reached, characterized by the unlimited exponential self-reproduction of a certain fundamental region of spacetime. An equivalent local cutoff can be obtained by restricting to this fundamental region. We derive local duals to several global cutoffs of interest. The New Scale Factor Cutoff is dual to the Short Fat Geodesic, a geodesic of fixed infinitesimal proper width. Vilenkin's CAH Cutoff is equivalent to the Hubbletube, whose width is proportional to the local Hubble volume. The famous youngness problem of the Proper Time Cutoff can be readily understood by considering its local dual, the Incredible Shrinking Geodesic. The chapter closely follows our paper. Chapter 2 deals with the question of whether neutrino masses could be anthropically explained. The sum of active neutrino masses is well constrained, 58 meV ≤ mupsilon [is approximately less than] 0.23 eV, but the origin of this scale is not well understood. Here we investigate the possibility that it arises by environmental selection in a large landscape of vacua. Earlier work had noted the detrimental effects of neutrinos on large scale structure. However, using Boltzmann codes to compute the smoothed density

  2. Resonance families and local duality relations in the meson-baryon scattering

    International Nuclear Information System (INIS)

    Ino, Taketoshi

    1989-01-01

    The local duality relations proposed previously are applied systematically to the P 8 -B 8 scattering, where P 8 and B 8 denote the 0 - unitary octet and 1/2 + one, respectively. The system of the relations involves the harmonic-oscillator spectrum of SU(6) x O(3) L multiplets, and for a process with one exotic channel (the exotic u-channel), the relation relates the s-channel resonance family N s with the t-channel one N t in terms of residues of the scattering amplitude at s-and t-channel resonances a and b (a is an element of N s , b is an element of N t ) in the narrow-width approximation. The resonance family N s (N t ) is defined to be a set of s-(t-) channel resonances with a fixed total number N s (N t ) of quanta of harmonic-oscillator excitations. The system of the relations is powerful in predicting mass ratios and coupling ratios for resonances. It is found that predictions are consistent with available experiments. Some discussion is made on the present results and previous successes in a work where we obtained a uniquely determined π - π + →π - π + dual Born amplitude, starting with the most general Veneziano-type amplitude and restricting parameters in it by the system of the relations and an asymptotic convergence condition. (author)

  3. Siegmund duality with applications to the neutral Moran model conditioned on never being absorbed

    International Nuclear Information System (INIS)

    Huillet, Thierry

    2010-01-01

    We first consider the classical neutral Moran model with two alleles whose fate is either to become extinct or to reach fixation. We study an ergodic version of the Moran model obtained by conditioning it to never hit the boundaries, making use of a Doob transform. We call it the recurrent Moran model. We show that the Siegmund dual of the recurrent Moran process exists and is a substochastic birth and death chain. Conditioning this process to exit in its natural absorbing state, we construct a process with a unique absorbing state which is intertwined to the original recurrent Moran process. The time needed for the intertwined process to first hit its absorbing state is related to the time needed to reach stationarity for the recurrent Moran process. Using spectral information on the intertwined chain, we extract limiting information on this first hitting time that shows that there is no abrupt relaxation to equilibrium for the recurrent Moran chain. This makes use of the relation between duality and intertwining and strong stationary times. Other related transition times of the recurrent Moran chain are also briefly investigated, namely the first return time to the ground state and the expected time needed to move from one end to the other end of the state space.

  4. Towards an improved duality between tensor network states and AdS spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Charalampos; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    The conjectured AdS/CFT Correspondence, which states that a Conformal Field Theory (CFT) in Minkowski spacetime has a gravity dual in an asymptotically Anti-de Sitter space (AdS), is one of the best understood examples of the holographic principle, and has important applications in condensed matter physics. Tensor Networks (TNs) are a efficient way to calculate low-energy properties for strongly-correlated quantum many-body systems. The Multi-scale Entanglement Renormalization Ansatz (MERA) is a specific TN for a efficient description of critical quantum systems (CFTs). It was recently suggested that the MERA provides naturally a discretization of AdS spacetime on a lattice. It is however known that a conventional MERA can not reproduce the so-called ''Bousso Bound'', also called holographic entropy bound, which is a bound on the bulk entropy in spacetime. In this context, our aim is to generalize the proposed AdS/MERA correspondence to a more general AdS/TN duality, where the Bousso bound is satisfied. Progress in this direction as well as connections to strongly correlated systems will be discussed.

  5. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  6. Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality

    CERN Document Server

    Cvetic, Mirjam; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required ...

  7. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  8. Testing the Distance-Duality Relation in the Rh = ct Universe

    Science.gov (United States)

    Hu, J.; Wang, F. Y.

    2018-04-01

    In this paper, we test the cosmic distance duality (CDD) relation using the luminosity distances from joint light-curve analysis (JLA) type Ia supernovae (SNe Ia) sample and angular diameter distance sample from galaxy clusters. The Rh = ct and ΛCDM models are considered. In order to compare the two models, we constrain the CCD relation and the SNe Ia light-curve parameters simultaneously. Considering the effects of Hubble constant, we find that η ≡ DA(1 + z)2/DL = 1 is valid at the 2σ confidence level in both models with H0 = 67.8 ± 0.9 km/s/Mpc. However, the CDD relation is valid at 3σ confidence level with H0 = 73.45 ± 1.66 km/s/Mpc. Using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), we find that the ΛCDM model is very strongly preferred over the Rh = ct model with these data sets for the CDD relation test.

  9. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: A Duality of Activation Mechanisms Account.

    Science.gov (United States)

    Imbir, Kamil K

    2016-01-01

    Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled) should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency, and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance.

  10. Subjective Significance Shapes Arousal Effects on Modified Stroop Task Performance: a Duality of Activation Mechanisms Account

    Directory of Open Access Journals (Sweden)

    Kamil Konrad Imbir

    2016-02-01

    Full Text Available Activation mechanisms such as arousal are known to be responsible for slowdown observed in the Emotional Stroop (EST and modified Stroop tasks. Using the duality of mind perspective, we may conclude that both ways of processing information (automatic or controlled should have their own mechanisms of activation, namely, arousal for an experiential mind, and subjective significance for a rational mind. To investigate the consequences of both, factorial manipulation was prepared. Other factors that influence Stroop task processing such as valence, concreteness, frequency and word length were controlled. Subjective significance was expected to influence arousal effects. In the first study, the task was to name the color of font for activation charged words. In the second study, activation charged words were, at the same time, combined with an incongruent condition of the classical Stroop task around a fixation point. The task was to indicate the font color for color-meaning words. In both studies, subjective significance was found to shape the arousal impact on performance in terms of the slowdown reduction for words charged with subjective significance.

  11. Quantum physics of entangled systems: wave-particle duality and atom-photon molecules

    International Nuclear Information System (INIS)

    Rempe, G.

    2000-01-01

    One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)

  12. Equivariant Verlinde Algebra from Superconformal Index and Argyres-Seiberg Duality

    Science.gov (United States)

    Gukov, Sergei; Pei, Du; Yan, Wenbin; Ye, Ke

    2018-02-01

    In this paper, we show the equivalence between two seemingly distinct 2d TQFTs: one comes from the "Coulomb branch index" of the class S theory {T[Σ,G]} on {L(k,1) × S^1}, the other is the {^L G} "equivariant Verlinde formula", or equivalently partition function of {^L G_C} complex Chern-Simons theory on {Σ× S^1}. We first derive this equivalence using the M-theory geometry and show that the gauge groups appearing on the two sides are naturally G and its Langlands dual {^L G}. When G is not simply-connected, we provide a recipe of computing the index of {T[Σ,G]} as summation over the indices of T[Σ,\\tilde{G}] with non-trivial background 't Hooft fluxes, where \\tilde{G} is the universal cover of G. Then we check explicitly this relation between the Coulomb index and the equivariant Verlinde formula for {G=SU(2)} or SO(3). In the end, as an application of this newly found relation, we consider the more general case where G is SU( N) or PSU( N) and show that equivariant Verlinde algebra can be derived using field theory via (generalized) Argyres-Seiberg duality. We also attach a Mathematica notebook that can be used to compute the SU(3) equivariant Verlinde coefficients.

  13. Phases of N=4 SYM, S-duality and nilpotent cones

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Aswin [DESY Theory, Hamburg (Germany); Hamburg Univ. (Germany). Dept. of Mathematics

    2016-10-15

    In this note, I describe the space of vacua V of four dimensional N=4 SYM on R{sup 4} with gauge group a compact simple Lie Group G as a stratified space. On each stratum, the low energy effective field theory is different. This language allows one to make precise the idea of moving in the space of vacua V. A particular subset of the strata of N=4 SYM can be efficiently described using the theory of sheets in a Lie algebra. For these strata, I study the conjectural action of S-duality. I also indicate some benefits of using such a language for the study of the available space of vacua V on the boundary of GL twisted N=4 SYM on a half-space R{sup 3} x R{sup +}. As an application of boundary symmetry breaking, I indicate how a) the Local Nilpotent Cone arises as part of the available symmetry breaking choices on the boundary of the four dimensional theory and b) the Global Nilpotent Cone arises in the theory reduced down to two dimensions on a Riemann Surface C. These geometries play a critical role in the Local and Global Geometric Langlands Program(s).

  14. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  15. U duality, D-branes, and black hole emission rates: Agreements and disagreements

    International Nuclear Information System (INIS)

    Dowker, F.; Kastor, D.; Traschen, J.

    1998-01-01

    An expression for the spacetime absorption coefficient of a scalar field in a five-dimensional, near-extremal black hole background is derived, which has the same form as that presented by Maldacena and Strominger, but is valid over a larger, U-duality invariant region of parameter space and in general disagrees with the corresponding D-brane result. We develop an argument, based on D-brane thermodynamics, which specifies the range of parameters over which agreement should be expected. For neutral emission, the spacetime and D-brane results agree over this range. However, for charged emission, we find disagreement in the 'fat black hole' regime, in which charge is quantized in smaller units on the brane than in the bulk of spacetime. We indicate a possible problem with the D-brane model in this regime. We also use the Born approximation to study the high frequency limit of the absorption coefficient and find that it approaches unity, for large black hole backgrounds, at frequencies still below the string scale, again in disagreement with D-brane results. copyright 1998 The American Physical Society

  16. N=2 type II - heterotic duality and higher derivative F-terms

    International Nuclear Information System (INIS)

    Antoniadis, I.; Narain, K.S.; Taylor, T.R.

    1995-07-01

    We test the recently conjectured duality between N-2 supersymmetric type II and heterotic string models by analyzing a class of higher dimensional interactions in the respective low-energy Lagrangians. These are F-terms of the form F g W 2g where W is the gravitational superfield. On the type II side these terms are generated at the g-loop level and in fact are given by topological partition functions of the twisted Calabi-Yan sigma model. We show that on the heterotic side these terms arise at the one-loop level. We study in detail a rank 3 example and show that the corresponding couplings, F g satisfy the same holomorphic anomaly equations as in the type II case. Moreover we study the leading singularities of F g 's on the heterotic side, near the enhanced symmetry point and show that they are universal poles of order 2g - 2 with coefficients that are given by the Euler number of the moduli space of genus-g Riemann surfaces. This confirms a recent conjecture that the physics near the conifold singularity is governed by c=1 string theory at the self-dual point. (author). 24 refs

  17. Thermodynamics and gauge/gravity duality for Lifshitz black holes in the presence of exponential electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, M. Kord; Dehyadegari, A. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Eram Square, Shiraz, P.O. Box 71454 (Iran, Islamic Republic of); Sheykhi, A.; Dehghani, M.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Eram Square, Shiraz, P.O. Box 71454 (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-03-07

    In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrodynamics separately and disclose the effect of nonlinearity on holographic conductivity. We indicate that holographic conductivity vanishes for z>3 in the case of nonlinear electrodynamics while it does not in the linear Maxwell case. Finally, we solve perturbative additional field equations numerically and plot the behaviors of real and imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. We present experimental results match with our numerical ones.

  18. The GRA beam-splitter experiments and wave-particle duality of light

    International Nuclear Information System (INIS)

    Kaloyerou, P.N.

    2005-01-01

    Full text: Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to demonstrate particle behaviour of light and a Mach-Zehnder interferometer experiment to demonstrate wave behaviour of light. The distinguishing feature of these experiments is the use of a gating system to produce near ideal single photon states. With the demonstration of both wave and particle behaviour (in the two mutually exclusive experiments) they claim to have demonstrated the dual wave-particle behaviour of light. The demonstration of the wave behaviour of light is not in dispute. But, we want to demonstrate, contrary to the claims of GRA, that their beam-splitter experiment does not conclusively confirm the particle behaviour of light, and hence does not demonstrate particle-wave duality. Our demonstration consists of providing a detailed model, not involving particles, of GRA's 'which-path' experiment. The model uses the causal interpretation of quantum fields. We will also give a brief outline a model for the second 'interference' GRA experiment. (author)

  19. A study in derived algebraic geometry volume I : correspondences and duality

    CERN Document Server

    Gaitsgory, Dennis

    2017-01-01

    Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a "renormalization" of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of \\infty-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the \\mathrm{(}\\infty, 2\\mathrm{)}-category of correspondences needed for the sec...

  20. Adult Fear and Control: Ambivalence and Duality in Clive Barker’s The Thief of Always

    Directory of Open Access Journals (Sweden)

    Gabrielle Kristjanson

    2016-02-01

    Full Text Available This article considers the relationship between the text and accompanying illustrations in Clive Barker’s children’s novel The Thief of Always: A Fable. This tale of abduction was published in the social background of fear around the child predator of the early 1990s and incorporates ideas of monstrous villainy, loss of childhood innocence, and insatiable desires. As a fable, Thief is a cautionary tale that not only teaches that childhood years are precious and are not to be wished away or squandered in idle leisure, but also of the dangers that some adults pose to children. Problematically, an honest and frank discussion of adult sexual desires toward children would despoil the very innocence that is trying to be protected; thus, a lesson such as this must be sublimated within the story. Yet, it is the illustrations, and more specifically the way in which the illustrations corroborate and contradict the plot of this story that reveals an underlying ambivalence toward the figure of the child and an echoing duality present in both the child and the child predator.