WorldWideScience

Sample records for dual-functional lithium lead

  1. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST

    International Nuclear Information System (INIS)

    Wu, Y.

    2007-01-01

    A dual functional lithium-lead (DFLL) test blanket module (TBM) concept has been proposed for testing in the International Thermonuclear Experimental Reactor (ITER) and the Experimental Advanced Superconducting Tokamak (EAST) in China to demonstrate the technologies of the liquid lithium-lead breeder blankets with emphasis on the balance between the risks and the potential attractiveness of blanket technology development. The design of DFLL-TBM concept has the flexibility of testing both the helium-cooled quasi-static lithium-lead (SLL) blanket concept and the He/PbLi dual-cooled lithium-lead (DLL) blanket concept. This paper presents an effective testing strategy proposed to achieve the testing target of SLL and DLL DEMO blankets relevant conditions, which includes three parts: materials R and D and small-scale out-of-pile mockups testing in loops, middle-scale TBMs pre-testing in EAST and full-scale consecutive TBMs testing corresponding to different operation phases of ITER during the first 10 years. The design of the DFLL-TBM concept and the testing strategy ability to test TBMs for both blanket concepts in sequence and or in parallel for both ITER and EAST are discussed

  2. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Guo, Pengqian; Liu, Dequan; Liu, Zhengjiao; Shang, Xiaonan; Liu, Qiming; He, Deyan

    2017-01-01

    Highlights: •Dual functional MoS 2 /graphene interlayer was first used as an efficient polysulfide-trapping shield for lithium-sulfur batteries. •MoS 2 /graphene interlayer shows strong chemical interactions with LiPSs. •MoS 2 /graphene interlayer forms a 3D network to facilitate electron and ion transfer during the discharge-charge processes. •The resultant lithium-sulfur batteries exhibit a superior rate capacity and improved cycling capacity. -- Abstract: A dual functional interlayer consisted of composited two-dimensional MoS 2 and graphene has been developed as an efficient polysulfide barrier for lithium-sulfur batteries (LSBs). With such a configuration, LSBs show a superior rate capacity and improved cycling capacity. The excellent electrochemical performance can be attributed to the strong bonding interactions between the MoS 2 /graphene interlayer and the formed lithium polysulfides (LiPSs) as well as the good electrical conductivity of the MoS 2 /graphene composite. The MoS 2 /graphene interlayer can physically block LiPSs by the graphene nanosheets and chemically suppress the dissolution of LiPSs by the polar MoS 2 nanoflowers. Such a dual functional interlayer further provides a good contact with the surface of the sulfur cathode, acts as an upper current collector and greatly improves the sulfur utilization and the rate capability of LSBs.

  3. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Zhang, Linlin; Wan, Fang; Wang, Xinyu; Cao, Hongmei; Dai, Xi; Niu, Zhiqiang; Wang, Yijing; Chen, Jun

    2018-02-14

    The lithium sulfur (Li-S) battery has attracted much attention due to its high theoretical capacity and energy density. However, its cycling stability and rate performance urgently need to improve because of its shuttle effect. Herein, oxygen-doped carbon on the surface of reduced graphene oxide (labeled as ODC/rGO) was fabricated to modify the separators of Li-S batteries to limit the dissolution of the lithium polysulfides. The mesoporous structure in ODC/rGO can not only serve as the physical trapper, but also provide abundant channels for fast ion transfer, which is beneficial for effective confinement of the dissoluble intermediates and superior rate performance. Moreover, the oxygen-containing groups in ODC/rGO are able to act as chemical adsorption sites to immobilize the lithium polysulfides, suppressing their dissolution in electrolyte to enhance the utilization of sulfur cathode in Li-S batteries. As a result, because of the synergetic effects of physical adsorption and chemical interaction to immobilize the soluble polysulfides, the Li-S batteries with the ODC/rGO-coated separator exhibit excellent rate performance and good long-term cycling stability with 0.057% capacity decay per cycle at 1.0 C after 600 cycles.

  4. Experimental system design of liquid lithium-lead alloy bubbler for DFLL-TBM

    International Nuclear Information System (INIS)

    Xie Bo; Li Junge; Xu Shaomei; Weng Kuiping

    2011-01-01

    The liquid lithium-lead alloy bubbler is a very important composition in the tritium unit of Chinese Dual-Functional Lithium Lead Test Blanket Module (DFLL-TBM). In order to complete the construction and run of the bubbler experimental system,overall design of the system, main circuit design and auxiliary system design have been proposed on the basis of theoretical calculations for the interaction of hydrogen isotope with lithium-lead alloy and experiment for hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle. The key of this design is gas-liquid exchange packed column, to achieve the measurement and extraction of hydrogen isotopes from liquid lithium-lead alloy. (authors)

  5. Gas absorption and discharge behaviors of lead-lithium

    International Nuclear Information System (INIS)

    Sakabe, Toshiro; Yokomine, Takehiko; Kunugi, Tomoaki; Kawara, Zensaku; Ueki, Yoshitaka; Tanaka, Teruya

    2014-01-01

    Highlights: • The absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. • For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. • It is observed that the argon tends to desorb when the phase change of lead-lithium occurs. • It is observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. - Abstract: The absorption of rare gas in the lead-lithium has been quite low and the gas is used as a cover-gas to control the environment of experiment. In our previous thermo-fluid experiment by using lithium-lead, it was found the cover gas pressure enclosed in the very leak tight container of lithium-lead was decreased with time, that is, the gas-absorption of the solid lithium-lead occurred at room temperature under atmospheric pressure. The variation of pressure exceeded the retention of argon in lead-lithium which is expected by the published data. Therefore, we aim to confirm those phenomena under well-controlled experimental condition by using argon, nitrogen and helium. According to the results of gas exposure tests, the absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. It is also observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. If the retention of argon in the lead-lithium cannot be ignored, the problem of Ar-41 activity should be taken into consideration as well as the problem of argon bubble in the lead-lithium

  6. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.

    Science.gov (United States)

    Kale, Sayali B; Kalubarme, Ramchandra S; Mahadadalkar, Manjiri A; Jadhav, Harsharaj S; Bhirud, Ashwini P; Ambekar, Jalinder D; Park, Chan-Jin; Kale, Bharat B

    2015-12-21

    Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. ∼6365 μmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2S4. The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which

  7. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  8. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  9. IAEA's dual function

    International Nuclear Information System (INIS)

    1967-01-01

    'A factor of paramount importance is the dual nature of atomic energy, which is reflected in the dual function of the Agency; not only to promote, but also to safeguard the peaceful uses of atomic energy'. In taking the above statement as a theme in his address to the 1474th Plenary Meeting of the United Nations General Assembly (22nd November), the Director General, Dr. Sigvard Eklund, went on to speak of a few of the many areas in which society was feeling the impact of atomic energy. During the discussion which followed his report on the Agency's work nearly all speakers referred to the importance of the safeguards system as well as to positive achievements in developing nuclear potential for peaceful purposes

  10. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  11. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    Science.gov (United States)

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Lithium-lead/water interaction. Large break experiments

    International Nuclear Information System (INIS)

    Savatteri, C.; Gemelli, A.

    1991-01-01

    One current concept in fusion blanket module design is to utilize water as coolant and liquid lithium-lead as breeding/neutron-multiplier material. Considering the possibility of certain off-normal events, it is possible that water leakage into the liquid metal may occur due to a tube rupture. The lithium-lead/water contact can lead to a thermal and chemical reaction which should provoke an intolerable pressure increase in the blanket module. For realistic simulation of such in-blanket events, the Blanket Safety Test (BLAST) facility has been built. It simulates the transient event by injecting subcooled water under high pressure into a stagnant pool of about 500 kg liquid Pb-17Li. Eight fully instrumented large break tests were carried out under different conditions. The aim of the experiments is to study the chemical and thermal process and particularly: The pressurization history of the reaction vessel, the formation and deposition of the reaction products, the identification and propagation of the reaction zones and the temperature transient in the liquid metal. In this paper the results of all tests performed are presented and discussed. (orig.)

  13. Safety considerations of lithium lead alloy as a fusion reactor breeding material

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    Test results and conclusions are presented for lithium lead alloy interactions with various gas atmospheres, concrete and potential reactor coolants. The reactions are characterized to evaluate the potential of volatilizing and transporting radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. The safety concerns identified for lithium lead alloy reactions with the above materials are compared to those previously identified for a reference fusion breeder material, liquid lithium. Conclusions made from this comparison are also included

  14. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  15. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  16. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  17. Corrosion of ferrous alloys in eutectic lead-lithium environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-09-01

    Corrosion data have been obtained on austenitic prime candidate alloy (PCA) and Type 316 stainless steel and ferritic HT-9 and Fe-9Cr-1Mo steels in a flowing Pb-17 at. % Li environment at 727 and 700 K (454 and 427 0 C). The results indicate that the dissolution rates for both austenitic and ferritic steels in Pb-17Li are an order of magnitude greater than in flowing lithium. The influence of time, temperature, and alloy composition on the corrosion behavior in Pb-17Li is similar to that in lithium. The weight losses for the austenitic steels are an order of magnitude greater than for the ferritic steels. The rate of weight loss for the ferritic steels is constant, whereas the dissolution rates for the austenitic steels decrease with time. After exposure to Pb-17Li, the austenitic steels develop a very weak and porous ferrite layer which easily spalls from the specimen surface

  18. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  19. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  20. Susceptibility of 2 1/4 Cr-1Mo steel to liquid metal induced embrittlement by lithium-lead solutions

    International Nuclear Information System (INIS)

    Eberhard, B.A.; Edwards, G.R.

    1984-08-01

    An investigation has been conducted on the liquid metal induced embrittlement susceptibility of 2 1/4Cr-1Mo steel exposed to lithium and 1a/o lead-lithium at temperatures between 190 0 C and 525 0 C. This research was part of an ongoing effort to evaluate the compatibility of liquid lithium solutions with potential fusion reactor containment materials. Of particular interest was the microstructure present in a weld heat-affected zone, a microstructure known to be highly susceptible to corrosive attack by liquid lead-lithium solutions. Embrittlement susceptibility was determined by conducting tension tests on 2 1/4Cr-1Mo steel exposed to an inert environment as well as to a lead-lithium liquid and observing the change in tensile behavior. The 2 1/4Cr-1Mo steel was also given a base plate heat treatment to observe its embrittlement susceptibility to 1a/o lead-lithium. The base plate microstructure was severely embrittled at temperatures less than 500 0 C. Tempering the base plate was effective in restoring adequate ductility to the steel

  1. The effect of lead concentration on the corrosion susceptibility of 2 1/4Cr-1Mo steel in a lead-lithium liquid

    International Nuclear Information System (INIS)

    Wilkinson, B.D.; Edwards, G.R.; Hoffman, N.J.

    1982-01-01

    The intergranular penetration of 21/4Cr-1Mo steel by lead-lithium liquids containing 0, 17.6, and 53 w/o lead has been investigated at temperatures from 300 0 C to 600 0 C for times up to 1000 hours. Limited tests using a 99.3 w/o lead-lithium liquid were also conducted. Tempering was found to remove the susceptibility of as-quenched 21/4Cr-1Mo steel to penetration at 500 0 C by lead-lithium liquids containing up to 53 w/o lead. Penetration by the 99.3 w/o lead-lithium liquid in 1000 hours at 500 0 C was found to be negligible even when the steel was in the as-quenched condition. An Arrhenius analysis yielded the same low initial activation energy (approx. equal to25 kJ/mole) for liquids containing 0, 17.6, and 53 w/o lead. The initial penetration rate for lead-free lithium was significantly greater than that for the lead-bearing liquids, a factor thought to be related to the effect of lead on the wettability of the liquid. The same secondary activation energy (approx. equal to120 kJ/mole) was also found for the three liquids. Furthermore, the secondary penetration rate was found to be insensitive to lead content. Anomalous behavior at 500 0 C, observed in this study as well as in previous studies, is discussed, and a hypothetical explanation for the behavior is presented. (orig.)

  2. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  3. A Comparative Study of Lithium Ion to Lead Acid Batteries for use in UPS Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Uninterruptible power supply (UPS) systems have incorporated in their structure an electrochemical battery which allows for smooth power supply when a power failure occurs. In general, UPS systems are based on lead acid batteries; mainly a valve regulated lead acid (VRLA) battery. Recently, lithium...... ion batteries are getting more and more attention for their use in the back-up power systems and UPSs, because of their superior characteristics, which include increased safety and higher gravimetric and volumetric energy densities. This fact allows them to be smaller in size and weight less than VRLA...... batteries, which are currently used in UPS applications. The main purpose of this paper is to analyze how Li-ion batteries can become a useful alternative to present VRLA. In this study, three different electrochemical battery technologies were investigated; two of the most appealing Li-ion chemistries...

  4. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins.

    Science.gov (United States)

    Benson, Thomas R; Coble, Matthew A; Rytuba, James J; Mahood, Gail A

    2017-08-16

    The omnipresence of lithium-ion batteries in mobile electronics, and hybrid and electric vehicles necessitates discovery of new lithium resources to meet rising demand and to diversify the global lithium supply chain. Here we demonstrate that lake sediments preserved within intracontinental rhyolitic calderas formed on eruption and weathering of lithium-enriched magmas have the potential to host large lithium clay deposits. We compare lithium concentrations of magmas formed in a variety of tectonic settings using in situ trace-element measurements of quartz-hosted melt inclusions to demonstrate that moderate to extreme lithium enrichment occurs in magmas that incorporate felsic continental crust. Cenozoic calderas in western North America and in other intracontinental settings that generated such magmas are promising new targets for lithium exploration because lithium leached from the eruptive products by meteoric and hydrothermal fluids becomes concentrated in clays within caldera lake sediments to potentially economically extractable levels.Lithium is increasingly being utilized for modern technology in the form of lithium-ion batteries. Here, using in situ measurements of quartz-hosted melt inclusions, the authors demonstrate that preserved lake sediments within rhyolitic calderas have the potential to host large lithium-rich clay deposits.

  5. Dual function of the McaS small RNA in controlling biofilm formation

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel Girke; Thomason, Maureen K.; Havelund, Johannes

    2013-01-01

    , and biofilm formation. Moreover, ectopic McaS expression leads to induction of two additional CsrA-repressed genes encoding diguanylate cyclases. Collectively, our study shows that McaS is a dual-function sRNA with roles in the two major post-transcriptional regulons controlled by the RNA-binding proteins Hfq...

  6. Progress in design and development of series liquid lithium-lead expeirmental loops in China

    International Nuclear Information System (INIS)

    Wu Yican; Huang Qunying; Zhu Zhiqiang; Gao Sheng; Song Yong; Li Chunjing; Peng Lei; Liu Shaojun; Wu qingsheng; Liu Songlin; Chen Hongli; Bai Yunqing; Jin Ming; Lv Ruojun; Wang Weihua; Guo Zhihui; Chen Yaping; Ling Xinzhen; Zhang Maolian; Wang Yongliang; Wu Zhaoyang; Wang Hongyan

    2009-01-01

    Liquid LiPb (lithium-lead) experimental loops are the important platforms to investigate the key technologies of liquid LiPb breeder blankets for fusion reactors. Based on the development strategy for liquid LiPb breeder blankets, the technologies development of liquid LiPb experimental loops have been explored by the FDS Team for years, and a series of LiPb experimental loops named DRAGON have been designed and developed, which have independence intellectual property and multi-functional parameters. In this paper, the development route suggestion of Chinese LiPb experimental loops was elaborated, and some information for the senes experimental loops were introduced, such as the design principles, structural features, functions and related experimental researches, etc. (authors)

  7. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  8. Evaporation of lead and lithium from molten Pb-17Li - transport of aerosols

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Horn, S.; Bender, S.

    1991-01-01

    Evaporation of Pb and Li from molten Pb-17Li was investigated between 350 and 800deg C in vacuum, argon and helium covergas. Results were also obtained from other experimental facilities. Similarities were found to observations from sodium cooled reactors. The results show that Pb and Li evaporate independent on each other. The two elements show different behavior along the transport pathway. Deposits of the evaporated metals contained between 0.2 and 98 at% Li. As in the reactor RAPSODIE for sodium, evaporation rates for lithium were smaller in helium than in argon, however evaporation rates of lead were the same in both gases. No aerosol problems will exist with normal blanket operation. Under experimental conditions, aerosol concentrations were in the range of 10 -9 to 10 -6 g/m 3 . Aerosols can easily be trapped with sintered metal filters. (orig.)

  9. Insertion of lead lithium eutectic mixture in RELAP/SCDAPSIM Mod 4.0 for Fusion Reactor Systems

    International Nuclear Information System (INIS)

    Tiwari, Ashutosh; Allison, Brian; Hohorst, J.K.; Wagner, R.J.; Allison, Chris

    2012-01-01

    Highlights: ► Thermodynamic and transport properties of lead lithium eutectic mixture have been inserted in RELAP/SCDAPSIM MOD 4.0 code. ► Code results are verified for a simple pipe problem with lead lithium eutectic mixture flowing in it. ► Code is calculating the inserted properties of lead lithium eutectic mixture to a fairly good agreement. - Abstract: RELAP/SCDAPSIM Mod 4.0 code was developed by Innovative System Software (ISS) for the analysis of nuclear power plants (NPPs) cooled by light water and heavy water. Later on the code was expanded to analyze the NPPs cooled by liquid metal, in this sequence: lead bismuth eutectic mixture, liquid sodium and lead lithium eutectic mixture (LLE) are inserted in the code. This paper focuses on the insertion of liquid LLE as a coolant for NPPs in the RELAP/SCDAPSIM Mod 4.0 code. Evaluation of the code was made for a simple pipe problem connected with heat structures having liquid LLE as a coolant in it. The code is predicting well all the thermodynamic and transport properties of LLE.

  10. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  11. Optimization of the first wall for the DEMO water cooled lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Julien, E-mail: julien.aubert@cea.fr [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Aiello, Giacomo [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Bachmann, Christian [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Di Maio, Pietro Alessandro [Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, Rosario [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy); Li Puma, Antonella; Morin, Alexandre [CEA Saclay, F-91191 Gif-Sur-Yvette (France); Tincani, Amelia [ENEA C.R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2015-10-15

    Highlights: • This paper presents the optimization of the first wall of the water cooled lithium lead DEMO blanket with pressurized water reactor condition and circular channels in order to find the best geometry that can allow the maximum heat flux considering design criteria since an estimate of the engineering limit of the first wall heat load capacity is an essential input for the decision to implement limiters in DEMO. • An optimization study was carried out for the flat first wall design of the DEMO Water-Cooled Lithium Lead considering thermal and mechanical constraint functions, assuming T{sub inlet}/T{sub outlet} equal to 285 °C/325 °C, based on geometric design parameters. • It became clear that through the optimization the advantages of a waved First Wall are diminished. • The analysis shows that the maximum heat load could achieve 2.53 MW m{sup −2}, but considering assumptions such as a coolant velocity ≤8 m/s, pipe diameter ≥5 mm and a total first wall thickness ≤22 mm, heat flux is limited to 1.57 MW m{sup −2}. - Abstract: The maximum heat load capacity of a DEMO First Wall (FW) of reasonable cost may impact the decision of the implementation of limiters in DEMO. An estimate of the engineering limit of the FW heat load capacity is an essential input for this decision. This paper describes the work performed to optimize the FW of the Water Cooled Lithium-Lead (WCLL) blanket concept for DEMO fusion reactor in order to increase its maximum heat load capacity. The optimization is based on the use of water at typical Pressurised Water Reactors conditions as coolant. The present WCLL FW with a waved plasma-faced surface and with circular channels was studied and the heat load limit has been predicted with FEM analysis equal to 1.0 MW m{sup −2} with respect to the Eurofer temperature limit. An optimization study was then carried out for a flat FW design considering thermal and mechanical constraints assuming inlet and outlet

  12. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  13. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  14. Activation analysis of tritium breeder lithium lead irradiated by fusion neutrons in FDS-II

    International Nuclear Information System (INIS)

    Mingliang Chen

    2006-01-01

    R-and-D of fusion materials, especially their activation characteristics, is one of the key issues for fusion research in the world. Research on activation characteristics for low activation materials, such as reduced activation ferritic/martensitic steels, vanadium alloys and SiCf/SiC composites, is being done throughout the world to ensure the attractiveness of fusion power regarding safety and environmental aspects. However, there is less research on the activation characteristics of the other important fusion materials, such as tritium breeder etc.. Lithium lead (Li 17 Pb 83 ) is presently considered as a primary candidate tritium breeder for fusion power reactors because of its attractive characteristics. It can serve as a tritium breeder, neutron multiplier and coolant in the blanket at the same time. The radioactivity of Li 17 Pb 83 by D-T fusion neutrons in FDS-II has been calculated and analyzed. FDS-II is a concept design of fusion power reactor, which consists of fusion core with advanced plasma parameters extrapolated from the ITER (International Thermonuclear Experimental Reactor) and two candidates of liquid lithium breeder blankets (named SLL and DLL blankets). The neutron transport and activation calculation are carried out based on the one-dimensional model for FDS-II with the home-developed multi-functional code system VisualBUS and the multi-group data library HENDL1.0/MG and European Activation File EAF-99. The effects of irradiation time on the activation characteristics of Li 17 Pb 83 were analyzed and it concludes that the irradiation time has an important effect on the activation level of Li 17 Pb 83 . Furthermore, the results were compared with the activation levels of other tritium breeders, such as Li 4 SiO 4 , Li 2 TiO 3 , Li 2 O and Li etc., under the same irradiation conditions. The dominant nuclides to dose rate and activity of Li 17 Pb 83 were analyzed as well. Tritium generated by Li has a great contribution to the afterheat and

  15. Lithium increases ammonium excretion leading to altered urinary acid-base buffer composition.

    Science.gov (United States)

    Trepiccione, Francesco; Altobelli, Claudia; Capasso, Giovambattista; Christensen, Birgitte Mønster; Frische, Sebastian

    2017-11-24

    Previous reports identify a voltage dependent distal renal tubular acidosis (dRTA) secondary to lithium (Li + ) salt administration. This was based on the inability of Li + -treated patients to increase the urine-blood (U-B) pCO 2 when challenged with NaHCO 3 and, the ability of sodium neutral phosphate or Na 2 SO 4 administration to restore U-B pCO 2 in experimental animal models. The underlying mechanisms for the Li + -induced dRTA are still unknown. To address this point, a 7 days time course of the urinary acid-base parameters was investigated in rats challenged with LiCl, LiCitrate, NaCl, or NaCitrate. LiCl induced the largest polyuria and a mild metabolic acidosis. Li + -treatment induced a biphasic response. In the first 2 days, proper urine volume and acidification occurred, while from the 3rd day of treatment, polyuria developed progressively. In this latter phase, the LiCl-treated group progressively excreted more NH 4 + and less pCO 2 , suggesting that NH 3 /NH 4 + became the main urinary buffer. This physiological parameter was corroborated by the upregulation of NBCn1 (a marker of increased ammonium recycling) in the inner stripe of outer medulla of LiCl treated rats. Finally, by investigating NH 4 + excretion in ENaC-cKO mice, a model resistant to Li + -induced polyuria, a primary role of the CD was confirmed. By definition, dRTA is characterized by deficient urinary ammonium excretion. Our data question the presence of a voltage-dependent Li + -induced dRTA in rats treated with LiCl for 7 days and the data suggest that the alkaline urine pH induced by NH 3 /NH 4 + as the main buffer has lead to the interpretation dRTA in previous studies.

  16. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  17. K2 Mn4 O8 /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions.

    Science.gov (United States)

    Hao, Shu-Meng; Qu, Jin; Yang, Jing; Gui, Chen-Xi; Wang, Qian-Qian; Li, Qian-Jie; Li, Xiaofeng; Yu, Zhong-Zhen

    2016-03-01

    Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K 2 Mn 4 O 8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g -1 , which is much higher than that of KMO (326 mA h g -1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g -1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g -1 , which is higher than those of KMO (305 mg g -1 ) and RGO (63 mg g -1 ) alone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    International Nuclear Information System (INIS)

    Pawelko, R.; Shimada, M.; Katayama, K.; Fukada, S.; Terai, T.

    2014-01-01

    A new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology is operational at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The system is similar to a hydrogen/deuterium permeation measurement system developed at Kyushu University and also incorporates lessons learned from previous tritium permeation experiments conducted at the STAR facility. This paper describes the experimental system that is configured specifically to measure tritium mass transfer properties at low tritium partial pressures. We present preliminary tritium permeation results for α-Fe and α-Fe/LLE samples at 600degC and at tritium partial pressures between 1.0E-3 and 2.4 Pain helium. The preliminary results are compared with literature data. (author)

  19. Neutronic analysis of the European reference design of the water cooled lithium lead blanket for a DEMOnstration reactor

    International Nuclear Information System (INIS)

    Petrizzi, L.

    1994-01-01

    Water cooled lithium lead blankets, using liquid Pb-17Li eutectic both as breeder and neutron multiplier material, and martensitic steel as structural material, represent one of the four families under development in the European DEMO blanket programme. Two concepts were proposed, both reaching tritium breeding self-sufficiency: the 'box-shaped' and the 'cylindrical modules'. Also to this scope a new concept has been defined: 'the single box'. A neutronic analysis of the 'single box' is presented. A full 3-D model including the whole assembly and many of the reactor details (divertors, holes, gaps) has been defined, together with a 3-D neutron source. A tritium breeding ration (TBR) value of 1.19 confirms the tritium breeding self-sufficiency of the design. Selected power densities, calculated for the different materials and zones, are here presented. Some shielding capability considerations with respect to the toroidal field coil system are presented too. (author) 10 refs.; 3 figs.; 3 tabs

  20. Initial three-dimensional neutronics calculations for the EU water cooled lithium-lead test blanket module for ITER-FEAT

    International Nuclear Information System (INIS)

    Jordanova, J.; Poitevin, Y.; Li Puma, A.; Kirov, N.

    2003-01-01

    The paper summarizes the main results of the initial three-dimensional radiation transport analysis of the EU water-cooled lithium-lead test blanket module performed using the Monte Carlo code MCNP. Estimates of tritium production rate, nuclear energy deposition and cumulative fluence effects such as radiation damage through atomic displacement and production of He and H are presented. (author)

  1. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    International Nuclear Information System (INIS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    2007-01-01

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials. (author)

  2. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Science.gov (United States)

    Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael

    2018-06-01

    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.

  3. Design of a permeator against vacuum for tritium extraction from eutectic lithium-lead in a DCLL DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Garcinuño, Belit, E-mail: belit.garcinuno@ciemat.es [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Rapisarda, David [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Fernández, Iván [Fundación & Departamento de Ingeniería Energética, UNED, Madrid (Spain); CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Moreno, Carlos; Palermo, Iole; Ibarra, Ángel [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain)

    2017-04-15

    Highlights: • A conceptual design of a Permeator Against Vacuum is presented. • The efficiency is dependent on geometry and Tritium transport. • The use of different membrane materials is discussed. • A squared PAV with alternated PbLi flowing and vacuum flat ducts is designed. • 80% efficiency of Tritium extraction is accomplished under DCLL-BB requirements. - Abstract: One of the most important issues in future fusion power plants is the extraction of tritium generated in the breeders in order to achieve self-sufficiency. When the breeder is a liquid metal one of the most promising techniques is the Permeation Against Vacuum, whose principle is based on tritium diffusion through a permeable membrane in contact with the liquid metal carrier and its further extraction by a vacuum pump. A conceptual design of permeator has been developed, taking into account the features of a DEMO reactor with a Dual Coolant Lithium Lead (DCLL) breeder blanket. The study is based on the analysis of different membranes and geometries aiming at the overall efficiency (extraction capability) of the device, as well as its compatibility with the breeder material. The permeator is based on a rectangular section multi-channel distribution where the liquid metal channels and vacuum channels are alternated in order to maximize the contact area and therefore to promote tritium transport from the bulk to the walls. The resulting permeator design has an excellent estimated extraction efficiency, of 80%, in a relatively compact device.

  4. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun, E-mail: lijuna@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Yang [Department of chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Guo, Ruyan; Bhalla, Amar S. [Multifunctional Electronic Materials and Device Research Lab, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio 78249 (United States)

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  5. Properties of Lithium-11 and Carbon-22 at leading order in halo effective field theory

    Directory of Open Access Journals (Sweden)

    Acharya Bijaya

    2016-01-01

    Full Text Available We study the 11Li and 22C nuclei at leading order (LO in halo effective field theory (Halo EFT. Using the value of the 22C rms matter radius deduced in Ref. [1] as an input in a LO calculation, we simultaneously constrain the values of the two-neutron (2n separation energy of 22C and the virtual-state energy of the 20C−neutron system (hereafter denoted 21C. The 1−σ uncertainty of the input rms matter radius datum, along with the theory error estimated from the anticipated size of the higher-order terms in the Halo EFT expansion, gives an upper bound of about 100 keV for the 2n separation energy. We also study the electric dipole excitation of 2n halo nuclei to a continuum state of two neutrons and the core at LO in Halo EFT. We first compare our results with the 11Li data from a Coulomb dissociation experiment and obtain good agreement within the theoretical uncertainty of a LO calculation. We then obtain the low-energy spectrum of B(E1 of this transition at several different values of the 2n separation energy of 22C and the virtual-state energy of 21C. Our predictions can be compared to the outcome of an ongoing experiment on the Coulomb dissociation of 22C to obtain tighter constraints on the two- and three-body energies in the 22C system.

  6. Engineering design and development of lead lithium loop for thermo-fluid MHD studies

    International Nuclear Information System (INIS)

    Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.

    2017-01-01

    In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)

  7. Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Cantizano, Alexis; Moratilla, Beatriz Yolanda; Martín-Palacios, Víctor; Batet, Lluis

    2016-01-01

    This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles as alternative energy conversion systems for a future fusion reactor based on a DCLL (dual coolant lithium-lead) blanket, as prescribed by EUROfusion. The main issue dealt is the optimization of the integration of the different thermal sources with the power cycle in order to achieve the highest electricity production. The analysis includes the assessment of the pumping consumption in the heating and cooling loops, taking into account additional considerations as control issues and integration of thermal energy storage systems. An exergy analysis has been performed in order to understand the behavior of each layout. Up to ten scenarios have been analyzed assessing different locations for thermal sources heat exchangers. Neglecting the worst four scenarios, it is observed less than 2% of variation among the other six ones. One of the best six scenarios clearly stands out over the others due to the location of the thermal sources in a unique island, being this scenario compatible with the control criteria. In this proposal 34.6% of electric efficiency (before the self-consumptions of the reactor but including pumping consumptions and generator efficiency) is achieved. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of DCLL fusion reactor. • Integration of different available thermal sources has been analyzed considering ten scenarios. • Neglecting the four worst scenarios the electricity production varies less than 2%. • Control and energy storage integration issues have been considered in the analysis. • Discarding the vacuum vessel and joining the other sources in an island is proposed.

  8. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    Science.gov (United States)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  9. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  10. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.

    Science.gov (United States)

    Yan, Jing; Wang, Lida; Tang, Longhua; Lin, Lei; Liu, Yang; Li, Jinghong

    2015-08-15

    Rapid and sensitive methodologies for the detection of protein are in urgent requirement for clinic diagnostics. Localized surface plasmon resonance (LSPR) of metal nanostructures has the potential to circumvent this problem due to its sensitive optical properties and strong electromagnetic near-field enhancements. In this work, an enzyme mediated plasmonic biosensor on the basis of a dual-functional nanohybrid was developed for the detection of thrombin. By utilizing LSPR-responsive nanohybrid and anaptamer-enzyme conjugated reporting probe, the sensing platform brings enhanced signal, stability as well as simplicity. Enzymatic reaction catalyzed the reduction of Au(3+) to Au° in situ, further leading to the rapid crystal growth of gold nanoparticles (AuNPs). The LSPR absorbance band and color changed company with the nanoparticle generation, which can be real-time monitoring by UV-visible spectrophotometer and naked eye. Nanohybrid constructed by gold and magnetic nanoparticles acts as a dual functional plasmonic unit, which not only plays the role of signal production, but also endows the sensor with the function of magnetic separation. Simultaneously, the introduction of enzyme effectively regulates the programming crystal growth of AuNPs. In addition, enzyme also serves as signal amplifier owing to its high catalysis efficiency. The response of the plasmonic sensor varies linearly with the logarithmic thrombin concentration up to 10nM with a limit of detection of 200 pM. The as-proposed strategy shows good analytical performance for thrombin determination. This simple, disposable method is promising in developing universal platforms for protein monitoring, drug discovery and point-of-care diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-11-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m{sup 2} fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  12. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-01-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m"2 fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  13. Activation analysis and waste management for dual-cooled lithium lead breeder (DLL) blanket of the fusion power reactor FDS-II

    International Nuclear Information System (INIS)

    Chen Mingliang; Huang Qunying; Li Jingjing; Zeng Qin; Wu Yican

    2005-01-01

    The calculation and analysis on the activation levels of the different regions of dual-cooled lithium-lead (DLL) breeder blanket of FDS-II, including afterheat, dose rate, activity and biological hazard potential after shutdown, were carried out with the neutronics code system VisualBUS and multi-group working library HENDL1.0/MG. The safety and environment assessment of fusion power (SEAFP) strategy for the management of activated material is here applied to the DLL blanket, to define the suitable recycling (reuse of activated material) procedure and the possibility of clearance (declassification of the material with low activity level to non-active waste). (authors)

  14. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  15. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    Science.gov (United States)

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  16. Design and qualification of an on-line permeator for the recovery of tritium from lead-lithium eutectic breeding alloy

    International Nuclear Information System (INIS)

    Veredas, G.; Fradera, J.; Fernandez, I.; Batet, L.; Penalva, I.; Mesquida, L.; Abella, J.; Sempere, J.; Martinez, I.; Herrazti, B.; Sedano, L.

    2011-01-01

    The fast and efficient recovery of bred tritium represents a major milestone of tritium breeding technologies R and D and is key for the demonstration of fusion reactor fuel self-sufficiency. For lead-lithium eutectic, diverse technologies are currently being investigated and qualified. Permeator Against Vacuum (PAV) solution represents a firm candidate because: (i) runs as a single-step process for tritium on-line recovery, (ii) works passively allowing to be thermally governed, (iii) can be easily in-pipe integrated in Pb15.7Li loop systems and (iv) can be conceived with high compactness. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges. An optimal PAV design is proposed and qualified by numerical simulation.

  17. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  18. Dual function of the hemagglutinin H5 fused to chicken CD154 in a ...

    African Journals Online (AJOL)

    Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study. AG Pose, ES Rodriguez, AC Mendez, JN Gomez, AV Redondo, ER Rodriguez, EMG Ramos, AA Gutierrez, MPR Molto, DG Roche, YS Ugalde, AM Lopez ...

  19. Site-selective three-component reaction for dual-functionalization of peptides

    DEFF Research Database (Denmark)

    Munch, Henrik Kofoed; Rasmussen, Jakob Ewald; Popa, Gina

    2013-01-01

    A site-selective dual-functionalization of peptides is presented, involving readily available maleimides as well as N-hydroxylamines. The modification proceeds through a three component 1,3-dipolar cycloaddition, forming a stable product. This was exemplified by the one-pot attachment of two...

  20. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    Science.gov (United States)

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  1. Dual function of the hemagglutinin H5 fused to chicken CD154 in a ...

    African Journals Online (AJOL)

    Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like ...

  2. Progress on the development of H-concentration probes in eutectic lead-lithium: Synthesis and characterization of electrochemical sensor materials

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S. [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department Via Augusta, 390, 08017 Barcelona (Spain); Reyes, G. [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Industrial Engineering Department, Via Augusta, 390, 08017 Barcelona (Spain); Abella, J., E-mail: jordi.abella@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department Via Augusta, 390, 08017 Barcelona (Spain)

    2012-08-15

    Dynamic tritium concentration measurement in lithium-lead eutectic (17% Li-83% Pb) is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors for molten lithium-lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as Proton Exchange Membranes (PEM). In this work, the following compounds have been synthesized in order to be tested as PEM H-probes: BaCeO{sub 3}, BaCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}}, SrCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} and Sr(Ce{sub 0.9}-Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3-{delta}}. Potentiometric measurements of the synthesized ceramic elements have been performed at different hydrogen concentrations at 500 Degree-Sign C. In this campaign, a fixed and known hydrogen pressure has been used in the reference electrode. The sensors constructed using the proton conductor elements BaCeO{sub 3}, SrCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} and Sr(Ce{sub 0.9}-Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3-{delta}} exhibited quite stable output potential and its value was quite close to the theoretical value calculated with the Nernst equation (deviation less than 100 mV). Unstable measurement was obtained using BaCe{sub 0.9}Y{sub 0.1}O{sub 3-{delta}} as a solid state electrolyte in the sensor.

  3. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  4. Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium in dried bee pollen produced in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Gasparotto SATTLER

    2016-01-01

    Full Text Available Abstract Like other beehive products, such as honey, royal jelly and propolis, bee pollen has attracted great interest because of the health benefits it can provide when consumed. Bee pollen has high contents of sugars and proteins and a low content of lipids, it is also a rich source of vitamins and other bioactive compounds, which makes it an attractive micronutrient supplement. However, few studies have investigated its composition. Therefore, the aim of this study was to characterize the essential minerals and inorganic contaminants present in bee pollen produced at apiaries in Rio Grande do Sul State, Brazil. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES revealed the presence of 8 essential minerals (calcium, iron, copper, chromium, manganese, molybdenum, phosphorus and zinc in the 5 analyzed samples; 6 of them were in sufficiently high amounts to meet dietary requirements. Of the 5 inorganic contaminants assessed (barium, cadmium, lithium, lead and vanadium, only cadmium was present at levels over the International Honey Commission’s standards. All bee pollen samples showed a high content of the 8 essential minerals. Contamination usually results from the use of pesticides, fertilizers and other chemicals in agriculture; thus, monitoring of its levels must be included in bee pollen analysis.

  5. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction

    International Nuclear Information System (INIS)

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li 17 Pb 83 ) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional

  6. Numeric implementation of a nucleation, growth and transport model for helium bubbles in lead-lithium HCLL breeding blanket channels: Theory and code development

    Energy Technology Data Exchange (ETDEWEB)

    Batet, L., E-mail: lluis.batet@upc.edu [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Valls, E. Mas de les [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Heat Engines (DMMT), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, Fusion Technology Division, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    Large helium (He) production rates in liquid metal breeding blankets of a DT fusion reactor might have a significant influence in the system design. Low He solubility together with high local concentrations may create the conditions for He cavitation, which would have an impact in the components performance. The paper states that such a possibility is not remote in a helium cooled lithium-lead breeding blanket design. A model based on the Classical Nucleation Theory (CNT) has been developed and implemented in order to have a specific tool able to simulate HCLL systems and identify the key parameters and sensitivities. The nucleation and growth model has been implemented in the open source CFD code OpenFOAM so that transport of dissolved atomic He and nucleated He bubbles can be simulated. At the current level of development it is assumed that void fraction is small enough not to affect either the hydrodynamics or the properties of the liquid metal; thus, bubbles can be represented by means of a passive scalar. He growth and transport has been implemented using the mean radius approach in order to save computational time. Limitations and capabilities of the model are shown by means of zero-dimensional simulation and sensitivity analysis under HCLL breeding unit conditions.

  7. Water-cooled lithium-lead box-shaped blanket concept for Demo: thermo-mechanical optimization and manufacturing sequence proposal

    International Nuclear Information System (INIS)

    Baraer, L.; Dinot, N.; Giancarli, L.; Proust, E.; Salavy, J.F.; Severi, Y.; Quintric-Bossy, J.

    1992-01-01

    The development of the water-cooled lithium-lead box-shaped blanket concept for DEMO has now reached the stage of thermo-mechanical optimization. In the previous design phases the preliminary dimensioning of the cooling circuit has permitted to define the water proportions required in the breeder region and to demonstrate, after a minimization of steel proportion and thicknesses, that this concept could reach tritium breeding self-sufficiency. In the present analysis the location of the coolant pipes has been optimized for the whole equatorial plane cross-section of both inboard and outboard segments in order to maintain the maximum Pb-17Li/steel interface temperature below 480 deg C and to minimize the thermal gradients along the steel structures. The consequent thermo-mechanical analysis has shown that the thermal stresses always remain below the allowable limits. Segment fabricability and removal are the next design issues to be analyzed. Within this strategy, a first manufactury sequence for the outboard segment is proposed

  8. Dual-function beam splitter of a subwavelength fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  9. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine.

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-12-01

    efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations.

  10. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations.

  11. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  12. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  13. The investigation of the influence of lead oxide on the formation and on the structure of lithium diborate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Sakr, E.M.; Kashif, I.

    2009-01-01

    Pseudo-binary (100 - x) Li 2 B 4 O 7 .xPbO, where x = 0, 5, 15, 25, 35, 45, 55 and 65 mol%. PbO have been investigated. The glass transition temperatures, density and molar volume have been determined. Both T g 's values and molar volume decreased non-linearly while the density increased by increase the PbO content. Infrared spectra of the glasses reveal that the strong network consisting of diborate units is break open by PbO. The absorption bands below 620 cm -1 show that PbO is one of the network former of glasses 65 ≥ PbO ≥ 5 which can be associated with vibrations due to [PbO 4 ] 2- type of grouping are become sharp and high intensities by increase PbO content. PbO plays the dual role in the glass network. The calculated values of N 4 slightly decreased by increase PbO content up to 25 mol% and then increased up to 45 mol% PbO, then decreases above it. Proving that three-coordinated boron atoms are predominant in these glass samples. The Vicker's hardness values of the glasses vary as a function of the PbO content in a manner that N 4 varied. The dc conductivity decreased by increase PbO concentration up to about 25 mol% and then increased by increase the concentration of lead oxide

  14. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  15. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  16. A new dual-functional microcomputer-based system for nuclear measurement

    International Nuclear Information System (INIS)

    Zhang Jiang; Fang Fang

    2004-01-01

    Introduction is made on a new type of microcomputer-based system nuclear instrument which can be used in both α ray and γ ray measurements. This dual-functional instrument is based on P89C58 single-chip microcomputer as its core MPU to do operations like data acquisition, data processing, circuit control, display and communication. Improvement and simplification are made to the traditional single channel analyzer, which is completely dependent on the hardware circuit, through the use of P89C58. (authors)

  17. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    Science.gov (United States)

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  19. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  20. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    OpenAIRE

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion t...

  1. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  2. Synthesis and application of dual functionalized task specific ionic liquid for bamboo dissolution

    Directory of Open Access Journals (Sweden)

    Hameed Sultan Nor Shahroon

    2017-01-01

    Full Text Available A new class of dual functionalized imidazolium based ionic liquid (IL namely 3-(2-cyano-ethyl-1-(2-ethoxy-ethyl-3-imidazolium bromide [CNEIM][Br], was synthesized and characterized to study their potential in bamboo dissolution. The chemical structure for the IL was characterized using NMR (1H and 13C. Thermal properties, surface morphology and functional group of the native bamboo and IL treated bamboo were analyzed by Thermal Gravimetric Anaylysis (TGA, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectroscopy (FTIR respectively. The new IL was able to dissolve up to 5wt% of bamboo biomass within 48 hours and 100°C.

  3. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  4. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    Science.gov (United States)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han; Kim, Yong Ho; Kim, Young Dok

    2014-11-01

    Thin film of polydimethylsiloxane (PDMS) was deposited on SiO2 nanoparticles by chemical vapor deposition, and SiO2 became completely hydrophobic after PDMS coating. Mixtures of TiO2 and PDMS-coated SiO2 nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO2 and PDMS-coated SiO2 with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  5. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    Science.gov (United States)

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    Science.gov (United States)

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  7. Evaluation of thermal conductivity for liquid lead lithium alloys at various Li concentrations based on measurement and evaluation of density, thermal diffusivity and specific heat of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of

  8. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  9. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  10. Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release

    Science.gov (United States)

    Qin, Xiao-Hong; Wu, De-Qun; Chu, Chih-Chang

    2013-01-01

    The fabrication of submicron size microsphere from 8-Phe-4 poly(ester amide) (PEA) using polyvinyl alcohol (PVA) as the emulsion was reported. The biodegradable microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique, and PVA was used as the emulsion. Furthermore, the emulsion PVA was electrospun into nanofibrous mats, and 8-Phe-4 PEA microspheres were entrapped in the resultant mats. The dual functions of PVA to fabricate ideal nanofibrous mats which can entrap microspheres in them and to obtain 8-Phe-4 microspheres as emulsion in their potential application were demonstrated. The anti-cancer drug doxorubicin (DOX) was encapsulated in the 8-Phe-4 amino acid-based PEA microspheres and the entrapment efficiency is almost 100 %. At the same time, the DOX can be controlled released in PBS solution and in α-chymotrypsin solution. The cytotoxicity of PVA, PVA mats-entrapped 8-Phe-4 microspheres and PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres, was investigated. Hela cells were used to test the cytotoxicity of the DOX that released from the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres for 2 days, and the cell viability is below 30 % when the 8-Phe-4 microspheres concentration is 1 mg/mL. It demonstrated that the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres have a potential biomedical application.

  11. A novel dual-functional MEMS sensor integrating both pressure and temperature units

    Energy Technology Data Exchange (ETDEWEB)

    Chen Tao; Zhang Zhaohua; Ren Tianling; Miao Gujin; Zhou Changjian; Lin Huiwang; Liu Litian, E-mail: RenTL@tsinghua.edu.c [National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-07-15

    This paper proposes a novel miniature dual-functional sensor integrating both pressure and temperature sensitive units on a single chip. The device wafer of SOI is used as a pizeoresistive diaphragm which features excellent consistency in thickness. The conventional anisotropic wet etching has been abandoned, while ICP etching has been employed to etch out the reference cave to minimize the area of individual device in the way that the 57.4{sup 0} slope has been eliminated. As a result, the average cost of the single chip is reduced. Two PN junctions with constant ratio of the areas of depletion regions have also been integrated on the same chip to serve as a temperature sensor, and each PN junction shows high linearity over -40 to 100 {sup 0}C and low power consumption. The iron implanting process for PN junction is exactly compatible with the piezoresistor, with no additional expenditure. The pressure sensitivity is 86 mV/MPa, while temperature sensitivity is 1.43 mV/{sup 0}C, both complying with the design objective.

  12. A novel dual-functional MEMS sensor integrating both pressure and temperature units

    International Nuclear Information System (INIS)

    Chen Tao; Zhang Zhaohua; Ren Tianling; Miao Gujin; Zhou Changjian; Lin Huiwang; Liu Litian

    2010-01-01

    This paper proposes a novel miniature dual-functional sensor integrating both pressure and temperature sensitive units on a single chip. The device wafer of SOI is used as a pizeoresistive diaphragm which features excellent consistency in thickness. The conventional anisotropic wet etching has been abandoned, while ICP etching has been employed to etch out the reference cave to minimize the area of individual device in the way that the 57.4 0 slope has been eliminated. As a result, the average cost of the single chip is reduced. Two PN junctions with constant ratio of the areas of depletion regions have also been integrated on the same chip to serve as a temperature sensor, and each PN junction shows high linearity over -40 to 100 0 C and low power consumption. The iron implanting process for PN junction is exactly compatible with the piezoresistor, with no additional expenditure. The pressure sensitivity is 86 mV/MPa, while temperature sensitivity is 1.43 mV/ 0 C, both complying with the design objective.

  13. Efficient removal of methyl orange using Cu2O as a dual function catalyst

    Science.gov (United States)

    Zhang, Fan; Dong, Guohui; Wang, Mian; Zeng, Yubin; Wang, Chuanyi

    2018-06-01

    In this study, we synthesized Cu2O particles with rough surfaces by a facile solvothermal method as a dual-function material that can degrade contaminants not only under light irradiation but also in dark circumstance. Both the as-prepared Cu2O and commercial Cu2O exhibited excellent performance for the removal of methyl orange under visible light irradiation through a photocatalysis-based strategy. However, the former was found to show remarkable capability under dark circumstances by means of molecular oxygen activation, while the latter performed poor efficiently under the same condition. This significant difference of performances under dark circumstances was related to rich oxygen vacancies existed on the as-prepared Cu2O surfaces that are associated with the single-electron reduction of O2 to generate radO2-, which play a dominant role in the generation of Cu+. In addition, Cu+ was identified to play key roles in the broken of azo bond. Then, the generated intermediates were mineralized by radOH generated through molecular oxygen activation process. This study could not only deep the understanding of the MO removal mechanism by Cu2O but also show a novel direction of amphibious application for photocatalytic materials.

  14. Performance Investigation and Structure Optimization of a Flat Dual-Function Solar Collector

    Directory of Open Access Journals (Sweden)

    Jinwei Ma

    2015-01-01

    Full Text Available The performance of a dual-function solar collector (DFSC that can work as either water heater or air heater depending on seasonal requirement is investigated via both experimental and numerical approaches in this paper. The numerical results are well consistent with the experimental results. Daily efficiency of the thermosiphon system with DFSC is more than 55% in water heating mode and the instantaneous air heating efficiency of the collector reaches 60%. The effects of inner parameters on the thermal efficiency of the collector are analyzed by numerical simulations of the operation of DFSC in two working modes. It is found that the depths of the two air channels in DFSC have an optimal range suitable for both working modes. The thickness of back insulation should be no less than 0.06 m to prevent heat loss via backboard, and the diameter and number of copper tubes show notable effect on the efficiency of DFSC in water heating mode but slight effect in air heating mode.

  15. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  16. Effect of catalysts on lithium passivation in thionyl chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, L.S.; Avdalyan, M.B.; Kulova, T.L. [Frumkin Institute of Electrochemistry, Moscow (Russian Federation)

    1995-04-01

    The effect that various catalysts added to the electrolyte or the cathode of lithium-thionyl chloride cells for promoting the cathodic process exert on lithium anodes is studied. It is shown that, in the presence of platinum, the lithium anode is subjected to intense corrosion, and this leads to the appearance of a great voltage delay. Macrocyclic complexes activate lithium electrodes. Impedance measurements showed that the introduction of such complexes in the system is accompanied by changes in the passive film characteristics, and this leads to a decrease in the corrosion rate of lithium and a noticeable reduction of the voltage delay.

  17. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    Science.gov (United States)

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Copper-doped titanium dioxide nanoparticles as dual-functional labels for fabrication of electrochemical immunosensors.

    Science.gov (United States)

    Zhang, Sen; Ma, Hongmin; Yan, Liangguo; Cao, Wei; Yan, Tao; Wei, Qin; Du, Bin

    2014-09-15

    Constructions of versatile electroactive labels are key issues in the development of electrochemical immunosensors. In this study, copper-doped titanium dioxide nanoparticle (Cu@TiO2) was synthesized and used as labels for fabrication of sandwich-type electrochemical immunosensors on glassy carbon electrode (GCE). Due to the presence of copper ions, Cu@TiO2 shows a strong response current when coupled to an electrode. The prepared nanocomposite also shows high electrocatalytic activity towards reduction of hydrogen peroxide (H2O2). The dual functionality of Cu@TiO2 enables the fabrication of immunosensor using different detection modes, that is, square wave voltammetry (SWV) or chronoamperometry (CA). While Cu@TiO2 was used as labels of secondary antibodies (Ab2), carboxyl functionalized graphene oxide (CFGO) was used as electrode materials to immobilize primary antibodies (Ab1). Using human immunoglobulin G (IgG) as a model analyte, the immunosensor shows high sensitivity, acceptable stability and good reproducibility for both detection modes. Under optimal conditions, a linear range from 0.1 pg/mL to 100 ng/mL with a detection limit of 0.052 pg/mL was obtained for SWV analysis. For CA analysis, a wider linear range from 0.01 pg/mL to 100 ng/mL and a lower detection limit of 0.0043 pg/mL were obtained. The proposed metal ion-based enzyme-free and noble metal-free immunosensor may have promising applications in clinical diagnoses and many other fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy

    Directory of Open Access Journals (Sweden)

    Gao X

    2012-07-01

    Full Text Available Xin Gao,1,* Yun Luo,1,* Yuanyuan Wang,1,* Jun Pang,1 Chengde Liao,2 Hanlun Lu,3 Youqiang Fang11Department of Urology, The Third Affiliated Hospital, 2Department of Radiology, The Second Affiliated Hospital, Sun Yat-Sen University, 3Materials Science Institute of Zhongshan University, Guangzhou, China*These authors contributed equally to this workBackground: We designed dual-functional nanoparticles for in vivo application using a modified electrostatic and covalent layer-by-layer assembly strategy to address the challenge of assessment and treatment of hormone-refractory prostate cancer.Methods: Core-shell nanoparticles were formulated by integrating three distinct functional components, ie, a core constituted by poly(D,L-lactic-co-glycolic acid, docetaxel, and hydrophobic superparamagnetic iron oxide nanocrystals (SPIONs, a multilayer shell formed by poly(allylamine hydrochloride and two different sized poly(ethylene glycol molecules, and a single-chain prostate stem cell antigen antibody conjugated to the nanoparticle surface for targeted delivery.Results: Drug release profiles indicated that the dual-function nanoparticles had a sustained release pattern over 764 hours, and SPIONs could facilitate the controlled release of the drug in vitro. The nanoparticles showed increased antitumor efficiency and enhanced magnetic resonance imaging in vitro through targeted delivery of docetaxel and SPIONs to PC3M cells. Moreover, in nude mice bearing PC3M xenografts, the nanoparticles provided MRI negative contrast enhancement, as well as halting and even reversing tumor growth during the 76-day study duration, and without significant systemic toxicity. The lifespan of the mice treated with these targeted dual-function nanoparticles was significantly increased (Chi-square = 22.514, P < 0.0001.Conclusion: This dual-function nanomedical platform may be a promising candidate for tumor imaging and targeted delivery of chemotherapeutic agents in vivo

  20. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.

    Science.gov (United States)

    Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min

    2017-09-21

    Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

  1. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  2. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    DEFF Research Database (Denmark)

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react...... with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion to the formation of porous lithium nitride during intermediate storage and a violent exothermal...... decomposition with the SOCl2–LiAlCl4 electrolyte triggered by welding. The literature is silent on hazards of explosion of Li–SOCl2 cells associated with the presence of lithium nitride. The silence is intriguing. Possible causes may be that such explosions are very rare, that explosions go unpublished...

  3. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  4. Lithium Pharmacogenetics: Where Do We Stand?

    Science.gov (United States)

    Pisanu, Claudia; Melis, Carla; Squassina, Alessio

    2016-11-01

    Preclinical Research Bipolar disorder (BPD) is a chronic and disabling psychiatric disorder with a prevalence of 0.8-1.2% in the general population. Although lithium is considered the first-line treatment, a large percentage of patients do not respond sufficiently. Moreover, lithium can induce severe side effects and has poor tolerance and a narrow therapeutic index. The genetics of lithium response has been largely investigated, but findings have so far failed to identify reliable biomarkers to predict clinical response. This has been largely determined by the highly complex phenotipic and genetic architecture of lithium response. To this regard, collaborative initiatives hold the promise to provide robust and standardized methods to disantenagle this complexity, as well as the capacity to collect large samples of patietnts, a crucial requirement to study the genetics of complex phenotypes. The International Consortium on Lithium Genetics (ConLiGen) has recently published the largest study so far on lithium response reporting significant associations for two long noncoding RNAs (lncRNAs). This result provides relevant insights into the pharmacogenetics of lithium supporting the involvement of the noncoding portion of the genome in modulating clinical response. Although a vast body of research is engaged in dissecting the genetic bases of response to lithium, the several drawbacks of lithium therapy have also stimulated multiple efforts to identify new safer treatments. A drug repurposing approach identified ebselen as a potential lithium mimetic, as it shares with lithium the ability to inhibit inositol monophosphatase. Ebselen, an antioxidant glutathione peroxidase mimetic, represents a valid and promising example of new potential therapeutic interventions for BD, but the paucity of data warrant further investigation to elucidate its potential efficacy and safety in the management of BPD. Nevertheless, findings provided by the growing field of pharmacogenomic

  5. Large-scale, Lithography-free Production of Transparent Nanostructured Surface for Dual-functional Electrochemical and SERS Sensing

    DEFF Research Database (Denmark)

    Sanger, Kuldeep; Durucan, Onur; Wu, Kaiyu

    2017-01-01

    aspect ratios distributed homogeneously on a 4-inch fused silica wafer. The sensor was made up of three-electrode array, obtained by subsequent e-beam evaporation of Au on nanostructures in selected areas through a shadow mask. The SERS performance was evaluated through surface-averaged enhancement......-reversible behavior with decrease in peak potential separation (∆Ep ~90mV) and higher peak currents (Ipa/Ipc ~1), comparing to planar electrodes (∆Ep ~560mV). The oxidation potential of PAR was also lowered by ~80 mV on nanostructured electrodes. To illustrate dual-functional sensing, quantitative evaluation of PAR...

  6. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis.

    Science.gov (United States)

    Naeem, Muhammad; Bae, Junhwan; Oshi, Murtada A; Kim, Min-Soo; Moon, Hyung Ryong; Lee, Bok Luel; Im, Eunok; Jung, Yunjin; Yoo, Jin-Wook

    2018-01-01

    Colon-targeted oral nanoparticles (NPs) have emerged as an ideal, safe, and effective therapy for ulcerative colitis (UC) owing to their ability to selectively accumulate in inflamed colonic mucosa. Cyclosporine A (CSA), an immunosuppressive agent, has long been used as rescue therapy in severe steroid-refractory UC. In this study, we developed CSA-loaded dual-functional polymeric NPs composed of Eudragit ® FS30D as a pH-sensitive polymer for targeted delivery to the inflamed colon, and poly(lactic-co-glycolic acid) (PLGA) as a sustained-release polymer. CSA-loaded Eudragit FS30D nanoparticles (ENPs), PLGA nanoparticles (PNPs), and Eudragit FS30D/PLGA nanoparticles (E/PNPs) were prepared using the oil-in-water emulsion method. Scanning electron microscope images and zeta size data showed successful preparation of CSA-loaded NPs. PNPs exhibited a burst drug release of >60% at pH 1.2 (stomach pH) in 0.5 h, which can lead to unwanted systemic absorption and side effects. ENPs effectively inhibited the burst drug release at pH 1.2 and 6.8 (proximal small intestine pH); however, nearly 100% of the CSA in ENPs was released rapidly at pH 7.4 (ileum-colon pH) owing to complete NP dissolution. In contrast to single-functional PNPs and ENPs, the dual-functional E/PNPs minimized burst drug release (only 18%) at pH 1.2 and 6.8, and generated a sustained release at pH 7.4 thereafter. Importantly, in distribution studies in the gastrointestinal tracts of mice, E/PNPs significantly improved CSA distribution to the colon compared with PNPs or ENPs. In a mouse model of colitis, E/PNP treatment improved weight loss and colon length, and decreased rectal bleeding, spleen weight, histological scoring, myeloperoxidase activity, macrophage infiltration, and expression of proinflammatory cytokines compared with PNPs or ENPs. Overall, this work confirms the benefits of CSA-loaded E/PNPs for efficiently delivering CSA to the colon, suggesting their potential for UC therapy.

  7. A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples

    Science.gov (United States)

    Piłatowicz, Grzegorz; Marongiu, Andrea; Drillkens, Julia; Sinhuber, Philipp; Sauer, Dirk Uwe

    2015-11-01

    The internal resistance (Ri) is one of the key parameters that determine the current state of electrochemical storage systems (ESS). It is crucial for estimating cranking capability in conventional cars, available power in modern hybrid and electric vehicles and for determining commonly used factors such as state-of-health (SoH) and state-of-function (SoF). However, ESS are complex and non-linear systems. Their Ri depends on many parameters such as current rate, temperature, SoH and state-of-charge (SoC). It is also a fact that no standardized methodologies exist and many different definitions and ways of Ri determination are being used. Nevertheless, in many cases authors are not aware of the consequences that occur when different Ri definitions are being used, such as possible misinterpretations, doubtful comparisons and false figures of merit. This paper focuses on an application-oriented separation between various Ri definitions and highlights the differences between them. The investigation was based on the following technologies: lead-acid, lithium-ion and nickel metal-hydride batteries as well as electrochemical double-layer capacitors. It is not the target of this paper to provide a standardized definition of Ri but to give researchers, engineers and manufacturers a possibility to understand what the term Ri means in their own work.

  8. 1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery

    Science.gov (United States)

    Xia, Huicong; Zhang, Jianan; Chen, Zhimin; Xu, Qun

    2018-05-01

    A facile in-situ growth strategy is employ to achieving the two-dimensional SnO2 nanosheets/one-dimensional Cu(OH)2 nanorods nanoarchitecture on Cu foil current collector (SnO2/Cu(OH)2/Cu foil), follow by modification of a uniform layer of graphene (G). Confine with the graphene layer and unique one-dimensional/two-dimensional the nanoarchitecture, the remarkably enhance electrical conductivity and structural stability of G/SnO2/Cu(OH)2/Cu foil leads to a high reversible capacity of 1080.6 mAh g-1 at a current density of 200 mA g-1, much better than the samples without graphene (512.6 mAh g-1) and Cu(OH)2 nanorod (117.4 mAh g-1). Furthermore, G/SnO2/Cu(OH)2/Cu foil electrode shows high rate capacity (600.8 mAh g-1 at 1 A g-1) and excellent cycling stability (1057.1 mAh g-1 at 200 mA g-1 even after 500 cycles). This work highlights that increasing surface and interface effects with desirable three-dimensional nanoarchitecture can open a new avenue to electrochemical performance improvement in lithium-ion battery for SnO2-base anode.

  9. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  10. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  11. Design of liquid lithium pumps for FMIT

    International Nuclear Information System (INIS)

    Adkins, H.E.

    1983-01-01

    In the Fusion Materials Irradiation Test (FMIT) facility, a jet of liquid lithium is bombarded by accelerated deuterons to generate high energy neutrons for materials testing. The lithium system will include two electromagnetic pumps, a 750 gpm main pump and a 10 gpm auxiliary pump. The larger pump was designed and built in 1982, following extensive testing of a similar pump in the Experimental Lithium System. Design of the auxiliary pump has been completed, but fabrication has not started. This paper discusses the design considerations leading to selection of the Annular Linear Induction Pump (ALIP) concept for these applications. Design parameters, fabrication procedures, and results of pump testing are also reviewed

  12. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    Science.gov (United States)

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-07-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g-1 at a current density of 2 A g-1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g-1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g-1 is achieved at a rate of 120 mA g-1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes.

  13. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  14. Modeling intraparticle transports during propylene polymerizations using supported metallocene and dual function metallocene as catalysts: Single particle model

    Directory of Open Access Journals (Sweden)

    Li Hua-Rong

    2014-01-01

    Full Text Available Two improved multigrain models (MGMs for preparing homopolypropylene and long chain branched polypropylene via propylene polymerization using silica-supported metallocene or dual function metallocene as catalysts are presented in this paper. The presented models are used to predict the intraparticle flow fields involved in the polymerizations. The simulation results show that the flow field distributions involve dare basically identical. The results also show that both the two polymerization processes have an initiation stage and the controlling step for them is reaction-diffusion-reaction with the polymerization proceeding. Furthermore, the simulation results show that the intra particle mass transfer resistance has significant effect on the polymerization but the heat transfer resistance can be ignored.

  15. Dual functionalized graphene oxide serves as a carrier for delivering oligohistidine- and biotin-tagged biomolecules into cells.

    Science.gov (United States)

    Jana, Batakrishna; Mondal, Goutam; Biswas, Atanu; Chakraborty, Indrani; Saha, Abhijit; Kurkute, Prashant; Ghosh, Surajit

    2013-11-01

    A versatile method of dual chemical functionalization of graphene oxide (GO) with Tris-[nitrilotris(acetic acid)] (Tris-NTA) and biotin for cellular delivery of oligohistidine- and biotin-tagged biomolecules is reported. Orthogonally functionalized GO surfaces with Tris-NTA and biotin to obtain a dual-functionalized GO (DFGO) are prepared and characterized by various spectroscopic and microscopic techniques. Fluorescence microscopic images reveal that DFGO surfaces are capable of binding oligohistidine-tagged biomolecules/proteins and avidin/biotin-tagged biomolecules/proteins orthogonally. The DFGO nanoparticles are non-cytotoxic in nature and can deliver oligohistidine- and biotin-tagged biomolecules simultaneously into the cell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics

    Science.gov (United States)

    Li, Wei; Torres, David; Díaz, Ramón; Wang, Zhengjun; Wu, Changsheng; Wang, Chuan; Lin Wang, Zhong; Sepúlveda, Nelson

    2017-05-01

    Ferroelectret nanogenerators were recently introduced as a promising alternative technology for harvesting kinetic energy. Here we report the device's intrinsic properties that allow for the bidirectional conversion of energy between electrical and mechanical domains; thus extending its potential use in wearable electronics beyond the power generation realm. This electromechanical coupling, combined with their flexibility and thin film-like form, bestows dual-functional transducing capabilities to the device that are used in this work to demonstrate its use as a thin, wearable and self-powered loudspeaker or microphone patch. To determine the device's performance and applicability, sound pressure level is characterized in both space and frequency domains for three different configurations. The confirmed device's high performance is further validated through its integration in three different systems: a music-playing flag, a sound recording film and a flexible microphone for security applications.

  17. Spherical anatase TiO2 covered with nanospindles as dual functional scatters for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang

    2014-01-01

    Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs

  18. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  19. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  20. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  1. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  2. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  3. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    Science.gov (United States)

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  4. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and Li2O as breeding materials in fusion reactor blankets

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.; Kudo, H.

    1980-01-01

    In addition to LiH, which has been studied extensively by optical spectroscopy, the existence of a number of other stable lithium hydrides has been predicted theoretically. By analysis of the saturated vapour over dilute solutions of the hydrogen isotopes in lithium, using Knudsen effusion mass spectrometry, all lithium hydrides predicted to be stable were found. Solutions of deuterium in lithium were used predominantly because of practical advantages for mass spectrometric measurements. The heats of dissociation of LiD, Li 2 D, LiD 2 and Li 2 D 2 , and the binding energies of their singly charged positive ions were determined, and the constants of the gas/liquid equilibria were calculated. The existence of these lithium deuterides in the gas phase over solutions of deuterium in lithium leads to enrichment of deuterium in the gas above 1240 K. The enrichment factor, which increases exponentially with temperature and is independent of concentration for low concentrations of deuterium in the liquid, was determined by Rayleigh distillation experiments. It was found that it is thermodynamically possible to separate deuterium from lithium by distillation. One of the alternatives to the use of lithium in (D,T)-fusion reactors as tritium-breeding blanket material is to employ solid lithium oxide. This has a high melting point, a high lithium density and still favourable tritium-breeding properties. Because of its rather high volatility, an experimental study of the vaporization of Li 2 O was undertaken by mass spectrometry. It vaporizes to give lithium and oxygen, and LiO, Li 2 O, Li 3 O and Li 2 O 2 . The molecule Li 3 O was found as a new species. Heats of dissociation, binding energies of the various ions and the constants of the gas/solid equilibria were determined. The effect of using different materials for the Knudsen cells and the relative thermal stabilities of lithium-aluminium oxides were also studied. (author)

  5. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  6. AMDE-1 is a dual function chemical for autophagy activation and inhibition.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1, triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.

  7. Modulation of Enzymatic Activities of Dual Functional Peroxiredoxin by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Park, Chul Hong; Chung, Byung Yeoup

    2012-01-01

    Recently, enzymes have frequently been used as catalysts in various bio-industrial, commercial, and pharmaceutical applications, because they are more stable, more efficient, and less toxic than the synthetic catalysts. However, one of their major disadvantages is their low thermostability, which leads the researchers to develop new forms of industrially important enzymes with increased resistance to inactivation and aggregation. This study describes a strategy for modifying the molecular chaperone activity of peroxiredoxin (Prx) by using gamma irradiation. Prxs are a ubiquitous family of antioxidant enzymes. Upon oxidation of their peroxidatic Cys, the molecules undergo a structural conversion from a low-molecular-weight (LMW) species acting as a peroxidase to a high-molecular-weight (HMW) complex functioning as a chaperone. In the present study, we examined the effect of gamma irradiation on PP1084 with respect to its protein structure and enzymatic function. The use of gamma irradiation as a physical treatment can increase the cohesive strength of the protein by forming cross-links. The aims of the present work were (1) to improve the chaperone activity of PP1084 by gamma irradiation, (2) to identify the 'optimal' intensity of gamma irradiation, and (3) to investigate the influence of gamma irradiation on protein hydrophobicity as related to chaperone function. Following PP1084 treatment with 30 kGy gamma irradiation, the PP1084 chaperone activity enhanced by about 3-4-fold compared with nonirradiated PP1084, while the peroxidase activity decreased. Ongoing research efforts are addressing the physical modifications of PP1084 protein by gamma irradiation

  8. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis.

    Directory of Open Access Journals (Sweden)

    Sabine Jurado

    2010-10-01

    Full Text Available Zn²(+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn²(+-finger protein (ASCIZ; also known as ATMIN and ZNF822 was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis.

  9. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.

    Science.gov (United States)

    Zhang, Xiaowei; Dong, Wentao; Sun, Jongho; Feng, Feng; Deng, Yiwen; He, Zuhua; Oldroyd, Giles E D; Wang, Ertao

    2015-01-01

    The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors

    Science.gov (United States)

    Kim, Christine H. J.; Zhang, Hongbo; Liu, Jie

    2015-06-01

    Microporous carbons (MPCs) are promising electrode materials for supercapacitors because of their high surface area and accessible pores. However, their low electrical conductivity and mechanical instability result in limited power density and poor cycle life. This work proposes a unique two-layered film made of polyetheretherketone-derived MPCs and reduced graphene oxide (rGO) as an electrode for supercapacitors. Electrochemical characterizations of films show that such a layered structure is more effective in increasing the accessibility of ions to the hydrophilic MPCs and establishing conductive paths through the rGO network than a simple mixed composite film. The two-layered structure increases the capacitance by ˜124% (237 F g-1) with excellent cycling stability (˜93% after 6000 cycles). More importantly, we demonstrate that such performance improvements result from an optimal balance between electrical conductivity and ion accessibility, which maximizes the synergistic effects of MPC and rGO. The MPCs, which are exposed to the surface, provide a highly accessible surface area for ion adsorption. The rGO serves a dual function as a conductive filler to increase the electrical conductivity and as a binder to interconnect individual MPC particles into a robust and flexible film. These findings provide a rational basis for the design of MPC-based electrodes in high performance supercapacitors.

  11. Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors

    International Nuclear Information System (INIS)

    Kim, Christine H J; Zhang, Hongbo; Liu, Jie

    2015-01-01

    Microporous carbons (MPCs) are promising electrode materials for supercapacitors because of their high surface area and accessible pores. However, their low electrical conductivity and mechanical instability result in limited power density and poor cycle life. This work proposes a unique two-layered film made of polyetheretherketone-derived MPCs and reduced graphene oxide (rGO) as an electrode for supercapacitors. Electrochemical characterizations of films show that such a layered structure is more effective in increasing the accessibility of ions to the hydrophilic MPCs and establishing conductive paths through the rGO network than a simple mixed composite film. The two-layered structure increases the capacitance by ∼124% (237 F g −1 ) with excellent cycling stability (∼93% after 6000 cycles). More importantly, we demonstrate that such performance improvements result from an optimal balance between electrical conductivity and ion accessibility, which maximizes the synergistic effects of MPC and rGO. The MPCs, which are exposed to the surface, provide a highly accessible surface area for ion adsorption. The rGO serves a dual function as a conductive filler to increase the electrical conductivity and as a binder to interconnect individual MPC particles into a robust and flexible film. These findings provide a rational basis for the design of MPC-based electrodes in high performance supercapacitors. (paper)

  12. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    Science.gov (United States)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  13. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  14. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials.

    Science.gov (United States)

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2017-07-01

    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    Science.gov (United States)

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  16. Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.

    Science.gov (United States)

    Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin

    2018-02-06

    Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.

  17. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  18. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  19. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Science.gov (United States)

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues

    Science.gov (United States)

    Zhang, Zhenshan; Zheng, Mingyue; Du, Li; Shen, Jianhua; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang

    2006-05-01

    To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.

  2. Investigations on organolead compounds V. Lead---lead bond cleavage reactions of hexaphenyldilead

    NARCIS (Netherlands)

    Willemsens, L.C.; Kerk, G.J.M. van der

    1968-01-01

    It has been shown that a number of nucleophilic and weakly electrophilic reagents (organolithium and organomagnesium compounds, metallic lithium, potassium permanganate, sodium ethoxide, diaryl disulphides, sulphur, ozone, hypochlorous acid and iodine/iodide) selectively cleave the lead---lead bond

  3. Experimental lithium system experience

    International Nuclear Information System (INIS)

    Atwood, J.M.; Berg, J.D.; Kolowith, R.; Miller, W.C.

    1984-01-01

    The Experimental Lithium System is a test loop built to support design and operation of the Fusion Materials Irradiation Test Facility. ELS has achieved over 15,000 hours of safe and reliable operation. An extensive test program has demonstrated satisfactory performance of the system components, including an electromagnetic pump, lithium jet target, and vacuum system. Data on materials corrosion and behavior of lithium impurities are also presented. (author)

  4. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    Science.gov (United States)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the

  5. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    Science.gov (United States)

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  6. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.

    Science.gov (United States)

    Imani, Rana; Prakash, Satya; Vali, Hojatollah; Faghihi, Shahab

    2018-05-29

    The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.

  7. Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier

    Science.gov (United States)

    Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is

  8. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  9. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  10. Studies of solid-state electrochromic devices based on Peo/siliceous hybrids doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.

    2007-01-01

    Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability

  11. A fluoride-sensing receptor based on 2,2'-bis(indolyl)methane by dual-function of colorimetry and fluorescence.

    Science.gov (United States)

    Wei, Wei; Shao, Shi Jun; Guo, Yong

    2015-10-05

    A compound based on 2,2'-bis(indolyl)methane containing nitro group was studied as a new anion receptor. It could recognize selectively F(-) by an increasing fluorescence signal and a visible color change from colorless to blue. The introduction of nitro group induced the spectral dual-function related to the deprotonation of N-H protons. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  13. Startup of Experimental Lithium System

    International Nuclear Information System (INIS)

    McCauley, D.L.

    1980-06-01

    The Experimental Lithium System (ELS) is designed for full-scale testing of targets and other lithium system components for the Fusion Materials Irradiation Test (FMIT) Facility. The system also serves as a test bed for development of lithium purification and characterization equipment, provides experience in operation of large lithium systems, and helps guide FMIT design

  14. Lithium purity and characterization

    International Nuclear Information System (INIS)

    Meadows, G.E.; Keough, R.F.

    1981-02-01

    The accurate measurement of impurities in lithium is basic to the study of lithium compatibility with fusion reactor materials. In the last year the Hanford Engineering Development Laboratory (HEDL) has had the opportunity to develop sampling and analytical techniques and to apply them in support of the Experimental Lithium System (ELS) as a part of the Fusion Materials Irradiation Test Project. In this paper we present the analytical results from the fill, start-up and operation of the ELS. In addition, the analysis and purification of navy surplus ingot lithium which is being considered for use in a larger system will be discussed. Finally, the analytical techniques used in our laboratory will be summarized and the results of a recent round robin lithium analysis will be presented

  15. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  16. Optical cleaning of lithium niobate crystals

    International Nuclear Information System (INIS)

    Koesters, Michael

    2010-01-01

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  17. Lithium-associated primary hyperparathyroidism complicated by nephrogenic diabetes insipidus.

    Science.gov (United States)

    Aksakal, Nihat; Erçetin, Candaş; Özçınar, Beyza; Aral, Ferihan; Erbil, Yeşim

    2015-01-01

    Lithium-associated hyperparathyroidism is the leading cause of hypercalcemia in lithium-treated patients. Lithium may lead to exacerbation of pre-existing primary hyperparathyroidism or cause an increased set-point of calcium for parathyroid hormone suppression, leading to parathyroid hyperplasia. Lithium may cause renal tubular concentration defects directly by the development of nephrogenic diabetes insipidus or indirectly by the effects of hypercalcemia. In this study, we present a female patient on long-term lithium treatment who was evaluated for hypercalcemia. Preoperative imaging studies indicated parathyroid adenoma and multinodular goiter. Parathyroidectomy and thyroidectomy were planned. During the postoperative course, prolonged intubation was necessary because of agitation and delirium. During this period, polyuria, severe dehydration, and hypernatremia developed, which responded to controlled hypotonic fluid infusions and was unresponsive to parenteral desmopressin. A diagnosis of nephrogenic diabetes insipidus was apparent. A parathyroid adenoma and multifocal papillary thyroid cancer were detected on histopathological examination. It was thought that nephrogenic diabetes insipidus was masked by hypercalcemia preoperatively. A patient on lithium treatment should be carefully followed up during or after surgery to prevent life-threatening complications of previously unrecognized nephrogenic diabetes insipidus, and the possibility of renal concentrating defects on long-term lithium use should be sought, particularly in patients with impaired consciousness.

  18. Adsorption of lithium on the (112) face of molybdenum crystal

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Medvedev, V.K.; Palyukh, B.M.; Smereka, T.P.

    1979-01-01

    The structure, work function and heat resistance of lithium films on the (112) face of Mo are investigated by the slow electron diffraction method and the contact potential difference technique. The isles of the p(1x4) structure grow in lithium films in the area of coatings 0.6-0.7 14 cm -2 , type one phase transformation between the p(1x4) and p(1x2) structures takes places in the area of 2.1 14 cm -2 , and the phase transformation of the first type between the p(1x2) structure and one-dimensional incoherent structure with n=5.5x10 14 cm -2 occurs in the range of 4.2 14 cm -2 . At n>5.5x10 14 cm -2 the compression of lithium film occurs, which has a one-dimensional incoherent structure, along the direction of atomic lines of the (112) Mo face, leading at n=8.3x10 14 cm -2 to the formation of monolayer coating of the p(1x1) structure. The redistribution of atoms between the first and the second lithium layers is found at the formation of two-layer lithium film. Concentration dependences of work function and absorption heat of lithium are in good agreement with the structural transformations in lithium films taking place with variations in the coating. Investigated are order-disorder transformations in lithium films

  19. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  20. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  1. Adsorption of lithium-lanthanum films on the (100) tungsten face

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Smereka, T.P.; Babkin, G.V.; Palyukh, B.M.

    1982-01-01

    The method of contact potential difference is used to investigate combined adsorption of lithium-lanthanum on the (100) tungsten face. The data on work functions and thermal stability of mixed lithium-lanthanum films are obtained. The presence of lanthanum on the W(100) surface leads to appearance of minimum of work functions unobserved for the Li-W(100) system, minimum work functions and optimum lithium concentration in a mixed film are decreased at initial lanthanum coating increase. The presence of lanthanum on the W(100) face leads to lithium adsorption heat decrease

  2. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    Science.gov (United States)

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  3. Lithium niobate packaging challenges

    International Nuclear Information System (INIS)

    Murphy, E.J.; Holmes, R.J.; Jander, R.B.; Schelling, A.W.

    1988-01-01

    The use of lithium niobate integrated optic devices outside of the research laboratory is predicated on the development of a sound packaging method. The authors present a discussion of the many issues that face the development of a viable, robust packaging technology. The authors emphasize the interaction of lithium niobate's physical properties with available packaging materials and technologies. The broad range of properties (i.e. electro-optic, piezo-electric, pyro-electric, photorefractive...) that make lithium niobate an interesting material in many device applications also make it a packaging challenge. The package design, materials and packaging technologies must isolate the device from the environment so that lithium niobate's properties do not adversely affect the device performance

  4. Liquid Lithium Wall Experiments in CDX-U

    International Nuclear Information System (INIS)

    Doerner, R.; Kaita, R.; Majeski, R.; Luckhardt, S.

    1999-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. Sputtering and erosion tests are currently underway in the PISCES device at the University of California at San Diego (UCSD). To complement this effort, plasma interaction questions in a toroidal plasma geometry will be addressed by a proposed new groundbreaking experiment in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The CDX-U plasma is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used for the first time with a toroidal plasma. Since CDX-U is a small ST, only approximately1 liter or less of lithium is required to produce a toroidal liquid lithium limiter target, leading to a quick and cost-effective experiment

  5. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  6. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  7. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  8. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  9. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  10. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  11. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  12. Raman spectral and electrochemical studies of lithium/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Odziemkowski, M

    1922-01-01

    Cyclic voltammetry, corrosion potential-time transients and Normal Raman spectroscopy have been employed to characterize the lithium-lithium salt, organic solvent, interfacial region. An in-situ cutting technique was developed to expose lithium metal. In-situ optical and ex-situ scanning electron microscopy (SEM) have been used to examine the morphology of the lithium electrode surface during exposure at open circuit and after anodic polarization. The main reaction product detected by in-situ Raman spectroscopy in the system/lithium/LiAsF[sub 6], tetrahydrofuran (THF) electrolyte was polytetrahydrofuran (PTHF). The conditions for the polymerization reaction in the presence of lithium metal have been determined. Tetrahydrofuran (THF) decomposition reaction mechanisms are discussed. Decomposition reaction products have been determined as arsenic (II) oxide, As[sub 2]O[sub 3] (arsenolite) and arsenious oxyfluoride AsF[sub 2]-O-AsF[sub 2]. Potentiodynamic polarization measurements revealed a substantial shift of the corrosion potential towards positive values and only a moderate increase of anodic dissolution current for in-situ cut lithium metal. Corrosion potential-time merits have been measured. The following electrolytes have been investigated: LiAsF[sub 6], LiPF[sub 6], LiClO[sub 4], and Li(CF[sub 3]SO[sub 2])[sub 2]N in THF, 2Me-THF, and propylene carbonate (PC). The transients permit the ranking of the reactivity of the electrolytes. These measurements have shed light on understanding the stability of various stability and and solvents in contact with lithium. Compared to purified electrolytes, small amounts of water shift the corrosion potential towards even more positive values. Intensive anodic cycling of a Li electrode in unpurified LiAsF[sub 6]/THF electrolyte leads to the breakdown of a surface film/films. While at the open circuit potential (OCP), water in this same electrolyte leads to crack formation in the bulk lithium electrode.

  13. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  14. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    Science.gov (United States)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  15. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  16. Combined adsorption of lithium and oxygen on (111) face of tungsten

    International Nuclear Information System (INIS)

    Lozovoj, Ya.B.; Smereka, T.P.; Babkin, G.V.; Payukh, B.M.

    1986-01-01

    A contact potential difference technique has been employed to study the electron-adsorption properties of lithium films on a (111) face of tungsten, preliminary coated with different doses of oxygen. At all the lithium coverages studied the presence of oxygen on the surface leads to a significant decrease of the work function φ min and an increase of the thermal stability of lithium films. For optimal coverage φ=1.8 eV, q=2.2 eV

  17. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  18. Spectroscopic measurements of lithium influx from an actively water-cooled liquid lithium limiter on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Apruzzese, G.M., E-mail: gerarda.apruzzese@enea.it; Apicella, M.L.; Maddaluno, G.; Mazzitelli, G.; Viola, B.

    2017-04-15

    Since 2006, experiments using a liquid lithium limiter (LLL) were successfully performed on FTU, pointing out the problem of the quantity of lithium in the plasma, especially in conditions of strong evaporation due to the high temperature of limiter surface. In order to avoid the strong evaporation it is necessary to control the temperature by removing the heat from the limiter during the plasma exposure. To explore this issue a new actively cooled lithium limiter (CLL) has been installed and tested in FTU. Suitable monitors to detect the presence of lithium in the plasma are the spectroscopic diagnostics in the visible range that permit to measure the flux of lithium, coming from the limiter surface, through the brightness of the LiI spectral lines. For this aim an Optical Multichannel Analyser (OMA) spectrometer and a single wavelength impurities monitor have been used. The analysis of the Li influx signals has permitted to monitor the effects of interaction between the plasma and the limiter connected to the thermal load. Particular attention has been paid on the possible occurrence of sudden rise of the signals, which is an index of a strong interaction that could lead to a disruption. On the other hand, the appearance of significant signals gives useful indication if the interaction with the plasma has taken place.

  19. Lithium-induced downbeat nystagmus.

    Science.gov (United States)

    Schein, Flora; Manoli, Pierre; Cathébras, Pascal

    2017-09-01

    We report the case of a 76-year old lady under lithium carbonate for a bipolar disorder who presented with a suspected optic neuritis. A typical lithium-induced downbeat nystagmus was observed. Discontinuation of lithium therapy resulted in frank improvement in visual acuity and disappearance of the nystagmus.

  20. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal

    2018-01-01

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  1. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna

    2018-04-30

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  2. Reasons for lithium discontinuation in men and women with bipolar disorder: a retrospective cohort study.

    Science.gov (United States)

    Öhlund, Louise; Ott, Michael; Oja, Sofia; Bergqvist, Malin; Lundqvist, Robert; Sandlund, Mikael; Salander Renberg, Ellinor; Werneke, Ursula

    2018-02-07

    Lithium remains first choice as maintenance treatment for bipolar affective disorder. Yet, about half of all individuals may stop their treatment at some point, despite lithium's proven benefits concerning the prevention of severe affective episodes and suicide. Retrospective cohort study in the Swedish region of Norrbotten into the causes of lithium discontinuation. The study was set up to (1) test whether patients with bipolar affective disorder or schizoaffective disorder, treated with lithium maintenance therapy, were more likely to discontinue lithium because of adverse effects than lack of therapeutic effectiveness, (2) explore gender differences, (3) understand the role of diagnosis and (4) identify who, patient or doctor, took the initiative to stop lithium. Review of medical records for all episodes of lithium discontinuation that had occurred between 1997 and 2013 with the intent to stop lithium for good. Of 873 patients treated with lithium, 54% discontinued lithium, corresponding to 561 episodes of lithium discontinuation. In 62% of episodes, lithium was discontinued due to adverse effects, in 44% due to psychiatric reasons, and in 12% due to physical reasons interfering with lithium treatment. The five single most common adverse effects leading to lithium discontinuation were diarrhoea (13%), tremor (11%), polyuria/polydipsia/diabetes insipidus (9%), creatinine increase (9%) and weight gain (7%). Women were as likely as men to take the initiative to stop lithium, but twice as likely to consult a doctor before taking action (p < 0.01). Patients with type 1 BPAD or SZD were more likely to discontinue lithium than patients with type 2 or unspecified BPAD (p < 0.01). Patients with type 1 BPAD or SZD were more likely to refuse medication (p < 0.01). Conversely, patients with type 2 or unspecified BPAD were three times as likely to discontinue lithium for lack or perceived lack of effectiveness (p < 0.001). Stopping lithium treatment is

  3. Design of the FMIT lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Annese, C.E.; Greenwell, R.K.; Ingham, J.G.; Miles, R.R.; Miller, W.C.

    1981-01-01

    Development of the liquid lithium target for the Fusion Materials Irradiation Test (FMIT) Facility is described. The target concept, major design goals and design requirements are presented. Progress made in the research and development areas leading to detailed design of the target is discussed. This progress, including experimental and analytic results, demonstrates that the FMIT target design is capable of meeting its major design goals and requirements

  4. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  5. Lithium extractive metallurgy

    International Nuclear Information System (INIS)

    Josa, J.M.; Merino, J.L.

    1985-01-01

    The Nuclear Fusion National Program depends on lithium supplies. Extractive metallurgy development is subordinate to the localization and evaluation of ore resources. Nowadays lithium raw materials usable with present technology consist of pegmatite ore and brine. The Instituto Geologico y Minero Espanol (IGME) found lepidolite, ambligonite and spodrimene in pegmatite ores in different areas of Spain. However, an evaluation of resources has not been made. Different Spanish surface and underground brines are to be sampled and analyzed. If none of these contain significant levels of lithium, the Junta de Energia Nuclear (JEN) will try an agreement with IGME for ENUSA (Empresa Nacional del Uranio, S.A.) to explore pegmatite-ore bodies from different locations. Different work stages, laboratory tests, pilots plants tests and commercial plant, are foreseen, if the deposits are found. (author)

  6. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  7. Lithium Combustion: A Review

    Science.gov (United States)

    1990-12-01

    Rev. 2-89) Precribed by ANSI Std 239.18 298-102 UNCLASSIFIED SECURIT CLASSIRCTIO OF THIS PAGE (Whun Data Entered) Lade Form 296 ledk (Row. 2-49...did not burn spontaneously in water, and the hydrogen formed did not ignite in air. When a pea-sized piece of lithium was dropped into a container of...Lithium metal flowed through the cracks in the coating and started to burn brilliantly. The LiOH coating was initially protective; but, as it became

  8. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    KAUST Repository

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-01-01

    amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated

  9. Prophylactic efficacy of lithium administered every second day: a WHO multicentre study

    DEFF Research Database (Denmark)

    Plenge, P; Amin, M; Agarwal, A K

    1999-01-01

    OBJECTIVES: To study the prophylactic efficacy of lithium administered every second day to patients with bipolar disorder or recurrent unipolar depressive disorder. METHODS: The study was carried out as a WHO multicentre study in five different psychiatric clinics: Russia (Moscow), Canada (Montreal......), India (Lucknow), Germany (Munich) and South Korea (Pusan), with the lithium tablets being supplied from Denmark (Copenhagen). Participation in the study was conditional on the patient having been in prophylactic lithium treatment for the preceding 2-year period and having been free of depressive...... of bipolar disorder and five with a diagnosis of recurrent unipolar depressive disorder, participated in the study. The number of patients from each centre ranged from six to 11. The mean lithium dose every second day was 36 mmol lithium, leading to a mean 12-h standard serum lithium concentration during...

  10. The use of lithium carbonate in the treatment of Graves' disease with 131I

    International Nuclear Information System (INIS)

    Kang Yuguo; Chen Miao; Kuang Anren

    2004-01-01

    Lithium carbonate involving radioactive iodine uptake, goiter volume, thyroid hormone and applying range is reviewed briefly. Lithium may elongate the T 1/2 of iodine in thyroid gland, decrease 131 I dosage and enhance curative effect. Lithium carbonate inhibit iodine uptake and thyroid hormone synthesize, blocks the release of iodine and thyroid hormone from the thyroid gland, which lead to reduce the 131 I dosage the patients need and to decrease the surge of serum FT 3 and FT 4 levels caused by 131 I therapy. so lithium carbonate can alleviate the symptoms caused by 131 I treatment. For lithium carbonate can increase leucocyte amount, there are some merits with lithium carbonate in treating Graves' disease by 131 I. (authors)

  11. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  12. Chemical transport of niobium(V) oxide and of lithium niobate with sulphur

    International Nuclear Information System (INIS)

    Schaefer, H.

    1988-01-01

    Niobium(V) oxide is transported by means of sulphur (calculated for 10 bar at 1223 K) from 1273 → 1173 K. The same applies for lithium niobate. Similar experiments of lithium oxide lead to turbidity of the quartz ampoule. (author)

  13. Lithium adsorption by the first wall of fusion reactor-tokamak

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    1989-01-01

    Lithium adsorption by the first wall of fusion reactor under stationary conditions and in the absence of chemical reactions is considered. Possibility of achieving 70% coating of the wall with lithium which can lead to sufficient decrease of sputtering is shown. 5 refs.; 5 figs

  14. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  15. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Science.gov (United States)

    2012-01-18

    ... delivery of the affected aircraft. In addition, the substance of these special conditions has been subject... Ni-Cd and lead-acid cells, some types of lithium-battery cells use flammable liquid electrolytes. The... lithium batteries. The flammable-fluid fire-protection requirements of Sec. 25.863. In the past, this rule...

  16. The development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/steam interaction. Final report 9-21-90--3-31-95

    International Nuclear Information System (INIS)

    Biney, P.O.

    1995-03-01

    The objective of this research to experimentally determine the hydrogen generation rate during the beginning and subsequent stages of liquid metal (Li 17 Pb 83 ) and water reaction. The experimental set-up has been built. It includes a metal sample preparation apparatus, a reaction system, a measurement system and a PC based data acquisition and control system. The most important feature of the reaction system is a pneumatic actuated quick opening and closing high temperature, all stainless steel valve used the system for reaction time control. The PC system provides remote process sequencing, acquisition and control of all the systems except the metal preparation apparatus. Due to the reactivity of the lithium, all the metal sampling, preparation and loading procedures are executed in a glove box under argon protection. The metal temperature was varied between 350 degrees C-650 degrees C and water temperature fixed at 60 degrees C during the experiments. A set of experimental procedures and two analyses methods: (1) thermodynamics method and (2) heat transfer method are discussed. All the measurements and data collections are executed under the PC system control. A data analysis program is used to calculate both the partial pressure of hydrogen and the hydrogen generation rate. The experiment results indicate that the amount of hydrogen generated is relate to the initial liquid metal temperature when the reaction surface is fixed. The mass of hydrogen generated as a function of initial liquid metal temperature and time of reaction is presented, The hydrogen generation over a time period of 240 seconds and the calculated errors are summarized in Table 1

  17. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  18. Lithium thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  19. Synthesis of lithium ceramics

    International Nuclear Information System (INIS)

    Cruz G, D.; Bulbulian, S.

    2001-01-01

    In this work, lithium silicates were synthesised by the combustion technique, the mixtures were prepared with different molar ratios and using urea as fuel. Its characterization was realized by means of X-ray diffraction (XRD) and the percentages of its sizes were determined measuring the area under curve of the peaks in the diffractogram. (Author)

  20. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  1. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  2. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  3. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  4. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives.

    Science.gov (United States)

    Wang, Yali; Sun, Yang; Guo, Yueyan; Wang, Zechen; Huang, Ling; Li, Xingshu

    2016-01-01

    Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD.

  5. Anomalous Lithium Adsorption Propensity of Monolayer ...

    Indian Academy of Sciences (India)

    longer life cycle, thus an ideal candidate to replace the conventional ... tion in the development of lithium ion batteries as they ... interaction of graphene with lithium based on density ... aromatic hydrocarbons.30 Lithium doping increases.

  6. A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine

    International Nuclear Information System (INIS)

    Liu, Huilin; Liu, Dongrui; Fang, Guozhen; Liu, Fangfang; Liu, Cuicui; Yang, Yukun; Wang, Shuo

    2013-01-01

    Highlights: ► We have developed a novel dual-function MIP-coated QDs material. ► The MIP-coated QDs combine the advantage of molecular imprinting and QDs. ► We used MIP-coated QDs as fluorescence sensing material for recognize RAC. ► We used QDs@MIP as sorbent to combine SPE with HPLC for the determination. -- Abstract: A novel dual-function material was synthesized by anchoring a molecularly imprinted polymer (MIP) layer on CdTe/ZnS quantum dots (QDs) using a sol–gel with surface imprinting. The material exhibited highly selective and sensitive determination of ractopamine (RAC) through spectrofluorometry and solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC). A series of adsorption experiments revealed that the material showed high selectivity, good adsorption capacity and a fast mass transfer rate. Fluorescence from the MIP-coated QDs was more strongly quenched by RAC than that of the non-imprinted polymer, which indicated that the MIP-coated QDs acted as a fluorescence sensing material could recognize RAC. In addition, the MIP-coated QDs as a sorbent was also shown to be promising for SPE coupled with HPLC for the determination of trace RAC in feeding stuffs and pork samples. Under optimal conditions, the spectrofluorometry and SPE-HPLC methods using the MIP-coated QDs had linear ranges of 5.00 × 10 −10 –3.55 × 10 −7 and 1.50 × 10 −10 –8.90 × 10 −8 mol L −1 , respectively, with limits of detection of 1.47 × 10 −10 and 8.30 × 10 −11 mol L −1 , the relative standard deviations for six repeat experiments of RAC (2.90 × 10 −9 mol L −1 ) were below 2.83% and 7.11%

  7. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing.

    Science.gov (United States)

    Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu

    2018-07-30

    Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-hong [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Liu, Fu-qiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Wang, Feng-he [School of Environment, Nanjing Normal University, Nanjing, 210023 (China); Ling, Chen; Li, Ai-min [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China)

    2017-05-05

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H{sub 2}PO{sub 4}{sup −} were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H{sub 2}PO{sub 4}{sup −} accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H{sub 2}PO{sub 4}{sup −}. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  9. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    International Nuclear Information System (INIS)

    Zhang, Yan-hong; Liu, Fu-qiang; Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng; Wang, Feng-he; Ling, Chen; Li, Ai-min

    2017-01-01

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H_2PO_4"− could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H_2PO_4"− from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H_2PO_4"− were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H_2PO_4"− accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H_2PO_4"−. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  10. Plasma interaction with liquid lithium: Measurements of retention and erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J. E-mail: mbaldwin@ferp.ucsd.edu; Doerner, R.P.; Luckhardt, S.C.; Seraydarian, R.; Whyte, D.G.; Conn, R.W

    2002-11-01

    This paper reports on recent studies of high flux deuterium and helium plasma interaction with liquid lithium in the Pisces-B edge plasma simulator facility. Deuterium retention is explored as a function of plasma ion fluence in the range 6x10{sup 19}-4x10{sup 22} atoms cm{sup -2} and exposure temperatures of 523-673 K. The results are consistent with full uptake of the deuterium ions incident on the liquid metal surface, independent of the temperature of the liquid lithium. Full uptake continues until the sample is volumetrically converted to lithium deuteride. Helium retention is not observed for fluences up to 5x10{sup 21} He atoms cm{sup -2}. Measurements of the erosion of lithium are found to be consistent with physical sputtering for the lithium solid phase. However, a mechanism that provides an increased evaporative-like yield and is related to ion impact events on the surface, dominates during the liquid phase leading to an enhanced loss rate for liquid lithium that is greater than the expected loss rate due to evaporation at elevated temperatures. Further, the material loss rate is found to depend linearly on the incident ion flux, even at very high temperature.

  11. Molecular actions and clinical pharmacogenetics of lithium therapy

    Science.gov (United States)

    Can, Adem; Schulze, Thomas G.; Gould, Todd D.

    2014-01-01

    Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium’s therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future. PMID:24534415

  12. Mechanical Design of the NSTX Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    R. Ellis, R. Kaita, H. Kugel, G. Paluzzi, M. Viola and R. Nygren

    2009-02-19

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuumcompatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  13. Mechanical Design of the NSTX Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Ellis, R.; Kaita, R.; Kugel, H.; Paluzzi, G.; Viola, M.; Nygren, R.

    2009-01-01

    The Liquid Lithium Divertor (LLD) on NSTX will be the first test of a fully-toroidal liquid lithium divertor in a high-power magnetic confinement device. It will replace part of the lower outboard divertor between a specified inside and outside radius, and ultimately provide a lithium surface exposed to the plasma with enough depth to absorb a significant particle flux. There are numerous technical challenges involved in the design. The lithium layer must be as thin as possible, and maintained at a temperature between 200 and 400 degrees Celsius to minimize lithium evaporation. This requirement leads to the use of a thick copper substrate, with a thin stainless steel layer bonded to the plasma-facing surface. A porous molybdenum layer is then plasma-sprayed onto the stainless steel, to provide a coating that facilitates full wetting of the surface by the liquid lithium. Other challenges include the design of a robust, vacuum compatible heating and cooling system for the LLD. Replacement graphite tiles that provided the proper interface between the existing outer divertor and the LLD also had to be designed, as well as accommodation for special LLD diagnostics. This paper describes the mechanical design of the LLD, and presents analyses showing the performance limits of the LLD.

  14. Optical cleaning of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Michael

    2010-01-15

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  15. SU-F-T-660: Evaluating the Benefit of Using Dual-Function Fiducial Markers for In-Situ Delivery of Radiosenistizing Gold Nanoparticles During Image-Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    AlMansour, S; Chin, J; Sajo, E; Ngwa, W [University Massachusetts Lowell, Lowell, MA (United States)

    2016-06-15

    Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law. The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate

  16. SU-F-T-660: Evaluating the Benefit of Using Dual-Function Fiducial Markers for In-Situ Delivery of Radiosenistizing Gold Nanoparticles During Image-Guided Radiotherapy

    International Nuclear Information System (INIS)

    AlMansour, S; Chin, J; Sajo, E; Ngwa, W

    2016-01-01

    Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law. The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate

  17. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  18. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  19. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  20. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption...... of lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... that lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  1. LEADING WITH LEADING INDICATORS

    International Nuclear Information System (INIS)

    PREVETTE, S.S.

    2005-01-01

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites

  2. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  3. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  4. Destruction mechanism of the internal structure in Lithium-ion batteries used in aviation industry

    International Nuclear Information System (INIS)

    Swornowski, Paweł J.

    2017-01-01

    In the article, the reasons for destruction of the internal structure in Lithium-ion batteries used in aviation industry have been explained. They manifest themselves in the battery's overheating, and in extreme cases they result in explosion. The report presents the results of experiments, which consisted in subjecting the tested Lithium-ion battery to vibration over a specified period of time and observing the changes of temperature inside it with the use of a thermal infrared camera. Another focal point of the study was the influence of vibrations on voltage change in relation to variable current load, and the influence of ambient temperature change on the Lithium-ion battery's voltage change. It has also been demonstrated that vibrations can damage the control electronics of the Lithium-ion battery. Moreover, the mechanism by which potentially dangerous thermal hot spots are formed in a Lithium-ion battery has been presented, as well as an uncertainty analysis of all measurement results. - Highlights: • The causes of internal destruction of Lithium-ion batteries are external vibrations. • The influence of vibrations on the change of a Lithium-ion battery's most parameters. • The mechanism leading to the explosion of a Lithium-ion battery was demonstrated. • The conclusions ensuring safe exploitation of a Lithium-ion battery were presented.

  5. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.

    Science.gov (United States)

    Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung

    2017-01-01

    Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.

  6. Recovery of lithium from seawater

    International Nuclear Information System (INIS)

    Ooi, Kenta; Miyai, Yoshitaka; Katoh, Shunsaku; Abe, Mitsuo.

    1989-01-01

    Lithium has been used for air conditioners, aluminum refining, ceramics, organic metal compounds, batteries and many other uses. Besides, attention is paid as the aluminum-lithium alloys as aircraft materials, and the raw materials for large capacity batteries and nuclear fusion reactors for the future. The amount of lithium resources has been estimated as 14 million tons, and is relatively abundant, but when the future increase of demand is considered, it is not necessarily sufficient. Japan lacks lithium resources, and the stable ensuring of the resources has become an important problem. Seawater contains lithium by 170 μg/l, and its total amount reaches 230 billion tons. The process of recovering lithium from seawater, geothermal water and natural gas brine has been actively researched since 10 years ago centering around Japan. At present, the search for the adsorbent that effectively collects lithium is the main subject. Also the recovery by coprecipitation has been investigated basically. The inorganic adsorbent for lithium is classified into aluminum type, compound antimonic acid type, layered compound type, ion sieve oxide type and others. Their lithium adsorption performance and adsorption mechanism are different remarkably, therefore, these of each group are described. (K.I.) 70 refs

  7. Lithium reserves and resources

    International Nuclear Information System (INIS)

    Evans, R.K.

    1978-01-01

    As a result of accelerating research efforts in the fields of secondary batteries and thermonuclear power generation, concern has been expressed in certain quarters regarding the availability, in sufficient quantities, of lithium. As part of a recent study by the National Research Council on behalf of the Energy Research and Development Administration, a subpanel was formed to consider the outlook for lithium. Principal areas of concern were reserves, resources and the 'surplus' available for energy applications after allowing for the growth in current lithium applications. Reserves and resources were categorized into four classes ranging from fully proved reserves to resources which are probably dependent upon the marketing of co-products to become economically attractive. Because of the proprietary nature of data on beneficiation and processing recoveries, the tonnages of available lithium are expressed in terms of plant feed. However, highly conservative assumptions have been made concerning mining recoveries and these go a considerable way to accounting for total losses. Western World reserves and resources of all classes are estimated at 10.6 million tonnes Li of which 3.5 million tonnes Li are located in the United States. Current United States capacity, virtually equivalent to Western World capacity, is 4700 tonnes Li and production in 1976 approximated to 3500 tonnes Li. Production for current applications is expected to grow to approx. 10,000 tonnes in year 2000 and 13,000 tonnes a decade later. The massive excess of reserves and resources over that necessary to support conventional requirements has limited the amount of justifiable exploration expenditures; on the last occasion, there was a a major increase in demand (by the USAEA) reserves and capacity were increased rapidly. There are no foreseeable reasons why this shouldn't happen again when the need is clear. (author)

  8. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    KAUST Repository

    Hu, Tong-Liang

    2015-06-04

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  9. The testing report of the development for the lithium grains and lithium rod automatic machine

    International Nuclear Information System (INIS)

    Qian Zongkui; Kong Xianghong; Huang Yong

    2008-06-01

    With the development of lithium industry, the lithium grains and lithium rod, as additive or catalyzer, having a big comparatively acreage and a strong activated feature, have a broad application. The lithium grains and lithium rod belong to the kind of final machining materials. The principle of the lithium grains and lithium rod that how to take shape through the procedures of extrusion, cutting, anti-conglutination, threshing and so on are analysed, A sort of lithium grains and lithium rod automatic machine is developed. (authors)

  10. Mass spectrometric analysis of lithium

    International Nuclear Information System (INIS)

    Chitambar, S.A.; Kavimandan, V.D.; Aggarwal, S.K.; Ramasubramanian, P.A.; Shah, P.M.; Almoula, A.I.; Acharya, S.N.; Parab, A.R.; Jain, H.C.; Mathews, C.K.; Ramaniah, M.V.

    1978-01-01

    The details of investigations carried out on the isotopic analysis of lithium using surface ionisation mass spectrometry are presented. Various parameters affecting the precision in isotopic analysis of lithium are discussed. A precision of 1% is achieved in the relative isotope abundance measurement. (author)

  11. A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huilin; Liu, Dongrui; Fang, Guozhen; Liu, Fangfang; Liu, Cuicui; Yang, Yukun [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Shuo, E-mail: s.wang@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-31

    Highlights: ► We have developed a novel dual-function MIP-coated QDs material. ► The MIP-coated QDs combine the advantage of molecular imprinting and QDs. ► We used MIP-coated QDs as fluorescence sensing material for recognize RAC. ► We used QDs@MIP as sorbent to combine SPE with HPLC for the determination. -- Abstract: A novel dual-function material was synthesized by anchoring a molecularly imprinted polymer (MIP) layer on CdTe/ZnS quantum dots (QDs) using a sol–gel with surface imprinting. The material exhibited highly selective and sensitive determination of ractopamine (RAC) through spectrofluorometry and solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC). A series of adsorption experiments revealed that the material showed high selectivity, good adsorption capacity and a fast mass transfer rate. Fluorescence from the MIP-coated QDs was more strongly quenched by RAC than that of the non-imprinted polymer, which indicated that the MIP-coated QDs acted as a fluorescence sensing material could recognize RAC. In addition, the MIP-coated QDs as a sorbent was also shown to be promising for SPE coupled with HPLC for the determination of trace RAC in feeding stuffs and pork samples. Under optimal conditions, the spectrofluorometry and SPE-HPLC methods using the MIP-coated QDs had linear ranges of 5.00 × 10{sup −10}–3.55 × 10{sup −7} and 1.50 × 10{sup −10}–8.90 × 10{sup −8} mol L{sup −1}, respectively, with limits of detection of 1.47 × 10{sup −10} and 8.30 × 10{sup −11} mol L{sup −1}, the relative standard deviations for six repeat experiments of RAC (2.90 × 10{sup −9} mol L{sup −1}) were below 2.83% and 7.11%.

  12. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  13. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  14. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... POSTAL SERVICE 39 CFR Part 111 Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION... international mailing of lithium batteries and devices containing lithium batteries. This prohibition also extends to the mailing of lithium batteries to and from an APO, FPO, or DPO location. However, this...

  15. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  16. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5......), and (3) serum from individual patients (n = 7), lithium was measured in 19 laboratories using 20 different instruments. The lithium concentrations were targeted by a reference laboratory. Ion-selective electrode (n = 5), reflective spectrophotometric (RSM, n = 5), and spectrophotometric (n = 10) methods...... of >12%. Seven of these instruments had a systematic positive or negative bias and more so at lower lithium concentrations. Three poorly calibrated instruments were found in the ion-selective electrode group, 3 in the spectrophotometric group, and 2 in the RSM group. The instruments using reflectance...

  17. The systematics of lithium abundances in young volcanic rocks

    International Nuclear Information System (INIS)

    Ryan, J.G.; Langmuir, C.H.

    1987-01-01

    Lithium is a moderately incompatible trace element in magmatic systems. High precision analyses for lithium conducted on well characterized suites of MORB and ocean island basalts suggest a bulk distribution coefficient of 0.25-0.35 and behavior which is similar to Yb during low pressure fractionation and V during melting, as long as garnet is not an important residual phase. Data for peridotites and basalts suggest a mantle lithium content of about 1.9 ppm and show that significant concentrations of lithium reside in olivine and orthopyroxene, resulting in unusual inter-mineral partitioning of Li and complex relationships between lithium and other incompatible trace elements. The lithium abundances of arc basalts are similar to those of MORB, but their Li/Yb ratios are considerably higher. The high Li/Yb suggests the addition of a Li-rich component to arc sources; relatively low Yb abundances are consistent with the derivation of some arc magmas by larger extents of melting or from a more depleted source than MORB. Although Li is enriched at arcs, K is enriched more, leading to elevated K/Li ratios in arc volcanics. The high K/Li and relatively low La/Yb of primitive arc basalts requires either incorporation of altered ocean crust into arc magma sources, or selective removal of K and Li from subducted sediments. Bulk incorporation of sediments alone does not explain the Li systematics. Data from primitive MORB indicate a relatively low (3-4 ppm) Li content for new oceanic crust. Thus, the Li flux from the ocean crust is probably 11 g/yr, and the oceanic crust may not be an important net source in the oceanic budget of lithium. (author)

  18. Primordial lithium and the standard model(s)

    International Nuclear Information System (INIS)

    Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.

    1989-01-01

    We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios

  19. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  20. Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Peng; Qiu, Jingxia; Zheng, Zhanfeng; Liu, Gao; Ling, Min; Martens, Wayde; Wang, Haihui; Zhao, Huijun; Zhang, Shanqing

    2013-01-01

    Carbon nanotube (CNT) and TiO 2 nanofibre composite films are prepared and used as anode materials for lithium ion batteries (LIBs) without the use of binders and conventional copper current collector. The preliminary experimental results from X-ray diffraction, scanning electron microscopy and transmission electron microscopy suggest that the TiO 2 nanofibres were well-dispersed and interwoven by the CNTs, forming freestanding, bendable and light weighted composite. In comparison with TiO 2 nanofibre based LIBs, the CNTs could significantly improve the battery performance due to their high conductivity property and 3D network morphology. In both 1–3 V and 0.01–3 V testing voltage ranges, the as-prepared composites show excellent reversible capacity and capacity retention. The superior lithium storage capacity of the CNT/TiO 2 composite was mainly attributed to dual functions of the CNTs – the CNTs not only provide conductive networks to assist the electron transfer but also facilitate lithium ion diffusion between the electrolyte and the TiO 2 active materials by preventing agglomeration of TiO 2 nanofibres. This work demonstrates that the CNT–TiO 2 composite film could be one type of potential electrode material for large-scale LIB applications

  1. C2 Lithium Campaign Power Balance

    Science.gov (United States)

    Trask, Erik; Deng, Bihe; Douglass, Jon; Garate, Eusebio; Gupta, Deepak; Gupta, Sangeeta; Tuszewski, Michel; TAE Team

    2014-10-01

    Several key changes have lead to record performance of the Tri Alpha Energy's (TAE) C2 Field Reversed Configuration (FRC) device. Wall conditioning changes from titanium to lithium have decreased radiative losses, while changes in the magnetic field of the SOL and jet have substantially increased energy confinement times. An overview of 0D power flows and timescales will be presented demonstrating that ions behave classically, that anomalous electron losses have been substantially reduced, and that plasma sustainment will require modest increases in heating power. These observations will be quantitatively analyzed as well as compared with both theoretical modeling of the TAE transport and numerical simulations (Q2D).

  2. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  3. Industrial routes for lithium zirconate elements

    International Nuclear Information System (INIS)

    Bastide, B.; Roux, N.

    1991-01-01

    Lithium metazirconate Li 2 ZrO 3 is one of the leading ceramics contemplated in solid blanket concepts. Among its merits are fair physical properties, satisfactory compatibility with structural materials and beryllium, satisfactory mechanical strength, excellent irradiation behavior as shown by a comparative irradiation of ceramics in EBR 2 reactor, and very good tritium release performance as evidence in the MOZART, and EXOTIC neutron irradiation. Pechiney and the CEA are jointly involved in developing industrial fabrication of Li 2 ZrO 3 elements to the microstructural, geometrical (pellets, rings, spheres) specifications required for their use in solid blanket conceived in the European Program

  4. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  5. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Feng; Yao, Yongchang; Zhou, Ruijie; Su, Kai; Citra, Fudiman; Wang, Dong-An

    2011-06-01

    This study aims to deliver both transforming growth factor β3 (TGF-β3) and shRNA targeting type I collagen (Col I) by optimal construction and application of various dual-functioning lentiviral vectors to induce Col I-suppressed chondrogenesis in synovium-derived mesenchymal stem cells (SMSCs). We constructed four lentiviral vectors (LV-1, LV-2, LV-3 and LV-4) with various arrangements of the two expression cassettes in different positions and orientations. Col I inhibition efficiency and chondrogenic markers were assessed with qPCR, ELISA and staining techniques. Among the four vectors, LV-1 has two distant and reversely oriented cassettes, LV-2 has two distant and same-oriented cassettes, LV-3 has two proximal and reversely oriented cassettes, and LV-4 has two proximal and same-oriented cassettes. Col I and chondrogenic markers, including type II collagen (Col II), aggrecan and glycosaminoglycan (GAG), were examined in SMSCs cultured in 3-D alginate hydrogel. All of the four vectors showed distinct effects in Col I level as well as diverse inductive efficiencies in upregulation of the cartilaginous markers. Based on real-time PCR results, LV-1 was optimal towards Col I-suppressed chondrogenesis. LV-1 vector is competent to promote Col I-suppressed chondrogenesis in SMSCs.

  6. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    Science.gov (United States)

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag 2 S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag 2 S nanocomposite shortly as Ag 2 S@C). The nanostructure exhibits strong fluorescent emission at λ ex /λ em = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag 2 S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag 2 S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag 2 S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL -1 . Meanwhile, the Ag 2 S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10 6 -10 7 cfu mL -1 with 3.3 or 10 μg mL -1 of Ag 2 S@C with an interaction time of 5 or 0.5 min, respectively.

  7. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    Science.gov (United States)

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    Science.gov (United States)

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  9. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2013-03-01

    Full Text Available Carbon nanotubes (CNTs have displayed great potential as anode materials for lithium ion batteries (LIBs due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs.

  10. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    Science.gov (United States)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  11. Characterization of Lithium Polysulfide Salts in Homopolymers and Block Copolymers

    Science.gov (United States)

    Wang, Dunyang; Wujcik, Kevin; Balsara, Nitash

    Ion-conducting polymers are important for solid-state batteries due to the promise of better safety and the potential to produce higher energy density batteries. Nanostructured block copolymer electrolytes can provide high ionic conductivity and mechanical strength through microphase separation. One of the potential use of block copolymer electrolytes is in lithium-sulfur batteries, a system that has high theoretical energy density wherein the reduction of sulfur leads to the formation of lithium polysulfide intermediates. In this study we investigate the effect of block copolymer morphology on the speciation and transport properties of the polysulfides. The morphology and conductivities of polystyrene-b-poly(ethylene oxide) (SEO) containing lithium polysulfides were studies using small-angle X-ray scattering and ac impedance spectroscopy. UV-vis spectroscopy is being used to determine nature of the polysulfide species in poly(ethylene oxide) and SEO. Department of Energy, Soft Matter Electron Microscopy Program and Battery Materials Research Program.

  12. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    Science.gov (United States)

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-07-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  13. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  14. Lithium Hideout and Return in the CANDU Heat Transport System during Shutdown and Start-up

    International Nuclear Information System (INIS)

    Qiu, L.; Snaglewski, A.P.

    2012-09-01

    Lithium hydroxide is used to control the pH a (pH apparent) of the Heat Transport System (HTS) coolant in CANDU R reactors. The recommended range of the lithium concentration in the coolant is between 0.38 ppm (5.5x10 -5 m) and 0.60 ppm (8.7x10 -5 m) to minimize carbon steel corrosion in the HTS and magnetite deposition in the core during normal operation; this corresponds to pH a values between 10.2 and 10.4. Similar pH a and lithium concentrations should be maintained during shutdown and start-up. However, maintaining the pH a of the HTS coolant within specification during shutdown and start-up has been difficult for some CANDU stations, especially when the HTS is taken to a Low Level Drain State (LLDS), because of lithium hideout and return. This paper presents the results from lithium adsorption and desorption studies on iron oxides under relevant shutdown and start-up chemistry conditions performed to elucidate the mechanisms of the observed lithium hideout and return. The results show that lithium hideout and return are driven largely by changes in the solubility of magnetite as the HTS coolant chemistry changes during shutdown; changes in lithium concentration were inversely correlated with the solubility of magnetite. When the HTS system is de-pressurized and drained to a low coolant level, the ingress of air rapidly oxidizes the dissolved Fe (II) in the coolant, 2Fe +2 + 1 / 2 O 2 + 3 H 2 = 2FEOOH + 4 H + , resulting in the formation of lepidocrocite or maghemite, which have much lower solubilities but larger surface areas than does magnetite. The large surface area of the Fe (III) oxides can adsorb significant quantities of lithium from the coolant, leading to lithium hideout and a pH a decrease. During start-up, the chemistry of the coolant changes from oxidizing to reducing, and lepidocrocite and other Fe (III) oxides are reduced to Fe (II), gradually dissolving as their solubility increases with increasing temperature. The adsorbed lithium is released

  15. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  16. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-05

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  17. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B; Johansson, Arne; Selaanger, P [Catella Generics, Kista (Sweden)

    1996-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  18. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  19. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  20. Lithium - no shortage in supply

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Over the last five years the face of the lithium industry has changed with new sources coming onto the market. The result of developments in supply is a buyers' market and, in the absence of major consumer developments, all things point to an increasing severely overcrowded market through the turn of the decade. As such lithium is likely to maintain charismatic appeal as developments unfold. This article provides an overview of the world's lithium industry and looks at the various market uses and potential. (author)

  1. Lead poisoning

    Science.gov (United States)

    ... drinking water in homes containing pipes that were connected with lead solder . Although new building codes require ... lead in their bodies when they put lead objects in their mouths, especially if they swallow those ...

  2. Lead Poisoning

    Science.gov (United States)

    Lead is a metal that occurs naturally in the earth's crust. Lead can be found in all parts of our ... from human activities such as mining and manufacturing. Lead used to be in paint; older houses may ...

  3. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference number and ideally

  4. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference

  5. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  6. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  7. Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis

    International Nuclear Information System (INIS)

    Ecker, Madeleine; Shafiei Sabet, Pouyan; Sauer, Dirk Uwe

    2017-01-01

    Highlights: •Investigation of lithium plating to support reliable system integration. •Influence of operational conditions at low temperature on lithium plating. •Comparison of different lithium-ion battery technologies. •Large differences in low-temperature behaviour for different technologies. •Post-mortem analysis reveals inhomogeneous deposition of metallic lithium. -- Abstract: The lifetime and safety of lithium-ion batteries are key requirements for successful market introduction of electro mobility. Especially charging at low temperature and fast charging, known to provoke lithium plating, is an important issue for automotive engineers. Lithium plating, leading both to ageing as well as safety risks, is known to play a crucial role in system design of the application. To gain knowledge of different influence factors on lithium plating, low-temperature ageing tests are performed in this work. Commercial lithium-ion batteries of various types are tested under various operational conditions such as temperature, current, state of charge, charging strategy as well as state of health. To analyse the ageing behaviour, capacity fade and resistance increase are tracked over lifetime. The results of this large experimental survey on lithium plating provide support for the design of operation strategies for the implementation in battery management systems. To further investigate the underlying degradation mechanisms, differential voltage curves and impedance spectra are analysed and a post-mortem analysis of anode degradation is performed for a selected technology. The results confirm the deposition of metallic lithium or lithium compounds in the porous structure and suggest a strongly inhomogeneous deposition over the electrode thickness with a dense deposition layer close to the separator for the considered cell. It is shown that this inhomogeneous deposition can even lead to loss of active material. The plurality of the investigated technologies

  8. Lithium ion behavior in lithium oxide by neutron scattering studies

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio; Katano, Susumu; Watanabe, Hitoshi; Funahashi, Satoru; Ohno, Hideo; Nicklow, R.M.

    1992-01-01

    Lithium ion behavior in lithium oxide, Li 2 O, was studied in the temperature range from 293 K to 1120 K by the High-Resolution Powder Diffractometer (HRPD) installed in the JRR-3M. The diffraction patterns were analyzed with the RIETAN program. At room temperature, the thermal parameters related to the mean square of the amplitude of vibration of the lithium and the oxygen ions were 6 x 10 -21 m 2 and 4 x 10 -21 m 2 , respectively. AT 1120 K the thermal parameter of the lithium ion was 34 x 10 -21 m 2 . On the other hand, the parameter of the oxygen ion was 16 x 10 -21 m 2 . Inelastic neutron scattering studies for the lithium oxide single crystal were also carried out on the triple-axis neutron spectrometers installed at the JRR-2 and the HFIR. Although the value of a phonon energy of a transverse acoustic mode (Σ 3 ) at zone boundary was 30.6 meV at room temperature, this value was decreased to 25.1 meV at 700 K. This large softening was caused by anharmonicity of the crystal potential of lithium oxide. (author)

  9. A Dual Function Energy Store

    Directory of Open Access Journals (Sweden)

    Ron Tolmie

    2014-11-01

    Full Text Available Heat can be collected from local energy sources and concentrated into a relatively small volume, and at a useful working temperature, by using a heat pump as the concentrator. That heat can be stored and utilized at a later date for applications like space heating. The process is doing two things at the same time: storing heat and shifting the power demand. The concentration step can be done at night when there is normally a surplus of power and its timing can be directly controlled by the power grid operator to ensure that the power consumption occurs only when adequate power is available. The sources of heat can be the summer air, the heat extracted from buildings by their cooling systems, natural heat from the ground or solar heat, all of which are free, abundant and readily accessible. Such systems can meet the thermal needs of buildings while at the same time stabilizing the grid power demand, thus reducing the need for using fossil-fuelled peaking power generators. The heat pump maintains the temperature of the periphery at the ambient ground temperature so very little energy is lost during storage.

  10. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2014-01-01

    In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase-2 (COX-2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium......, and inactive pGSK-3β in collecting duct; a blocker of COX-2 does not prevent cell proliferation, cyst formation, or GSK-3β inactivation. It is concluded that COX-2 activity is not the primary cause for microcysts and polyuria in a NaCl-substituted rat model of lithium nephropathy. COX-1 is a relevant candidate...

  11. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  12. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  13. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  14. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  15. Probing quantum effects in lithium

    Science.gov (United States)

    Deemyad, Shanti; Zhang, Rong

    2018-05-01

    In periodic table lithium is the first element immediately after helium and the lightest metal. While fascinating quantum nature of condensed helium is suppressed at high densities, lithium is expected to adapt more quantum solid behavior under compression. This is due to the presence of long range interactions in metallic systems for which an increase in the de-Boer parameter (λ/σ, where σ is the minimum interatomic distance and λ is the de-Broglie wavelength) is predicted at higher densities [1,2]. Physics of dense lithium offers a rich playground to look for new emergent quantum phenomena in condensed matter and has been subject of many theoretical and experimental investigations. In this article recent progress in studying the quantum nature of dense lithium will be discussed.

  16. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  17. Does lithium protect against dementia?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Forman, Julie Lyng; Andersen, Per Kragh

    2010-01-01

    OBJECTIVE: To investigate whether treatment with lithium in patients with mania or bipolar disorder is associated with a decreased rate of subsequent dementia. METHODS: Linkage of register data on prescribed lithium in all patients discharged from psychiatric health care service with a diagnosis...... exposed to lithium (50.4%), 1,781 to anticonvulsants (36.7%), 4,280 to antidepressants (88.1%), and 3,901 to antipsychotics (80.3%) during the study period. A total of 216 patients received a diagnosis of dementia during follow-up (103.6/10,000 person-years). During the period following the second...... prescription of lithium, the rate of dementia was decreased compared to the period following the first prescription. In contrast, the rates of dementia during multiple prescription periods with anticonvulsants, antidepressants, or antipsychotics, respectively, were not significantly decreased compared...

  18. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  19. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion

  20. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  1. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  2. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    International Nuclear Information System (INIS)

    Pecheur, D.; Giordano, A.; Picard, E.; Billot, P.; Thomazet, J.

    1997-01-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0≤Li≤350 ppm, 0≤B≤1000 ppm, 0≤K≤56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels (≤ 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs

  3. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  4. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    Energy Technology Data Exchange (ETDEWEB)

    Pecheur, D; Giordano, A; Picard, E; Billot, P [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France); Thomazet, J [FRAMATOME, Nuclear Fuel Div., Lyon (France)

    1997-02-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0{<=}Li{<=}350 ppm, 0{<=}B{<=}1000 ppm, 0{<=}K{<=}56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels ({<=} 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs.

  5. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  6. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  7. Kleptomania, mood disorder and lithium

    Directory of Open Access Journals (Sweden)

    Fábio Lopes Rocha

    1992-12-01

    Full Text Available Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  8. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  9. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha, Fábio Lopes; Rocha, Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy. Os ...

  10. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha,Fábio Lopes; Rocha,Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  11. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  12. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries

    International Nuclear Information System (INIS)

    Liu Yu; Horikawa, Kumi; Fujiyosi, Minako; Imanishi, Nobuyuki; Hirano, Atsushi; Takeda, Yasuo

    2004-01-01

    We report the approach to overcome the deterrents of the hexagonal Li 2.6 Co 0.4 N as potential insertion anode for lithium ion batteries: the rapid capacity fading upon long cycles and the fully Li-rich state before cycling. Research reveals that the appropriate amount of Co substituted by Cu can greatly improve the cycling performance of Li 2.6 Co 0.4 N. It is attributed to the enhanced electrochemical stability and interfacial comparability. However, doped Cu leads to a slightly decreased capacity. High energy mechanical milling (HEMM) was found to effectively improve the reversible capacity associated with the electrochemical kinetics by modifying the active hosts' morphology characteristics. Moreover, the composite based on mesocarbon microbead (MCMB) and Li 2.6 Co 0.4 N was developed under HEMM. The composite demonstrates a high first cycle efficiency at 100% and a large reversible capacity of ca. 450 mAh g -1 , as well as a stable cycling performance. This work may contribute to a development of the lithium transition metal nitrides as novel anodes for lithium ion batteries

  13. Ab initio molecular dynamics study of lithium diffusion in tetragonal Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Andriyevsky, B., E-mail: bohdan.andriyevskyy@tu.koszalin.pl [Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Śniadeckich Str., PL-75-453, Koszalin (Poland); Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Doll, K. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Institute of Theoretical Chemistry, Pfaffenwaldring 55, D-70569, Stuttgart (Germany); Jacob, T. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, D-89081, Ulm (Germany)

    2017-01-01

    Using ab initio density functional theory the thermally-stimulated migration of lithium ions in the garnet-type material Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is investigated. The methods of ab initio molecular dynamics have been applied to calculate the lithium ion self-diffusion coefficient and the diffusion barriers as function of lithium ion concentration. The concentration of lithium in the initial Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} crystal unit cell is varied from 53 to 59 atoms, where 56 lithium atoms represent the stoichiometric concentration. Almost monotonous dependencies of the main characteristics on the number of lithium atoms N{sup (Li)} have been found, except for a non-monotonous peculiarity of the stoichiometric compound (N{sup (Li)} = 56). Finally, the influence of the unit cell volume change on lithium ion diffusion parameters as well as lithium ion hopping rates has been studied. - Highlights: • Partial lithium atoms subtraction from LLZO increases diffusion coefficient D{sup (Li)}. • Partial subtraction of lithium atoms from LLZO decreases activation energy E{sub a}{sup (Li)}. • Activation energy E{sub a}{sup (Li)} is the smallest for tetrahedral oxygen surrounding. • Compression of LLZO leads to a decrease of lithium ion diffusion coefficient D{sup (Li)}.

  14. Lithium Oxysilicate Compounds Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coyle, Jaclyn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.

  15. Extracorporeal Treatment for Lithium Poisoning

    DEFF Research Database (Denmark)

    Decker, Brian S; Goldfarb, David S; Dargan, Paul I

    2015-01-01

    The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical and toxico......The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical...... extraction of patient-level data. The workgroup concluded that lithium is dialyzable (Level of evidence=A) and made the following recommendations: Extracorporeal treatment is recommended in severe lithium poisoning (1D). Extracorporeal treatment is recommended if kidney function is impaired and the [Li...... treatment (1D), but continuous RRT is an acceptable alternative (1D). The workgroup supported the use of extracorporeal treatment in severe lithium poisoning. Clinical decisions on when to use extracorporeal treatment should take into account the [Li(+)], kidney function, pattern of lithium toxicity...

  16. Lithium availability and future production outlooks

    International Nuclear Information System (INIS)

    Vikström, Hanna; Davidsson, Simon; Höök, Mikael

    2013-01-01

    Highlights: • Review of reserves, resources and key properties of 112 lithium deposits. • Discussions of widely diverging results from recent lithium supply estimates. • Forecasting future lithium production by resource-constrained models. • Exploring implications for future deployment of electric cars. - Abstract: Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can meet a growing demand is seldom adequately explained. This study presents a review and compilation of recent estimates of quantities of lithium available for exploitation and discusses the uncertainty and differences between these estimates. Also, mathematical curve fitting models are used to estimate possible future annual production rates. This estimation of possible production rates are compared to a potential increased demand of lithium if the International Energy Agency’s Blue Map Scenarios are fulfilled regarding electrification of the car fleet. We find that the availability of lithium could in fact be a problem for fulfilling this scenario if lithium-ion batteries are to be used. This indicates that other battery technologies might have to be implemented for enabling an electrification of road transports

  17. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  18. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2016-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...Air Batteries by Victoria L Blair and Claire V Weiss Brennan Weapons and Materials Research Directorate, ARL Joseph M Marsico Rochester...Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  19. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode

    International Nuclear Information System (INIS)

    Jiang, Xiong; Wang, Zhenhua; Rooney, David; Zhang, Xiaoxue; Feng, Jie; Qiao, Jinshuo; Sun, Wang; Sun, Kening

    2015-01-01

    Highlights: • Ultrasound-assisted mixing lithium was used to synthesize Lithium-rich layered oxides. • Lithium-rich layered oxides composed of large grain had high capacity and high cycling stability. • This unique large grain overcomes stress-induced structural collapse caused by Li-ion insertion/extraction and reduces dissolution of Mn ions. • A new strategy of large grain could be employed to synthesize the other complex architectures for various applications. - Abstract: Li-rich materials are considered the most promising for Li-ion battery cathodes, as high capacity can be achieved. However, poor cycling stability is a critical drawback that leads to poor capacity retention. Here a strategy is used to synthesize a large-grain lithium-rich layered oxides to overcome this difficulty without sacrificing rate capability. This material is designed with micron scale grain with a width of about 300 nm and length of 1–3 μm. This unique structure has a better ability to overcome stress-induced structural collapse caused by Li-ion insertion/extraction and reduce the dissolution of Mn ions, which enable a reversible and stable capacity. As a result, this cathode material delivered a highest discharge capacity of around 308 mAh g −1 at a current density of 30 mA g −1 with retention of 88.3% (according to the highest discharge capacity) after 100 cycles, 190 mAh g −1 at a current density of 300 mA g −1 and almost no capacity fading after 100 cycles. Therefore, Lithium-rich material of large-grain structure is a promising cathode candidate in Lithium-ion batteries with high capacity and high cycle stability for application. This strategy of large grain may furthermore open the door to synthesize the other complex architectures for various applications

  20. Lead poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Beijers, J A

    1952-01-01

    Three cases of acute lead poisoning of cattle herds via ingestion are reported, and reference is made to several other incidents of lead in both humans and animals. The quantity of lead which was found in the livers of the dead cows varied from 6.5 to 19 mg/kg, while 1160 mg/kg of lead in the liver was found for a young cow which was poisoned experimentally with 5 gms of lead acetate per day; hence, there appears to be great variability in the amounts deposited that can lead to intoxication and death. No evidence was found for a lead seam around the teeth, prophyrinuria, or basophil granules in the erythrocytes during acute or chronic lead poisoning of cattle or horses examined. Reference is made to attempts of finding the boundary line between increased lead absorption and lead intoxication in humans, and an examination of 60 laborers in an offset-printing office containing a great deal of inhalable lead (0.16 to 1.9 mg/cu m air) is reviewed. Physical deviation, basophylic granulation of erythrocytes, increased lead content of the urine, and porphyrinuria only indicate an increased absorption of lead; the use of the term intoxication is justified if, in addition, there are complaints of lack of appetite, constipation, fatigue, abdominal pain, and emaciation.

  1. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  2. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  3. Predictors of excellent response to lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hellmund, Gunnar; Andersen, Per Kragh

    2011-01-01

    The aim of this study was to identify sociodemographic and clinical predictors of excellent response, that is, 'cure' of future affective episodes, to lithium in monotherapy. We used nationwide registers to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings...... who were prescribed lithium from 1995 to 2006 in Denmark (N=3762). Excellent lithium responders were defined as patients who after a stabilization lithium start-up period of 6 months, continued lithium in monotherapy without getting hospitalized. The rate of excellent response to lithium...... with somatic comorbidity had increased rates of non-response to lithium compared with patients without somatic comorbidity (HR=1.23, 95% CI: 1.00-1.52).It is concluded that the prevalence of excellent response to lithium monotherapy is low and such patients are characterized by few earlier psychiatric...

  4. Lead Toxicity

    Science.gov (United States)

    ... o Do not use glazed ceramics, home remedies, cosmetics, or leaded-crystal glassware unless you know that they are lead safe. o If you live near an industry, mine, or waste site that may have contaminated ...

  5. Relational Leading

    DEFF Research Database (Denmark)

    Larsen, Mette Vinther; Rasmussen, Jørgen Gulddahl

    2015-01-01

    This first chapter presents the exploratory and curious approach to leading as relational processes – an approach that pervades the entire book. We explore leading from a perspective that emphasises the unpredictable challenges and triviality of everyday life, which we consider an interesting......, relevant and realistic way to examine leading. The chapter brings up a number of concepts and contexts as formulated by researchers within the field, and in this way seeks to construct a first understanding of relational leading....

  6. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  7. [A review of the effects of lithium on cognitive functions: Effects on the neuropsychiatrically challenged CNS].

    Science.gov (United States)

    Tsaltas, E; Kontis, D

    2009-04-01

    Recent data attribute neuroprotective and neurotrophic actions to lithium, leading to expectations of cognitive enhancement action. This hypothesis is at odds with the predominant view of clinical psychiatr y which, on the basis of older clinical data as well as on subjective reports of lithiumtreated patients, associates lithium with cognitive blurring and specific memory deficits. Review of the older data and their integration with more recent clinical and experimental work on the primary effects of lithium on cognitive functioning led us to two central conclusions: (a) Data on the primary cognitive effects of lithium, considered in their entirety, do not support a picture of serious or long-lasting cognitive decline. On the contrary, recent evidence suggests cognitive enhancement under certain conditions. (b) The conditions which appear to promote the emergence of cognitive enhancement under lithium are conditions of challenge to the cognitive systems, such as increased task difficulty resulting in deterioration in the performance of untreated controls. We are suggesting that alternative challenges to cognitive functioning, which therefore would facilitate the emergence of lithium's cognitive enhancement action, include biological insults to the central nervous system (CNS). This second part of our review of the cognitive effects of lithium therefore focuses on studies of its action on cognitive dysfunction associated with functional or biological challenge to the CNS, such as stress, trauma, neurodegenerative and psychiatric disorders.

  8. Molecular mechanisms in lithium-associated renal disease: a systematic review.

    Science.gov (United States)

    Rej, Soham; Pira, Shamira; Marshe, Victoria; Do, André; Elie, Dominique; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J

    2016-11-01

    Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease. We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium's effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers. From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD. Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium's biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

  9. Lead Test

    Science.gov (United States)

    ... to do renovation and repair projects using lead-safe work practices to avoid creating more lead dust or ... in a dangerous area? Yes. If you are working in a potentially harmful environment with exposure to lead dust or fumes: Wash ...

  10. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  11. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  12. Lithium ceramics: sol-gel preparation and tritium release

    International Nuclear Information System (INIS)

    Renoult, O.

    1994-04-01

    Ceramics based on lithium aluminate (LiA1O 2 ), lithium zirconate (Li 2 ZrO 3 ) and lithium titanate (Li 2 TiO 3 ) are candidates as tritium breeder blanket materials for forthcoming nuclear fusion reactors. Lithium silico-aluminate Li 4+x A1 4-3x Si 2x O 8 (0 ≤ x ≤ 0,25) powders were synthetized from alkoxyde-hydroxyde sol-gel route. By direct sintering at 850-1100 deg C (without prior calcination), ceramics with controlled stoichiometry and homogenous microstructure were obtained. We have also prepared, using a comparable method, Li 2 Zr 1-x Ti x O 3 (x = 0, x = 0,1 et x = 1) materials. All these ceramics, with different microstructures and compositions, have been tested in out-of-reactor experiments. Concerning lithium aluminate microporous ceramics, the silicon substitution leads to a significant improvement of the tritrium release. Classical models taking into account independent surface mechanisms are not able to describe correctly the observed tritium release kinetics. We show, using a simple model, that the release kinetics is in fact limited by an intergranular diffusion followed by a desorption. The delay in tritium release, which occurs when the ceramic compacity increases, is explained in terms of an enhancement of the ionic T + diffusion path length. The energy required for desorption includes a leading term independent of hydrogen contained in the sweep gas. This term is attributed to the limiting recombination step of T + in molecular species HTO. For similar microstructures, the facility of tritium release for the different studied materials is explained by three properties: the crystal structure of the ceramic, the acidity of oxides and finally the presence of electronic non-stoichiometric defects. (author). 89 refs., 50 figs., 2 tabs., 1 annexe

  13. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  14. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  15. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  16. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  17. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  18. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  19. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  20. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  1. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  2. IFMIF-CDA technical workshop on lithium target system. Proceedings

    International Nuclear Information System (INIS)

    1995-09-01

    An intense neutron source, International Fusion Materials Irradiation Facility (IFMIF) is planned under the collaborative program by International Energy Agency (IEA), and the Conceptual Design Activity (CDA) started in February 1995. US, Japan and EU are responsible to take a lead in coordinating accelerator, target and test cell design, respectively. In order to exchange the current results of the study and to coordinate the activities for the design integration, the first technical workshop on the lithium target system was held in the period of July 18-21 at the Tokai Research Establishment of the JAERI. This publication summarizes the materials presented in this meeting. The presentations and discussions were organized with the identified CDA tasks. It was confirmed that the reference design of the IFMIF target based on the previous studies under FMIT and ESNIT, elaborated to meet IFMIF parameters, is reasonable and feasible. It was pointed out that the interface between accelerator and test cell subsystems should be carefully investigated to avoid technical conflicts. Some design options such as nozzle, backwall and lithium jet geometry, lithium purity control, and lithium vapor control, based on the current technology were proposed to improve the integral target system function, and further R and D studies were suggested for design integration. (author)

  3. Recent experimental results on solutions of deuterium in lithium

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.

    1976-01-01

    The existence of a number of stable molecules containing lithium and hydrogen isotopes in the saturated vapor over dilute solutions of hydrogen isotopes in lithium causes an unexpectedly high density of hydrogen isotopes in the vapor at high temperature. An evaluation of the partial pressures of the gas species Li, Li 2 , LiD, Li 2 D, LiD 2 and D 2 over solutions of deuterium in lithium measured in the temperature range 770 to 970 0 K, and extrapolation to higher temperatures, leads to the conclusion that the ratio of the atom fraction of deuterium in the gas to its atom fraction in the liquid exceeds unity above approximately 1240 0 K; this ratio is independent of the deuterium atom fraction in the liquid at low concentrations. Therefore the thermodynamic supposition that hydrogen isotopes can be separated from lithium by fractional distillation even at extremely low concentration exists. A direct verification of this phenomenon was made by Rayleigh distillation of Li-D solutions in the temperature range 970 to 1600 0 K. These measurements yield also the ratio of the deuterium atom fraction in the gas to that in the liquid and are in good agreement with the data obtained by extrapolation of partial pressures. The enrichment and depletion of deuterium in dependence on the number of theoretical plates of a distillation column at total reflux is calculated using the results

  4. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  5. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  6. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  7. Phase transition and hysteresis in a rechargeable lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Gaberscek, Miran; Jamnik, Janko [Kemijski Institut Ljubljana Slovenija (Slovenia). L10 Lab. for Materials Electrochemistry

    2007-07-01

    We develop a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about 6%. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system. (orig.)

  8. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...... to expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen lattice after a deep discharge. This isotropic Mn distribution can...

  9. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.

    Science.gov (United States)

    Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  11. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment

    OpenAIRE

    Mo, Michelle; Erdelyi, Ildiko; Szigeti-Buck, Klara; Benbow, Jennifer H.; Ehrlich, Barbara E.

    2012-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect that occurs in many patients undergoing chemotherapy. It is often irreversible and frequently leads to early termination of treatment. In this study, we have identified two compounds, lithium and ibudilast, that when administered as a single prophylactic injection prior to paclitaxel treatment, prevent the development of CIPN in mice at the sensory-motor and cellular level. The prevention of neuropathy was not obs...

  12. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  13. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  14. Influence of oxygen on the interaction of Nb-Zr-C alloy with lithium

    International Nuclear Information System (INIS)

    Lyutyi, E.M.; Ignativ, M.I.

    1980-01-01

    This work is devoted to an investigation of the interaction of Nb-1% Zr-0.1% C alloy of different oxygen contents with molten technical-grade lithium. To obtain different oxygen contents in the steel, one lot of samples was annealed at 1400/degree/C for 2 h with a residual gas pressure of 0.1 mPa and the other under the same conditions in a vacuum of 10 mPa, which provided oxygen contents in the samples of 0.015 and 0.019 wt.%, respectively. The small difference between the oxygen contents in the samples of the two lots caused substantial differences in the interaction of the alloy with lithium. The sample with 0.015 wt.% oxygen had practically no corrosion even in holding in lithium for 1000 h. Impregnation of the samples with oxygen during the preliminary anneal leads to intensification of the corrosive action of lithium

  15. Considerations for the Thermal Modeling of Lithium-Ion Cells for Battery Analysis

    DEFF Research Database (Denmark)

    Rickman, Steven L.; Christie, Robert J.; White, Ralph E.

    Recent well-publicized events involving lithium-ion batteries in laptops, electric cars, commercial aircraft and even hover boards have raised concerns regarding thermal runaway -- a phenomenon in which stored energy in a cell is rapidly released as heat along with vented effluents. If not properly...... managed, testing has shown that thermal runaway in a single cell can propagate to other cells in a battery and may lead to a potentially catastrophic event. Lithium-ion batteries are becoming more widely used in a number of human-rated extravehicular activity (EVA) space applications on the International...... Space Station. Thermal modeling in support of thermal runaway propagation mitigation in the Lithium-ion Rechargeable EVA Battery Assembly (LREBA) and the Lithium-on Pistol Grip Tool (LPGT) was pursued to inform design decisions and to understand the results of extensive development testing with the goal...

  16. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  17. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  18. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  19. Lithium-based neutron detectors

    International Nuclear Information System (INIS)

    Yursova, L.

    1977-01-01

    The problems of using scintillation lithium-based detectors (LiJ(Eu) and 6 LiJ(Eu)), as well as lithium glasses for neutron detection are described. As compared with the glasses the LiJ(Eu) monocrystal possesses substantially higher energy resolution, its luminescence yield is considerably higher (in some cases ten fold), its application makes possible gamma radiation discrimination with the energy approximately four times higher and its higher specific mass ensures better efficiency of gamma radiation counting. The only 6 LiJ(Eu) drawback is its high hydroscopicity as well as its possibility to be used only in a limited temperature range (maximum temperature +35 deg C). The lithium glass can be used (with the exception of spectrometric measurements and radiation mixed regions measurement) with more than 1 MeV gamma radiation energy in a wide temperature range, in agressive, corroding and acid media

  20. Problem of the lithium peroxide thermal stability

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C. (paper)

  1. Leading Democratically

    Science.gov (United States)

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  2. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  3. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    Science.gov (United States)

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xiang Xiaoxia; Huang Zhengzheng; Liu Enhui; Shen Haijie; Tian Yingying; Xie Hui; Wu Yuhu; Wu Zhilian

    2011-01-01

    Highlights: → Polyaniline nanotube is synthesized by the self-assembly method in aqueous media. → Carbon nanotubes were prepared from polyaniline nanotube by physical activation. → Activation leads to large surface area, and surface nitrogen and oxygen functional groups. → Such physical and chemical properties lead to the good electrochemical properties. → After 20 cycles, a reversible capacity of 728 mAh g -1 was obtained. - Abstract: Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m 2 g -1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g -1 , the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g -1 and a charge capacity of 907 mAh g -1 . After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g -1 . These indicate it may be a promising candidate for an anode material for lithium secondary batteries.

  5. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of the...

  6. Double photoionization of lithium at medium energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Bluett, J.B.; Martinez, M.M.; Lukic, D.; Whitfield, S.B.

    2004-01-01

    Full text: The double-to-single photoionization ratio of atomic lithium has been measured for photon energies ranging from 120 eV to 910 eV . Through the extensive use of various filters we were able to significantly extend the previous range of measurements. We d that our data are in agreement with the predicted high-energy limit of 3.4%. By applying simple model curves to our data, we attempt to disentangle the different processes leading to a doubly charged Li ion. Our model corroborates the notion that sequential processes contribute substantially to the double-photoionization cross-section ratio as predicted by theory. This work was supported by NSF under Grant No. PHY-9987638. The SRC is supported by NSF Grant No. DMR-0084402. M.M.M. acknowledges financial support through the NSF REU program

  7. Characterization of positive electrode/electrolyte interphase in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dupre, N.; Martin, J.F.; Soudan, P.; Guyomard, D. [Inst.des Materiaux Jean Rouxel, Nantes (France)

    2008-07-01

    Lithium batteries appear to be the most viable energy source for portable electronic devices because of their energy density. The solid electrolyte interphase (SEI) between the negative electrode and the electrolyte of a Li-ion battery monitors the overall battery behaviour in terms of irreversible capacity loss, charge transfer kinetics and storage properties. This paper reported on a study that examined the influence of the storage atmosphere and the formation of a protective surface layer on the electrochemical performance. The objective was to better understand the interfacial problems controlling the long term life duration and cyclability. The positive/electrolyte interphase evolution was followed upon aging/cycling using 7Li MAS NMR, XPS and impedance spectroscopy. This very novel and uncommon technique was used to characterize the growth and evolution of the surface of some electrode materials for lithium batteries, due to contact with the ambient atmosphere or electrolyte or along electrochemical cycling. LiFePO4 and LiMn0.5Ni0.5O2 were chosen for the studies because they are among the most promising candidates for positive electrodes for future lithium batteries. The reaction of LiMn0.5Ni0.5O2 with the ambient atmosphere or LiPF6 electrolyte is extremely fast and leads to an important amount of lithium-containing diamagnetic species. The NMR spectra provided valuable structural information on the interaction between the interphase and the active material after contact with electrolyte or along electrochemical cycling. MAS NMR was shown to be a very promising tool to monitor phenomena taking place at the interface between electrode and electrolyte in lithium batteries. The study showed the affect of the potential on the strength of the interaction between the surface layer and the active material and the partial removal of this layer along the electrochemical cycling. 11 refs.

  8. Cosmological cosmic rays: Sharpening the primordial lithium problem

    International Nuclear Information System (INIS)

    Prodanovic, Tijana; Fields, Brian D.

    2007-01-01

    Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via α+α→ 6,7 Li. This pre-galactic (but nonprimordial) lithium should contribute to the primordial 7 Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6 Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6 Li is from cosmic-ray interactions. We find that the putative 6 Li plateau, if due to pre-galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li SFCR /Li plateau ≅15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7 Li, we find a revised (and slightly worsened) discrepancy between the Li observations and big bang nucleosynthesis predictions by a factor of 7 Li BBN / 7 Li plateau ≅3.7. Moreover, SFCRs would also contribute to the extragalactic gamma-ray background (EGRB) through neutral pion production. This gamma-ray production is tightly related to the amount of lithium produced by the same cosmic rays; the 6 Li plateau limits the pre-galactic (high-redshift) SFCR contribution to be at the level of I γ π SFCR /I EGRB < or approx. 5% of the currently observed EGRB

  9. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  10. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  11. Leading change.

    Science.gov (United States)

    2017-02-27

    In response to feedback from nursing, midwifery and other care staff who wanted to understand better how the Leading Change, Adding Value framework applies to them, NHS England has updated its webpage to include practice examples.

  12. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  13. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  14. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  15. Lithium target simulation in TECHNOFUSION

    International Nuclear Information System (INIS)

    Colomer, C.; Arino, X.; Reig, J.; Aleman, A.

    2010-01-01

    This project aims to build a facility where testing, under neutronic irradiation, the necessary materials for the construction of future fusion reactors. The intention is produced irradiation in a controlled way by deuterons bombing on a high speed lithium surface specially designed for that.

  16. Lithium inputs to subduction zones

    NARCIS (Netherlands)

    Bouman, C.; Elliott, T.R.; Vroon, P.Z.

    2004-01-01

    We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and δ

  17. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  18. Control of Internal and External Short Circuits in Lithium Ion and Lithium Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified needs for compact high-energy-density primary and secondary batteries. Lithium and Lithium Ion cells, respectively, are meeting these needs for...

  19. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin; La Mantia, Fabio; Deshazer, Heather; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect

  20. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Di Lecce, Daniele; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef

    2017-05-24

    Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO 3 ) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO 4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF 3 SO 3 -LiNO 3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.

  1. Using lithium as a neuroprotective agent in patients with cancer

    Directory of Open Access Journals (Sweden)

    Khasraw Mustafa

    2012-11-01

    Full Text Available Abstract Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect. This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.

  2. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder.

    Science.gov (United States)

    Fries, Gabriel R; Colpo, Gabriela D; Monroy-Jaramillo, Nancy; Zhao, Junfei; Zhao, Zhongming; Arnold, Jodi G; Bowden, Charles L; Walss-Bass, Consuelo

    2017-11-01

    Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value < 0.05) were detected between groups. Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  3. Lithium-induced NDI: acetazolamide reduces polyuria but does not improve urine concentrating ability.

    Science.gov (United States)

    de Groot, Theun; Doornebal, Joan; Christensen, Birgitte M; Cockx, Simone; Sinke, Anne P; Baumgarten, Ruben; Bedford, Jennifer J; Walker, Robert J; Wetzels, Jack F M; Deen, Peter M T

    2017-09-01

    Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies. Copyright © 2017 the American Physiological Society.

  4. Ecotoxicology: Lead

    Science.gov (United States)

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  5. Extraction of lithium Carbonate from Petalite Ore (Momeik District, Myanmar)

    International Nuclear Information System (INIS)

    Tun Tun Moe

    2011-12-01

    The methods for preparing high purity lithium carbonate which can be used for pharmaceutical applications, electronic grade crystals of lithium or to prepare battery-grade lithium metal are disclosed. Lithium carbonate as commercially produced from mineral extraction, lithium containing brines or sea water. One method for the production of pure lithium carbonate from mineral source (petalite ore) obtained from Momeik District, Myanmar is disclosed. Method for mineral processing of ore concentrate is also disclosed.

  6. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1985-01-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed

  7. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  8. Leading men

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes

    2016-01-01

    Through a systematic comparison of c. 50 careers leading to the koinarchate or high priesthood of Asia, Bithynia, Galatia, Lycia, Macedonia and coastal Pontus, as described in funeral or honorary inscriptions of individual koinarchs, it is possible to identify common denominators but also disting...

  9. Lithium in drinking water and suicide mortality: The interplay with lithium prescriptions

    NARCIS (Netherlands)

    Helbich, M; Leitner, M; Kapusta, N

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking

  10. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  11. Formation and transformation of the radiation-induced nearsurface color centers in sodium and lithium fluorides nanocrystals

    Science.gov (United States)

    Novikov, A. N.; Kalinov, V. S.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Voitovich, A. P.

    2017-11-01

    Near-surface color centers in sodium fluoride nanocrystals have been formed. At pre-irradiation annealing of sodium and lithium fluorides samples at temperatures of 623 K and above, the near-surface color centers in them have not been found after γ-irradiation. Annealing lithium fluoride nanocrystals with the near-surface defects leads to their transformation into bulk ones of the same composition.

  12. Investigation into the role of silica in lithium polysulfide adsorption for lithium sulfur battery

    International Nuclear Information System (INIS)

    Kim, Miso; Kang, Sung-Hwan; Manuel, James; Zhao, Xiaohui; Cho, Kwon Koo; Ahn, Jou Hyeon

    2015-01-01

    Highlights: • Amine functionalized silica nanoparticles (AFSN) were prepared. • Polysulfide adsorption studies were carried out with silica nanoparticles and AFSN. • Sulfur cathodes were prepared with SN and AFSN for Li–S batteries. • AFSN showed excellent polysulfide adsorption. - Abstract: A new type of sulfur electrodes with the ability for polysulfide adsorption was prepared by incorporating silica nanoparticles (SN) or amine functionalized silica nanoparticles (AFSN). AFSN was synthesized by a simple and cost-effective method. The functionalization and surface morphology of silica were confirmed with Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Polysulfide adsorption studies were carried out using UV–vis spectrometer, which confirmed the excellent adsorption of polysulfides by AFSN. Interaction of polysulfides with SN or AFSN was studied using FTIR and FT-Raman spectroscopy. The effective polysulfide adsorption by SN and AFSN leads to good and stable cycle performance of lithium sulfur cells. The results show that the incorporation of SN or AFSN with sulfur is a promising method to prepare cathode material for lithium sulfur batteries

  13. Electrode materials and lithium battery systems

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  14. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  15. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  16. Spectral emission measurements of lithium on the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gray, T. K.; Biewer, T. M.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Boyle, D. P.; Granstedt, E. M.; Kaita, R.; Majeski, R. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-10-15

    There has been a long-standing collaboration between ORNL and PPPL on edge and boundary layer physics. As part of this collaboration, ORNL has a large role in the instrumentation and interpretation of edge physics in the lithium tokamak experiment (LTX). In particular, a charge exchange recombination spectroscopy (CHERS) diagnostic is being designed and undergoing staged testing on LTX. Here we present results of passively measured lithium emission at 5166.89 A in LTX in anticipation of active spectroscopy measurements, which will be enabled by the installation of a neutral beam in 2013. Preliminary measurements are made in transient LTX plasmas with plasma current, I{sub p} < 70 kA, ohmic heating power, P{sub oh}{approx} 0.3 MW and discharge lifetimes of 10-15 ms. Measurements are made with a short focal length spectrometer and optics similar to the CHERS diagnostics on NSTX [R. E. Bell, Rev. Sci. Instrum. 68(2), 1273-1280 (1997)]. These preliminary measurements suggest that even without the neutral beam for active spectroscopy, there is sufficient passive lithium emission to allow for line-of-sight profile measurements of ion temperature, T{sub i}; toroidal velocity and v{sub t}. Results show peak T{sub i} = 70 eV and peak v{sub t} = 45 km/s were reached 10 ms into the discharge.

  17. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  18. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  19. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  20. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  1. Apparatus and methods for purifying lead

    Science.gov (United States)

    Tunison, Harmon M.

    2016-01-12

    Disclosed is an exemplary method of purifying lead which includes the steps of placing lead and a fluoride salt blend in a container; forming a first fluid of molten lead at a first temperature; forming a second fluid of the molten fluoride salt blend at a second temperature higher than the first temperature; mixing the first fluid and the second fluid together; separating the two fluids; solidifying the molten fluoride salt blend at a temperature above a melting point of the lead; and removing the molten lead from the container. In certain exemplary methods the molten lead is removed from the container by decanting. In still other exemplary methods the molten salt blend is a Lewis base fluoride eutectic salt blend, and in yet other exemplary methods the molten salt blend contains sodium fluoride, lithium fluoride, and potassium fluoride.

  2. Who Leads China's Leading Universities?

    Science.gov (United States)

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  3. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  5. Lithium aluminates and tritium production

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Palacios G, O.; Bosch G, P.

    1997-01-01

    In this work it is studied the crystalline structure of lithium aluminates prepared by three different methods, namely: solid state reaction, humid reaction and sol-gel reaction. The analysis methods are the X-ray diffractometry and the scanning and transmission electron microscopy. This study is realized as in original materials as in irradiated materials at the TRIGA Mark reactor, to correlate the synthesis method with response of these materials to the mixed irradiation of nuclear reactor. (Author)

  6. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  7. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  8. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  9. Investigation of lithium-thionyl chloride battery safety hazards

    Science.gov (United States)

    Attia, A. I.; Gabriel, K. A.; Burns, R. P.

    1983-01-01

    In the ten years since the feasibility of a lithium-thionyl chloride cell was first recognized (1) remarkable progress has been made in hardware development. Cells as large as 16,000 Ah (2) and batteries of 10.8 MWh (3) have been demonstrated. In a low rate configuration, energy densities of 500 to 600 Wh/kg are easily achieved. Even in the absence of reported explosions, safety would be a concern for such a dense energetic package; the energy density of a lithium-thionyl chloride cell is approaching that of dynamite (924 Wh/kg). In fact explosions have occurred. In general the hazards associated with lithium-thionyl chloride batteries may be divided into four categories: Explosions as a result of an error in battery design. Very large cells were in prototype development prior to a full appreciation of the hazards of the system. It is possible that some of the remaining safety issues are related to cell design; Explosions as a result of external physical abuse such as cell incineration and puncture; Explosions due to short circuiting which could lead to thermal runaway reactions. These problems appear to have been solved by changes in the battery design (4); and Explosions due to abnormal electrical operation (i.e., charging (5) and overdischarging (6) and in partially or fully discharged cells on storage (7 and 8).

  10. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  11. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  12. A consideration of lithium cell safety

    Science.gov (United States)

    Tobishima, Shin-ichi; Yamaki, Jun-ichi

    The safety characteristics of commercial lithium ion cells are examined in relation to their use as batteries for cellular phones. This report describes a theoretical approach to an understanding of cell safety, example results of safety tests that we performed on lithium ion cells, and also presents our views regarding cell safety.

  13. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  14. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  15. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  16. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  17. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu; Ming, Jun; Li, Lain-Jong

    2017-01-01

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation

  18. The lithium-ion accumulators in Japan

    International Nuclear Information System (INIS)

    Lazzari, O.

    2006-07-01

    This document takes stock on the different technologies of lithium based batteries developed in Japan as the materials used to produce their different elements. The today tendencies of the japanese researches are discussed. The applications of the lithium-ion are presented. A list of the main public and private laboratories in the domain and the research programs is provided. (A.L.B.)

  19. Lithium use and the risk of fractures

    NARCIS (Netherlands)

    Wilting, Ingeborg; de Vries, Frank; Thio, Brahm M. K. S.; Cooper, Cyrus; Heerdink, Eibert R.; Leutkens, Hubert G. M.; Nolen, Willem A.; Egberts, Antoine C. G.; van Staa, Tjeerd P.

    A recent study reported a decreased risk of fractures among lithium users. We conducted a case-control study within the UK General Practice Research Database, comparing never, ever, current, recent and past lithium use in 231,778 fracture cases to matched controls. In addition, the risk of fractures

  20. Treatment of lithium induced tremor with atenolol.

    Science.gov (United States)

    Davé, M

    1989-03-01

    This is the first report on the successful treatment of one patient with lithium induced tremor with hydrophilic atenolol, which is a relatively selective beta 1 adrenergic receptor blocker. Atenolol's advantages over lipophilic beta blockers in the treatment of lithium induced tremor are discussed.

  1. Patterns and clinical outcomes of lithium treatment

    NARCIS (Netherlands)

    Wilting, I.

    2008-01-01

    Patterns and consequences of lithium use’. In chapter 2.1 we studied lithium use patterns in out-patients within the last decade. In line with the increase in alternatives and the Dutch guidelines, we observed an increase in use of atypical antipsychotics and valproic acid and a decrease in use

  2. Nanoscience and nanotechnology in next generation lithium batteries*

    Science.gov (United States)

    Dunn, Bruce; Liu, Ping; Meng, Shirley

    2013-10-01

    Lithium ion batteries have enabled the portable electronics revolution that changed how we communicate and share information. They have also started to penetrate the vehicle electrification and grid storage markets, two applications that are at the core of a sustainable future. In the pursuit of higher energy densities, lower costs, and longer life, nanotechnology is regularly employed to create new materials and processes in order to achieve these goals. A wonderful example is the commercialization of the lithium iron phosphate cathode which functions as a high power material only in a nanophase form, clearly demonstrating the benefit of nanotechnology. Materials engineered at the nanoscale are expected to offer a suite of advantages: high power densities are enabled by much reduced solid-state diffusion distance; high surface area reduces the effective current density; and new material structures and compositions are stabilized by nanostructuring, leading to new charge storage mechanisms. On the other hand, the use of nanomaterials in lithium ion batteries raises significant technological challenges. Thermodynamically unstable electrode/electrolyte interfaces combined with the high surface area of nanomaterials magnify the side reactions leading to performance losses. In addition electrically connecting large amounts of nanoparticles requires the use of large amounts of conducting diluents. Nanomaterials also tend to have low tap densities and are often more expensive to produce. In order for lithium ion batteries to meet the performance and cost requirements for vehicle electrification and grid storage, they increasingly employ electrode materials with challenging reaction kinetics, such as limited ionic and electronic conductivities and complex multiphase processes. By understanding nanoscale processes and using this understanding to extend the spatial scale over which battery design can be implemented, nanotechnology is expected to play an increasingly

  3. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... primary and secondary lithium cells or lithium batteries internationally, or to and from an APO, FPO, or... prohibited the mailing of lithium batteries and cells internationally and when sent to and from any Army Post...

  4. 76 FR 55799 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-09-09

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... would incorporate new maximum limits for the outbound mailing of lithium batteries to international, or... equipment with lithium metal or lithium-ion batteries that were to be effective October 3, 2011. These...

  5. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... transportation of lithium cells and batteries, including lithium cells and batteries packed with or contained in equipment. The proposed changes are intended to enhance safety by ensuring that all lithium batteries are...

  6. Synthesis of lithium niobate and monocrystal growth by Czochralski method

    International Nuclear Information System (INIS)

    Balzuweit, K.

    1988-01-01

    The qualitative analysis of lithium niobate by x-ray analysis and optical microscopy is presented. The lithium niobate compound was obtained by synthesis using niobium oxides and lithium carbonates. The lithium niobate monocrystal growth was done by Czochralski method. (M.C.K.)

  7. Novel lithium iron phosphate materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Jelena

    2011-06-15

    Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to deliver a stable 94% of the theoretically known capacity.

  8. Tritium recovery from lithium oxide pellets

    International Nuclear Information System (INIS)

    Bertone, P.C.; Jassby, D.L.

    1984-01-01

    The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid

  9. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  10. A lithium deposition system for tokamak devices*

    Science.gov (United States)

    Graziul, Christopher; Majeski, Richard; Kaita, Robert; Hoffman, Daniel; Timberlake, John; Card, David

    2002-11-01

    The production of a lithium deposition system using commercially available components is discussed. This system is intended to provide a fresh lithium wall coating between discharges in a tokamak. For this purpose, a film 100-200 Å thick is sufficient to ensure that the plasma interacts solely with the lithium. A test system consisting of a lithium evaporator and a deposition monitor has been designed and constructed to investigate deposition rates and coverage. A Thermionics 3kW e-gun is used to rapidly evaporate small amounts of solid lithium. An Inficon XTM/2 quartz deposition monitor then measures deposition rate at varying distances, positions and angles relative to the e-gun crucible. Initial results from the test system will be presented. *Supported by US DOE contract #DE-AC02-76CH-03073

  11. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  12. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  13. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  14. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  15. Properties of lithium and its handling

    International Nuclear Information System (INIS)

    Asada, Takashi; Kano, Shigeki; Tachi, Toshiaki; Kawai, Masataka

    2000-09-01

    Lithium is one of good coolants because of high boiling point (1317degC), small specific gravity (0.47 at 600degC) and large specific heat (1 cal/g/degC). Therefore if lithium will be used in fast reactor for coolant, the heat efficiency of reactor will largely increase. Here the fundamental properties of lithium and the results of examination on chemical reaction, combustion and extinction are shown. These examinations were also carried out on sodium to compare with lithium. The differences between both are that lithium reacts more moderately with water, not explosive, and is not combustible but after ignition burns at higher temperature and longer. (author)

  16. Suicide risk in patients treated with lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Søndergård, Lars; Kvist, Kajsa

    2005-01-01

    CONTEXT: Prior observational studies suggest that treatment with lithium may be associated with reduced risk of suicide in bipolar disorder. However, these studies are biased toward patients with the most severe disorders, and the relation to sex and age has seldom been investigated. OBJECTIVE......: To investigate whether treatment with lithium reduces the risk of suicide in a nationwide study. DESIGN: An observational cohort study with linkage of registers of all prescribed lithium and recorded suicides in Denmark during a period from January 1, 1995, to December 31, 1999. SETTING: All patients treated...... with lithium in Denmark, ie, within community psychiatry, private specialist practice settings, and general practice. PARTICIPANTS: A total of 13 186 patients who purchased at least 1 prescription of lithium and 1.2 million subjects from the general population. MAIN OUTCOME MEASURE: All suicides identified...

  17. Effect of adjuvant lithium on thyroxine (T4) concentration after radioactive iodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Emmanuel NiiBoye; Vangu, Mboyo-Di-Tamba Heben Willy [University of the Witwatersrand, Division of Nuclear Medicine and Molecular Imaging, Department of Radiation Sciences, Johannesburg (South Africa)

    2016-10-15

    To study the effect of adjuvant lithium on serum thyroxine (T4) concentrations in patients treated with radioactive iodine (RAI) therapy in our environment. This was a prospective simple randomized comparative, experimental cohort study of patients with hyperthyroidism referred for RAI ablation therapy in the two main academic hospitals in Johannesburg between February 2014 and September 2015. Amongst the 163 participants in the final analysis, 75 received RAI alone and 88 received RAI with lithium. The difference in mean T4 concentrations at 3 months between the RAI-only group (17.67 pmol/l) and the RAI with lithium group (11.55 pmol/l) was significant with a small effect size (U = 2328.5, Z = -2.700, p = 0.007, r = 0.01). Significant decreases in T4 concentrations were observed as early as 1 month after RAI (p = 0.0001) in the RAI with lithium group, but in the RAI-only group, significant decreases in T4 concentrations were observed only at 3 months after RAI therapy (p = 0.000). Women and patients with Graves' disease who received RAI with adjuvant lithium also showed significant decreases in T4 concentrations at 1 month (p = 0.002 and p = 0.003, respectively). Adjuvant lithium leads to an earlier and better response to RAI therapy with lower T4 concentrations that are achieved earlier. This earlier response and decrease in T4 concentrations were noted in patients with Graves' disease and nodular goitre, and in women with hyperthyroidism who received adjuvant lithium therapy. (orig.)

  18. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    Science.gov (United States)

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  19. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase‐2

    Science.gov (United States)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels; Jensen, Boye L.

    2014-01-01

    Abstract In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase‐2 (COX‐2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium (50 mmol/kg chow) from postnatal days 7–34. Lithium treatment induced somatic growth retardation, renal microcysts and dilatations in cortical collecting duct; it increased cortical cell proliferation and inactive pGSK‐3β abundance; it lowered aquaporin‐2 (AQP2) protein abundance and induced polyuria with decreased ability to concentrate the urine; and it increased COX‐2 protein level in thick ascending limb. Concomitant treatment with lithium and a specific COX‐2 inhibitor, parecoxib (5 mg/kg per day, P10–P34), did not prevent lithium‐induced microcysts and polyuria, but improved urine concentrating ability transiently after a 1‐desamino‐8‐D‐arginine vasopressin challenge. COX‐2 inhibition did not reduce cortical lithium‐induced cell proliferation and phosphorylation of glycogen synthase kinase‐3β (GSK‐3β). COX‐1 protein abundance increased in rat kidney cortex in response to lithium. COX‐1 immunoreactivity was found in microcyst epithelium in rat kidney. A human nephrectomy specimen from a patient treated for 28 years with lithium displayed multiple, COX‐1‐immunopositive, microcysts. In chronic lithium‐treated adolescent rats, COX‐2 is not colocalized with microcystic epithelium, mitotic activity, and inactive pGSK‐3β in collecting duct; a blocker of COX‐2 does not prevent cell proliferation, cyst formation, or GSK‐3β inactivation. It is concluded that COX‐2 activity is not the primary cause for microcysts and polyuria in a NaCl‐substituted rat model of lithium nephropathy. COX‐1 is a relevant candidate to affect the injured epithelium. PMID:24744881

  20. Gamma radiation effects on photorefractive and photoelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, Eh.S.; Ovsepyan, R.K.; Pogosyan, A.R.; Timofeev, A.L.

    1984-08-01

    Investigations into the gamma radiation effect on the photorefractive aned photoelectric properties of lithium niobate crystals have been carried out for the first time. Gamma irradiation has been found to lead to an increase in the photorefractive sensitivity. The effect of optical decoloration has been discovered for the first time along with photorelaxation currents resulting from radiation center decay under the action of light. It has been shown that an increase of photorefractive sensitivity in gamma-irradiated lithium niobate crystals is caused by a new photorefraction mechanism - photorelaxation currents.

  1. Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.

  2. Synthesis, crystal structure, and photoluminescence of a lithium isothiocyanate compound with 18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shan; Fu, Bo; Zhao, Zhen; Liu, Xi [Chongqing Normal Univ. (China). Chongqing Key Lab. of Inorganic Functional Materials

    2018-04-01

    The investigation of the supramolecular interactions between the lithium isothiocyanate salt and 18-crown-6 (18C-6) in commercial tetrahydrofuran leads to the formation of a lithium compound, LiNCS(H{sub 2}O)(18C-6) (1). In the crystal structure the asymmetric unit contains two similar LiNCS(H{sub 2}O)(18C-6) molecules. Solid-state photoluminescence experiments have shown that compound 1 emits violet luminescence, and its possible emission mechanism was investigated in detail based on theoretical calculations.

  3. Determination of reduction yield of lithium metal reduction process

    International Nuclear Information System (INIS)

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  4. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    Science.gov (United States)

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  5. Lithium uptake and the corrosion of zirconium alloys in aqueous lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Ramasubramanian, N.

    1991-01-01

    This paper reports on corrosion films on zirconium alloys that were analyzed for lithium by Atomic Absorption Spectroscopy (AAS), Secondary Ion Mass Spectrometry (SIMS), and Infrared Reflection Absorption Spectroscopy (IRAS). The oxides grown in reactor in dilute lithium hydroxide solution, specimens cut from Zircaloy, and Zr-2.5Nb alloy pressure tubes removed from CANDU (Canada Deuterium Uranium, Registered Trademark) reactors showed low concentrations of lithium (4 to 50 ppm). The lithium was not leachable in a warm dilute acid. 6 Li undergoes transmutation by the 6 Li(n,t) 4 He reaction. However, SIMS profiles for d 7 Li were identical through the bulk oxide and the isotopic ratio was close to the natural abundance value. The lithium in the oxide, existing as adsorbed lithium on the surface, has been in dynamic equilibrium with lithium in the coolant, and, in spite of many Effective Full Power Years (EFPY) of operation, lithium added to the CANDU coolant at ∼2.5 ppm is not concentrating in the oxides. On the other hand, corrosion films grown in the laboratory in concentrated lithium hydroxide solutions were very porous and contained hundreds of ppm of lithium in the oxide

  6. Lithium treatment of manio-depressive disorder. Two examples of treatment regimes with varying serum lithium concentration curves

    International Nuclear Information System (INIS)

    Veimer Jensen, H.

    1998-07-01

    The importance of serum lithium profile in lithium maintenance treatment of manic-depressive disorder was studied by comparing pro-phylactic efficacy, side-effects and brain lithium level in patients on daily or alternate-day lithium dosing schedules. The aim of the study was to determine firstly, whether it is only necessary for the serum lithium concentration to periodically reach a certain level in order to ensure good prophylactic efficacy, and secondly, whether periodical lowering of the serum lithium level diminishes lithium-related side-effects. This was examined by extending the interval between lithium doses from 1 to 2 days, while maintaining the 12-h serum lithium concentration unchanged so as to achieve an unchanged serum lithium profile during the first 24-h period after lithium intake. The 12-h brain lithium concentration measured by 7 Li-magnetic resonance spectroscopy seemed to be independent of lithium dosing schedule, but correlated significantly with the 12-h serum lithium concentration, suggesting that at identical 12-h serum lithium concentrations, the 12-h brain lithium concentration is similar with both treatment regimens. (EG)

  7. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

    International Nuclear Information System (INIS)

    Stotler, D.P.; Skinner, C.H.; Blanchard, W.R.; Krstic, P.S.; Kugel, H.W.; Schneider, H.; Zakharov, L.E.

    2010-01-01

    A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

  8. Calorimetry of 25 Ah lithium/thionyl chloride cells

    Science.gov (United States)

    Johnson, C. J.; Dawson, S.

    1991-01-01

    Heat flow measurements of 25-Ah lithium thionyl chloride cells provided a method to calculate an effective thermal potential, E(TP) of 3.907 V. The calculation is useful to determine specific heat generation of this cell chemistry and design. The E(TP) value includes heat generation by electrochemical cell reactions, competitive chemical reactions, and resistance heating at the tabs, connectors, and leads. Heat flow was measured while applying electrical loads to the cell in an isothermal calorimeter set at 0, 20, and 60 C.

  9. Lithium zirconate elements fabricated by industrial scale processes

    International Nuclear Information System (INIS)

    Roux, N.

    1991-01-01

    Lithium metazirconate Li 2 ZrO 3 is one of the leading tritium breeding ceramics contemplated in solid blanket concepts for fusion reactors. Among its merits are fair physical properties, satisfactory compatibility with structural materials and beryllium, satisfactory mechanical strength, excellent irradiation behaviour as shown by a comparative irradiation of ceramics in the EBR II reactor, and very good tritium release performance as evidenced in the MOZART and EXOTIC neutron irradiations. Pechiney and the CEA are jointly involved in developing industrial fabrication of Li 2 ZrO 3 elements to the microstructural and geometrical specifications required for their use in the solid blankets as conceived in the European Program

  10. Sizing of lithium-ion stationary batteries for nuclear power plant use

    International Nuclear Information System (INIS)

    Exavier, Zakaria Barie; Chang, Choong-koo

    2017-01-01

    Class 1E power system is very essential in preventing significant release of radioactive materials to the environment. Batteries are designed to provide control power for emergency operation of safety-related equipment or equipment important to safety, including power for automatic operation of the Reactor Protection System (RPS) and Engineered Safety Features (ESF) protection systems during abnormal and accident conditions through associated inverters. Technical challenges that are involved in the life cycle of batteries used in the nuclear power plants (NPP) are significant. The extension of dc battery backup time used in the dc power supply system of the Nuclear Power Plants also remains a challenge. The lead acid battery is the most popular utilized at the present. And it is generally the most popular energy storage device, because of its low cost and wide availability. The lead acid battery is still having some challenges since many phenomenon are occurred inside the battery during its lifecycle. The image of Lithium-ion battery in 1991 is considered as alternative for lead acid battery due to better performance which Lithium-ion has over Lead acid. It has high energy density and advanced gravimetric and volumetric properties. It is known that industrial standards for the stationary Lithium-Ion battery are still under development. The aim of this paper is to investigate the possibility of replacing of lead acid battery with lithium-ion battery. To study the ongoing research activities and ongoing developed industrial standards for Lithium-ion battery and suggest the method for sizing including, capacity, dimensions, operational conditions, aging factor and safety margin for NPP use. (author)

  11. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  12. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-01-01

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel binder systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing

  13. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  14. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  15. Hydrogen determination in magnesium, zirconium, sodium and lithium using installation, C2532

    International Nuclear Information System (INIS)

    Malikova, E.D.; Velyukhanov, V.P.; Makhinova, L.O.; Kunin, L.L.

    1980-01-01

    Techniques of hydrogen determination in magnesium, lithium, sodium and zirconium using the S 2532 installation are developed. The method of oxidizing melting using lead borate has been used for hydrogen determination in lithium and sodium and the method of vacuum extraction - for hydrogen determination in zirconium and magnesium. Zr and Mg extraction has been carried out in steel reactor at the temperatures of 1000 and 650 deg C, the time of extraction being 30 and 10 minutes respectively. A quartz reactor, temperatures of oxidizing melting of 700-800 deg C, the time of analysis 10 and 20 minutes have been used for sodium and lithium. A possibility to determine volumetric content of hydrogen in magnesium at the existing surface contaminations with hydrogen-containing compounds is shown [ru

  16. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    Science.gov (United States)

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  17. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  18. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  19. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Schaltz, Erik; Kær, Søren Knudsen

    2018-01-01

    This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid...... on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs) and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific...... and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact...

  20. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Seyed Saeed Madani

    2018-04-01

    Full Text Available This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific heat capacity, entropic heat coefficient, and thermal conductivity in order to design suitable thermal management system.

  1. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    in which we developed an algorithm based on a 2-compartment distribution without elimination. The GFR estimate led to plasma concentrations 3-4 times lower than those anticipated. In contrast, the estimates based on V(d) and the algorithm derived from pharmacokinetic modeling led to comparable loading dose...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  2. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  3. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  4. Round Robin test for the determination of nitrogen concentration in solid Lithium

    International Nuclear Information System (INIS)

    Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; Knaster, J.; Kondo, H.; Miccichè, G.; Nitti, F.S.; Ohira, S.; Severi, M.; Sugimoto, M.; Suzuki, A.; Traversi, R.; Wakai, E.

    2016-01-01

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  5. Round Robin test for the determination of nitrogen concentration in solid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Favuzza, P., E-mail: paolo.favuzza@enea.it [ENEA Center, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Antonelli, A. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany); Hedinger, R. [F4E Research Center, Boltzmannstraße 2, 85748 Garching (Germany); Higashi, T. [University of Tokyo (Japan); Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF-EVEDA Project Team, Rokkasho (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Miccichè, G.; Nitti, F.S. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Ohira, S. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Severi, M. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho (Japan); Suzuki, A. [University of Tokyo (Japan); Traversi, R. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2016-06-15

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  6. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  7. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  8. Lithium alkyl anions of uranium(IV) and uranium(V)

    International Nuclear Information System (INIS)

    Sigurdson, E.R.; Wilkinson, G.

    1977-01-01

    Organouranium compounds with six or eight uranium-to-carbon sigma-bonds have been synthesized for the first time. The interaction of uranium tetrachloride with lithium alkyls in diethyl ether leads to the isolation of unstable lithium alkyluranate(IV) compounds of stoicheiometry Li 2 UR 6 .8Et 2 0 (R = Me, CH 2 SiMe 3 . Ph, and o-Me 2 NCH 2 C 6 H 4 ). These lithium salts can also be obtained with other donor solvents, such as tetrahydrofuran or NNN'N'-tetramethylethylenediamine. From uranium pentaethoxide similar lithium salts of stoicheiometry Li 3 UR 8 .3 dioxan (R = Me, CH 2 CMe 3 , and CH 2 SiMe 3 ) can be obtained. The interaction of uranium(VI) hexaisopropoxide with lithium, magnesium, or aluminium alkyls does not give compounds containing U-C bonds, but green oils, e.g. U(OPrsup(i)) 6 (MgMe 2 ) 3 , that appear to be adducts in which the oxygen atom of the isopropoxide group bound to uranium is acting as a donor. I.r. and n.m.r. spectroscopy and analytical data for the new compounds are presented. (author)

  9. A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available Lithium-ion battery is a core component of many systems such as satellite, spacecraft, and electric vehicles and its failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Remaining useful life (RUL prediction of lithium-ion batteries before the future failure event is extremely crucial for proactive maintenance/safety actions. This study proposes a hybrid prognostic approach that can predict the RUL of degraded lithium-ion batteries using physical laws and data-driven modeling simultaneously. In this hybrid prognostic approach, the relevant vectors obtained with the selective kernel ensemble-based relevance vector machine (RVM learning algorithm are fitted to the physical degradation model, which is then extrapolated to failure threshold for estimating the RUL of the lithium-ion battery of interest. The experimental results indicated that the proposed hybrid prognostic approach can accurately predict the RUL of degraded lithium-ion batteries. Empirical comparisons show that the proposed hybrid prognostic approach using the selective kernel ensemble-based RVM learning algorithm performs better than the hybrid prognostic approaches using the popular learning algorithms of feedforward artificial neural networks (ANNs like the conventional backpropagation (BP algorithm and support vector machines (SVMs. In addition, an investigation is also conducted to identify the effects of RVM learning algorithm on the proposed hybrid prognostic approach.

  10. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium?sulfur battery design

    OpenAIRE

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium?sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understandin...

  11. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  13. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  14. CRITIC-I: Instrumented lithium oxide irradiation: Part 1, Lithium oxide fabrication and characteristics

    International Nuclear Information System (INIS)

    Applegate, D.S.; Poeppel, R.B.

    1987-06-01

    Fine-grained, sinterable lithium oxide powder was prepared by high-temperature vacuum calcination of molten lithium carbonate. The product was ball milled, cold pressed, and fired in an oxygen atmosphere. The fired density, grain size, and surface roughness varied widely with firing schedule. Most variations were attributed to moisture content. Rings of high-density, sintered lithium oxide will be used in an in-reactor experiment to measure tritium release. 2 refs., 8 figs., 1 tab

  15. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    Science.gov (United States)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  16. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  17. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  18. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  19. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  1. Maximum Recommended Dosage of Lithium for Pregnant Women Based on a PBPK Model for Lithium Absorption

    Directory of Open Access Journals (Sweden)

    Scott Horton

    2012-01-01

    Full Text Available Treatment of bipolar disorder with lithium therapy during pregnancy is a medical challenge. Bipolar disorder is more prevalent in women and its onset is often concurrent with peak reproductive age. Treatment typically involves administration of the element lithium, which has been classified as a class D drug (legal to use during pregnancy, but may cause birth defects and is one of only thirty known teratogenic drugs. There is no clear recommendation in the literature on the maximum acceptable dosage regimen for pregnant, bipolar women. We recommend a maximum dosage regimen based on a physiologically based pharmacokinetic (PBPK model. The model simulates the concentration of lithium in the organs and tissues of a pregnant woman and her fetus. First, we modeled time-dependent lithium concentration profiles resulting from lithium therapy known to have caused birth defects. Next, we identified maximum and average fetal lithium concentrations during treatment. Then, we developed a lithium therapy regimen to maximize the concentration of lithium in the mother’s brain, while maintaining the fetal concentration low enough to reduce the risk of birth defects. This maximum dosage regimen suggested by the model was 400 mg lithium three times per day.

  2. Numerical Investigation of the IFMIF Lithium Target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Slobodchuk, V.; Leichtle, D.; Anton Moeslang, A.

    2006-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV / 125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Numerical investigations of the IFMIF Li - Target have been performed with the CFD code Star-CD. A number of turbulence models were tested on the experimental data obtained at the water jet test facility of the Institute for Physics and Power Engineering (IPPE), Obninsk, Russia. Calculated and measured velocity profiles and thickness of the flow cross sections have been compared. The most suitable turbulence models were used for numerical investigations of the IFMIF Li-jet. For the analysis of the IFMIF Li target 3D models of the nozzle and jet flows have been developed. In the first part of analyses the nozzle flow effects, such as relaminarization of the accelerated flow, secondary motions and their influence on the development of the viscous layer and velocity profile have been investigated. Further evaluation of turbulence models was performed and recommendations for suitable turbulence models are given. Calculations predict the complete laminarization of the flow at the nozzle outlet for velocities less than 10 m/s. Within the transition region of velocities between 10 and 20 m/s calculations show the laminarization only in the first convergent part. In this case the acceleration dose not suppress secondary flows in the straight part near the nozzle exit. The second task is devoted to the stability of the Li jet flow. To this end, the influence of the nozzle outlet boundaries, jet curvature effects, gravity and surface tension on the free surface stability has been analysed. First calculations show, that such factors as gravity and

  3. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  4. Starting lithium prophylaxis early v. late in bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Vradi, Eleni; Andersen, Per Kragh

    2014-01-01

    BACKGROUND: No study has investigated when preventive treatment with lithium should be initiated in bipolar disorder. AIMS: To compare response rates among patients with bipolar disorder starting treatment with lithium early v. late. METHOD: Nationwide registers were used to identify all patients...... with a diagnosis of bipolar disorder in psychiatric hospital settings who were prescribed lithium during the period 1995-2012 in Denmark (n = 4714). Lithium responders were defined as patients who, following a stabilisation lithium start-up period of 6 months, continued lithium monotherapy without being admitted...... to hospital. Early v. late intervention was defined in two ways: (a) start of lithium following first contact; and (b) start of lithium following a diagnosis of a single manic/mixed episode. RESULTS: Regardless of the definition used, patients who started lithium early had significantly decreased rates of non...

  5. LITHIUM TOXICITY IN ELDERLY-A CASE REPORT AND DISCUSSION

    Directory of Open Access Journals (Sweden)

    Mariana D. Arnaoudova

    2014-07-01

    Full Text Available Background: The therapeutic effect of Lithium as a mono therapy or as an augmenting agent in a variety of medical and psychiatric disorders is under doubt. However, lithium is associated with a number of adverse effects. Method and objective: A review of the literature on lithium use in older adults and a case report presentation. Summary of results: The literature, concerning current uses of Lithium in older patients, especially for patients with neurologic or cognitive impairments is limited due to the lack of well-designed, large clinical trials. Elderly patients are at higher risk to develop neurotoxicity in the course of lithium therapy. We present a case of 66 years old female patient, suffering bipolar disorder, who developed lithium toxicity and was admitted at the gerontopsychiatric department due to a confusional state, tremor and gait abnormality. Lithium toxicity was suspected when sufficient information about previous medical history of lithium therapy has been obtained. Lithium level found to be 1.69mmol/L. The patient has developed intoxication during maintenance therapy with a lithium dosage which had been unchanged for months. Conclusion: Elderly patients require lower doses of Lithium to achieve similar serum concentrations as those in younger adults. Neurotoxicity could be suspected at serum lithium levels which are considered therapeutic in younger adults. When prescribing lithium agents in elderly we should consider age-related changes in pharmacokinetics. The best way to prevent lithium toxicity is to control the serum concentration regularly during therapy.

  6. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    Science.gov (United States)

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

  7. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    Science.gov (United States)

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  9. SELECTIVE SODIUM REMOVAL FROM LITHIUM CHLORIDE ...

    African Journals Online (AJOL)

    Preferred Customer

    regression coefficient value of above 0.99. ... The powdered pattern of the sample was determined by X-ray ... brines and supplied by the Qinghai Lithium Co. ... Flame atomic absorption spectrophotometer (FAAS) (GBC-932 AAS, Australia).

  10. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  11. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  12. Rechargeable Lithium Metal Cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  13. Lithium thionyl chloride high rate discharge

    Science.gov (United States)

    Klinedinst, K. A.

    1980-04-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  14. Lithium diffusion in silver vanadium oxide

    International Nuclear Information System (INIS)

    Takeuchi, E.S.; Thiebolt, W.C. III

    1989-01-01

    Lithium/silver vanadium oxide (SVO) batteries have been developed to power implantable devices. The voltage of Li/SVO cells decreases with discharge allowing state of charge assessment by accurate determination of the cells' open circuit voltage. The open circuit voltage recovery of Li/SVO cells was monitored during intermittent high rate discharge. It was found that the voltage does not recover at the same rate or magnitude at all depths of discharge. The authors describe lithium diffusion in SVO studied by low scan rate voltammetry where utilization of SVO at various scan rates was used to determine the diffusion rate of lithium. A pulse technique was also used where the rate of lithium diffusion was measured at various depths of discharge

  15. Lithium converter of reactor neutrinos in antineutrino

    International Nuclear Information System (INIS)

    Lyutostanskij, Yu.S.; Lyashuk, V.I.

    1989-01-01

    The questions of developing lithium converter of the reactor neutrons in antineutrino operating at dynamic regime in the scheme with the cycle circulation of the high-purified lithium (by 7 Li isotope) through the converter are considered. The scheme allows to localize the 8 Li β-decay (T 1/2 =0.84 s) in the reservoir near the detector and so to design the hard-spectrum lithium ν-tilde e -source (E max ≅13 MeV) at the distance from the active zone being the soft-spectrum ν-tilde e -source. The expressions for the lithium ν-tilde e flux from the converter, reservoir and conveyance channel are obtained. 9 refs.; 8 figs.; 1 tab

  16. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  17. A study about lithium - the Brazilian situation

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1984-01-01

    A geoeconomical analysis of lithium is carried out, from its natural occurrence to its final application as a commercial product. General geological aspects such as the most important lithium mines, their minerals and their world distribution are taken into account. Also discussed is the viewpoint of enterprises regarding the various economical sectors associated with the production, consumption, marketing, installed industrial capacity, preparation of new products, development programs and installation of new plants. The applications of lithium, its several alloys and other chemical compounds are considered. Conclusions from these studies and from the data acquired are drawn, regarding the present Brazilian situation and its perspectives towards a future demand for lithium. (C.L.B.) [pt

  18. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  19. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    Science.gov (United States)

    Ganter, Matthew

    recycling technique, referred to as refunctionalization , for lithium ion cathode materials was developed. Refunctionalization is the treatment of active materials in order to regain electrochemical performance at EOL which eliminates the need to recycle to the elemental level and can lead to greater environmental and economic savings. The lithium ion capacity of EOL lithium iron phosphate (LiFePO4) nanomaterial cathode was regained through chemical and electrochemical re-lithiation techniques. The embodied energy of refunctionalized LiFePO4 was calculated to be 50% less than cathode synthesized from virgin materials. Overall, these results contribute to an improved understanding of the life cycle impacts for nanomaterials in batteries. The CNT embodied energy calculation established the first life cycle inventory for laser vaporization CNTs, whereas the novel refunctionalization strategies established a new EOL pathway to recover cathodes at a higher value state than traditional recycling. At the same time, CNT enhanced battery electrodes increased power and energy in the use phase while demonstrating the unique ability to engineer electrodes to control thermal stability, which enables better performing and safer batteries.

  20. The Lithium Battery: assessing the neurocognitive profile of lithium in bipolar disorder.

    Science.gov (United States)

    Malhi, Gin S; McAulay, Claire; Gershon, Samuel; Gessler, Danielle; Fritz, Kristina; Das, Pritha; Outhred, Tim

    2016-03-01

    The aim of the present study was to characterize the neurocognitive effects of lithium in bipolar disorder to inform clinical and research approaches for further investigation. Key words pertaining to neurocognition in bipolar disorder and lithium treatment were used to search recognized databases to identify relevant literature. The authors also retrieved gray literature (e.g., book chapters) known to them and examined pertinent articles from bibliographies. A limited number of studies have examined the effects of lithium on neurocognition in bipolar disorder and, although in some domains a consistent picture emerges, in many domains the findings are mixed. Lithium administration appears to reshape key components of neurocognition - in particular, psychomotor speed, verbal memory, and verbal fluency. Notably, it has a sophisticated neurocognitive profile, such that while lithium impairs neurocognition across some domains, it seemingly preserves others - possibly those vulnerable to the effects of bipolar disorder. Furthermore, its effects are likely to be direct and indirect (via mood, for example) and cumulative with duration of treatment. Disentangling the components of neurocognition modulated by lithium in the context of a fluctuating and complex illness such as bipolar disorder is a significant challenge but one that therefore demands a stratified and systematic approach, such as that provided by the Lithium Battery. In order to delineate the effects of lithium therapy on neurocognition in bipolar disorder within both research and clinical practice, a greater understanding and measurement of the relatively stable neurocognitive components is needed to examine those that indeed change with lithium treatment. In order to achieve this, we propose a Lithium Battery-Clinical and a Lithium Battery-Research that can be applied to these respective settings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  2. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  3. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

  4. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  5. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  6. Towards Safer Lithium-Ion Batteries

    OpenAIRE

    Herstedt, Marie

    2003-01-01

    Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) ...

  7. Multiphoton Ionization of Laser Cooled Lithium

    OpenAIRE

    Steinmann, Jochen

    2007-01-01

    Reaction microscopes enable kinematically complete measurements of atomic and molecular fragmentation. An ultracold atomic target is usually provided by a supersonic gas jet. The apparatus developed in the course of this thesis for the first time combines the principle of the reaction microscope with a magneto-optical trap. This allows for the preparation of lithium atoms in the sub-mK range. Being a three-electron system, its simple atomic structure makes lithium a model system of great topi...

  8. Recovery of lithium from waste materials

    Czech Academy of Sciences Publication Activity Database

    Jandová, J.; Dvořák, P.; Kondás, J.; Havlák, Lubomír

    2012-01-01

    Roč. 56, č. 1 (2012), s. 50-54 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z10100520 Keywords : alkaline wastewater * laboratory scale * lithium carbonates * lithium metal s * precipitation efficiency * reduced pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_01_50.pdf

  9. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  11. Lithium in the treatment of aggression.

    Science.gov (United States)

    Sheard, M H

    1975-02-01

    Lithium has become a widely accepted treatment for manic-depressive psychosis. It is dramatically effective for many cases of mania and is useful in the prevention of manic and depressive episodes. Hyperaggressiveness and hypersexuality are frequent components of manic-depressive illness and abate under the influence of lithium. A brief review is presented of the behavioral and biochemical pharmacology of lithium. This documents the inhibitory role which lithium can play in several examples of animal aggressive behavior including pain-elicited aggression, mouse killing in rats, isolation-induced aggression in mice, p-chlorophenylalanine-induced aggression in rats, and hypothalamically induced aggression in cats. The use of lithium to control human aggressive behavior has resulted in controversial findings. In epileptic conditions, improvement has been reported in interseizure aggressivity, but other reports indicate the possibility of increased seizures. Improvement in aggressive behavior in childhood has occasionally been reported as well as in emotionally unstable character disorders in young female patients. Te was a single blind study and the other a large but uncontrolled study. Both studies reported an improvement in aggressiveness as indicated by fewer recorded reports (tickets) for fighting. The final study reported is a study of 12 male delinquents age 16 to 23. They received lithium or placebo for 4 months inside an institution and then a trial of lithium for 1 to 12 months on an outpatient basis. Analysis of results in terms of the number of aggressive antisocial acts showed fewer serious aggressive episodes when the lithium level was between 0.6 and 1 meq/liter than when it was between 0.0 and 0.6 meq/liter. These results must be viewed with caution and are only suggestive since the study was not double blind.

  12. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  13. Applications of lithium in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A., E-mail: glaucia.oliveira@ipen.br, E-mail: ovega@ipen.br, E-mail: jcferrei@ipen.br, E-mail: vsberga@ipen.br, E-mail: rafaeli.medeiros.moraes@gmail.com, E-mail: maisepastore@hotmail.com, E-mail: fla.kimiyamoto@gmail.com, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Paulo, SP (Brazil)

    2017-07-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  14. Applications of lithium in nuclear energy

    International Nuclear Information System (INIS)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A.

    2017-01-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  15. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  16. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  17. Electroplating lithium transition metal oxides

    Science.gov (United States)

    Zhang, Huigang; Ning, Hailong; Busbee, John; Shen, Zihan; Kiggins, Chadd; Hua, Yuyan; Eaves, Janna; Davis, Jerome; Shi, Tan; Shao, Yu-Tsun; Zuo, Jian-Min; Hong, Xuhao; Chan, Yanbin; Wang, Shuangbao; Wang, Peng; Sun, Pengcheng; Xu, Sheng; Liu, Jinyun; Braun, Paul V.

    2017-01-01

    Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility. PMID:28508061

  18. The cosmological lithium problem revisited

    International Nuclear Information System (INIS)

    Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak

    2016-01-01

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  19. The cosmological lithium problem revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C. A., E-mail: carlos.bertulani@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States); Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Mukhamedzhanov, A. M., E-mail: akram@comp.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Shubhchintak, E-mail: shub.shubhchintak@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States)

    2016-07-07

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  20. Radiation damage in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K.; Nakazawa, T.; Ishii, Y.; Fukai, K.; Watanabe, H. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Matsui, H.; Vollath, D.

    1993-11-01

    Radiation damage in lithium orthosilicate (Li[sub 4]SiO[sub 4]) and Al-doped Li[sub 4]SiO[sub 4] (Li[sub 3.7]Al[sub 0.1]SiO[sub 4]) irradiated with oxygen ions was studied with ionic conductivity measurements, Raman spectroscopy, Fourier transform infrared photo-acoustic spectroscopy (FT-IR PAS) and transmission electron microscopy. It was seen from the ionic conductivity measurements that lithium-ion vacancies were introduced as irradiation defects for Li-ions sites in both materials due to the irradiation. By the Raman spectroscopy, oxygen atoms in SiO[sub 4] tetrahedra were considered to be preferentially displaced due to the irradiation for Li[sub 4]SiO[sub 4], although only a decrease of the number of SiO[sub 4] tetrahedra occurred for Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by displacement of both silicon and oxygen atoms. Decomposition of SiO[sub 4] tetrahedra and formation of some new phases having Si-O-Si and Si-O bonds were found to take place for both Li[sub 4]SiO[sub 4] and Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by FT-IR PAS. In the electron microscopy, damage microstructure consisting of many voids or cavities and amorphization were observed for Li[sub 4]SiO[sub 4] irradiated with oxygen ions. The recovery behavior of radiation damage mentioned above was also investigated. (author).