WorldWideScience

Sample records for dual-frequency capacitively coupled

  1. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  2. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  3. Simulation of dust particles in dual-frequency capacitively coupled silane discharges

    International Nuclear Information System (INIS)

    Liu Xiangmei; Song Yuanhong; Xu Xiang; Wang Younian

    2010-01-01

    The behavior of nanoparticles in dual-frequency capacitively coupled silane discharges is investigated by employing a one-dimensional self-consistent fluid model. The numerical simulation tries to trace the formation, charging, growth, and transport of dust particles during the discharge, under the influences of the high- and low-frequency electric sources, as well as the gas pressure. The effects of the presence of the nanoparticles and larger anions on the plasma properties are also discussed, especially, for the bulk potential, electron temperature, and densities of various particles. The calculation results show that the nanoparticle density and charge distribution are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source can also exert an effect on the nanoparticle formation, compared with the frequency. As the discharge lasts, the electric potential and electron density keep decreasing, while the electron temperature gets increasing after a sudden drop.

  4. Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations

    International Nuclear Information System (INIS)

    Yu Yiqing; Xin Yu; Ning Zhaoyuan; Lu Wenqi

    2011-01-01

    Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature T e decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in T e and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.

  5. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    International Nuclear Information System (INIS)

    Liu, Wen-Yao; Xu, Yong; Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-01

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*( 3 P 2 ) and Ar*( 3 P 0 ) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF 4 was found to significantly increase the metastable destruction rate by the CF 4 quenching, especially for large CF 4 content and high pressure, it becomes the dominant depopulation process

  6. Modelling of the dual frequency capacitive sheath in the intermediate pressure range

    International Nuclear Information System (INIS)

    Boyle, P C; Robiche, J; Turner, M M

    2004-01-01

    The nonlinearity of the plasma sheath in dual frequency capacitively coupled reactors is investigated for frequencies well above the ion plasma frequency. This work focuses on the behaviour of the voltage and the sheath width with respect to the driving current source and the collisionality regime. For typical plasma processing applications, the gas pressure ranges from a few milliTorrs to hundreds of milliTorrs, and the ion dynamics span different collisional regimes. To describe these different ion dynamics, we have used a collisionless model and a variable mobility model. The sheath widths and the voltages obtained from these two models have then been compared

  7. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    Science.gov (United States)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  8. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  9. Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2013-01-01

    Dual-frequency capacitive discharges are widespread in the semiconductor industry and are used, for example, in etching of semiconductor materials to manufacture microchips. In low-pressure dual radio-frequency capacitive discharges, stochastic heating is an important phenomenon. Recent theoretical work on this problem using several different approaches has produced results that are broadly in agreement insofar as scaling with the discharge parameters is concerned, but there remains some disagreement in detail concerning the absolute size of the effect for the case of dual-frequency capacitive discharges. In this work, we investigate the dependence of stochastic heating on various discharge parameters with the help of particle-in-cell (PIC) simulation. The dual-frequency analytical models are in fair agreement with PIC results for values of the low-frequency current density amplitude J lf (or dimensionless control parameter H lf ∼ 5) typical of many modern experiments. However, for higher values of J lf (or higher H lf ), new physical phenomena (like field reversal, reflection of ions, etc) appear and the simulation results deviate from existing dual-frequency analytical models. On the other hand, for lower J lf (or lower H lf ) again the simulation results deviate from analytical models. So this research work produces a relatively extensive set of simulation data that may be used to validate theories over a wide range of parameters. (paper)

  10. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luí s Lemos; Marques, Luí s S A; Pintassilgo, Carlos D.; Wattieaux, Gaë tan; Es-sebbar, Et-touhami; Berndt, Johannes; Kovačević, Eva; Carrasco, Nathalie; Boufendi, Laï fa; Cernogora, Guy

    2012-01-01

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups

  11. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    Science.gov (United States)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  12. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  13. A current driven capacitively coupled chlorine discharge

    International Nuclear Information System (INIS)

    Huang, Shuo; Gudmundsson, J T

    2014-01-01

    The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)

  14. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  15. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  16. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    International Nuclear Information System (INIS)

    Bora, B.

    2015-01-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage

  17. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  18. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  19. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Electric fields in the sheath formed in a 300 mm, dual frequency capacitive argon discharge

    International Nuclear Information System (INIS)

    Barnat, E V; Miller, P A; Hebner, G A; Paterson, A M; Panagopoulos, T; Hammond, E; Holland, J

    2007-01-01

    The spatial structure and temporal evolution of the electric fields in a sheath formed in a dual frequency, 300 mm capacitive argon discharge are measured as functions of relative mixing between a low frequency current and a high frequency current. It is found that the overall structure of the sheath (potential across the sheath and the thickness of the sheath) are dominated by the lower frequency component while (smaller) oscillations in these quantities are dictated by the higher frequency component. Comparisons of the measured spatial and temporal profiles are made for Lieberman's and Robiche et al sheath model and with a particle in a cell calculation

  1. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  2. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  3. Overview of capacitive couplings in windings

    NARCIS (Netherlands)

    Djukic, N.; Encica, L.; Paulides, J.J.H.

    2015-01-01

    The use of electrical machines (EMs) with variable-frequency drives (VFDs) results in electromagnetic interference (EMI). At high frequencies (HFs) of conducted EMI, the impedance of an EM insulation system fed from a VFD is small due to the parasitic capacitive couplings. Thus, the conducted EMI

  4. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH2F2/H2 plasmas

    International Nuclear Information System (INIS)

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-01

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si 3 N 4 hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si 3 N 4 layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH 2 F 2 /H 2 /Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P HF ), and low-frequency source power (P LF ). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si 3 N 4 layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si 3 N 4 /PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO x /PVD a-C/Si 3 N 4 MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si 3 N 4 hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  5. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  6. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  7. Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

    Directory of Open Access Journals (Sweden)

    R. K. Barik

    2017-12-01

    Full Text Available In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  10. Capacitively coupled radio-frequency plasmas excited by tailored voltage waveforms

    International Nuclear Information System (INIS)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V

    2013-01-01

    By applying certain types of ‘tailored’ voltage waveforms (TVWs) to capacitively coupled plasmas, a dc self-bias and an asymmetric plasma response can be produced, even in geometrically symmetric reactors. Furthermore, these arbitrary applied waveforms can produce a number of interesting phenomena that are not present in typical single-frequency sinusoidal discharges. This electrical asymmetry effect presents emerging possibilities for the improved control of the ion energy and ion flux in these systems; parameters of vital importance to both etching and deposition applications for materials processing. With a combined research approach utilizing both experimental measurements, and particle-in-cell simulations, we review and extend recent investigations that study a particular class of TVW. The waveforms used have a pulse-type shape and are composed of a varying number of harmonic frequencies. This allows a strong self-bias to be produced, and causes most of the applied voltage to be dropped across a single sheath. Additionally, decreasing the pulse width (by increasing the number of harmonics), allows the plasma density and ion flux to be increased. Simulation and experimental results both demonstrate that this type of waveform can be used to separately control the ion flux and ion energy, while still producing a uniform plasma over large area (50 cm diameter) rf electrodes. (paper)

  11. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Science.gov (United States)

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  12. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  13. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    Science.gov (United States)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  14. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Lee, Hyung Kew; Kim, Wan-Seop

    2017-01-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF–1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z -matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10 −6 –10 −5 , proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range. (paper)

  15. Passive inference of collision frequency in magnetized capacitive argon discharge

    Science.gov (United States)

    Binwal, S.; Joshi, J. K.; Karkari, S. K.; Kaw, P. K.; Nair, L.

    2018-03-01

    A non-invasive method of determining the collision frequency νm by measuring the net plasma impendence in a magnetized, capacitive-coupled, radio-frequency (rf) discharge circuit is developed. The collision frequency has been analytically expressed in terms of bulk plasma reactance, wherein standard sheath models have been used to estimate the reactance offered due to the capacitive rf sheaths at the discharge plates. The experimental observations suggest that in the un-magnetized case, νm remains constant over a range of rf current but steadily increases as the background pressure reduces. In the magnetized case, the collision frequency has been observed to decay with the increase in rf current while it remains unaffected by the background pressure. A qualitative discussion has been presented to explain these characteristics.

  16. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    International Nuclear Information System (INIS)

    Boyle, P C; Ellingboe, A R; Turner, M M

    2004-01-01

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance

  17. A New Wide Frequency Band Capacitance Transducer with Application to Measuring Metal Fill Time

    Directory of Open Access Journals (Sweden)

    Wael DEABES

    2009-01-01

    Full Text Available A novel low cost, high frequency circuit for measuring capacitance is proposed in this paper. This new capacitance measuring circuit is able to measure small coupling capacitance variations with high stray-immunity. Hence, it could be used in many potential applications such as measuring the metal fill time in the Lost Foam Casting (LFC process and Electrical Capacitive Tomography (ECT system. The proposed circuit is based on differential charging/discharging method using current feedback amplifier and a synchronous demodulation stage. The circuit has a wide high frequency operating range with zero phase shift; hence multiple circuits can work at different frequencies simultaneously to measure the capacitance. The non-ideal characteristic of the circuit has been analyzed and the results verified through LTSpice simulation. Results from the tests on a prototype and a simulation elucidate the practicality of the proposed circuit.

  18. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  19. Electron heating of voltage-driven and matched dual frequency discharges

    International Nuclear Information System (INIS)

    Lieberman, M A; Lichtenberg, A J

    2010-01-01

    In a dual frequency capacitive sheath, a high frequency uniform sheath motion is coupled with a low frequency Child law sheath motion. For current-driven high and low frequency sheaths, the high frequency sheath motion generates most of the ohmic and stochastic heating of the discharge electrons. The low frequency motion, in addition to its primary purpose of establishing the ion bombarding energy, also increases the heating by widening the sheath width and transporting the oscillating electrons to regions of lower plasma density, and hence higher sheath velocity. In this work, we show that for voltage-driven high and low frequency sheaths, increasing the low frequency voltage reduces the heating, due to the reduced high frequency current that flows through the sheath under voltage-driven conditions. We determine the dependence of the heating on various parameters and compare the results with the current-driven case. Particle-in-cell simulations are used to confirm this result. Discharges generally employ a matching network to maximize the power transmitted to the plasma. We obtain analytic expressions for the effect of the low frequency source under matched conditions and, again, find that the low frequency source reduces the heating.

  20. Improved capacitance sensor with variable operating frequency for scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Kwon, Joonhyung; Kim, Joonhui; Jeong, Jong-Hwa; Lee, Euy-Kyu; Seok Kim, Yong; Kang, Chi Jung; Park, Sang-il

    2005-01-01

    Scanning capacitance microscopy (SCM) has been gaining attention for its capability to measure local electrical properties in doping profile, oxide thickness, trapped charges and charge dynamics. In many cases, stray capacitance produced by different samples and measurement conditions affects the resonance frequency of a capacitance sensor. The applications of conventional SCM are critically limited by the fixed operating frequency and lack of tunability in its SCM sensor. In order to widen SCM application to various samples, we have developed a novel SCM sensor with variable operating frequency. By performing variable frequency sweep over the band of 160 MHz, the SCM sensor is tuned to select the best and optimized resonance frequency and quality factor for each sample measurement. The fundamental advantage of the new variable frequency SCM sensor was demonstrated in the SCM imaging of silicon oxide nano-crystals. Typical sensitivity of the variable frequency SCM sensor was found to be 10 -19 F/V

  1. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  2. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  3. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  4. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    International Nuclear Information System (INIS)

    Donkó, Z; Derzsi, A; Hartmann, P; Korolov, I; Schulze, J; Czarnetzki, U; Schüngel, E

    2012-01-01

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach. (paper)

  5. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  6. Particle formation and its control in dual frequency plasma etching reactors

    International Nuclear Information System (INIS)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-01-01

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively

  7. Effect of the relative phase of the driving sources on heating of dual frequency capacitive discharges

    Science.gov (United States)

    Ziegler, Dennis; Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2009-10-01

    The influence of the relative phase of the driving voltages on heating in asymmetric dual frequency capacitive discharges is investigated. Basis of the analysis is a recently published global model [1] extended by the possibility to freely adjust the phase angles between the driving voltages. In recent publications it was reported that nonlinear electron resonance heating (NERH) drastically enhances dissipation at moments of sheath collapse due to plasma series resonance (PSR) excitation [2]. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In case of a collapse directly being followed by a second collapse ("double collapse") a substantial increase in dissipated power, well above the reported growth due to a single PSR excitation event per period, can be observed.[4pt] [1] D.,iegler, T.,ussenbrock, and R.,. Brinkmann, Phys. Plasmas 16, 023503 (2009)[0pt] [2] T.,ussenbrock, R.,. Brinkmann, M.,. Lieberman, A.,. Lichtenberg, and E. Kawamura, Phys. Rev. Lett. 101, 085004 (2008)

  8. Simultaneous reconstruction of permittivity and conductivity using multi-frequency admittance measurement in electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, Maomao; Soleimani, Manuchehr

    2016-01-01

    Electrical capacitance tomography (ECT) is an imaging method mainly capable of reconstructing dielectric permittivity. Generally, the reactance part of complex admittance is measured in a selected frequency. This paper presents for the first time an in depth and systematic analysis of complex admittance data for simultaneous reconstruction of both electrical conductivity and dielectric permittivity. A complex-valued forward model, Jacobian matrix and inverse solution are developed in the time harmonic excitation mode to allow for multi-frequency measurements. Realistic noise models are used to evaluate the performance of complex admittance ECT in a range of excitation frequencies. This paper demonstrates far greater potential for ECT as a versatile imaging tool through novel analysis of complex admittance imaging using a dual conductivity permittivity inversion method. The paper demonstrates that various classes of contactless capacitance based measurement devices can be analysed through complex multi-frequency ECT. (paper)

  9. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  10. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  11. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  12. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  13. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  14. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    Science.gov (United States)

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  16. Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors

    CERN Document Server

    AUTHOR|(SzGeCERN)755510

    2017-01-01

    Capacitively coupled hybrid silicon pixel-detector assemblies are under study for the vertex detector at the proposed future CLIC linear electron-positron collider. The assemblies consist of active CCPDv3 sensors, with 25 μm pixel pitch implemented in a 180 nm High- Voltage CMOS process, which are glued to the CLICpix readout ASIC, with the same pixel pitch and processed in a commercial 65 nm CMOS technology. The signal created in the silicon bulk of the active sensors passes a two-stage amplifier, in each pixel, and gets transferred as a voltage pulse to metal pads facing the readout chip (ROC). The coupling of the signal to the metal pads on the ROC side proceeds through the capacitors formed between the two chips by a thin layer of epoxy glue. The coupling strength and the amount of unwanted cross coupling to neighbouring pixels depends critically on the uniformity of the glue layer, its thickness and on the alignment precision during the flip-chip assembly process. Finite-element calculations of the coup...

  17. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  18. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-01-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  19. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  20. Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena

    International Nuclear Information System (INIS)

    Upadhyay, R R; Sawada, I; Ventzek, P L G; Raja, L L

    2013-01-01

    High-resolution self-consistent numerical simulation of electromagnetic wave phenomena in an axisymmetric capacitively coupled plasma reactor is reported. A prominent centre-peaked plasma density profile is observed for driving frequencies of 60 MHz and is consistent with observations in the literature and accompanying experimental studies. A power spectrum of the simulated wave electric field reveals the presence of well-resolved high frequency harmonic content up to the 20th harmonic of the excitation frequency; an observation that has also been reported in experiments. Importantly, the simulation results reveal that the occurrence of higher harmonics is strongly correlated with the occurrence of a centre-peaked plasma density profile. (fast track communication)

  1. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  2. Ion energy distributions in a pulsed dual frequency inductively coupled discharge of Ar/CF4 and effect of duty ratio

    International Nuclear Information System (INIS)

    Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P 2 MHz  = 2 MHz) and high (P 13.56 MHz  = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF 4 (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers from 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P 13.56 MHz ; however, it shows opposite trends with P 2 MHz . It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant

  3. A dual-mode proximity sensor with integrated capacitive and temperature sensing units

    International Nuclear Information System (INIS)

    Qiu, Shihua; Huang, Ying; He, Xiaoyue; Sun, Zhiguang; Liu, Ping; Liu, Caixia

    2015-01-01

    The proximity sensor is one of the most important devices in the field of robot application. It can accurately provide the proximity information to assistant robots to interact with human beings and the external environment safely. In this paper, we have proposed and demonstrated a dual-mode proximity sensor composed of capacitive and resistive sensing units. We defined the capacitive type proximity sensor perceiving the proximity information as C-mode and the resistive type proximity sensor detecting as R-mode. Graphene nanoplatelets (GNPs) were chosen as the R-mode sensing material because of its high performance. The dual-mode proximity sensor presents the following features: (1) the sensing distance of the dual-mode proximity sensor has been enlarged compared with the single capacitive proximity sensor in the same geometrical pattern; (2) experiments have verified that the proposed sensor can sense the proximity information of different materials; (3) the proximity sensing capability of the sensor has been improved by two modes perceive collaboratively, for a plastic block at a temperature of 60 °C: the R-mode will perceive the proximity information when the distance d between the sensor and object is 6.0–17.0 mm and the C-mode will do that when their interval is 0–2.0 mm; additionally two modes will work together when the distance is 2.0–6.0 mm. These features indicate our transducer is very valuable in skin-like sensing applications. (paper)

  4. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lichtenberg, A J; Lieberman, M A; Marakhtanov, A M

    2016-01-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths. (paper)

  5. Two-dimensional parasitic capacitance extraction for integrated circuit with dual discrete geometric methods

    International Nuclear Information System (INIS)

    Ren Dan; Ren Zhuoxiang; Qu Hui; Xu Xiaoyu

    2015-01-01

    Capacitance extraction is one of the key issues in integrated circuits and also a typical electrostatic problem. The dual discrete geometric method (DGM) is investigated to provide relative solutions in two-dimensional unstructured mesh space. The energy complementary characteristic and quick field energy computation thereof based on it are emphasized. Contrastive analysis between the dual finite element methods and the dual DGMs are presented both from theoretical derivation and through case studies. The DGM, taking the scalar potential as unknown on dual interlocked meshes, with simple form and good accuracy, is expected to be one of the mainstreaming methods in associated areas. (paper)

  6. Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

    Directory of Open Access Journals (Sweden)

    Kyoseung Keum

    2018-01-01

    Full Text Available In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of 15 mm × 50 mm × 1 mm. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

  7. Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

    Directory of Open Access Journals (Sweden)

    S. Taylor

    2012-06-01

    Full Text Available In capacitance-voltage (C-V measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value, that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS capacitor on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS law, the Kohlrausch-Williams-Watts (KWW relationship and the Havriliak-Negami (HN relationship. Dielectric relaxation mechanisms are also discussed.

  8. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  9. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  10. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  11. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided

  12. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Turner, M. M. [National Centre for Plasma Science and Technology, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  13. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  14. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  15. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    Science.gov (United States)

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  16. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  17. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  18. High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Siwakoti, Yam Prasad

    2018-01-01

    with a common ground connection of the input and output make the proposed topology a proper candidate for a transformer-less grid connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc-dc converter have been demonstrated in the paper. Moreover......This paper introduces a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc-dc structure inherits shared input current with low ripple, which also requires small...... capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit...

  19. Modeling of frequency-dependent negative differential capacitance in InGaAs/InP photodiode

    Science.gov (United States)

    Wang, Yidong; Chen, Jun; Xu, Jintong; Li, Xiangyang

    2018-03-01

    The negative differential capacitance (NDC) of p-i-n InGaAs/InP photodetector has been clearly observed, and the small signal model of frequency-dependent NDC is established, based on the accumulation and emission of electrons at the p-InP/i-InGaAs interface. The NDC phenomenon is contributed by the additional capacitance (CT), which is caused by the charging-discharging process in the p-InP/i-InGaAs interface. It is found that the NDC becomes more obvious with decreasing frequency, which is consistent with the conclusion of the experiment. It is proved that the probability of electron capture/escape in the p-i interface is affected by frequency. Therefore, the smaller frequency applied, the higher additional capacitance is obtained.

  20. Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics

    International Nuclear Information System (INIS)

    Georgieva, V.; Bogaerts, A.

    2005-01-01

    A one-dimensional particle-in-cell/Monte Carlo model is used to investigate Ar/CF 4 /N 2 discharges sustained in capacitively coupled dual frequency reactors, with special emphasis on the influence of the reactor parameters such as applied voltage amplitudes and frequencies of the two voltage sources. The presented calculation results include plasma density, ion current, average sheath potential and width, electron and ion average energies and energy distributions, and ionization rates. The simulations were carried out for high frequencies (HFs) of 27, 40, 60, and 100 MHz and a low frequency (LF) of 1 or 2 MHz, varying the LF voltage and keeping the HF voltage constant and vice versa. It is observed that the decoupling of the two sources is possible by increasing the applied HF to very high values (above 60 MHz) and it is not defined by the frequency ratio. Both voltage sources have influence on the plasma characteristics at a HF of 27 MHz and to some extent at 40 MHz. At HFs of 60 and 100 MHz, the plasma density and ion flux are determined only by the HF voltage source. The ion energy increases and the ion energy distribution function (IEDF) becomes broader with HF or LF voltage amplitude, when the other voltage is kept constant. The IEDF is broader with the increase of HF or the decrease of LF

  1. Dual-Career Couples: Keeping Them Together.

    Science.gov (United States)

    Wolf-Wendel, Lisa E.; Twombly, Susan; Rice, Suzanne

    2000-01-01

    Reports results of a survey of 360 chief academic officers at member institutions of the American Association of Colleges and Universities regarding their policies and practices for assisting dual-career couples. Examines the motivations, barriers, consequences, and policy implications of institutional responses to dual-career couples. (DB)

  2. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  3. Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands

    Directory of Open Access Journals (Sweden)

    I. Prudyus

    2014-12-01

    Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.

  4. Research of Electrical Conductivity Measurement System for Mine Bursting Water Based on Dual Frequency Method

    Directory of Open Access Journals (Sweden)

    Zhou Mengran

    2016-01-01

    Full Text Available This paper presents a double frequency conductivity measurement method for measuring mine bursting water, to solve the capacitance effect of the conductivity sensor itself has the help. The core controller of the system is the single chip microcomputer ATMEGA128. This paper introduces the basic principle of the measurement of the existing problems and the dual frequency measurement method, and then introduces and analyzes the hardware. To test and analyze the collected data, the double frequency method is found to have good stability and accuracy in the measurement of the electrical conductivity of mine inrush water. It is proved that the method and the system design of the hardware circuit can accurately measure the electric conductivity of the mine inrush water source.

  5. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  6. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  7. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Science.gov (United States)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  8. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    International Nuclear Information System (INIS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-01-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection

  9. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A.; Osinsky, Andrei; Miller, Ross [Agnitron Technology Incorporated, Eden Prairie, Minnesota 55346 (United States)

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  10. A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance

    Directory of Open Access Journals (Sweden)

    Lun Kong

    2013-02-01

    Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.

  11. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  12. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Science.gov (United States)

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  13. Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2017-04-01

    Full Text Available Signal injection method (SIM is widely applied to the insulation parameters’ measurement in distribution network for its convenience and safety. It can be divided into two kinds of patterns: injecting a specific frequency signal or several frequencies’ groups, and scanning frequency in a scheduled frequency scope. In order to avoid the disadvantages in related researches, improved signal injection method (ISIM, in which the frequency characteristic of the transformer magnetizing impedance is taken into consideration, is proposed. In addition, optimization for signal injection position has been accomplished, and the corresponding three calculation methods of line-to-ground capacitance has been derived. Calculations are carried out through the vector information (vector calculation method, the amplitude information (amplitude calculation method, the phase information (phase calculation method of voltage and current in signal injecting port, respectively. The line-to-ground capacitance is represented by lumped parameter capacitances in high-voltage simulation test. Eight different sinusoidal signals are injected into zero-sequence circuit, and then line-to-ground capacitance is calculated with the above-mentioned vector calculation method based on the voltage and the current data of the injecting port. The results obtained by the vector calculation method show that ISIM has a wider application frequency range compared with signal injection method with rated parameters (RSIM and SIM. The RSIM is calculated with the rated transformer parameters of magnetizing impedance, and the SIM based on the ideal transformer model, and the relative errors of calculation results of ISIM are smaller than that for other methods in general. The six groups of two-frequency set are chosen in a specific scope which is recommended by vector calculation results. Based on ISIM, the line-to-ground capacitance calculations through the amplitude calculation method and

  14. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  15. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Marcelo [Carrera de Física Universidad Autónoma Tomás Frías, Av. Del Maestro s/n, Casilla 36, Potosí (Bolivia, Plurinational State of); Khodaee, Sadi; Toppan, Francesco [TEO, CBPF Rua Dr. Xavier Sigaud 150 (Urca), Rio de Janeiro (RJ), cep 22290-180 (Brazil); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany)

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  16. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  17. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  18. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  19. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  20. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.

    Science.gov (United States)

    Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong

    2016-03-21

    A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.

  1. The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas

    International Nuclear Information System (INIS)

    Schüngel, E.; Schulze, J.; Czarnetzki, U.; Eremin, D.; Mussenbrock, T.

    2012-01-01

    The electrical asymmetry effect (EAE) allows an almost ideal separate control of the mean ion energy, i >, and flux, Γ i , at the electrodes in capacitive radio frequency discharges with identical electrode areas driven at two consecutive harmonics with adjustable phase shift, θ. In such geometrically symmetric discharges, a DC self bias is generated as a function of θ. Consequently, i > can be controlled separately from Γ i by adjusting the phase shift. Here, we systematically study the EAE in low pressure dual-frequency discharges with different electrode areas operated in argon at 13.56 MHz and 27.12 MHz by experiments, kinetic simulations, and analytical modeling. We find that the functional dependence of the DC self bias on θ is similar, but its absolute value is strongly affected by the electrode area ratio. Consequently, the ion energy distributions change and i > can be controlled by adjusting θ, but its control range is different at both electrodes and determined by the area ratio. Under distinct conditions, the geometric asymmetry can be compensated electrically. In contrast to geometrically symmetric discharges, we find the ratio of the maximum sheath voltages to remain constant as a function of θ at low pressures and Γ i to depend on θ at the smaller electrode. These observations are understood by the model. Finally, we study the self-excitation of non-linear plasma series resonance oscillations and its effect on the electron heating.

  2. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  3. Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Lazzaroni, C; Chabert, P; Lieberman, M A; Lichtenberg, A J; Leblanc, A

    2012-01-01

    A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)

  4. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  5. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Department of Environmental Engineering, Guangdong University of Technology, Waihuanxi Road, Guangzhou 510006 (China); Tang, L. [Department of Civil Engineering, Guangzhou University, Waihuanxi Road, Guangzhou 510006 (China)

    2009-03-15

    A capacitively coupled radio-frequency (RF) plasma reactor was tested mainly for the purpose of solid waste treatment. It was found that using a RF input power between 1600 and 2000 W and a reactor pressure between 3000 and 8000 Pa (absolute pressure), a reactive plasma environment with a gas temperature between 1200 and 1800 K can be reached in this lab scale reactor. Under these conditions, pyrolysis of tire powder gave two product streams: a combustible gas and a pyrolytic char. The major components of the gas product are H{sub 2}, CO, CH{sub 4}, and CO{sub 2} The physical properties (surface area, porosity, and particle morphology) as well as chemical properties (elemental composition, heating value, and surface functional groups) of the pyrolytic char has also been examined. (author)

  6. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  7. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  8. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  9. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    MURAT TANISLI

    2017-08-16

    Aug 16, 2017 ... b; 52.80.Pi. 1. Introduction. It is interesting to study the behaviour of plasma. There are many ... and then the model is described in §3. Graphs and ... inductor (Lbp) occur in the bulk plasma circuit. The ... the parallel plate, the electron density, the mass of the ... The electron neutral collision frequency may be.

  10. Dual frequency comb metrology with one fiber laser

    Science.gov (United States)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  11. A capacitively coupled dose-rate-dependent transient upset mechanism in a bipolar memory

    International Nuclear Information System (INIS)

    Turfler, R.M.; Pease, R.L.; Dinger, G.; Armstrong, B.

    1992-01-01

    This paper reports on a pattern sensitivity that was observed in the threshold dose rate response of a bipolar 16K PROM for radiation pulse widths of 20-100 ns. For the worst case pattern, the upset threshold was a factor of three lower than for the commonly used checkerboard pattern. The mechanism for this pattern sensitivity was found to be a capacitively coupled voltage transient on a sensitive node which caused a low-to-high transition at the output. A design fix was implemented to significantly alter the ratio of the two parasitic capacitances in a capacitive divider which reduced the amplitude of the voltage transient at the sensitive node. It was demonstrated that in the redesign, the pattern sensitivity was eliminated

  12. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  13. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  14. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  15. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  16. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  17. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-09-15

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  18. Geographic mobility of Danish dual-erner couples

    DEFF Research Database (Denmark)

    Filges, Trine

    2010-01-01

    We analyze the relationship between geographical residence and job mobility for Danish dual-earner couples. We estimate the probability of moving residence and changing job, taking the interdependence between the events into account. The results point to the importance of addressing the interrela......We analyze the relationship between geographical residence and job mobility for Danish dual-earner couples. We estimate the probability of moving residence and changing job, taking the interdependence between the events into account. The results point to the importance of addressing...

  19. A Low-Profile Dual-Layer Patch Antenna with a Circular Polarizer Consisting of Dual Semicircular Resonators

    Directory of Open Access Journals (Sweden)

    Li Guo

    2018-06-01

    Full Text Available In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP waves, dual-layer patch antennas capable of radiating right-hand (RH or left-hand (LH circularly polarized (CP waves are achieved in terms of the different offset direction of the bottom splits of the DSSRs. Because of both the capacitive coupling to the radiator and the degenerate modes existing in the excited DSSRs, the DSSRs collaboratively result in a circularly polarized radiation, successfully converting incident LP waves into CP ones. Simulated results show that the impedance, axial ratio (AR, and gain frequency response of both proposed CP antennas are identical, with a simulated 3-dB AR bandwidth of 72 MHz covering 2.402–2.474 GHz and a gain enhanced by 3.9 dB. The proposed antennas were fabricated and measured, revealing an operational bandwidth of 65 MHz (2.345–2.41 GHz and a peak gain up to 9 dBi. Moreover, a low profile of 0.063λ0 is maintained. The proposed CP antennas could be as a candidate for wireless target detection applications in terms of their identical frequency response property.

  20. Reactions to framing of cessation messages: insights from dual-smoker couples.

    Science.gov (United States)

    Lipkus, Isaac M; Ranby, Krista W; Lewis, Megan A; Toll, Benjamin

    2013-12-01

    Couples in which both members smoke (dual-smoker couples) have not been the explicit target of cessation interventions. Quit rates are lower and relapse rates are higher among individuals in dual-smoker couples. A potentially effective strategy to motivate dual-smoker couples to quit is to convey messages that highlight how the positive outcomes of quitting (gain frame) or the negative outcomes of continued smoking (loss frame) affect the couple rather than the individual smoker. We explored whether dual-smoker couples' smoking behaviors (e.g., amount smoked) and desire to quit would differ as a function of message frame (gain vs. loss) or outcome focus (individual vs. couple). Dual-smoker couples (N = 40) completed a baseline survey and were then randomized to review gain- or loss-framed messages that varied whether the outcomes influenced the individual or the couple. Main outcomes were desire to quit after reading messages and smoking behaviors at a 1-month follow-up. Couple-focused messages produced the strongest desire to quit and decreased amount of cigarettes smoked at follow-up. The latter effect was mediated by desire to quit. Loss-framed messages produced inconsistent effects on desire to quit. There were no significant interactions between outcome focus and message framing. Findings suggest that messages emphasizing how smoking affects both partners can motivate cessation among dual-smoker couples. Contrary to findings showing that gain-framed messages motivate cessation targeting individual smokers, results suggest that loss-framed messages may be more persuasive than gain-framed messages when the target of the outcome involves significant others.

  1. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    Science.gov (United States)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  2. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations

    International Nuclear Information System (INIS)

    Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.

    1993-01-01

    Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode

  3. Bistable switching in dual-frequency liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2006-06-15

    Various bistable switching modes in nematic liquid crystals with frequency inversion of the sign of dielectric anisotropy are revealed and investigated. Switching between states with different helicoidal distributions of the director field of a liquid crystal, as well as between uniform and helicoidal states, is realized by dual-frequency waveforms of a driving voltage. A distinctive feature of the dual-frequency switching is that the uniform planar distribution of the director field may correspond to a thermodynamically equilibrium state, and the chirality of an LC is not a necessary condition for switching to a helicoidal state.

  4. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  5. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  6. Establishment and analysis of coupled dynamic model for dual-mass silicon micro-gyroscope

    Science.gov (United States)

    Wang, Zhanghui; Qiu, Anping; Shi, Qin; Zhang, Taoyuan

    2017-12-01

    This paper presents a coupled dynamic model for a dual-mass silicon micro-gyroscope (DMSG). It can quantitatively analyze the influence of left-right stiffness difference on the natural frequencies, modal matrix and modal coupling coefficient of the DMSG. The analytic results are verified by using the finite element method (FEM) simulation. The model shows that with the left-right stiffness difference of 1%, the modal coupling coefficient is 12% in the driving direction and 31% in the sensing direction. It also shows that in order to achieve good separation, the stiffness of base beam should be small enough in both the driving and sensing direction.

  7. The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency response model

    Directory of Open Access Journals (Sweden)

    D. A. Robinson

    1998-01-01

    Full Text Available Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the

  8. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge

    International Nuclear Information System (INIS)

    Sirse, N; Ellingboe, A R; Jeon, M H; Yeom, G Y

    2014-01-01

    Time-resolved electron density, n e , is measured in a low pressure pulsed two-frequency capacitively coupled plasma discharge sustained in Ar and in Ar/CF 4 /O 2 (80 : 10 : 10) gas mixture using a floating resonance hairpin probe. The top electrode is powered by 60 MHz in pulse mode and the bottom electrode is powered by 2 MHz in continuous wave mode. The dependence of time-resolved n e on the low frequency (LF) and high frequency (HF) power levels, operating gas pressure, pulse repetition frequency (PRF) and duty cycle are investigated. It is found that the steady state n e in the long on-phase is greatly influenced by the HF power level and slightly affected by the LF power level in both Ar and Ar/CF 4 /O 2 plasma. The decay time of n e is slow (∼30–90 µs) in the case of Ar plasma and strongly depends on the LF power level, whereas in the case of Ar/CF 4 /O 2 gas mixture it is very fast (∼15 µs) and marginally dependent on LF power level. In Ar plasma the steady state n e is increasing with a rise in operating gas pressure, however, in Ar/CF 4 /O 2 plasma it first increases with gas pressure reaching to the maximum (at 20 mTorr) value and then decreases. The pressure dependence of decay time constant mimics the pressure variation of steady state n e . Furthermore, it is observed that the on-phase electron density is greatly affected by changing the PRF and duty cycle. This effect is more prominent in Ar/CF 4 /O 2 plasma when compared to Ar discharge. In addition, n e is observed to overshoot the steady state densities in the beginning of the on-phase in Ar/CF 4 /O 2 gas mixture, but this effect is either small or absent in the case of Ar plasma. (paper)

  9. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    Science.gov (United States)

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  10. Coupling technology for dual-purpose nuclear-desalting plants

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Anderson, T.D.; Reed, S.A.

    1976-11-01

    Although the basic technology for the various components of nuclear dual-purpose plants is reasonably well developed, the techniques of coupling the elements together to form a reliable, economical system that will satisfy the diverse operating requirements are not well established. The purpose of the study reported is to examine the technical, economic, and safety considerations in coupling nuclear power plants with distillation units to form a dual-purpose power and water distillation plant. The basic coupling arrangement required to provide a large-scale dual-purpose water plant is to supply steam to the water plant from the exhaust of a back-pressure turbine. The principal component at the interface that may require major research and development is the back-pressure turbine. To satisfy the operational requirements, two major auxiliary systems will be needed. These are: (1) a prime-steam bypass system, and (2) auxiliary condensers. These systems will provide a degree of independence between water and power production and can be justified economically

  11. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    International Nuclear Information System (INIS)

    Barış, Behzad

    2013-01-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R s −V) gave a peak in the depletion region at all frequencies. The density of interface states (N ss ) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N ss and τ have been calculated in the ranges of 8.37×10 11 –4.85×10 11 eV −1 cm −2 and 5.17×10 −6 –1.02×10 −5 s, respectively

  12. Effect of capacitive feedback on the characteristics of direct current superconducting quantum interference device coupled to a multiturn input coil

    International Nuclear Information System (INIS)

    Minotani, T.; Enpuku, K.; Kuroki, Y.

    1997-01-01

    Distortion of voltage versus flux (V endash Φ) relation of a dc superconducting quantum interference device (SQUID) coupled to a multiturn input coil is studied. First, resonant behavior of the coupled SQUID due to the so-called input coil resonance is clarified. It is shown that large rf noise flux is produced by the input coil resonance. This rf flux is added to the SQUID, and results in large rf voltage across the SQUID. In the case where parasitic capacitance exists between the input coil and the ground of the SQUID, this rf voltage produces the rf flux again, i.e., a feedback loop for the rf flux is formed. Taking into account this capacitive feedback, we study the V endash Φ relation of the coupled SQUID. Numerical simulation shows that the V endash Φ relation is distorted considerably by the feedback mechanism. The simulation result explains well the experimental V endash Φ relation of the coupled SQUID. The combination of the input coil resonance with the capacitive feedback is the most likely mechanism for the distorted V endash Φ curve of the coupled SQUID. The condition for occurrence of the distorted V endash Φ curve due to the capacitive feedback is also obtained, and methods to prevent degradation are discussed. copyright 1997 American Institute of Physics

  13. DUAL CAREER COUPLES IN KOLKATA AND THEIR STRESSFUL WORK LIFE BALANCE

    OpenAIRE

    Jhilam Rudra De

    2017-01-01

    Dual-career couples were exceptions to the norm in the 1960s, but on date it is difficult to assess the number of married career women in the work force. Previous researches suggest that, the problems of the working women, who are a significant part of a dual career couple, may include lack of flexibility in the workplace, male-trailing spouses, career versus relationship child bearing conflicts etc. The key for dual career couples is to establish a system to help them balance their career an...

  14. Dual vector multiplet coupled to dual N=1 supergravity in 10D

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2005-01-01

    We couple in superspace a dual vector multiplet (C m 1 ...m 7 ,λ α ) to the dual version of N=1 supergravity (e m a ,ψ m α ,M m 1 ...m 6 ,χ α ,Φ) in ten dimensions. The 7-form field C has its 8-form field strength H dual to the 2-form field strength F of the conventional vector multiplet. To simplify the computation, we use so-called beta-function-favored superspace constraints for dual supergravity developed for β-function computations. As in a more conventional constraint set, the H-Bianchi identity must have the form N and F, where N is the 7-form field strength in dual supergravity. The potential anomaly for the dual vector multiplet can be cancelled for the particular gauge group U(1) 496 by the Green-Schwarz mechanism. As a by-product, we also give the globally supersymmetric Abelian Dirac-Born-Infeld interactions for the dual vector multiplet for the first time

  15. About the EDF formation in a capacitively coupled argon plasma

    International Nuclear Information System (INIS)

    Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H

    2006-01-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions

  16. About the EDF formation in a capacitively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)

    2006-08-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

  17. Ion flux nonuniformities in large-area high-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Perret, A.; Chabert, P.; Booth, J.-P.; Jolly, J.; Guillon, J.; Auvray, Ph.

    2003-01-01

    Strong nonuniformities of plasma production are expected in capacitive discharges if the excitation wavelength becomes comparable to the reactor size (standing-wave effect) and/or if the plasma skin depth becomes comparable to the plate separation (skin effect) [M. A. Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)]. Ion flux uniformity measurements were carried out in a large-area square (40 cmx40 cm) capacitive discharge driven at frequencies between 13.56 MHz and 81.36 MHz in argon gas at 150 mTorr. At 13.56 MHz, the ion flux was uniform to ±5%. At 60 MHz (and above) and at low rf power, the standing-wave effect was seen (maximum of the ion flux at the center), in good quantitative agreement with theory. At higher rf power, maxima of the ion flux were observed at the edges, due either to the skin effect or to other edge effects

  18. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  19. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  20. Application of multiple signal classification algorithm to frequency estimation in coherent dual-frequency lidar

    Science.gov (United States)

    Li, Ruixiao; Li, Kun; Zhao, Changming

    2018-01-01

    Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.

  1. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  2. Frequency dependent capacitance and conductance properties of Schottky diode based on rubrene organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2013-10-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency dependent capacitance–voltage (C–V–f) and conductance–voltage (G–V–f) characteristics of Al/rubrene/p-Si Schottky diyotes has been investigated in the frequency range of 5 kHz–500 kHz at room temperature. The C–V plots show a peak for each frequency. The capacitance of the device decreased with increasing frequency. The decrease in capacitance results from the presence of interface states. The plots of series resistance–voltage (R{sub s}−V) gave a peak in the depletion region at all frequencies. The density of interface states (N{sub ss}) and relaxation time (τ) distribution profiles as a function of applied voltage bias have been determined from the C–V and G–V measurements. The values of the N{sub ss} and τ have been calculated in the ranges of 8.37×10{sup 11}–4.85×10{sup 11} eV{sup −1} cm{sup −2} and 5.17×10{sup −6}–1.02×10{sup −5} s, respectively.

  3. Compressive sensing-based wideband capacitance measurement with a fixed sampling rate lower than the highest exciting frequency

    International Nuclear Information System (INIS)

    Xu, Lijun; Ren, Ying; Sun, Shijie; Cao, Zhang

    2016-01-01

    In this paper, an under-sampling method for wideband capacitance measurement was proposed by using the compressive sensing strategy. As the excitation signal is sparse in the frequency domain, the compressed sampling method that uses a random demodulator was adopted, which could greatly decrease the sampling rate. Besides, four switches were used to replace the multiplier in the random demodulator. As a result, not only the sampling rate can be much smaller than the signal excitation frequency, but also the circuit’s structure is simpler and its power consumption is lower. A hardware prototype was constructed to validate the method. In the prototype, an excitation voltage with a frequency up to 200 kHz was applied to a capacitance-to-voltage converter. The output signal of the converter was randomly modulated by a pseudo-random sequence through four switches. After a low-pass filter, the signal was sampled by an analog-to-digital converter at a sampling rate of 50 kHz, which was three times lower than the highest exciting frequency. The frequency and amplitude of the signal were then reconstructed to obtain the measured capacitance. Both theoretical analysis and experiments were carried out to show the feasibility of the proposed method and to evaluate the performance of the prototype, including its linearity, sensitivity, repeatability, accuracy and stability within a given measurement range. (paper)

  4. Dual-Military Couples, Child Care and Retention

    Science.gov (United States)

    2016-04-01

    ACSC/Williams, Ja Rai A./AY16 1 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Dual-Military Couples, Child Care & Retention...academic research paper are those of the author( s ) and do not reflect the official policy or position of the US government or the Department of Defense...inclusion. A number of Airmen are married to other military members—a phenomenon coined as “dual-military” marriages. Specifically, 11.3% (35,239) of

  5. Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces

    Directory of Open Access Journals (Sweden)

    Ali Forouzmand

    2015-07-01

    Full Text Available In this paper, we demonstrate that a wire medium slab loaded with graphene-nanopatch metasurfaces (GNMs enables the enhancement of evanescent waves for the subwavelength imaging at terahertz (THz frequencies. The analysis is based on the nonlocal homogenization model for wire medium with the additional boundary condition at the connection of wires to graphene. The physical mechanism behind this lens can be described as the surface plasmons excitement at the lower and upper GNMs which are coupled by an array of metallic wires. The dual nature (capacitive/inductive of the GNM is utilized in order to design a dual-band lens in which the unique controllable properties of graphene and the structural parameters of wire medium (WM slab provide more degrees of freedom in controlling two operating frequency bands. The lens can support the subwavelength imaging simultaneously at two tunable distinct frequencies with the resolution better than λ/6 even if the distance between GNMs is a significant fraction of wavelength (>λ/5.5. The major future challenges in the fabrication of the lens have been demonstrated and a promising approach for the practical configuration of the lens has been proposed.

  6. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  7. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  8. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C – V curve for MOS capacitors

    International Nuclear Information System (INIS)

    Lu Han-Han; Xu Jing-Ping; Liu Lu; Lai Pui-To; Tang Wing-Man

    2016-01-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C – V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi–Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. (paper)

  9. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  10. Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media

    Science.gov (United States)

    Sheldon, Robert T.

    values of sensor resonant frequency was obtained for the samples studied. Agreement between calculated and measured quality factor was good in some cases but incurred the particular challenge of accurately quantifying multiple contributions to loss from the sensor structure itself, which at times dominates the contribution due to the sample material. Two later chapters describe the development of capacitive sensors to quantify the low-frequency changes in material permittivity due to environmental aging mechanisms. One embodiment involves the application of coplanar concentric interdigital electrode sensors for the purpose of investigating polymer-matrix degradation in glass-fiber composites due to isothermal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high temperatures to induce thermal degradation and capacitive sensors were used to measure the sensor capacitance and dissipation factor, parameters that are directly proportional to the real and imaginary components of complex permittivity, respectively. It was shown that real permittivity and dissipation factor decreased with increasing aging temperature, a trend that was common to both interdigital sensor measurements and standard parallel plate electrode measurements. The second piece of work involves the development of cylindrical interdigital electrode sensors to characterize complex permittivity changes in wire insulation due to aging-related degradation. The sensor was proven effective in detecting changes in irradiated nuclear power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immersion. In all three cases, the results indicate a clear correlation of measured capacitance and dissipation factor with increased degradation.

  11. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  12. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  13. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  14. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C-V curve for MOS capacitors

    Science.gov (United States)

    Lu, Han-Han; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To; Tang, Wing-Man

    2016-11-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).

  15. Limitations of the electromagnetic isolation for multi-antenna systems on small terminals with capacitive coupling elements

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Alrabadi, Osama; Franek, Ondrej

    2012-01-01

    Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs...

  16. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  17. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  18. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  19. Modeling and Design of Capacitive Micromachined Ultrasonic Transducers Based-on Database Optimization

    International Nuclear Information System (INIS)

    Chang, M W; Gwo, T J; Deng, T M; Chang, H C

    2006-01-01

    A Capacitive Micromachined Ultrasonic Transducers simulation database, based on electromechanical coupling theory, has been fully developed for versatile capacitive microtransducer design and analysis. Both arithmetic and graphic configurations are used to find optimal parameters based on serial coupling simulations. The key modeling parameters identified can improve microtransducer's character and reliability effectively. This method could be used to reduce design time and fabrication cost, eliminating trial-and-error procedures. Various microtransducers, with optimized characteristics, can be developed economically using the developed database. A simulation to design an ultrasonic microtransducer is completed as an executed example. The dependent relationship between membrane geometry, vibration displacement and output response is demonstrated. The electromechanical coupling effects, mechanical impedance and frequency response are also taken into consideration for optimal microstructures. The microdevice parameters with the best output signal response are predicted, and microfabrication processing constraints and realities are also taken into consideration

  20. Capacitive Coupling in Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Zdenka Benesova

    2004-01-01

    Full Text Available The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations for designers.

  1. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  2. Design Considerations in Capacitively Coupled Plasmas

    Science.gov (United States)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  3. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  4. A Lever Coupling Mechanism in Dual-Mass Micro-Gyroscopes for Improving the Shock Resistance along the Driving Direction

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-04-01

    Full Text Available This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope’s modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity.

  5. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  6. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  7. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  8. Design and Implementation of Dual-Band MIMO Antenna with Low Mutual Coupling Using EBG for Handheld Applications

    Directory of Open Access Journals (Sweden)

    Duong Thanh Tu

    2017-01-01

    Full Text Available A dual-band Multiple Input Multiple Output (MIMO antenna system with enhanced isolation for LTE and WLAN applications is proposed. Using a double-rectangular Defected Ground Structure (DGS, the MIMO antenna gets two resonant frequencies of 2.6 GHz and 5.7 GHz with bandwidth of 5.7% and 4.3% respectively. To reduce much more mutual coupling between dual-band MIMO antenna ports, a novel double-side Electromagnetic Band Gap (EBG structure with equivalent circuit model is proposed. Size of t gain of the antenna is getting better, especially at the low band. he EBG unit cell is 8.6x8.6 mm2 that is built on FR4 substrate with height of 1.6 mm, so it is achieved more compact size than conventional EBG structures. With 1x7 EBG structures, the mutual coupling gets -40dB in the low frequency band and -30 dB in the high one with narrow distance of 0.11 from feeding point to feeding point. Furthermore, radiation efficiency as well as gain of the antenna is getting better, especially at the low band.

  9. Triple-Frequency GPS Precise Point Positioning Ambiguity Resolution Using Dual-Frequency Based IGS Precise Clock Products

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available With the availability of the third civil signal in the Global Positioning System, triple-frequency Precise Point Positioning ambiguity resolution methods have drawn increasing attention due to significantly reduced convergence time. However, the corresponding triple-frequency based precise clock products are not widely available and adopted by applications. Currently, most precise products are generated based on ionosphere-free combination of dual-frequency L1/L2 signals, which however are not consistent with the triple-frequency ionosphere-free carrier-phase measurements, resulting in inaccurate positioning and unstable float ambiguities. In this study, a GPS triple-frequency PPP ambiguity resolution method is developed using the widely used dual-frequency based clock products. In this method, the interfrequency clock biases between the triple-frequency and dual-frequency ionosphere-free carrier-phase measurements are first estimated and then applied to triple-frequency ionosphere-free carrier-phase measurements to obtain stable float ambiguities. After this, the wide-lane L2/L5 and wide-lane L1/L2 integer property of ambiguities are recovered by estimating the satellite fractional cycle biases. A test using a sparse network is conducted to verify the effectiveness of the method. The results show that the ambiguity resolution can be achieved in minutes even tens of seconds and the positioning accuracy is in decimeter level.

  10. Intraoperative radio-frequency capacitive hyperthermia and radiation therapy for unresectable pancreatic cancer

    International Nuclear Information System (INIS)

    Nakazawa, M.; Yamashita, T.; Hashida, I.

    1988-01-01

    The authors have initiated intraoperative radiation therapy (IORT) and intraoperative radio-frequency capacitive hyperthermia (IOHT) for unresectable pancreatic cancer. After gastric (corpus) resection, IORT and IOHT were conducted and gastro-duodenostomy was performed IORT was delivered with 12 meV electron (25 Gy) and 10 MV Linac x-ray (7.5 Gy). IOHT was done with 13.56 MHz capacitive equipment aiming 43 0 C for over 30 min along with concurrent administration of 500 mg 5-FU. Five cases were heated by the conventional method and two additional cases were heated with a newly fabricated applicator. Attained temperatures monitored directly from tumor were 38.5 0 C-44.3 0 C (over 43 0 C in four cases, 40 0 C in one case, and below 40 0 C in two cass.) Pain relief was achieved in most cases. Using the new applicators, the authors could avoid unexpected hot spots and insufficient heating

  11. Commissioning and Charge Readout Calibration of a 5 Ton Dual Phase Liquid Argon TPC

    CERN Document Server

    AUTHOR|(CDS)2098555

    Dual phase time projection chambers with amplification of ionization electrons provide a novel technique for measuring and analyzing rare events with excellent spatial resolution and great calorimetric properties. This thesis describes the commissioning of the WA105 3 x 1 x 1 m3 dual phase liquid argon detector, built to demonstrate the performance of this kind of detector on large scales in order to determine the viability of giant dual phase time projection chambers in long baseline neutrino oscillation experiments. The properties of the insulation and the main tank vessel are described and analyzed, such as the pressure, temperature and argon purity requirements during operation in order to guarantee stable conditions and good event tracking. As signals are induced due to electrons from ionizing radiation, crosstalk is caused by capacitive couplings between strips of the charge readout plane and in the electronics of the data acquisition. These induced signals are studied and compared to capacitance and pu...

  12. Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes

    International Nuclear Information System (INIS)

    Bazhenov, V.Yu.; Tsiolko, V.V.; Piun, V.M.; Chaplinskiy, R.Yu.; Kuzmichev, A.I.

    2013-01-01

    Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent gamma modes are determined experimentally. It is shown that transition from α mode to gamma mode occurs through a phase of coexistence of both modes in different parts of the discharge gap.

  13. Benefits and Challenges of Dual-Earning: Perspectives of Successful Couples.

    Science.gov (United States)

    Haddock, Shelley A.; Rattenborg, Karen

    2003-01-01

    Examines the benefits and challenges derived from the dual-earner lifestyle for couples who successfully balance family and work. Many therapists harbor negative and stereotypical assumptions of the quality of dual-earner family life, but the findings of this study are helpful in providing a more balanced, informed view of the possibilities of…

  14. Analysis of ecstasy tablets using capillary electrophoresis with capacitively coupled contactless conductivity detection.

    Science.gov (United States)

    Porto, Suely K S S; Nogueira, Thiago; Blanes, Lucas; Doble, Philip; Sabino, Bruno D; do Lago, Claudimir L; Angnes, Lúcio

    2014-11-01

    A method for the identification of 3,4-methylenedioxymethamphetamine (MDMA) and meta-chlorophenylpiperazine (mCPP) was developed employing capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C(4) D). Sample extraction, separation, and detection of "Ecstasy" tablets were performed in fenproporex, caffeine, lidocaine, and cocaine. Separation was performed in <90 sec. The advantages of using C(4) D instead of traditional CE-UV methods for in-field analysis are also discussed. © 2014 American Academy of Forensic Sciences.

  15. Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime

    Science.gov (United States)

    Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying

    2018-03-01

    Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.

  16. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  17. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqiao [MOE Key Laboratory of Hydrodynamics, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Calvisi, Michael L [Department of Mechanical and Aerospace Engineering, University of Colorado, Colorado Springs, CO 80918, United States of America (United States); Wang, Qianxi, E-mail: yunqiaoliu@sjtu.edu.cn [School of Mathematics, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-04-15

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents. (paper)

  18. Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth

    polytope with generalized upper bounds. From our computational study, we show that the semi-Lagrangean relaxation approach has its merits when the instances are tightly constrained with regards to the capacity of the system, but that it is very hard to compete with a standalone implementation of the cut......This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact...... solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean based dual ascent algorithm to solve the sparse problems arising in the cut-and-solve algorithm. Furthermore, we developed a simple way to separate a special type of cutting planes from what we denote the effective capacity...

  19. Frequency-agile dual-comb spectroscopy

    Science.gov (United States)

    Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

  20. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....

  1. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  2. Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime

    International Nuclear Information System (INIS)

    Kalache, B; Novikova, T; Morral, A Fontcuberta i; Cabarrocas, P Roca i; Morscheidt, W; Hassouni, K

    2004-01-01

    We present the results of a study of a capacitively coupled hydrogen discharge by means of a one-dimensional numerical fluid model and experiments. The model includes a detailed description of the gas-phase chemistry taking into account the production of H - ions by dissociative attachment of H 2 vibrational levels. The population of these levels is described by a Boltzmann vibrational distribution function characterized by a vibrational temperature T V . The effect of the dissociative-attachment reaction on the discharge dynamics was investigated by varying the vibrational temperature, which was used as a model input parameter. Increasing the vibrational temperature from 1000 to 6000 K affects both the chemistry and the dynamics of the electrical discharge. Because of dissociative attachment, the H - ion density increases by seven orders of magnitude and the H - ion density to electron density ratio varies from 10 -7 to 6, while the positive ion density increases slightly. As a consequence, the atomic hydrogen density increases by a factor of three, and the sheath voltage drops from 95 to 75 V. Therefore, clear evidence of a strong coupling between chemistry and electrical dynamics through the production of H - ions is demonstrated. Moreover, satisfactory agreement between computed and measured values of atomic hydrogen and H - ion densities gives further support to the requirement of a detailed description of the hydrogen vibrational kinetics for capacitively coupled radio frequency discharge models in the Torr regime

  3. Dual-Frequency, Dual-Polarization Microstrip Antenna Development for High-Resolution, Airborne SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, N.

    2000-01-01

    synthetic aperture radar (SAR) system. The dual-frequency array concept adopted relies on the use of probe-fed perforated, stacked patches for L-band (1.2-1.3 GHz). Inside these perforations probe-fed, wideband stacked microstrip patches for C-band (4.9-5.7 GHz) are placed. Measured impedance and radiation...

  4. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  5. Lightweight linear alternators with and without capacitive tuning

    Science.gov (United States)

    Niedra, Janis M.

    1993-06-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  6. rf Quantum Capacitance of the Topological Insulator Bi2Se3 in the Bulk Depleted Regime for Field-Effect Transistors

    Science.gov (United States)

    Inhofer, A.; Duffy, J.; Boukhicha, M.; Bocquillon, E.; Palomo, J.; Watanabe, K.; Taniguchi, T.; Estève, I.; Berroir, J. M.; Fève, G.; Plaçais, B.; Assaf, B. A.

    2018-02-01

    A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate- (h -BN) encapsulated CVD-grown Bi2Se3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h -BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi2Se3 (n ˜1018 cm-3 in 8 nm) on h -BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.

  7. Evaluation of planar 3D electrical capacitance tomography: from single-plane to dual-plane configuration

    International Nuclear Information System (INIS)

    Wei, Hsin-Yu; Qiu, Chang-Hua; Soleimani, Manuchehr

    2015-01-01

    Electrical capacitance tomography (ECT) is a non-invasive imaging technique that is sensitive to the dielectric permittivity property of an object. Conventional ECT systems have a circular/cylindrical or rectangular geometry, in which the electrode plates are usually spaced equally around the tank. It is the most common configuration as it can be easily applied to industrial pipelines. However, under some circumstances, the full access to the imaging geometry may not be applicable due to the limitation of the process area. In those cases, and with limited access, planar ECT sensors can fit the process structure if access to only one side is possible. A single-plane ECT configuration has been proposed for such applications. However, the planar array often suffers from a lack of sensitivity and difficulty with depth detection. To better understand these limitations we investigate the imaging performance from the single-plane ECT to dual-plane ECT structure. The limitations and constraints of the planar configuration will also be discussed. Several experiments were conducted using both single-plane and dual-plane configurations to evaluate the potential applications. The initial results are promising, and the quality of the reconstructed images are compared with the real condition for process validation. (paper)

  8. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  9. Mutual Information in Frequency and Its Application to Measure Cross-Frequency Coupling in Epilepsy

    Science.gov (United States)

    Malladi, Rakesh; Johnson, Don H.; Kalamangalam, Giridhar P.; Tandon, Nitin; Aazhang, Behnaam

    2018-06-01

    We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.

  10. Comparison the treatment effects between simultaneous dual frequency and single frequency irradiation of ultrasound in a murine model of breast adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Mahboobeh Alamolhoda

    2010-12-01

    Full Text Available Introduction: Transient cavitations induced by low frequency irradiation of ultrasound can be used to treat tumors. Previous studies in in-vitro experiments have shown that induced cavitation by dual or multiple frequencies of ultrasound is greater than induced cavitation by single frequency irradiation. In this study, we compared and evaluated the treatment effects of dual frequency irradiation of ultrasound (1 MHz and 150 kHz and single frequency irradiation in in-vivo experiments on breast adenocarcinoma tumors. Material and Method: In this study, the tumor-bearing mice were divided into 5 groups: control, sham, treated group for 30 min with 150 kHz frequency in continuous mode, another group with 1 MHz frequency in pulse mode, and treated group with combined dual frequency ultrasound (150 kHz in continuous mode and 1 MHz in 80% pulse mode. To evaluate the effects of ultrasound irradiation on tumor growth delay, the volumes of the tumors were investigated for 30 days. Tumor growth delay parameters including relative volume, inhibition ratio percentage and the required times for the tumor volume to reach to two (T2 and five (T5 times its initial volume were calculated. Results: The results showed that the treated groups with single frequency irradiation of 150 kHz continuous mode and 1 MHz pulse mode and combined dual frequency had statistically significant differences in tumor relative volume percentage during the period of 3 to 24 days after treatment (p

  11. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    Science.gov (United States)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  12. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  13. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-01-01

    Full Text Available Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this optimal network as a function of the characteristics of the capacitive wireless link, as well for the series as for the parallel topology. The results are compared with the inductive power transfer system. Introduction of a new concept, the coupling function, enables the description of the compensation network of both an inductive and a capacitive system in two elegant equations, valid for the series and the parallel topology. This approach allows better understanding of the fundamentals of the wireless power transfer link, necessary for the design of an efficient system.

  14. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  15. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  16. Measurement of a discontinuous object based on a dual-frequency grating

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; Cai Xin-Hua; Yao Chun-Mei

    2009-01-01

    The dual-frequency grating measurement theory is proposed in order to carry out the measurement of a discontinuous object. Firstly, the reason why frequency spectra are produced by low frequency gratings and high frequency gratings in the field of frequency is analysed, and the relationship between the wrapped-phase and the unwrappingphase is discussed. Secondly, a method to combine the advantages of the two kinds of gratings is proposed: one stripe is produced in the mutation part of the object measured by a suitable low frequency grating designed by MATLAB, then the phase produced by the low frequency grating need not be unfolded. The integer series of stripes is produced by a high frequency grating designed by MATLAB based on the frequency ratio of the two kinds of gratings and the high frequency wrapped-phase, and the high frequency unwrapping-phase is then obtained. In order to verify the correctness of the theoretical analysis, a steep discontinuous object of 600×600 pixels and 10.00 mm in height is simulated and a discontinuous object of ladder shape which is 32.00 mm in height is used in experiment. Both the simulation and the experiment can restore the discontinuous object height accurately by using the dual-frequency grating measurement theory.

  17. Dynamic characteristics of dual-rotor system with coupling faults of misalignment and rub-impact

    Directory of Open Access Journals (Sweden)

    Huang Zhiwei

    2017-01-01

    Full Text Available According to fault problems of the rotor system local rubbing caused by mass eccentricity, a dynamic model for the dual-rotor system with coupling faults of misalignment and rub-impact was established. The dynamic behaviours of this system were investigated by using numerical integral method, as parallel and angular misalignment varied. Various nonlinear phenomena compressing periodic, three-periodic and quasi-periodic motions are observed. The results reveal that the process of the rotor rub-impact is extremely complex and has some frequencies with large amplitude, especially at the 1/3X component. Meanwhile, quasi-periodic regions exhibit different configurations of attractors and the phenomenon of beat vibration.

  18. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Science.gov (United States)

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  19. Maternity and paternity leave and career progression of black African women in dual-career couples

    Directory of Open Access Journals (Sweden)

    Lucky L. Motaung

    2017-09-01

    Full Text Available Orientation: The study focused on examining the perceptions of dual-career couples at a stateowned company about the influence of taking maternity and paternity leave on the career progression of black African women in middle management and leadership occupations. Research purpose: The primary purpose of the study was to identify core barriers in relation to maternity and paternity leave that contribute negatively in the career progression of black African women in dual-career couples. Motivation for the study: To obtain insight into the underrepresentation and progression of black African women within dual-career couples, in middle management and leadership occupations. Research design, approach and method: This study was qualitative, comprising a sample of 10 black African women and 10 black African men, with data collected through in-depth semistructured interviews. Thematic analysis was utilised to analyse the interview dialogues. Main findings: The findings established that taking maternity leave has a negative influence on the career progression of black African women in dual-career couples at the state-owned company. The participants further confirmed that involuntary time off work and productiveness were principal influencing barriers of taking maternity leave, leading to other undesirable consequences, such as unproductiveness and reliability. Practical and managerial implications: The state-owned company should review its current talent management and recruitment and selection policies, in order to positively contribute to increasing the representation and facilitating career progression of black African women within dual-career couples, in middle management and leadership occupations. Contributions or value-add: Insights were provided on the influences of taking maternity and paternity leave in the underrepresentation and progression of black African women within dual-career couples, in middle management and leadership occupations.

  20. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2011-01-01

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  1. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  2. Estimation of wind stress using dual-frequency TOPEX data

    Science.gov (United States)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  3. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  4. [Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].

    Science.gov (United States)

    Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia

    2014-01-01

    Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.

  5. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Petru Adrian Cotfas

    2018-03-01

    Full Text Available The capacitance is one of the key dynamic parameters of solar cells, which can provide essential information regarding the quality and health state of the cell. However, the measurement of this parameter is not a trivial task, as it typically requires high accuracy instruments using, e.g., electrical impedance spectroscopy (IS. This paper introduces a simple and effective method to determine the electric capacitance of the solar cells. An RLC (Resistor Inductance Capacitor circuit is formed by using an inductor as a load for the solar cell. The capacitance of the solar cell is found by measuring the frequency of the damped oscillation that occurs at the moment of connecting the inductor to the solar cell. The study is performed through simulation based on National Instruments (NI Multisim application as SPICE simulation software and through experimental capacitance measurements of a monocrystalline silicon commercial solar cell and a photovoltaic panel using the proposed method. The results were validated using impedance spectroscopy. The differences between the capacitance values obtained by the two methods are of 1% for the solar cells and of 9.6% for the PV panel. The irradiance level effect upon the solar cell capacitance was studied obtaining an increase in the capacitance in function of the irradiance. By connecting different inductors to the solar cell, the frequency effect upon the solar cell capacitance was studied noticing a very small decrease in the capacitance with the frequency. Additionally, the temperature effect over the solar cell capacitance was studied achieving an increase in capacitance with temperature.

  6. Single-Layer, Dual-Port, Dual-Band, and Orthogonal-Circularly Polarized Microstrip Antenna Array with Low Frequency Ratio

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available A single-layer, dual-port, dual-band, and dual circularly polarized (CP microstrip array is designed for satellite communication in this paper. The operating frequencies are 8.2 and 8.6 GHz with a very low ratio of 1.05. First, a rectangular patch element is fed through microstrip lines at two orthogonal edges to excite two orthogonal dominant modes of TM01 and TM10. The very low frequency ratio can be realized with high polarization isolations. Then, a 2-by-2 dual-band dual-CP subarray is constructed by two independent sets of sequentially rotated (SR feed structures. An 8-by-8 array is designed on the single-layer thin substrate. Finally, by utilizing one-to-four power dividers and semirigid coaxial cables, a 16-by-16 array is developed to achieve higher gain. Measured results show that the 16-by-16 array has 15 dB return loss (RL bandwidths of 4.81% and 6.75% and 3 dB axial ratio (AR bandwidths of 2.84% and 1.57% in the lower and the upper bands, respectively. Isolations of 18.6 dB and 19.4 dB and peak gains of 25.1 dBic and 25.6 dBic are obtained at 8.2 and 8.6 GHz, respectively.

  7. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    to compensate reactive power and transfer active power simultaneously. It is a promising solution for micro-grid and building-integrated distributed generator systems. A quasiproportional- resonant (quasi-PR) controller is applied to reduce steady-state current tracking errors of the CGCI in this paper......The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter...... tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter....

  8. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  9. Split-Capacitance and Conductance-Frequency Characteristics of SOI Wafers in Pseudo-MOSFET Configuration

    KAUST Repository

    Pirro, Luca

    2015-09-01

    Recent experimental results have demonstrated the possibility of characterizing silicon-on-insulator (SOI) wafers through split C-V measurements in the pseudo-MOSFET configuration. This paper analyzes the capacitance and conductance versus frequency characteristics. We discuss the conditions under which it is possible to extract interface trap density in bare SOI wafers. The results indicate, through both measurements and simulations, that the signature due to interface trap density is present in small-area samples, but is masked by the RC response of the channel in regular, large-area ones, making the extraction in standard samples problematic. © 1963-2012 IEEE.

  10. Split-Capacitance and Conductance-Frequency Characteristics of SOI Wafers in Pseudo-MOSFET Configuration

    KAUST Repository

    Pirro, Luca; Diab, Amer El Hajj; Ionica, Irina; Ghibaudo, Gerard; Faraone, Lorenzo; Cristoloveanu, Sorin

    2015-01-01

    Recent experimental results have demonstrated the possibility of characterizing silicon-on-insulator (SOI) wafers through split C-V measurements in the pseudo-MOSFET configuration. This paper analyzes the capacitance and conductance versus frequency characteristics. We discuss the conditions under which it is possible to extract interface trap density in bare SOI wafers. The results indicate, through both measurements and simulations, that the signature due to interface trap density is present in small-area samples, but is masked by the RC response of the channel in regular, large-area ones, making the extraction in standard samples problematic. © 1963-2012 IEEE.

  11. Couplings of self-dual tensor multiplet in six dimensions

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Sokatchev, E.

    1996-01-01

    The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yang–Mills multiplet, in the absence of supergravity. The

  12. Electron heating via self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas

    International Nuclear Information System (INIS)

    Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A

    2015-01-01

    The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization

  13. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  14. Dual-frequency ring-magnet power supply with flat bottom

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1983-01-01

    A power supply is described that furnishes an essentially flat-bottom injection field, followed by a dual-frequency cosine field. This results in efficient beam capture during injection and reduces significantly the peak rf power required during acceleration in a rapid-cycling synchrotron

  15. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    OpenAIRE

    Ben Minnaert; Nobby Stevens

    2017-01-01

    Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this opti...

  16. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  17. Development trends of combined inductance-capacitance electromechanical energy converters

    Directory of Open Access Journals (Sweden)

    Karayan Hamlet

    2018-01-01

    Full Text Available In the article the modern state of completely new direction of electromechanical science such as combined inductive-capacitive electromechanics is considered. The wide spectra of its possible practical applications and prospects for further development are analyzed. A new approach for mathematical description of transients in dualcon jugate dynamic systems is proposed. On the basis of the algorithm differential equations for inductive-capacitive compatible electromechanical energy converters are derived. The generalized Lagrangian theory of combined inductively-capacitive electric machines was developed as a union of generalized Lagrangian models of inductive and capacitive electro-mechanical energy converters developed on the basis of the basic principles of binary-conjugate electrophysics. The author gives equations of electrodynamics and electromechanics of combined inductive-capacitive electric machines in case there are active electrotechnical materials of dual purpose (ferroelectromagnets in the structure of their excitation system. At the same time, the necessary Lagrangian for combined inductive-capacitive forces was built using new technologies of interaction between inductive and capacitive subsystems. The joint solution of these equations completely determines the dynamic behavior and energy characteristics of the generalized model of combined machines of any design and in any modes of interaction of their functional elements

  18. Workaholism and well-being among Japanese dual-earner couples : a spillover-crossover perspective

    NARCIS (Netherlands)

    Shimazu, A.; Demerouti, E.; Bakker, A.B.; Shimada, K.; Kawakami, N.

    2011-01-01

    This study among Japanese dual-earner couples examined the impact of workaholism on employees’ and their partners’ work-family conflicts and psychological distress. The matched responses of 994 couples were analyzed with logistic regression analyses. Results showed that workaholics (i.e., employees

  19. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  20. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  1. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  2. High frequency electromagnetic processes in induction motors supplied from PWM inverters

    Directory of Open Access Journals (Sweden)

    Ioan Ţilea

    2010-12-01

    Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.

  3. Geographical Mobility of Danish Dual-Earner Couples

    DEFF Research Database (Denmark)

    Deding, Mette; Filges, Trine

    In this paper, we analyse the empirical relationship between geographical residence mobility and geographical job mobility for Danish dual-earner couples. Based on register data from Statistics Denmark from 1999 and 2000, we estimate three probabilities, taking the interdependence between...... the work region matters for the determination of the residence region. Furthermore, although the model stresses the importance of looking at both spouses, we do not find marked differences between the men and the women. Thus, our results do not indicate that one spouse is more important than the other...

  4. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  5. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    Science.gov (United States)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  6. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals

    International Nuclear Information System (INIS)

    Hao Qingzhen; Zhao Yanhui; Juluri, Bala Krishna; Kiraly, Brian; Huang, Tony Jun; Liou, Justin; Khoo, Iam Choon

    2011-01-01

    Frequency-addressed tunable transmission is demonstrated in optically thin metallic nanohole arrays embedded in dual-frequency liquid crystals (DFLCs). The optical properties of the composite system are characterized by the transmission spectra of the nanoholes, and a prominent transmission peak is shown to originate from the resonance of localized surface plasmons at the edges of the nanoholes. An ∼17 nm shift in the transmission peak is observed between the two alignment configurations of the liquid crystals. This DFLC-based active plasmonic system demonstrates excellent frequency-dependent switching behavior and could be useful in future nanophotonic applications.

  7. High-Frequency Antenna Arrays and Coupling Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — We are fabricating antenna arrays and coupling structure for frequencies in the 200-300 GHz frequency bands. The primary motivation of this work is to develop...

  8. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  9. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  10. Capacitive acoustic wave detector and method of using same

    Science.gov (United States)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  11. Optimization Design Method for the CMOS-type Capacitive Micro-Machined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    D. Y. Chiou

    2011-12-01

    Full Text Available In this study, an integrated modeling technique for characterization and optimization design of the complementary metal-oxide-semiconductor (CMOS capacitive micro-arrayed ultrasonic transducer (pCMOS-CMUT is presented. Electromechanical finite element simulations are performed to investigate its operational characteristics, such as the collapse voltage and the resonant frequency. Both the numerical and experimental results are in good agreement. In order to simultaneously customize the resonant frequency and minimize the collapse voltage, the genetic algorithm (GA is applied to optimize dimensional parameters of the transducer. From the present results, it is concluded that the FE/GA coupling approach provides another efficient numerical tool for multi-objective design of the pCMOS-CMUT.

  12. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    Science.gov (United States)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  13. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  14. Analysis of the acoustoelectric behavior of microwave frequency, temperature-compensated AlN-based multilayer coupling configurations

    International Nuclear Information System (INIS)

    Caliendo, Cinzia

    2008-01-01

    Piezoelectric AlN films, 1.3-6.2 μm thick, have been grown on bare and metallized Al 2 O 3 (0001) substrates by reactive radio-frequency-sputtering technique at 180 deg. C. The films were uniform, stress-free, highly c-axis oriented normal to the surface, and extremely adhesive to the substrates. Surface acoustic wave (SAW) delay lines, showing harmonic modes with operating frequencies up to about 2.44 GHz, were obtained just using conventional optical lithography at 7.5 μm linewidth resolution. Four interdigital transducer (IDT)/counter electrode configurations were obtained locating the IDTs either on the AlN free surface or at the Al 2 O 3 /AlN interface, with and without an Al thin metal film opposite the IDTs. The temperature induced shift of the fundamental and harmonic operating frequencies of the four configurations was measured at different temperatures in the range from -25 to 70 deg. C. The first order temperature coefficient of delay (TCD) of the four structures was experimentally evaluated for different film thickness values and for SAWs propagating along and normal the Al 2 O 3 a-axis. Eight AlN thicknesses, i.e., the temperature-compensated points (TCPs), were experimentally estimated at which the TCD is equal to 0 ppm/deg. C. These TCPs were found to be in good agreement with those theoretically evaluated. The SAW propagation along the four coupling structures was investigated in terms of phase and group velocity, electromechanical coupling coefficient, electrical potential, and IDT capacitance and radiation resistance for different film thickness values and SAW propagation directions. The numerical simulation of the mechanical and electrical behaviors of the coupling structures showed how the electroacoustic transduction efficiency, the IDT directivity, and bandwidth can benefit from having different electrical boundary conditions. The obtained results confirm the AlN feasibility to the implementation of SAW devices for application to gigahertz

  15. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2014-09-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  16. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham; Arsalan, Muhammad; Salama, Khaled N.

    2014-01-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  17. Perceptions of smoking-related risk and worry among dual-smoker couples.

    Science.gov (United States)

    Ranby, Krista W; Lewis, Megan A; Toll, Benjamin A; Rohrbaugh, Michael J; Lipkus, Isaac M

    2013-03-01

    Quit rates are lower and relapse rates are higher for people in close relationships with a partner who smokes. Although desire to quit is often related to health concerns for one's self, much less is known about psychosocial factors associated with quitting in dual-smoker couples. This study investigated relations among beliefs about smoking and desire to quit from both partners' perspectives. We recruited 63 couples in which both partners smoke daily. Participants were aged 21-67 (M = 43.0, SD = 11.3) and had been smoking for 4-51 years (M = 22.9, SD = 11.3). Individuals' desire to quit related to worry about partner's health (r = .29, p belief that own smoking has caused partner physical harm (r = .38, p harm of smoking for oneself (r = .30, p scale) for their partner's help if they attempt to quit. Dual-smoker couples are at heightened health risks due to exposure to passive smoke and their own smoking. Partners' perceived risk and worry about the harms of smoking could be important leverage points for smoking cessation efforts. Interventions can be informed by considering both partners' beliefs and by helping partners develop plans for quitting and supporting each other.

  18. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  19. Capacitance-voltage characterization of fully silicided gated MOS capacitor

    International Nuclear Information System (INIS)

    Wang Baomin; Ru Guoping; Jiang Yulong; Qu Xinping; Li Bingzong; Liu Ran

    2009-01-01

    This paper investigates the capacitance-voltage (C-V) measurement on fully silicided (FUSI) gated metal-oxide-semiconductor (MOS) capacitors and the applicability of MOS capacitor models. When the oxide leakage current of an MOS capacitor is large, two-element parallel or series model cannot be used to obtain its real C-V characteristic. A three-element model simultaneously consisting of parallel conductance and series resistance or a four-element model with further consideration of a series inductance should be used. We employed the three-element and the four-element models with the help of two-frequency technique to measure the Ni FUSI gated MOS capacitors. The results indicate that the capacitance of the MOS capacitors extracted by the three-element model still shows some frequency dispersion, while that extracted by the four-element model is close to the real capacitance, showing little frequency dispersion. The obtained capacitance can be used to calculate the dielectric thickness with quantum effect correction by NCSU C-V program. We also investigated the influence of MOS capacitor's area on the measurement accuracy. The results indicate that the decrease of capacitor area can reduce the dissipation factor and improve the measurement accuracy. As a result, the frequency dispersion of the measured capacitance is significantly reduced, and real C-V characteristic can be obtained directly by the series model. In addition, this paper investigates the quasi-static C-V measurement and the photonic high-frequency C-V measurement on Ni FUSI metal gated MOS capacitor with a thin leaky oxide. The results indicate that the large tunneling current through the gate oxide significantly perturbs the accurate measurement of the displacement current, which is essential for the quasi-static C-V measurement. On the other hand, the photonic high-frequency C-V measurement can bypass the leakage problem, and get reliable low-frequency C-V characteristic, which can be used to

  20. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  1. Emotion-Work Performance among Dual-Earner Couples: Testing Four Theoretical Perspectives

    Science.gov (United States)

    Minnotte, Krista Lynn; Stevens, Daphne Pedersen; Minnotte, Michael C.; Kiger, Gary

    2007-01-01

    This study compares four theories of domestic labor in their ability to predict relative emotion-work performance among dual-earner couples. Specifically, the authors investigate the effects of gender ideology, time availability, relative resources, and crossover factors on the dependent variable of relative emotion-work performance using…

  2. Within-couple specialisation in paid work: A long-term pattern? A dual trajectory approach to linking lives.

    Science.gov (United States)

    Langner, Laura Antonia

    2015-06-01

    Research on the division of labour has mainly focussed on transitions between individuals' labour market states during the first years of parenthood. A common conclusion has been that couples specialize--women in unpaid and men in paid work--either due to gender ideologies or a comparative advantage in the labour market. But what happens later in life? The German Socio-Economic Panel now provides researchers with a continuous measure of working hours across decades of couples' lives, enabling a dual trajectory analysis to explore couples' long-term specialisation patterns. I focus on the career trajectories of West German couples, and specifically, due to the relatively low institutional and normative support for female employment during its members' early years, on the 1956-65 female birth cohort. Even in this setting and with a conservative estimate, a surprisingly small number of couples--only a fifth--adopt full specialisation in later life. A sizable proportion--a third--moves into dual full-time employment. This trend is even more common among highly educated couples: half of those couples move into dual full-time employment. I find that highly educated women are not only less likely to permanently specialise but also more likely to try working full-time, possibly because their partners' comparative advantages are lower. But despite high opportunity costs, 45% of highly educated parents never try to pursue a dual career either because of a satiation of material wants or because of low societal support for maternal employment. The latter phenomenon is further underscored by the finding that many couples' increase in working hours occurs only when a youngest child is a teenager. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Application of capacitively coupled rf discharge plasma for sterilization of polymer materials used in ophthalmology

    International Nuclear Information System (INIS)

    Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.

    1996-01-01

    The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)

  4. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  5. Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAS

    Directory of Open Access Journals (Sweden)

    Michael Felux

    2017-01-01

    Full Text Available The Ground Based Augmentation System (GBAS is a landing system for aircraft based on differential corrections for the signals of Global Navigation Satellite Systems (GNSS, such as GPS or Galileo. The main impact on the availability of current single frequency systems results from the necessary protection against ionospheric gradients. With the introduction of Galileo and the latest generation of GPS satellites, a second frequency is available for aeronautical navigation. Dual frequency methods allow forming of ionospheric free combinations of the signals, eliminating a large part of the ionospheric threats to GBAS. However, the combination of several signals increases the noise in the position solution and in the calculation of error bounds. We, therefore, developed a method to base positioning algorithms on single frequency measurements and use the second frequency only for monitoring purposes. In this paper, we describe a detailed derivation of the monitoring scheme and discuss its implications for the use in an aviation context.

  6. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  7. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation

    Science.gov (United States)

    Knoblich, Günther; Dunne, Laura; Keller, Peter E.

    2017-01-01

    Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510

  8. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  9. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  10. Dual-Mode Dual-Band Microstrip Bandpass Filter Based on Fourth Iteration T-Square Fractal and Shorting Pin

    Directory of Open Access Journals (Sweden)

    E. S. Ahmed

    2012-06-01

    Full Text Available A new class of dual mode microstrip fractal resonator is proposed and developed for miniaturization of the dual band bandpass filter. The perimeter of the proposed resonator is increased by employing fourth iteration T-square fractal shape. Consequently the lower resonant frequency of the filter is decreased without increasing the usable space. The self similarity of the usable structure enables it to produce the two degenerate modes which are coupled using the proper perturbation technique. The shorting pin is placed at the null in the surface current distribution at the center of the resonator. This shorting pin is coactively coupled to the resonant circuit of the resonator, effectively coupled to the lower degenerate mode and reduces the lower edge band resonant frequency. By adjusting the resonator dimensions and the size of the shorting pin, the resonant frequency and the out-of-band rejection around the transmission bands can be controlled to meet the design requirements. The simulated response of the designed filter has two transmission bands, the first band is from 2.34-3.65 GHz with resonant frequencies at 2.47GHz and 3.55GHz, the second band is from 4.37-5.324GHz with resonant frequencies at 4.5GHz and 5.13GHz. In the pass bands, the group delay is less than 0.65 ns. The proposed filter can be applied to WLAN (2.4 GHz and 5.2 GHz and WiMAX (3.5 GHz and Bluetooth and ZigBee (4.9 GHz.

  11. 'Merge' - A Filter for the Fusion of Dual-Frequency Sidescan Sonar Data

    National Research Council Canada - National Science Library

    Neill, Roger

    1997-01-01

    A filtering and data fusion technique is described which uses the correlation between the two data streams of a dual-frequency sidescan sonar in order to discriminate against noise and preferentially...

  12. Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....

  13. A subgradient-based branch-and-bound algorithm for the capacitated facility location problem

    DEFF Research Database (Denmark)

    Görtz, Simon; Klose, Andreas

    This paper presents a simple branch-and-bound method based on Lagrangean relaxation and subgradient optimization for solving large instances of the capacitated facility location problem (CFLP) to optimality. In order to guess a primal solution to the Lagrangean dual, we average solutions to the L......This paper presents a simple branch-and-bound method based on Lagrangean relaxation and subgradient optimization for solving large instances of the capacitated facility location problem (CFLP) to optimality. In order to guess a primal solution to the Lagrangean dual, we average solutions...... to the Lagrangean subproblem. Branching decisions are then based on this estimated (fractional) primal solution. Extensive numerical results reveal that the method is much more faster and robust than other state-of-the-art methods for solving the CFLP exactly....

  14. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  15. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  16. Tunable coupling between fixed-frequency superconducting transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Filipp, Stefan [IBM Research Zurich, 8803 Rueschlikon (Switzerland); McKay, David C.; Magesan, Easwar; Mezzacapo, Antonio; Chow, Jerry M.; Gambetta, Jay M. [IBM TJ Watson Research Center, Yorktown Heights, NY (United States)

    2016-07-01

    The controlled realization of qubit-qubit interactions is essential for both the physical implementation of quantum error-correction codes and for reliable quantum simulations. Ideally, the fidelity and speed of corresponding two-qubit gate operations is comparable to those of single qubit operations. In particular, in a scalable superconducting qubit architecture coherence must not be compromised by the presence of additional coupling elements mediating the interaction between qubits. Here we present a coupling method between fixed-frequency transmon qubits based on the frequency modulation of an auxiliary circuit coupling to the individual transmons. Since the coupler remains in its ground state at all times, its coherence does not significantly influence the fidelity of consequent entangling operations. Moreover, with the possibility to create interactions along different directions, our method is suited to engineer Hamiltonians with adjustable coupling terms. This property can be utilized for quantum simulations of spins or fermions in transmon arrays, in which pairwise couplings between adjacent qubits can be activated on demand.

  17. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    Energy Technology Data Exchange (ETDEWEB)

    Angelico, E.; Seiss, T. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States); Adams, B. [Incom, Inc., 294 SouthBridge Rd, Charlton, Massachusetts 01507 (United States); Elagin, A.; Frisch, H.; Spieglan, E. [Enrico Fermi Institute, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 (United States)

    2017-02-21

    We have designed and tested a robust 20×20 cm{sup 2} thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al{sub 2}O{sub 3} 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm{sup 2} array of 2-dimensional square ‘pads’ with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  18. Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance

    NARCIS (Netherlands)

    Raaijmakers, E.; Faes, T. J.; Meijer, J. M.; Kunst, P. W.; Bakker, J.; Goovaerts, H. G.; Heethaar, R. M.

    1998-01-01

    The study investigates the effects of non-cardiogenic oedema, especially the accumulation of protein in extracellular fluid, on thoracic impedance and proposes a new method of oedema measurement based on an impedance ratio from a dual-frequency measurement. In vitro measurements in a cell containing

  19. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  20. Flux Tube Dynamics in the Dual Superconductor

    International Nuclear Information System (INIS)

    Lampert, M.; Svetitsky, B.

    1999-01-01

    We have studied plasma oscillations in a flux tube created in a dual superconductor. The theory contains an Abelian gauge field coupled magnetically to a Higgs field that confines electric charge via the dual Meissner effect. Starting from a static flux tube configuration, with electric charges at either end, we release a fluid of electric charges in the system that accelerate and screen the electric field. The weakening of the electric field allows the flux tube to collapse, and the inertia of the charges forces it open again. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. (The parameters appropriate to QCD are in the Type II regime; the plasma frequency depends on the mass taken for the fluid constituents.) The coupling of the plasma oscillations to the Higgs field making up the flux tube is the main new feature in our work

  1. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    International Nuclear Information System (INIS)

    Lueck, S.; Pikovsky, A.

    2011-01-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  2. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2011-07-11

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  3. Composite Broadcasting and Ranging via a Satellite Dual-Frequency MPPSK System

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2013-01-01

    Full Text Available Since digital video broadcasting via satellite (DVB-S signals are “inefficient”, regarding the amount of information they convey on the bandwidth they occupy, a joint broadcasting and ranging system would constitute a unique platform for future digital video broadcasting satellite services effecting the essential tasks of satellite navigation system and direct to home (DTH services, in terms of both spectrum efficiency and cost effectiveness. In this paper, the design of dual frequency M-ary position phase shift keying (MPPSK system which is suitable for, respectively, performing both data transmission and range measurement is proposed. The approach is based on MPPSK modulation waveforms utilized in digital video broadcasting. In particular, requirements that allow for employing such signals for range measurements with high accuracy and high range are investigated. Also, the relationship between the frequency difference of dual frequency MPPSK system and range accuracy is discussed. Moreover, the selection of MPPSK modulation parameter for data rate and ranging is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of new systems, demonstrating the high spectral utilization of integrated broadcasting and ranging applications.

  4. Reduction of parasitic capacitance in 10 kV SiC MOSFET power modules using 3D FEM

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Christensen, Nicklas; Dalal, Dipen Narendrabhai

    2017-01-01

    The benefits of emerging wide-band gap semiconductors can only be utilized if the semiconductor is properly packaged. Capacitive coupling in the package causes electromagnetic interference during high dv/dt switching. This paper investigates the current flowing in the parasitic capacitance between...... the output node and the grounded heat sink for a custom silicon carbide power module. A circuit model of the capacitive coupling path is presented, using parasitic capacitances extracted from ANSYS Q3D. Simulated values are compared with experimental results. A new iteration of the silicon carbide power...

  5. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  6. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  7. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling....

  8. Experimental Determination of Operating and Maximum Power Transfer Efficiencies at Resonant Frequency in a Wireless Power Transfer System using PP Network Topology with Top Coupling

    Science.gov (United States)

    Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.

    2017-08-01

    A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.

  9. Towards dual recycling with the aid of time and frequency domain simulations

    International Nuclear Information System (INIS)

    Malec, M; Grote, H; Freise, A; Heinzel, G; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling, the combination of the interferometric techniques of power and signal recycling, allows the improvement of the shot noise limited sensitivity of interferometric gravitational wave detectors. GEO 600 is the first km-scale gravitational wave detector using dual recycling. The hardware installation is completed and dual recycling has become a great challenge in terms of commissioning of GEO 600. Simulations show that lock acquisition of the optical system can only be achieved in certain detector states. Thus as we need to start with a locked detector in such a specific state, an appropriate strategy is needed to change the state of detector operation without losing lock. The basic concepts and first results based on time and frequency domain simulations will be presented in this paper

  10. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  11. Drive Current Enhancement in TFET by Dual Source Region

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2015-01-01

    Full Text Available This paper presents tunneling field-effect transistor (TFET with dual source regions. It explores the physics of drive current enhancement. The novel approach of dual source provides an effective technique for enhancing the drive current. It is found that this structure can offer four tunneling junctions by increasing a source region. Meanwhile, the dual source structure does not influence the excellent features of threshold slope (SS of TFET. The number of the electrons and holes would be doubled by going through the tunneling junctions on the original basis. The overlap length of gate-source is also studied. The dependence of gate-drain capacitance Cgd and gate-source capacitance Cgs on gate-to-source voltage Vgs and drain-to-source voltage Vds was further investigated. There are simulation setups and methodology used for the dual source TFET (DS-TFET assessment, including delay time, total energy per operation, and energy-delay product. It is confirmed that the proposed TFET has strong potentials for VLSI.

  12. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Jiuchun; Ruan, Haijun; Sun, Bingxiang; Zhang, Weige; Gao, Wenzhong; Wang, Le Yi; Zhang, Linjing

    2016-01-01

    Highlights: • A reduced low-temperature electro-thermal coupled model is proposed. • A novel frequency-dependent equation for polarization parameters is presented. • The model is validated under different frequency and low-temperature conditions. • The reduced model exhibits a high accuracy with a low computational effort. • The adaptability of the proposed methodology for model reduction is verified. - Abstract: A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.

  13. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    Science.gov (United States)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  14. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    International Nuclear Information System (INIS)

    Dong Linxi; Chen Jindan; Huo Weihong; Li Yongjie; Sun Lingling; Yan Haixia

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30: 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  15. Managing multiple roles - Personality, stress, and work-family interference in dual-earner couples

    NARCIS (Netherlands)

    Wierda-Boer, H.H.; Gerris, J.R.M.; Vermulst, A.A.

    2009-01-01

    Today many parents have multiple roles. This study examined how personality, domain-specific stress, and work-family interference are interrelated. Questionnaire data of 276 Dutch dual-earner couples with young children were analyzed using structural equation modeling. Findings demonstrated that job

  16. Modelling and analysis of the transformer current resonance in dual active bridge converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Zhan; Blaabjerg, Frede

    2017-01-01

    Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...

  17. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  18. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz

    2016-05-03

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  19. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz; Omran, Hesham; Salama, Khaled N.

    2016-01-01

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  20. An Accurate Study on Capacitive Microphone with Circular Diaphragm Using a Higher Order Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Shakiba Dowlati

    Full Text Available Abstract This study has been undertaken to investigate the mechanical behavior of the capacitive microphone with clamped circular diaphragm using modified couple stress theory in comparison to the classical one. Presence of the length scale parameter in modified couple stress theory provides the means to evaluate the size effect on the microphone mechanical behavior. Investigating Pull-in phenomenon and dynamic behavior of the microphone are the matters provided due to the application of a step DC voltage. Also the effects of different air damping coefficients on dynamic pull-in voltage and pull-in time have been studied. The output level or sensitivity of the microphone has been studied by investigating the frequency response in term of magnitude for different length scale parameters to figure out how the length scale parameter affects on the sensitivity of the capacitive microphone. To achieve these ends, the nonlinear differential equation of the circular diaphragm has been extracted using Kirchhoff thin plate theory. Then, a Step-by-Step Linearization Method (SSLM has been used to escape from the nonlinearity of the differential equation. Afterwards, Galerkin-based reduced-order model has been applied to solve the obtained equation.

  1. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  2. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator

    Science.gov (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia

    2017-10-01

    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  3. Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

    Directory of Open Access Journals (Sweden)

    Arjunan Govindarajan

    2017-06-01

    Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.

  4. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  5. Work-family spillover among Japanese dual-earner couples: a large community-based study

    NARCIS (Netherlands)

    Shimada, K.; Shimazu, A.; Bakker, A.B.; Demerouti, E.; Kawakami, N.

    2010-01-01

    Objectives: To examine the effects of multiple types of work-family spillover (work-to-family negative spillover, WFNS; family-to-work negative spillover, FWNS; and work-family positive spillover, WFPS) on psychological distress among Japanese dual-earner couples with preschool children. Methods:

  6. Experimental test of models of radio-frequency plasma sheaths

    International Nuclear Information System (INIS)

    Sobolewski, M.A.

    1997-01-01

    The ion current and sheath impedance were measured at the radio-frequency-powered electrode of an asymmetric, capacitively coupled plasma reactor, for discharges in argon at 1.33 endash 133 Pa. The measurements were used to test the models of the radio frequency sheath derived by Lieberman [IEEE Trans. Plasma Sci. 17, 338 (1989)] and Godyak and Sternberg [Phys. Rev. A 42, 2299 (1990)], and establish the range of pressure and sheath voltage in which they are valid. copyright 1997 American Institute of Physics

  7. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  8. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  9. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  10. Probing 2D black phosphorus by quantum capacitance measurements

    International Nuclear Information System (INIS)

    Kuiri, Manabendra; Kumar, Chandan; Chakraborty, Biswanath; Gupta, Satyendra N; Naik, Mit H; Jain, Manish; Sood, A K; Das, Anindya

    2015-01-01

    Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements. (paper)

  11. Modified Dual Second-order Generalized Integrator FLL for Frequency Estimation Under Various Grid Abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Rohitbhai Patil

    2016-10-01

    Full Text Available Proper synchronization of Distributed Generator with grid and its performance in grid-connected mode relies on fast and precise estimation of phase and amplitude of the fundamental component of grid voltage. However, the accuracy with which the frequency is estimated is dependent on the type of grid voltage abnormalities and structure of the phase-locked loop or frequency locked loop control schemes. Among various control schemes, second-order generalized integrator based frequency- locked loop (SOGI-FLL is reported to have the most promising performance. It tracks the frequency of grid voltage accurately even when grid voltage is characterized by sag, swell, harmonics, imbalance, frequency variations etc. However, estimated frequency contains low frequency oscillations in case when sensed grid-voltage has a dc offset. This paper presents a modified dual second-order generalized integrator frequency-locked loop (MDSOGI-FLL for three-phase systems to cope with the non-ideal three-phase grid voltages having all type of abnormalities including the dc offset. The complexity in control scheme is almost the same as the standard dual SOGI-FLL, but the performance is enhanced. Simulation results show that the proposed MDSOGI-FLL is effective under all abnormal grid voltage conditions. The results are validated experimentally to justify the superior performance of MDSOGI-FLL under adverse conditions.

  12. Induction heating of gears - pulsing dual-frequency concept

    Directory of Open Access Journals (Sweden)

    R. Przyłucki

    2013-04-01

    Full Text Available The paper concerns analysis of gears hardening process. In order to obtain required temperature distribution several variations of single and combined frequencies for selected gear-wheel configurations were considered. The paper includes the calculation models and analysis of geometry and current intensity as well frequency influence on temperature distribution of the tooth surface. All calculations have been carried out by means of the use of Flux3D simulation program, which enables to provide, coupled electromagnetic and temperature fields analysis.

  13. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  14. Maximizing the value of gate capacitance in field-effect devices using an organic interface layer

    Science.gov (United States)

    Kwok, H. L.

    2015-12-01

    Past research has confirmed the existence of negative capacitance in organics such as tris (8-Hydroxyquinoline) Aluminum (Alq3). This work explored using such an organic interface layer to enhance the channel voltage in the field-effect transistor (FET) thereby lowering the sub-threshold swing. In particular, if the values of the positive and negative gate capacitances are approximately equal, the composite negative capacitance will increase by orders of magnitude. One concern is the upper frequency limit (∼100 Hz) over which negative capacitance has been observed. Nonetheless, this frequency limit can be raised to kHz when the organic layer is subjected to a DC bias.

  15. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    Science.gov (United States)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  16. Development of Hardware Dual Modality Tomography System

    Directory of Open Access Journals (Sweden)

    R. M. Zain

    2009-06-01

    Full Text Available The paper describes the hardware development and performance of the Dual Modality Tomography (DMT system. DMT consists of optical and capacitance sensors. The optical sensors consist of 16 LEDs and 16 photodiodes. The Electrical Capacitance Tomography (ECT electrode design use eight electrode plates as the detecting sensor. The digital timing and the control unit have been developing in order to control the light projection of optical emitters, switching the capacitance electrodes and to synchronize the operation of data acquisition. As a result, the developed system is able to provide a maximum 529 set data per second received from the signal conditioning circuit to the computer.

  17. Mechanical properties of ultrananocryslalline thin films deposited using dual frequency discharges

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Bláhová, O.; Karásková, M.; Zajíčková, L.; Jašek, O.; Franta, D.; Klapetek, P.; Buršík, Jiří

    2011-01-01

    Roč. 105, - (2011), s. 98-101 ISSN 0009-2770. [Lokální mechanické vlastnosti ´07. Brno, 07.11.2007-09.11.2007] Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrananocryslalline diamond * plasma enhanced chemical vapor deposition * dual frequency discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.529, year: 2011

  18. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    OpenAIRE

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently matured and is widely employed in industry. A voltage across the electrodes will attract the movable part. This relation between electric field and separation (or capacitance) can be conveniently em...

  19. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  20. A Typology of Work-Family Arrangements among Dual-Earner Couples in Norway

    Science.gov (United States)

    Kitterod, Ragni Hege; Lappegard, Trude

    2012-01-01

    A symmetrical family model of two workers or caregivers is a political goal in many western European countries. We explore how common this family type is in Norway, a country with high gender-equality ambitions, by using a multinomial latent class model to develop a typology of dual-earner couples with children based on the partners' allocations…

  1. Capacitive Sensors for Feedback Control of Microfluidic Devices

    Science.gov (United States)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  2. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  3. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  4. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    International Nuclear Information System (INIS)

    Garifullin, A R; Krasina, I V; Skidchenko, E A; Shaekhov, M F; Tikhonova, N V

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”. (paper)

  5. 3D capacitive tactile sensor using DRIE micromachining

    Science.gov (United States)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  6. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  7. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  8. The Need to Change Army Policies Toward Single Parents and Dual Military Couples With Children

    National Research Council Canada - National Science Library

    Carroll, Carolyn

    2005-01-01

    ... and to best manage our single parent service members and dual-military couples. There is a need to address the Army regulations that are ambiguous and contradictory toward enlisting and retaining single parents...

  9. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.

    Science.gov (United States)

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-10-30

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  10. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  11. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  12. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    Science.gov (United States)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  13. Terahertz plasmon-induced transparency based on asymmetric dual-disk resonators coupled to a semiconductor InSb waveguide and its biosensor application

    Science.gov (United States)

    Shahamat, Yadollah; Vahedi, Mohammad

    2017-06-01

    An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.

  14. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    Science.gov (United States)

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  15. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    International Nuclear Information System (INIS)

    Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)

  16. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Science.gov (United States)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  17. The application effects of the dual-frequency IP method in the geological work of uranium and gold

    International Nuclear Information System (INIS)

    Zhou Minghai.

    1991-01-01

    The dual-frequency IP method has obtained preliminary application in prospecting for uranium and gold in the central south region of China and has got certain geological effects in the application to deposits and prospects in Yaogou, Langquan and Deposit No.320 and its surrounding area. The fundamental advantages of the dual-frequency IP method are that the equipment system is portable, its anti-interference capability is strong and the observed accuracy is high, high speed in observation and suitable for the operation in the mine and its environs

  18. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions.

    Science.gov (United States)

    Arnau, A; García, J V; Jimenez, Y; Ferrari, V; Ferrari, M

    2008-07-01

    A new configuration of automatic capacitance compensation (ACC) technique based on an oscillatorlike working interface, which permits the tracking of the series resonant frequency and the monitoring of the motional resistance and the parallel capacitance of a thickness-shear mode quartz crystal microbalance sensor, is introduced. The new configuration permits an easier calibration of the system which, in principle, improves the accuracy. Experimental results are reported with 9 and 10 MHz crystals in liquids with different parallel capacitances which demonstrate the effectiveness of the capacitance compensation. Some frequency deviations from the exact series resonant frequency, measured by an impedance analyzer, are explained by the specific nonideal behavior of the circuit components. A tentative approach is proposed to solve this problem that is also common to previous ACC systems.

  19. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions

    International Nuclear Information System (INIS)

    Arnau, A.; Garcia, J. V.; Jimenez, Y.; Ferrari, V.; Ferrari, M.

    2008-01-01

    A new configuration of automatic capacitance compensation (ACC) technique based on an oscillatorlike working interface, which permits the tracking of the series resonant frequency and the monitoring of the motional resistance and the parallel capacitance of a thickness-shear mode quartz crystal microbalance sensor, is introduced. The new configuration permits an easier calibration of the system which, in principle, improves the accuracy. Experimental results are reported with 9 and 10 MHz crystals in liquids with different parallel capacitances which demonstrate the effectiveness of the capacitance compensation. Some frequency deviations from the exact series resonant frequency, measured by an impedance analyzer, are explained by the specific nonideal behavior of the circuit components. A tentative approach is proposed to solve this problem that is also common to previous ACC systems

  20. Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics

    International Nuclear Information System (INIS)

    Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie

    2012-01-01

    A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density

  1. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  2. Pros and cons of symmetrical dual-k spacer technology in hybrid FinFETs

    Science.gov (United States)

    Pradhan, K. P.; Andrade, M. G. C.; Sahu, P. K.

    2016-12-01

    The symmetrical dual-k spacer technology in hybrid FinFETs has been widely explored for better electrostatic control of the fin-based devices in nanoscale region. Since, high-k tangible spacer materials are broadly became a matter of study due to their better immunity to the short channel effects (SCEs) in nano devices. However, the only cause that restricts the circuit designers from using high-k spacer is the unreasonable increasing fringing capacitances. This work quantitatively analyzed the benefits and drawbacks of considering two different dielectric spacer materials symmetrically in either sides of the channel for the hybrid device. From the demonstrated results, the inclusion of high-k spacer predicts an effective reduction in off-state leakage along with an improvement in drive current. However, these devices have paid the cost in terms of a high total gate-to-gate capacitance (Cgg) that consequently results poor cutoff frequency (fT) and delay.

  3. A simple, low-cost and robust capillary zone electrophoresis Method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in Money-constrained laboratories

    NARCIS (Netherlands)

    Paul, Prasanta; Sänger-van de Griend, Cari; Adams, Erwin; Van Schepdael, Ann

    2018-01-01

    A simple and robust capillary zone electrophoresis Method was developed and validated for the determination of amoxicillin and clavulanate, ampicillin, phenoxymethyl penicillin (Pen V) as well as flucloxacillin. Capacitively coupled contactless conductivity detection was employed as detection Mode

  4. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    Science.gov (United States)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  5. A Design of Dual Broadband Antenna in Mobile Communication System

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A design of dual broadband antenna is proposed in this paper; it consists of one low frequency unit and two high frequency units. The low frequency unit consists of a pair of printing vibrators; the high frequency unit consists of a pair of printing oscillators, which is bent at its end, and high frequency unit and low frequency unit are set on the same dielectric substrate. Through adding a parasitic unit on antenna, it can enhance frequency bandwidth without affecting the bandwidth. In the high frequency unit, it adopts gap-coupled microstrip line feeding method in order to get enough bandwidth. Through the test of dual broadband antenna, it can be found that, in the low frequency part, the antenna covers 20% bandwidth of the total bandwidth, and it covers the frequency from 800 MHz to 980 MHz. In the high frequency, the antenna covers 60% of total bandwidth and its frequency is from 1540 MHz to 2860 MHz, so the designed antenna can satisfy the frequency requirements of 2G/3G/LTE (4G communication system.

  6. Sheath heating in low-pressure capacitive radio frequency discharges

    International Nuclear Information System (INIS)

    Wood, B.P.

    1991-01-01

    Capacitively coupled, parallel plate, r.f. discharges are commonly used for materials processing. The electrons in such a discharge gain and lose energy by reflection from the oscillating sheaths which form at the electrodes. Previous models of the electron heating by this mechanism have assumed that the sheath motion is slow compared to the electron thermal velocity, so that the electron energy change from each reflection is small. Here, the heating rate, density, and sheath width relations are derived analytically in the limit of very fast sheath motion. Numerical results are presented spanning the slow and fast limits. Results from particle-in-cell simulations show that in the large-energy-change regime, an electron beam is produced on each sheath expansion. At low pressure, this beam can traverse the plasma and interact with the sheath at the opposite electrode, producing a beam energy and density dependence on the length of the discharge. The beam produces a time and space varying warm tail on the electron energy distribution. Two revised heating models are derived, assuming power-law and two-temperature electron energy distributions, with temporal variation in electron temperature. These revised models yield new predictions for the variation of the power, density, and sheath thickness with applied r.f. voltage. These predictions are compared with simulation results and laboratory experiment. The electron sheath motion is investigated experimentally by observing the signal on a floating probe in the sheath region. This is compared to the signal product by a non-linear circuit model which accounts for the perturbation of the sheath potential by the probe and includes various forms of sheath motion. The experimental observations are consistent with the analytical predictions. Experimental observations of plasma-sheath resonance oscillations are presented which agree with analytical predictions

  7. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  8. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  9. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  10. Frequency division using a micromechanical resonance cascade

    Energy Technology Data Exchange (ETDEWEB)

    Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  11. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  12. Dual-pulse frequency compounded superharmonic imaging.

    Science.gov (United States)

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.

  13. THE LOW FREQUENCY OF DUAL ACTIVE GALACTIC NUCLEI VERSUS THE HIGH MERGER RATE OF GALAXIES: A PHENOMENOLOGICAL MODEL

    International Nuclear Information System (INIS)

    Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques

    2011-01-01

    Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.

  14. Spousal recovery support, recovery experiences, and life satisfaction crossover among dual-earner couples.

    Science.gov (United States)

    Park, YoungAh; Fritz, Charlotte

    2015-03-01

    Research has indicated the importance of recovery from work stress for employee well-being and work engagement. However, very little is known about the specific factors that may support or hinder recovery in the context of dual-earner couples. This study proposes spousal recovery support as a potential resource that dual-earner couples can draw on to enhance their recovery experiences and well-being. It was hypothesized that spousal recovery support would be related to the recipient spouse's life satisfaction via his or her own recovery experiences (i.e., psychological detachment, relaxation, and mastery experiences). The study further investigated the crossover of life satisfaction between working spouses as a potential outcome of recovery processes. Data from 318 full-time employed married couples in South Korea were analyzed using structural equation modeling. Results showed that spousal recovery support was positively related to all 3 recovery experiences of the recipient spouse. Moreover, this recovery support was related to the recipient spouse's life satisfaction via relaxation and mastery experiences. Unexpectedly, psychological detachment was negatively related to life satisfaction, possibly indicating a suppression effect. Life satisfaction crossed over between working spouses. No gender differences were found in the hypothesized paths. Based on these findings, theoretical and practical implications are discussed, and future research directions are presented. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  15. Coupled Josephson local oscillator and detector experiments in the terahertz regime

    International Nuclear Information System (INIS)

    Robertazzi, R.P.; Hallen, H.D.; Buhrman, R.A.

    1988-01-01

    Recent coupled Josephson junction experiments in the authors' laboratory have demonstrated that high critical current density tunnel junctions can serve as effective local oscillators at frequencies up to and in excess of the gap sum frequency of the junction, i.e. well above 1 Terahertz for a niobium or niobium compound tunnel junction. While the details of the behavior of such a THz. oscillator were found not to be in accord with the predictions of the accepted theory of the A.C. Josephson effect in the gap region significant radiation could be capacitively coupled from the oscillator junction to an adjacent junction, sufficient for SIS mixer experiments at Terahertz frequencies. Research efforts are now under way to further extend and expand these studies. A high critical current density all NbN tunnel junction system is now under development for Terahertz applications and a new set of coupled Josephson oscillator - SIS detector experiments is being initiated using NbN tunnel junctions. In this paper the authors review the original coupled junction high frequency experiments and report on the recent progress of the current NbN tunnel junction experiments

  16. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  17. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  18. The effects of workplace psychosocial factors on whether Japanese dual-earner couples with preschool children have additional children: a prospective study

    OpenAIRE

    EGUCHI, Hisashi; SHIMAZU, Akihito; FUJIWARA, Takeo; IWATA, Noboru; SHIMADA, Kyoko; TAKAHASHI, Masaya; TOKITA, Masahito; WATAI, Izumi; KAWAKAMI, Norito

    2016-01-01

    This study explored the effect of workplace psychosocial factors (job demand, job control, and workplace social support) on dual-earner couples in Japan having additional children, using a prospective study design. We conducted a 2-year prospective cohort study with 103 dual-earner couples with preschool children in Japan, as part of the Tokyo Work?Family Interface Study II. We used multivariable logistic regression analyses to evaluate the prospective association of job strain (categorized i...

  19. Coupling of reciprocal vectors and corresponding degeneracy effect in a dual-periodic optical superlattice

    International Nuclear Information System (INIS)

    Qin Yiqiang

    2006-01-01

    A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed

  20. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    Science.gov (United States)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  1. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  2. A new soft-switched high step-up DC-DC converter with dual coupled inductors

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan

    2017-01-01

    This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...

  3. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  4. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  5. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  6. Topology Optimization of Stressed Capacitive RF MEMS Switches

    DEFF Research Database (Denmark)

    Philippine, Mandy A.; Sigmund, Ole; Rebeiz, Gabriel M.

    2013-01-01

    Geometry design can improve a capacitive radio-frequency microelectromechanical system switch's reliability by reducing the impacts of intrinsic biaxial stresses and stress gradients on the switch's membrane. Intrinsic biaxial stresses cause stress stiffening, whereas stress gradients cause out-o...

  7. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.

    Science.gov (United States)

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-06-07

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.

  8. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  9. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  10. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  11. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  12. Explicit analytical modeling of the low frequency a-Si:H/c-Si heterojunction capacitance: Analysis and application to silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, O. [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow 125047 (Russian Federation); GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Brézard-Oudot, A.; Gueunier-Farret, M.-E.; Alvarez, J.; Kleider, J.-P. [GeePs (Group of electrical engineering of Paris), CNRS UMR 8507, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)

    2015-09-21

    We develop a fully analytical model in order to describe the temperature dependence of the low frequency capacitance of heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). We demonstrate that the slope of the capacitance-temperature (C-T) curve is strongly enhanced if the c-Si surface is under strong inversion conditions compared to the usually assumed depletion layer capacitance. We have extended our analytical model to integrate a very thin undoped (i) a-Si:H layer at the interface and the finite thickness of the doped a-Si:H layer that are used in high efficiency solar cells for the passivation of interface defects and to limit short circuit current losses. Finally, using our calculations, we analyze experimental data on high efficiency silicon heterojunction solar cells. The transition from the strong inversion limited behavior to the depletion layer behavior is discussed in terms of band offsets, density of states in a-Si:H, and work function of the indium tin oxide (ITO) front electrode. In particular, it is evidenced that strong inversion conditions prevail at the c-Si surface at high temperatures down to 250 K, which can only be reproduced if the ITO work function is larger than 4.7 eV.

  13. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  14. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  15. Analysis of new actuation methods for capacitive shunt micro switchs

    Directory of Open Access Journals (Sweden)

    Ben Sassi S

    2016-01-01

    Full Text Available This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM. Based on Galerkin approximation, a single degree of freedom dynamic model is developed and limit-cycle solutions are calculated using the Finite Difference Method (FDM. In addition to the harmonic waveform signal, we apply novel actuation waveform signals to simulate the frequency-response. We show that, biased signals, using a square wave signal reduces significantly the pull-in voltage compared to the triangular and harmonic signal . Finally, these results are validated experimentally.

  16. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    Science.gov (United States)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  17. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  18. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  19. A Dual-Band Multiple Input Multiple Output Frequency Agile Antenna for GPSL1/Wi-Fi/WLAN2400/LTE Applications

    Directory of Open Access Journals (Sweden)

    Sajid Aqeel

    2016-01-01

    Full Text Available A novel dual-band, single element multiple input multiple output (MIMO dielectric resonator antenna (DRA with a modest frequency tuning ability is presented in this communication. The proposed antenna operates at GPS L1/Bluetooth/Wi-Fi/LTE2500/WLAN2400 frequency bands. A single dielectric resonator element is fed by two coaxial probes to excite the orthogonal modes. A couple of slots are introduced on the ground plane to improve the isolation between antenna ports. The slots also serve the purpose of reconfiguration in the lower band on placement of switches at optimized locations. The measured impedance bandwidth is 5.16% (1.41–1.49 GHz in the lower band and 26% (2.2–2.85 GHz in the higher band. The lower band reconfigures with an impedance bandwidth of 6.5% (1.55–1.65 GHz when PIN diodes are switched ON. The gain, efficiency, correlation coefficient, and diversity gain of the MIMO DRA are presented with a close agreement between simulated and measured results.

  20. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    International Nuclear Information System (INIS)

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-01-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  1. LARGE SCALE DISTRIBUTED PARAMETER MODEL OF MAIN MAGNET SYSTEM AND FREQUENCY DECOMPOSITION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; MARNERIS, I.; SANDBERG, J.

    2007-06-25

    Large accelerator main magnet system consists of hundreds, even thousands, of dipole magnets. They are linked together under selected configurations to provide highly uniform dipole fields when powered. Distributed capacitance, insulation resistance, coil resistance, magnet inductance, and coupling inductance of upper and lower pancakes make each magnet a complex network. When all dipole magnets are chained together in a circle, they become a coupled pair of very high order complex ladder networks. In this study, a network of more than thousand inductive, capacitive or resistive elements are used to model an actual system. The circuit is a large-scale network. Its equivalent polynomial form has several hundred degrees. Analysis of this high order circuit and simulation of the response of any or all components is often computationally infeasible. We present methods to use frequency decomposition approach to effectively simulate and analyze magnet configuration and power supply topologies.

  2. Long-distance moves and employment of women in dual-earner couples in Britain and Germany

    NARCIS (Netherlands)

    Lersch, P.M.

    2013-01-01

    Chances are high that not both partners in dual-earner couples stay in employment after long-distance moves, because jobs are distributed heterogeneously in space. Previous research shows that women are more likely to leave employment than men. I extend this literature by adding evidence from

  3. Fast 2D hybrid fluid-analytical simulation of inductive/capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lieberman, M A; Graves, D B

    2011-01-01

    A fast two-dimensional (2D) hybrid fluid-analytical transform coupled plasma reactor model was developed using the finite elements simulation tool COMSOL. Both inductive and capacitive coupling of the source coils to the plasma are included in the model, as well as a capacitive bias option for the wafer electrode. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model. The vacuum sheath of variable thickness is modeled with a fixed-width sheath of variable dielectric constant. The sheath heating is treated as an incoming heat flux at the plasma-sheath boundary, and a dissipative term is added to the sheath dielectric constant. A gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The simulation results, over a range of input powers, are in good agreement with a chlorine reactor experimental study.

  4. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  5. Wives' Shift Work Schedules and Husbands' and Wives' Well-Being in Dual-Earner Couples with Children: A within-Couple Analysis

    Science.gov (United States)

    Chait Barnett, Rosalind; Gareis, Karen C.; Brennan, Robert T.

    2008-01-01

    In a sample of 55 dual-earner families with children aged 8 to 14 in which the mothers are registered nurses regularly working either day shifts (typically 7:00 a.m. to 3:00 p.m.) or evening shifts (typically 3:00 p.m. to 11:00 p.m.), we estimated the within-couple relationship between the wife's work variables (i.e., work shift, work hours, and…

  6. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  7. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    NARCIS (Netherlands)

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently

  8. Frequency analysis of a tower-cable coupled system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moo Yeol [Young Sin Precision Engineering Ltd., Gyungju (Korea, Republic of); Kim, Seock Hyun; Park, In Su [Kangwon National University, Chuncheon (Korea, Republic of); Cui, Chengxun [Yanbian University, Yangji (China)

    2013-06-15

    This study considers the prediction of natural frequency to avoid resonance in a wind turbine tower- cable coupled system. An analytical model based on the Rayleigh-Ritz method is proposed to predict the resonance frequency of a wind turbine tower structure supported by four guy cables. To verify the validity of the analytical model, a small tower-cable model is manufactured and tested. The frequency and mode data of the tower model are obtained by modal testing and finite element analysis. The validity of the proposed method is verified through the comparison of the frequency analysis results. Finally, using a parametric study with the analytical model, we identified how the cable tension and cable angle affect the resonance frequency of the wind turbine tower structure. From the analysis results, the tension limit and optimal angle of the cable are identified.

  9. Conducting to non-conducting transition in dual transmission lines using a ternary model with long-range correlated disorder

    International Nuclear Information System (INIS)

    Lazo, E.; Diez, E.

    2010-01-01

    In this work we study the behavior of the allowed and forbidden frequencies in disordered classical dual transmission lines when the values of capacitances {C j } are distributed according to a ternary model with long-range correlated disorder. We introduce the disorder from a random sequence with a power spectrum S(k)∝k -(2α-1) , where α≥0.5 is the correlation exponent. From this sequence we generate an asymmetric ternary map using two map parameters b 1 and b 2 , which adjust the occupancy probability of each possible value of the capacitances C j ={C A, C B, C C, }. If the sequence of capacitance values is totally at random α=0.5 (white noise), the electrical transmission line is in the non-conducting state for every frequency ω. When we introduce long-range correlations in the distribution of capacitances, the electrical transmission lines can change their conducting properties and we can find a transition from the non-conducting to conducting state for a fixed system size. This implies the existence of critical values of the map parameters for each correlation exponent α. By performing finite-size scaling we obtain the asymptotic value of the map parameters in the thermodynamic limit for any α. With these data we obtain a phase diagram for the symmetric ternary model, which separates the non-conducting state from the conducting one. This is the fundamental result of this Letter. In addition, introducing one or more impurities in random places of the long-range correlated distribution of capacitances, we observe a dramatic change in the conducting properties of the electrical transmission lines, in such a way that the system jumps from conducting to non-conducting states. We think that this behavior can be considered as a possible mechanism to secure communication.

  10. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  11. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  12. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  13. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  14. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  15. Investigation of capacitance characteristics in metal/high-k

    Indian Academy of Sciences (India)

    Keywords. C − V characteristic; high-k dielectric; interface state density; MIS structure; nanotechnology; TCAD simulation. Abstract. Capacitance vs. voltage ( C − V ) curves at AC high frequency of a metal–insulator–semiconductor (MIS) capacitorare investigated in this paper. Bi-dimensional simulations with Silvaco TCAD ...

  16. A capacitive device approach to gravitational wave detection

    International Nuclear Information System (INIS)

    Mours, B.; Yvert, M.

    1988-05-01

    The possible use of a capacitive device to detect gravitational waves is discussed. Special emphasis is put on the detection of permanent periodic sources. The intrinsic properties of such a method, its sensitivity, directionality and its wide frequency band, makes it a very appealing one

  17. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad

    2018-02-03

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.

  18. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  19. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  20. Dual-earner couples' weekend recovery support, state of recovery, and work engagement: Work-linked relationship as a moderator.

    Science.gov (United States)

    Park, YoungAh; Haun, Verena C

    2017-10-01

    Despite growing recovery research, little is known about couple-dyadic processes of recovery from work. Given that dual-earner couples experience most of their recovery opportunities during nonwork times when they are together, partners in a couple relationship may substantially affect recovery and work engagement. In this study, we propose a couple-dyadic model in which weekend partner recovery support (reported by the recipient partner) is positively related to the recipient partner's state of recovery after the weekend which, in turn, increases the recipient's work engagement the following week (actor-actor mediation effect). We also test the effect of one's state of recovery on the partner's subsequent work engagement (partner effect). Additionally, work-linked relationship status is tested as a moderator of the partner effect. Actor-partner interdependence mediation modeling is used to analyze the data from 167 dual-earner couples who answered surveys on 4 measurement occasions. The results support the indirect effect of partner recovery support on work engagement through the postweekend state of recovery. Multigroup analysis results reveal that the partner effect of state of recovery on work engagement is significant for work-linked couples only and is absent for non-work-linked couples. Theoretical and practical implications, limitations, and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    Science.gov (United States)

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  2. The effects of workplace psychosocial factors on whether Japanese dual-earner couples with preschool children have additional children: a prospective study.

    Science.gov (United States)

    Eguchi, Hisashi; Shimazu, Akihito; Fujiwara, Takeo; Iwata, Noboru; Shimada, Kyoko; Takahashi, Masaya; Tokita, Masahito; Watai, Izumi; Kawakami, Norito

    2016-12-07

    This study explored the effect of workplace psychosocial factors (job demand, job control, and workplace social support) on dual-earner couples in Japan having additional children, using a prospective study design. We conducted a 2-year prospective cohort study with 103 dual-earner couples with preschool children in Japan, as part of the Tokyo Work-Family Interface Study II. We used multivariable logistic regression analyses to evaluate the prospective association of job strain (categorized into low-strain job, active job, passive job, and strain job groups) and workplace social support (high and low) with couples having additional children during the follow-up period, adjusting for age, for men and women separately. Men in the active job group (i.e., with high job demands and high job control) had a significantly higher odds ratio (OR) of having additional children during the follow-up period, after controlling for age (OR 9.07, 95% confidence interval: 1.27-64.85). No significant association between any workplace psychosocial factor and having additional children was confirmed among women. Having an active job may have a positive influence on having additional children among men in dual-earner couples.

  3. False capacitance of supercapacitors

    OpenAIRE

    Ragoisha, G. A.; Aniskevich, Y. M.

    2016-01-01

    Capacitance measurements from cyclic voltammetry, galvanostatic chronopotentiometry and calculation of capacitance from imaginary part of impedance are widely used in investigations of supercapacitors. The methods assume the supercapacitor is a capacitor, while real objects correspond to different equivalent electric circuits and show various contributions of non-capacitive currents to the current which is used for calculation of capacitance. Specific capacitances which are presented in F g-1...

  4. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  5. Self-dual nonsupersymmetric Type II String Compactifications

    International Nuclear Information System (INIS)

    Kachru, Shamit; Silverstein, Eva

    1998-01-01

    It has recently been proposed that certain nonsupersymmetric type II orbifolds have vanishing perturbative contributions to the cosmological constant. We show that techniques of Sen and Vafa allow one to construct dual type II descriptions of these models (some of which have no weakly coupled heterotic dual). The dual type II models are given by the same orbifolds with the string coupling S and a T 2 volume T exchanged. This allows us to argue that in various strongly coupled limits of the original type II models, there are weakly coupled duals which exhibit the same perturbative cancellations as the original models

  6. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  7. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  8. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.

    Science.gov (United States)

    Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng

    2017-10-27

    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.

  9. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  10. Distributed primal–dual interior-point methods for solving tree-structured coupled convex problems using message-passing

    DEFF Research Database (Denmark)

    Khoshfetrat Pakazad, Sina; Hansson, Anders; Andersen, Martin S.

    2017-01-01

    In this paper, we propose a distributed algorithm for solving coupled problems with chordal sparsity or an inherent tree structure which relies on primal–dual interior-point methods. We achieve this by distributing the computations at each iteration, using message-passing. In comparison to existi...

  11. Implementation of bright six-partite entanglement by coupled intracavity sum frequency generation

    Science.gov (United States)

    Wang, Junfeng; Liu, Le; Liu, Yuzhu; Zhang, Yanan; Wu, Hongyan; Gong, Chengxuan; Zhang, Ruofan; Zhang, Houyuan; Fan, JingYu

    2018-04-01

    Bright six-partite continuous-variable (CV) entanglement generated by the coupled intracavity sum frequency generation is investigated. The entanglement characteristics of reflected pump fields and the output sum frequency fields are discussed theoretically in symmetric and asymmetric cases by applying van Loock and Furusawa criteria for multipartite CV entanglement. Such compact tunable multipartite CV entanglement, generated from an experimentally feasible coupled system, could be used in integrated quantum communication and networks.

  12. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10-5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  13. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  14. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  15. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  16. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    Science.gov (United States)

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  17. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  18. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  19. Capacitive Feedthroughs for Medical Implants.

    Science.gov (United States)

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  20. Synthesis of sheath voltage drops in asymmetric radio-frequency discharges

    International Nuclear Information System (INIS)

    Yonemura, Shigeru; Nanbu, Kenichi; Iwata, Naoaki

    2004-01-01

    A sheath voltage drop in asymmetric discharges is one of the most important parameters of radio-frequency capacitively coupled plasmas because it determines the kinetic energy of the ions incident on the target or substrate. In this study, we developed a numerical simulation code to estimate the sheath voltage drops and, consequently, the self-bias voltage. We roughly approximated general asymmetric rf discharges to one-dimensional spherical ones. The results obtained by using our simulation code are consistent with measurements and Lieberman's theory

  1. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  2. One-pot solvothermal synthesis of highly efficient, daylight active and recyclable Ag/AgBr coupled photocatalysts with synergistic dual photoexcitation

    International Nuclear Information System (INIS)

    Zhang, Caihong; Ai, Lunhong; Li, Lili; Jiang, Jing

    2014-01-01

    Highlights: • Ag/AgBr photocatalysts were controllably synthesized by solvothermal process. • Ag/AgBr composites showed excellent daylight driven photocatalytic activity. • The remarkable activity is attributed to the synergistic dual photoexcitation. -- Abstract: Efficient light harvesting has been considered to be critical for manipulating the photocatalytic behavior of photocatalysts, because it directly determines the generation of reactive redox charge carriers involved in photoreaction process. In this study, we present a successful example on efficient conversion of solar energy by Ag/AgBr coupled photocatalysts that hold unique synergistic dual photoexcitation. A series of Ag/AgBr coupled photocatalysts were controllably synthesized by an easily manipulated mild solvothermal process. The physicochemical properties of the as-prepared Ag/AgBr coupled photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The results showed the solvothermal reaction time played key role for control of crystalline structure, morphology, composition, and visible light absorption ability of the resulting photocatalysts. The as-prepared Ag/AgBr coupled photocatalysts exhibited remarkable photocatalytic performance and good reusability for decomposing organic dyes in aqueous solution under the irradiation of commercial 20 W cool daylight fluorescent lamp, owing to the synergistic dual photoexcitation cooperating between plasmonic Ag nanoparticles and narrow-band-gap AgBr

  3. Determination of beam coupling impedance in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, Uwe

    2016-07-01

    The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance

  4. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  5. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  6. Opening of K+ channels by capacitive stimulation from silicon chip

    Science.gov (United States)

    Ulbrich, M. H.; Fromherz, P.

    2005-10-01

    The development of stable neuroelectronic systems requires a stimulation of nerve cells from semiconductor devices without electrochemical effects at the electrolyte/solid interface and without damage of the cell membrane. The interaction must rely on a reversible opening of voltage-gated ion channels by capacitive coupling. In a proof-of-principle experiment, we demonstrate that Kv1.3 potassium channels expressed in HEK293 cells can be opened from an electrolyte/oxide/silicon (EOS) capacitor. A sufficient strength of electrical coupling is achieved by insulating silicon with a thin film of TiO2 to achieve a high capacitance and by removing NaCl from the electrolyte to enhance the resistance of the cell-chip contact. When a decaying voltage ramp is applied to the EOS capacitor, an outward current through the attached cell membrane is observed that is specific for Kv1.3 channels. An open probability up to fifty percent is estimated by comparison with a numerical simulation of the cell-chip contact.

  7. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry

    Science.gov (United States)

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-04-01

    In fringe projection profilometry, a simplified method is proposed to recover absolute phase maps of two-frequency fringe patterns by using a unique mapping rule. The mapping rule is designed from the rounded phase values to the fringe order of each pixel. Absolute phase can be recovered by the fringe order maps. Unlike the existing techniques, where the lowest frequency of dual- or multiple-frequency fringe patterns must be single, the presented method breaks the limitation and simplifies the procedure of phase unwrapping. Additionally, due to many issues including ambient light, shadow, sharp edges, step height boundaries and surface reflectivity variations, a novel framework of automatically identifying and removing invalid phase values is also proposed. Simulations and experiments have been carried out to validate the performances of the proposed method.

  8. Calibration of capacitance probe sensors using Electric Circuit Theory

    NARCIS (Netherlands)

    Kelleners, T.J.; Soppe, R.W.O.; Robinson, D.A.; Schaap, M.G.; Ayars, J.E.; Skaggs, T.H.

    2004-01-01

    Capacitance probe sensors are an attractive electromagnetic technique for estimating soil water content. There is concern, however, about the influence of soil salinity and soil temperature on the sensors. We present an electric circuit model that relates the sensor frequency to the permittivity of

  9. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer.

    Science.gov (United States)

    Dong, Hui-juan; Wu, Jian; Zhang, Guang-yu; Wu, Han-fu

    2012-02-01

    The phase-locked loop (PLL) method is widely used for automatic resonance frequency tracing (ARFT) of high-power ultrasonic transducers, which are usually vibrating systems with high mechanical quality factor (Qm). However, a heavily-loaded transducer usually has a low Qm because the load has a large mechanical loss. In this paper, a series of theoretical analyses is carried out to detail why the traditional PLL method could cause serious frequency tracing problems, including loss of lock, antiresonance frequency tracing, and large tracing errors. The authors propose an improved ARFT method based on static capacitance broadband compensation (SCBC), which is able to address these problems. Experiments using a generator based on the novel method were carried out using crude oil as the transducer load. The results obtained have demonstrated the effectiveness of the novel method, compared with the conventional PLL method, in terms of improved tracing accuracy (±9 Hz) and immunity to antiresonance frequency tracing and loss of lock.

  10. Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Murtaza, Imran; Farooq, M.; Cheong, Kuan Yew; Noor, Ahmad Fauzi Mohd

    2010-01-01

    A thin film of blended poly-N-epoxypropylcarbazole (PEPC) (25 wt.%), nickel phthalocyanine (NiPc) (50 wt.%) and ZnO nano-powder (25 wt.%) in benzene (5 wt.%) was spin-coated on a glass substrate with silver electrodes to produce a surface-type Ag/PEPC/NiPc/ZnO/Ag capacitive and resistive sensor. Sensors with two different PEPC/NiPc/ZnO film thicknesses (330 and 400 nm) were fabricated and compared. The effects of humidity on capacitance and resistance of the Ag/PEPC/NiPc/ZnO/Ag sensors were investigated at two frequencies of the applied voltage: 120 Hz and 1 kHz. It was observed that at 120 Hz under humidity of up to 95% RH the capacitance of the sensors increased by 540 times and resistance decreased by 450 times with respect to humidity conditions of 50% RH. It was found that the sensor with a thinner semiconducting film (330 nm) was more sensitive than the sensor with a thicker film (400 nm). The sensitivity was improved when the sensor was used at a lower frequency as compared with a high frequency. It is assumed that the humidity response of the sensors is associated with absorption of water vapors and doping of water molecules in the semiconductor blend layer. This had been proven by simulation of the capacitance-humidity relationship. (semiconductor devices)

  11. Method and system for dual resolution translation stage

    Science.gov (United States)

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  12. Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors

    Science.gov (United States)

    Nazarian-Samani, Masoud; Haghighat-Shishavan, Safa; Nazarian-Samani, Mahboobeh; Kim, Myeong-Seong; Cho, Byung-Won; Oh, Si-Hyoung; Kashani-Bozorg, Seyed Farshid; Kim, Kwang-Bum

    2017-12-01

    A P, N dual-doped holey graphene (PNHG) material is prepared by a scalable, facile synthetic approach, using a mixture of glucose, dicyandiamide (DCDA), and phosphoric acid (H3PO4). H3PO4 successfully functions as an "acid catalyst" to encourage the uniform breakage of C=C bonds to create large, localized perforations over the graphene monolith. Further acid treatment and annealing introduce in-plane holes. The correlation between the capacitance of the PNHG and its structural parameters during the fabrication process is comprehensively evaluated. A thermally induced sp2→sp3 transformation occurs at high temperatures because of the substantial loss of graphitic sp2-type carbons, together with a dramatic reduction in capacitance. The target PNHG-400 electrode material delivers exceptionally high gravimetric capacitance (235.5 F g-1 at 0.5 A g-1), remarkable rate capability (84.8% at 70 A g-1), superior capacitance retention (93.2 and 92.7% at 10 and 50 A g-1 over 25000 cycles, respectively), and acceptable volumetric capacitance due to moderate density, when it is used with organic electrolytes in the voltage range between 0 and 3 V. These results suggest a pioneering defect-engineered strategy to fabricate dual-doped holey graphene with valuable structural properties for high-performance electric double layer supercapacitors, which could be used in next-generation energy storage applications.

  13. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  14. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  15. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  16. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    Science.gov (United States)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  17. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag

    Directory of Open Access Journals (Sweden)

    Khaled Issa

    2017-01-01

    Full Text Available A novel compact dual-polarized-spectral-signature-based chipless radio-frequency identification (RFID tag is presented. Specifically, an L-shape resonator-based structure is optimized to have different spectral signatures in both horizontal and vertical polarizations, in order to double the encoding capacity. Resonators’ slot width and the space between closely placed resonators are also optimized to enhance the mutual coupling, thereby helping in achieving high-data encoding density. The proposed RFID tag operates over 5 GHz to 10 GHz frequency band. As a proof of concept, three different 18-bit dual-polarized RFID tags are simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show reasonable agreement with the simulation results, with respect to resonators’ frequency positions, null depth, and their bandwidth over the operational spectrum.

  18. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  19. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  20. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-01-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  1. Capacitive VAr requirements for wind driven self-excited induction generators

    International Nuclear Information System (INIS)

    Singaravelu, S.; Velusami, S.

    2007-01-01

    This paper presents the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, used as isolated power sources by a constant speed or a variable speed prime mover, to obtain the desired voltage regulation at various values of load and speed. Different performance criteria such as constant terminal voltage or constant air gap flux have been considered. The developed mathematical model using nodal analysis based on graph theory is quite general in nature and can be used for any combination of the unknown variables such as magnetizing reactance (X M ) and frequency (F) or capacitive reactance (X C ) and frequency (F) or capacitive reactance (X C ) and speed (υ). The proposed model completely avoids the tedious and erroneous manual work of segregating the real and imaginary components of the complex impedance of the machine for deriving the specific model for each operating modes. Moreover, any element, like the core loss component, can be included or excluded from the model if required. Next, to obtain the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, a fuzzy logic approach is used for the first time to find the unknown variables using the above model. The results are presented in a normalized form so that they are valid for a wide range of machines and would be useful for the design of voltage regulators for such generators

  2. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    International Nuclear Information System (INIS)

    Pramila; Patel, J J; Rajpal, R; Hansalia, C J; Anitha, V P; Sathyanarayana, K

    2017-01-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (n e ), the electron temperature (T e ), the floating potential (V f ), and the plasma potential (V p ). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current. (paper)

  3. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    Science.gov (United States)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  4. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  5. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  6. Novel rf power sensor based on capacitive MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Jansen, Henricus V.; Wiegerink, Remco J.; Flokstra, Jakob

    2003-01-01

    We present the theory, design, fabrication of and first measurements on a novel power for radio frequency (rf) signals, based on capacitive measurements. The novelty of this sensor is thtat it measures the force that is created between the rf signal and a grounded membrande suspended above the line

  7. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  8. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Science.gov (United States)

    Schoellhammer, Carl M.; Srinivasan, Sharanya; Barman, Ross; Mo, Stacy H.; Polat, Baris E.; Langer, Robert; Blankschtein, Daniel

    2016-01-01

    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet nonspecific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo. PMID:25662228

  9. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  10. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  11. From strong to weak coupling in holographic models of thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-07-29

    We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.

  12. Design and analysis of optimised class E power amplifier using shunt capacitance in the output structure

    Science.gov (United States)

    Hayati, Mohsen; Roshani, Sobhan; Zirak, Ali Reza

    2017-05-01

    In this paper, a class E power amplifier (PA) with operating frequency of 1 MHz is presented. MOSFET non-linear drain-to-source parasitic capacitance, linear external capacitance at drain-to-source port and linear shunt capacitance in the output structure are considered in design theory. One degree of freedom is added to the design of class E PA, by assuming the shunt capacitance in the output structure in the analysis. With this added design degree of freedom it is possible to achieve desired values for several parameters, such as output voltage, load resistance and operating frequency, while both zero voltage and zero derivative switching (ZVS and ZDS) conditions are satisfied. In the conventional class E PA, high value of peak switch voltage results in limitations for the design of amplifier, while in the presented structure desired specifications could be achieved with the safe margin of peak switch voltage. The results show that higher operating frequency and output voltage can also be achieved, compared to the conventional structure. PSpice software is used in order to simulate the designed circuit. The presented class E PA is designed, fabricated and measured. The measured results are in good agreement with simulation and theory results.

  13. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Directory of Open Access Journals (Sweden)

    Rajesh Agarwal

    2016-04-01

    Full Text Available Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol system are presented to illustrate the operation and advantages of the proposed technique.

  14. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    International Nuclear Information System (INIS)

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-01-01

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor

  15. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  16. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    Science.gov (United States)

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  17. Contactless or High Frequency Conductometry or Oscillometry of Electrolytes

    OpenAIRE

    Kiumars Ghowsi; Hosein Ghowsi

    2013-01-01

    Circuit models are used to express the behavior of the conductometric cells in the radio frequency to microwave region .The capacitive cell has two era classic era and modern era as a detector for Capillary Zone Electrophoresis . Capacitive Cell where electrodes are outside the Cells and frequency of the electric signal is in the cell the radio frequency range is modeled. Both microscopic phenomena occurring at radio frequencies in electrolytes and macroscopic phenomena the circuit model for ...

  18. Relationship between the induction frequency and LTE in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Mostaghimi, J.; Boulos, M.I.

    1990-01-01

    In this paper, the effect of the induction frequency on the local thermodynamic equilibrium (LTE) conditions in an inductively coupled plasma is investigated. Using generators with frequencies ranging from 5 to 56 MHz, a previous study investigated demonstrated the importance of this effect. Their measurements of the excitation temperatures of the iron atomic lines showed a sharp decrease in this temperature as a result of the increase in frequency. Another conclusion was that, all other parameters constant, increase in frequency will help the promotion of non-LTE effects

  19. Electron content near the lunar surface using dual-frequency VLBI tracking data in a single lunar orbiter mission

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Na; Ping, Jin-Song

    2015-01-01

    In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI, by using the radio occultation method with coherent radio waves from the S/X bands. The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content (TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18 to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station. (paper)

  20. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  1. Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed

    Directory of Open Access Journals (Sweden)

    Hong Ji Lee

    2015-05-01

    Full Text Available In this study, we developed and tested a capacitively coupled electrocardiogram (ECG measurement system using conductive textiles on a bed, for long-term healthcare monitoring. The system, which was designed to measure ECG in a bed with no constraints of sleep position and posture, included a foam layer to increase the contact region with the curvature of the body and a cover to ensure durability and easy installation. Nine healthy subjects participated in the experiment during polysomnography (PSG, and the heart rate (HR coverage and heart rate variability (HRV parameters were analyzed to evaluate the system. The experimental results showed that the mean of R-peak coverage was 98.0% (95.5%–99.7%, and the normalized errors of HRV time and spectral measures between the Ag/AgCl system and our system ranged from 0.15% to 4.20%. The root mean square errors for inter-beat (RR intervals and HR were 1.36 ms and 0.09 bpm, respectively. We also showed the potential of our developed system for rapid eye movement (REM sleep and wake detection as well as for recording of abnormal states.

  2. RF capacitance-voltage characterization of MOSFETs with high-leakage dielectric

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Cubaynes, F.N; Cubaynes, F.N.; Havens, R.J.; de Kort, R.; Scholten, A.J.; Tiemeijer, L.F.

    2003-01-01

    We present a MOS Capacitance-Voltage measurement methodology that, contrary to present methods, is highly robust against gate leakage current densities up to 1000 A/cm/sup 2/. The methodology features specially designed RF test structures and RF measurement frequencies. It allows MOS parameter

  3. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    Science.gov (United States)

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  4. Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altindal, Semsettin; Tataroglu, Adem; Dokme, Ilbilge [Faculty of Arts and Sciences, Physics Department, Gazi University, 06500, Ankara (Turkey)

    2005-01-31

    Dark and illuminated current-voltage (I-V) characteristics of Al/SiO{sub x}/p-Si metal-insulator-semiconductor (MIS) solar cells were measured at room temperature. In addition to capacitance-voltage (C-V) and conductance-voltage (G-V), characteristics are studied at a wide frequency range of 1kHz-10MHz. The dark I-V characteristics showed non-ideal behavior with an ideal factor of 3.2. The density of interface states distribution profiles as a function of (E{sub ss}-E{sub v}) deduced from the I-V measurements at room temperature for the MIS solar cells on the order of 10{sup 13}cm{sup -2}eV{sup -1}. These interface states were responsible for the non-ideal behavior of I-V, C-V and G-V characteristics. Frequency dispersion in capacitance for MIS solar cells can be interpreted only in terms of interface states. The interface states can follow the a.c. signal and yield an excess capacitance, which depends on the relaxation time of interface states and the frequency of the a.c. signal. It was observed that the excess capacitance C{sub o} caused by an interface state decreases with an increase of frequency. The capacitances characteristics of MIS solar cells are affected not only in interface states but also series resistance. Analysis of this data indicated that the high interface states and series resistance leads to lower values of open-circuit voltage, short-circuit current density, and fill factor. Experimental results show that the location of interface states and series resistance have a significant effect on I-V, C-V and G-V characteristics.

  5. A dyadic model of the work-family interface: a study of dual-earner couples in China.

    Science.gov (United States)

    Ho, Man Yee; Chen, Xuefei; Cheung, Fanny M; Liu, Huimin; Worthington, Everett L

    2013-01-01

    This study adopted a spillover-crossover model to examine the roles of personality and perceived social support as antecedents of the work-family interface among dual-earner couples in China. Married couples (N = 306) from 2 major cities in China (Shanghai and Jinan) completed questionnaires measuring a relationship-oriented personality trait (i.e., family orientation), perceived family and work support, and work-family conflict and enhancement. The results showed that family orientation and perceived family support was positively associated with family-to-work enhancement and negatively associated with family-to-work conflict for both husbands and wives. Perceived work support was positively associated with family-to-work enhancement for wives and negatively associated with work-to-family conflict for husbands. Similarities in family orientation between partners were positively correlated with the individual's family-to-work enhancement. This study also illustrated the crossover of the work-family interface between dual-earner couples by using the actor-partner interdependence model. The pattern of associations between personality trait and perceived social support varied by gender. Husbands' family orientation was negatively correlated with work-to-family enhancement experienced by wives, and husbands' perceived work support was positively correlated with work-to-family enhancement experienced by wives. Wives' perceived work support was positively correlated with family-to-work conflict experienced by husbands.

  6. Toroidal coupling and frequency spectrum of tearing modes

    International Nuclear Information System (INIS)

    Edery, D.; Samain, A.

    1989-05-01

    The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation

  7. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    Science.gov (United States)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  8. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  9. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David

    2016-06-28

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.

  10. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  11. Simulation and optimization of a dc SQUID with finite capacitance

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise an the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT = 1.2 and 5 nHK. Within a range of ..beta.. and ..beta../sub c/ between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 nHK.

  12. Simulation and optimization of a dc SQUID with finite capacitance

    Science.gov (United States)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  13. Frequency and characteristics of dual pathology in patients with lesional epilepsy.

    Science.gov (United States)

    Cendes, F; Cook, M J; Watson, C; Andermann, F; Fish, D R; Shorvon, S D; Bergin, P; Free, S; Dubeau, F; Arnold, D L

    1995-11-01

    We studied 167 patients who had identifiable lesions and temporal or extratemporal partial epilepsy. Pathology included neuronal migration disorders (NMDs) (48), low-grade tumors (52), vascular malformations (34), porencephalic cysts (16), and gliotic lesions as a result of cerebral insults early in life (17). MRI volumetric studies using thin (1.5- or 3-mm) coronal images were performed in all patients and in 44 age-matched normal controls. An atrophic hippocampal formation (HF), indicating dual pathology, was present in 25 patients (15%). Abnormal HF volumes were present in those with lesions involving temporal (17%) but also extratemporal (14%) areas. Age at onset and duration of epilepsy did not influence the presence of HF atrophy. However, febrile seizures in early childhood were more frequently, although not exclusively, found in patients with hippocampal atrophy. The frequency of hippocampal atrophy in our patients with low-grade tumors (2%) and vascular lesions (9%) was low. Dual pathology was far more common in patients with NMDs (25%), porencephalic cysts (31%), and reactive gliosis (23.5%). Some structural lesions, such as NMDs, are more likely to be associated with hippocampal atrophy, independent of the distance of the lesion from the HF. In other types of lesions, such as vascular malformations, dual pathology was found when the lesion was close to the HF. A common pathogenic mechanism during pre- or perinatal development may explain the occurrence of concomitant mesial temporal sclerosis and other structural lesions because of either (1) associated developmental abnormalities or (2) predisposition to prolonged febrile convulsions.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  15. A frequency output ferroelectric phase PNZT capacitor-based temperature sensor

    KAUST Repository

    Khan, Naveed

    2016-09-05

    In this paper, a frequency output temperature sensor based on a 4% Niobium doped 20/80 Zr/Ti Lead Zirconate Titanate (PNZT) capacitor is proposed. The sensor capacitance vs temperature and capacitance vs voltage characteristics are experimentally measured below the Curie temperature of the ferroelectric capacitor. The capacitance of the 20/80 (Zr/Ti) composition PNZT capacitor changes by 29% for a temperature change from 10°C to 100°C, which translates to 0.32%/°C temperature sensitivity. The measured sensor characteristics show less than ∼0.7°C deviation from the ideal linear response. A Wien bridge oscillator based temperature sensor is demonstrated based on the PNZT capacitors. Mathematical analysis for the effect of the op-amp finite unity-gain frequency on the sensor circuit oscillation frequency is provided. The experimentally realized frequency output temperature sensor shows -17.6% relative frequency change for a temperature change from 10°C to 100°C. The proposed capacitive temperature sensor can be used in low-power smart sensor nodes without the need for extensive calibration. © 2015 IEEE.

  16. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    Science.gov (United States)

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  17. Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2018-03-01

    Full Text Available The strict operational condition of driving motors for vehicles propels the development of more complicated configurations in pure electric vehicles (PEVs. Multi-power-source powertrain configurations are one of the efficient technologies to reduce the manufacturing difficulty of driving motors. However, most of the existing studies are predominantly focused on optimal designs of powertrains and power distribution between the engine and motor of hybrid electric vehicles, which are not appropriate for PEVs. This paper proposes a novel dual-motor coupling-propulsion powertrain system that improves the dynamic and economic performance of the powertrain system in PEVs. The proposed powertrain system can realize both the single-motor driving mode and dual-motor coupling driving mode. The driving modes are divided and a power distribution strategy for the different driving modes based on an optimal system efficiency rule is employed, which enhances the performance of the proposed system. Further, a mode-switching strategy that ensures driving comfort by preventing jerk during mode switching is incorporated into the system. The results of comparative evaluations that were conducted using a dual-motor electric vehicle model implemented in MATLAB/Simulink, indicate that the mileage and dynamic performance of the proposed powertrain system are significantly better than those of the traditional single-motor powertrain system.

  18. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  19. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    Science.gov (United States)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  20. Winding design of series AC inductor for dual active bridge converters

    DEFF Research Database (Denmark)

    Shen, Zhan; Wang, Huai; Shen, Yanfeng

    2018-01-01

    The ac resistance and parasitic capacitance of the inductor are the primary considerations in the winding design for the dual-active bridge converter (DAB). They are dependent of up to four independent structure variables. The interactive restrictions between those variables makes the design diff...

  1. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  2. Origin of Negative Capacitance in Bipolar Organic Diodes

    Science.gov (United States)

    Niu, Quan; Crǎciun, N. Irina; Wetzelaer, Gert-Jan A. H.; Blom, Paul W. M.

    2018-03-01

    Negative differential capacitance (NC) occurring at low frequencies in organic light-emitting diodes (OLEDs) is a poorly understood phenomenon. We study the origin of the NC effect by systematically varying the number of electron traps in OLEDs based on the polymeric semiconductor poly(p -phenylene vinylene). Increasing the electron trap density enhances the NC effect. The magnitude and observed decrease of the relaxation time is consistent with the (inverse) rate of trap-assisted recombination. The absence of NC in a nearly trap-free light-emitting diode unambiguously shows that trap-assisted recombination is the responsible mechanism for the negative contribution to the capacitance in bipolar organic diodes. Our results reveal that the NC effect can be exploited to quantitatively determine the number of traps in organic semiconductors in a nondestructive fashion.

  3. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  4. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    International Nuclear Information System (INIS)

    Mu Linfeng; Zhang Wendong; He Changde; Zhang Rui; Song Jinlong; Xue Chenyang

    2015-01-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. (paper)

  5. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  6. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  7. A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng

    2017-01-01

    This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...

  8. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  9. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  10. Low-frequency response in antiferromagnetically coupled Fe/Cr multilayers

    International Nuclear Information System (INIS)

    Aliev, F.G.; Guerrero, R.; Martinez, J.L.; Moshchalkov, V.V.; Bruynseraede, Y.; Villar, R.

    2001-01-01

    We have studied the magnetic field dependences of the real (χ) and imaginary (χ') contributions to the low-frequency magnetic susceptibility in epitaxial antiferromagnetically coupled [Fe(Cr(1 0 0)] n (n=10-50) multilayers. For the magnetic field directed along (1 1 0), the magnetic susceptibility shows on orientation phase transition. For the magnetic field either along the easy or the hard axes we observe a strong enhancement of the χ'(H) (i.e. magnetic losses) at low magnetic fields (H<50 Oe), which we relate to AC field-induced domain wall movement. This response is strongly dependent on frequency and temperature

  11. Dual Comb Unit High-g Accelerometer Based on CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Mehrdad Mottaghi

    2009-04-01

    Full Text Available In this paper a capacitive based high-g accelerometer with superior level of sensitivity is presented. It takes advantage of dual comb unit configuration and surface micromachining fabrication process. All aspects of mechanical design such as sensor structure, modal analysis, energy dissipations, dynamic response and stresses in moving structure as well as anchors are described. Electrical circuit based on CMOS technology and its output signal is presented. Fabrication process and packaging are also discussed. The proposed sensor can endure impact loads up to 120,000 g (g = 9.81 m.s-2 and achieves 16.75 µV.g-1 sensitivity with 5 V bridge excitation voltage. Main resonant frequency of structure is found to be 42.4 kHz. Intended applications of suggested sensor include military and aerospace industries as well as field of impact engineering.

  12. Corrections to “Change Detection in Full and Dual Polarization, Single- and Multi-Frequency SAR Data”

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    of obtaining a smaller value of the test statistic are given. In a case study airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry...

  13. A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed

    Science.gov (United States)

    Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix

    2014-01-01

    Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.

  14. Selective virtual capacitive impedance loop for harmonics voltage compensation in islanded microgrids

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2013-01-01

    Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead of in...... resistance for selective harmonic compensation in islanded microgrids. Simulation results were given to show the suitability of the proposed algorithms in reducing the voltage harmonics at the PCC.......Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead...... of introducing additional active or passive filters into the system that could compromise the stability of the microgrid. However, the performance of these compensation loops becomes degraded when a virtual resistance is introduced with the aim to improve the overall stability of the parallel inverters...

  15. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    Energy Technology Data Exchange (ETDEWEB)

    Milián-Sánchez, V., E-mail: vicmisan@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety, Universitat Politècnica de València, Camino de Vera, s/n, Valencia (Spain); Mocholí-Salcedo, A., E-mail: amocholi@eln.upv.es [Traffic Control Systems Group, ITACA Institute, Universitat Politécnica de, Camino de Vera, s/n, Valencia (Spain); Milián, C., E-mail: carles.milian@cpht.polytechnique.fr [Centre de Physique Théorique, CNRS, École Polytechnique, F-91128 Palaiseau (France); Kolombet, V.A., E-mail: kolombet@iteb.ru [Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow Region, Pushchino 142290 (Russian Federation); Verdú, G., E-mail: gverdu@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety, Universitat Politècnica de València, Camino de Vera, s/n, Valencia (Spain); Chemical and Nuclear Engineering Department, Universitat Politécnica de Valencia, Camino de Vera, s/n, Valencia (Spain)

    2016-08-21

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates. - Highlights: • Background counts and decay rates changes of different nuclides are described. • Those changes are observed inside a multilayer modified Faraday cage. • Noise in a multichannel analyzer increases inside the multilayer enclosure. • Capacitance of a class-I multilayer ceramic capacitor varies inside the enclosure. • Capacitance changes depend on the used frequency.

  16. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    International Nuclear Information System (INIS)

    Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V.A.; Verdú, G.

    2016-01-01

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates. - Highlights: • Background counts and decay rates changes of different nuclides are described. • Those changes are observed inside a multilayer modified Faraday cage. • Noise in a multichannel analyzer increases inside the multilayer enclosure. • Capacitance of a class-I multilayer ceramic capacitor varies inside the enclosure. • Capacitance changes depend on the used frequency.

  17. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  18. Chimera Type Behavior in Nonlocal Coupling System with Two Different Inherent Frequencies

    Science.gov (United States)

    Lin, Larry; Li, Ping-Cheng; Tseng, Hseng-Che

    2014-03-01

    From the research of Kuramoto and Strogatz, arrays of identical oscillators can display a remarkable pattern, named chimera state, in which phase-locked oscillators coexist with drifting ones in nonlocal coupling oscillator system. We consider further in this study, two groups of oscillators with different inherent frequencies and arrange them in a ring. When the difference of the inherent frequencies is within some specific parameter range, oscillators of nonlocal coupling system show two distinct chimera states. When the parameter value exceeds some threshold value, two chimera states disappear. They show different features. The statistical dynamic behavior of the system can be described by Kuramoto theory.

  19. A capacitive bioelectrode for recording electrophysiological signals

    International Nuclear Information System (INIS)

    Moreno Garcia, E.; Mujica Ascencio, S.; Rosa Vazquez, J. M.de la; Stolik Isakina, S.

    2012-01-01

    In this paper we describe a gel-free sensor with on-board electrode design, which capacitive couples to the skin to detect the electrical activity in the body. The integrated sensor is manufactured on a standard printed circuit board within 2.2 cm diameter enclosure that can operate through fabric or other insulation. The electrode includes amplification (60db gain) and passive band pass filtering (0.5 to 100 Hz). Active shielding surrounding the sensor plate is used to reduce noise pickup. The input referred noise, measured over the electrode bandwidth is 4 μV rms at 0.2 mm sensor distance, and 16 μV rms at 1.2 mm distance trough two cotton cloths. The bioelectrodes were coupled to the scalp trough hair for EEG signals (with 80 db gain), and coupled to the chest through clothing for ECG signals. The recorded signals show well performance of the designed bielectrode. (Author)

  20. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  1. Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, M. A., E-mail: lieber@eecs.berkeley.edu; Lichtenberg, A. J.; Kawamura, E. [Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720-1770 (United States); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, UPMC, Paris XI, Observatoire de Paris, 91128 Palaiseau (France)

    2016-01-15

    It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths and the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power.

  2. A new method for calculation of low-frequency coupling impedance

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; Stupakov, G.V.

    1993-05-01

    In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained

  3. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An approach to evaluate capacitance, capacitive reactance and resistance of pivoted pads of a thrust bearing

    Science.gov (United States)

    Prashad, Har

    1992-07-01

    A theoretical approach is developed for determining the capacitance and active resistance between the interacting surfaces of pivoted pads and thrust collar, under different conditions of operation. It is shown that resistance and capacitive reactance of a thrust bearing decrease with the number of pads times the values of these parameters for an individual pad, and that capacitance increases with the number of pads times the capacitance of an individual pad. The analysis presented has a potential to diagnose the behavior of pivoted pad thrust bearings with the angle of tilt and the ratio of film thickness at the leading to trailing edge, by determining the variation of capacitance, resistance, and capacitive reactance.

  5. Treatment of Murine Tumor Models of Breast Adenocarcinoma by Continuous Dual-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Amir Hoshang Barati

    2009-03-01

    Full Text Available Introduction: Acoustic transient cavitation is the primary mechanism of sonochemical reaction and has potential use for tumor treatment. In this study, the in vivo anti-tumor effect of simultaneous dual-frequency ultrasound at low-level intensity (ISATA < 6 W/cm2 was investigated in a spontaneous murine model of breast adenocarcinoma in Balb/c mice. Materials and Methods: Forty tumor bearing mice were divided into four groups (10 in each group. The treated groups received 15 or 30 minutes of combined dual-frequency ultrasound in continuous mode (1 MHzcon + 150 kHzcon respectively. The control and the sham groups contained the untreated mice. The tumor growth delay parameters including tumor volume, relative tumor volume, T5 and T2 (the needed time for each tumor to reach 5 and 2 times the initial tumor volume, respectively, survival period and percent of tumor growth inhibition ratio were measured on different days after treatment. Results: The results showed that the 30 min treatment was effective in tumor growth delay and percent of tumor growth inhibitory ratio compared to the sham and the control groups. The tumor volume growth and relative volume of tumors in the same treated group showed an anti-tumor effect relative to the sham and the control groups. There was a significant difference in tumor volume growth between this 30 min treatment group and the sham group 12 days after treatment (p-value

  6. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  7. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  8. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  9. Work-family conflict, health services and medication use among dual-income couples in Europe.

    Science.gov (United States)

    Christiaens, Wendy; Bracke, Piet

    2014-03-01

    Combination pressure or work-life imbalance is linked to adverse health. However, it remains unclear how work-family conflict is related to healthcare utilisation. Does work-family conflict function as a barrier or as a facilitator in relation to the use of health services and prescription medication? Lack of time may prevent people from visiting a doctor when they feel unwell. However, combination pressure can also be expected to intensify the use of health services, as the need for a quick fix is prioritised. Further, do women and men differ in their susceptibility to medicalisation and time pressure resulting from work-life imbalance? This article investigates the use of health services and prescription medication of dual-income couples with children, based on data from 23 countries in the European Social Survey round 2 (N(women) = 3755; N(men) = 3142). It was found that medical services and prescription medications are used more frequently in dual-income couples experiencing work-to-family spillover, but for women only this is irrespective of their self-reported health. Family-to-work spillover does not result in increased health service or medication use for either men or women. While women opt for a medical response to work-life imbalance, men's reluctance to seek formal health support is confirmed. © 2013 The Authors. Sociology of Health & Illness © 2013 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  10. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  11. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  12. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  13. Impact of Slim DC Capacitance on Floating Capacitor H-bridge Motor Drive

    DEFF Research Database (Denmark)

    Leng, Siyu; Muyeen, S.M.; Al-Durra, Ahmed

    2018-01-01

    harmonics will be generated in the motor line voltage. This demonstrates the possibility of drastically reducing the dc capacitance of the proposed system. Induction motor as well as H-bridge performance with respect to different dc capacitance values is demonstrated by experiments, which lays......This paper discusses the impact of small dc capacitance in a motor drive using a floating capacitor H-bridge topology. The proposed topology is intended for applications where variable frequency control is not required. Special attention is paid on investigating the second-order dc capacitor...... voltage ripples, whose influence on the induction motor as well as on the motor drive itself is of importance. This issue is addressed in this paper through rigorous mathematical formulations. It is found that by inverting the second-order dc ripple voltage using the conventional SVPWM, no harmful...

  14. Dopant density from maximum-minimum capacitance ratio of implanted MOS structures

    International Nuclear Information System (INIS)

    Brews, J.R.

    1982-01-01

    For uniformly doped structures, the ratio of the maximum to the minimum high frequency capacitance determines the dopant ion density per unit volume. Here it is shown that for implanted structures this 'max-min' dopant density estimate depends upon the dose and depth of the implant through the first moment of the depleted portion of the implant. A a result, the 'max-min' estimate of dopant ion density reflects neither the surface dopant density nor the average of the dopant density over the depletion layer. In particular, it is not clear how this dopant ion density estimate is related to the flatband capacitance. (author)

  15. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng

    2017-12-06

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  16. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  17. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  18. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  19. Reduced size dual band pass filters for RFID applications with excellent bandpass/bandstop characteristics

    Science.gov (United States)

    Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar

    2018-02-01

    This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.

  20. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.