WorldWideScience

Sample records for dual temperature process

  1. Dual temperature isotope exchange process using hot feed with liquid recycle from the humidifier

    International Nuclear Information System (INIS)

    Paulis, G.J.C.A.

    1977-01-01

    This invention relates to an improvement in the dual temperature substances at two temperatures. It provides hot feed process, which while keeping the water purity advantages offered by a recycle of liquid, reduces the energy requirements of the process saving in capital cost over previous hot feed process, at equal production rate, or conversely which offers a substantial increase in production rate at equal capital costs

  2. Report on process design studies of a tritium recovery process using dual temperature exchange with metal hydrides

    International Nuclear Information System (INIS)

    Benenati, R.F.

    1976-01-01

    Studies were made of the process characteristics of a plant to decontaminate tritiated water using dual temperature exchange with VH 2 . Feed to the plant consists of 300 kg/day on water containing 1 Ci/kg of tritium. A reference design was developed based on a decontamination factor of 10 2 and 10 kg/day of enriched product. This design requires a total of 48 ideal separation stages, 22 stages in the enriching section and 26 stages in the stripping section. Only low grade heat is required for the heating cycle and a relatively small (12 ton) ice machine is required for the cooling cycle. A total plant inventory of approximately 10 tons VH 2 is required. A mechanical design of the dual temperature stage complete with all heat transfer surfaces and flow diverters was devised and modeled. Since the process involves periodic swings in temperature between 0 and 60 0 C, a substantial portion of the operation is expected to be in unsteady state transition from one state to another. A two-step experimental program has been presented: the first step consists of a single stage unit, i.e., one hot bed and one cold bed operating in a simple closed loop. The second stage in the experimental program would consist of five stages operating as a small cascade

  3. Dual temperature concentration system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In a dual temperature isotope exchange system--exemplified by exchange of deuterium and protium between water and hydrogen sulfide gas in hot and cold towers, in which the feed stream (water) containing the desired isotope is passed through a pair of towers maintained at different temperatures wherein it effects isotope exchange with countercurrently circulated auxiliary fluid (H 2 S) and is impoverished in said isotope and then disposed of, e.g. discharged to waste,--the flow of isotope enriched auxiliary fluid between said towers (hot H 2 S saturated with water vapor) is divided and a part thereof is adjusted in its temperature (to cold tower conditions) and then passed to the auxiliary fluid impoverishing (cold) tower, while the remainder of the divided flow of such enriched auxiliary fluid is passed through a subsequent isotope concentration treatment to produce a product more highly enriched in the desired isotope and wherein it is also adjusted in its temperature and is impoverished in said isotope during said subsequent treatment before it is delivered to the said auxiliary fluid impoverishing (cold) tower. Certain provisions are made for returning to the hot tower liquid carried as vapor by the remainder of the divided flow to the subsequent isotope concentration treatment, for recovering sensible and latent heat, and for reducing passage of auxiliary fluid to waste

  4. Dual temperature isotope exchange system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1976-01-01

    Improvements in the method for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. In a preferred embodiment the first is a vaporizable liquid and the auxiliary fluid a gas, comprising steps for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations

  5. Apparatus for concentrating by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    The dual temperature exchange apparatus, with a dual temperature stage having a hot processing tower and a cold processing tower, is provided with means for transferring heat from the hot processed gas to both liquid and gas being delivered to the hot processing tower. The heat exchange system provides means for effecting direct contact between the hot processed gas and the cold processed liquid being delivered to the hot tower, means for establishing a circulation of the resulting heated processed liquid, and means including an indirect contact exchanger for transferring heat from said circulation to condition the gas being supplied to the hot processing tower. The reactants in the example given are hydrogen sulfide gas and liquid water

  6. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  7. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Gandla, Srinivas; Gollu, Sankara Rao; Sharma, Ramakant; Sarangi, Venkateshwarlu; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-10-12

    In this paper, we have demonstrated the dual role of boron doping in enhancing the device performance parameters as well as the device stability in low temperatures (200 °C) sol-gel processed ZnO thin film transistors (TFTs). Our studies suggest that boron is able to act as a carrier generator and oxygen vacancy suppressor simultaneously. Boron-doped ZnO TFTs with 8 mol. % of boron concentration demonstrated field-effect mobility value of 1.2 cm{sup 2} V{sup −1} s{sup −1} and threshold voltage of 6.2 V, respectively. Further, these devices showed lower shift in threshold voltage during the hysteresis and bias stress measurements as compared to undoped ZnO TFTs.

  8. Dual-phase ULCB steels thermomechanically processed

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.

    2001-01-01

    The design philosophy of the processing of dual-phase (D-P) ultra low carbon steels (ULCB) by thermomechanical treatment has been briefly discussed. Modelling of the structure evolution during thermomechanical rolling of ULCB steel was based upon the established empirical equations for yield flow at different conditions of: deformation temperatures, strain rates and stresses for applied amount of deformation during hot deformation compression tests. The critical amount of deformation needed for the occurrence of dynamic or static recrystallization was determined. The dependence of grain refinement of the acicular bainitic and polygonal ferrite of the accelerated cooling and amount of stored energy of deformation in steel has been evaluated. Effect of the decreasing of the finishing temperature of thermomechanical processing on the increase of the impact toughness of dual-phase microstructure consisted of the bainitie-martensite islands in the ferrite matrix has been shown. The effect of ageing process after thermomechanical rolling of heavy plates on fracture toughness values of J 0.2 for ULCB-Ni steels has been established from cod tests measurements. New low cost technology of rolling of ULCB steels dual-phase is proposed. (author)

  9. Dual processing and diagnostic errors.

    Science.gov (United States)

    Norman, Geoff

    2009-09-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical, conscious, and conceptual process, called System 2. Exemplar theories of categorization propose that many category decisions in everyday life are made by unconscious matching to a particular example in memory, and these remain available and retrievable individually. I then review studies of clinical reasoning based on these theories, and show that the two processes are equally effective; System 1, despite its reliance in idiosyncratic, individual experience, is no more prone to cognitive bias or diagnostic error than System 2. Further, I review evidence that instructions directed at encouraging the clinician to explicitly use both strategies can lead to consistent reduction in error rates.

  10. A Dual Processing Approach to Stereotype Change.

    Science.gov (United States)

    Johnston, Lucy; Coolen, Petra

    1995-01-01

    Considered stereotype change within a framework of dual process models. Using three experiments, manipulated task involvement, source credibility, and message quality. Findings proved dual process as appropriate when considering the processing of stereotype-disconfirming information and processing's impact on existing stereotypes. Different…

  11. Dual reference point temperature interrogating method for distributed temperature sensor

    International Nuclear Information System (INIS)

    Ma, Xin; Ju, Fang; Chang, Jun; Wang, Weijie; Wang, Zongliang

    2013-01-01

    A novel method based on dual temperature reference points is presented to interrogate the temperature in a distributed temperature sensing (DTS) system. This new method is suitable to overcome deficiencies due to the impact of DC offsets and the gain difference in the two signal channels of the sensing system during temperature interrogation. Moreover, this method can in most cases avoid the need to calibrate the gain and DC offsets in the receiver, data acquisition and conversion. An improved temperature interrogation formula is presented and the experimental results show that this method can efficiently estimate the channel amplification and system DC offset, thus improving the system accuracy. (letter)

  12. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Qi; Wu Nanjian

    2011-01-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm 2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is −10.7 dBm/−8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is −0.6 °C/0.5 °C (−1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (−30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode. (semiconductor integrated circuits)

  13. Method for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1977-01-01

    In dual temperature systems utilizing different fluid materials in liquid and gas phases separable from each other (for example H 2 O and H 2 S), the phases are contacted with each other at a relatively hot temperature. Herein combinations of method and means are provided by which the gas is conditioned by raising its temperature and humidity principally by heat derived from the cooling and dehumidification of said gas. Special provisions are made in the combinations for transferring said heat and for the conditioning of the gas with high efficiency; and for economically controlling the temperature of the condensate resulting from the dehumidification of the gas to adapt it for particular uses in the system. Method and means are provided for such liquid gas contacting systems for efficiently stripping or separating dissolved gas from the effluent liquid and returning one of the so separated materials to the system

  14. Apparatus for concentrating by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    Improvements in an apparatus for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. The first fluid is a vaporizable liquid and the auxiliary fluid a gas, the apparatus having means for cascading the auxiliary fluid and the feed fluid in vapor and preferably also in liquid form. The apparatus also contains new combinations of means for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations of the system. The reactants in the example given are hydrogen sulfide gas and liquid water

  15. System for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In dual temperature isotope exchange systems utilizing different fluid substances in liquid and gas phases separable from and soluble in each other (for example H 2 O and H 2 S), the phases are passed countercurrent to each other in towers maintained at relatively hot and cold temperatures. Combinations of method and means are provided by which the gas is raised to hot tower temperature and humidity conditions principally by heat derived from the cooling and dehumidification of the gas leaving the hot tower as it is being reduced in temperature and humidity to cold tower conditions. Special provisions are made in the combinations for transferring this heat and for completing the conditioning of the gas to the respective tower conditions with high efficiency, for economically controlling the temperature of the condensate to adapt it for transfer to different parts of the system, and for economically stripping dissolved gas and heat from the effluent liquid and returning it to the system in manners that aid the thermal conditioning of the main gas stream

  16. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    Science.gov (United States)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  17. Dual elaboration models in attitude change processes

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2005-01-01

    Full Text Available This article examines empirical and theoretical developments in research on attitude change in the past 50 years. It focuses the period from 1980 till present as well as cognitive response theories as the dominant theoretical approach in the field. The postulates of Elaboration Likelihood Model, as most-researched representative of dual process theories are studied, based on review of accumulated research evidence. Main research findings are grouped in four basic factors: message source, message content, message recipient and its context. Most influential criticisms of the theory are then presented regarding its empirical base and dual process assumption. Some possible applications and further research perspectives are discussed at the end.

  18. Dual-zone boiling process

    International Nuclear Information System (INIS)

    Bennett, D.L.; Schwarz, A.; Thorogood, R.M.

    1987-01-01

    This patent describes a process for boiling flowing liquids in a heat exchanger wherein the flowing liquids is heated in a single heat exchanger to vaporize the liquid. The improvement described here comprises: (a) passing the boiling flowing liquid through a first heat transfer zone of the heat exchanger comprising a surface with a high-convective-heat-transfer characteristic and a higher pressure drop characteristic; and then (b) passing the boiling flowing liquid through a second heat transfer zone of the heat exchanger comprising an essentially open channel with only minor obstructions by secondary surfaces, with an enhanced nucleate boiling heat transfer surface and a lower pressure drop characteristic

  19. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  20. Dual learning processes in interactive skill acquisition.

    Science.gov (United States)

    Fu, Wai-Tat; Anderson, John R

    2008-06-01

    Acquisition of interactive skills involves the use of internal and external cues. Experiment 1 showed that when actions were interdependent, learning was effective with and without external cues in the single-task condition but was effective only with the presence of external cues in the dual-task condition. In the dual-task condition, actions closer to the feedback were learned faster than actions farther away but this difference was reversed in the single-task condition. Experiment 2 tested how knowledge acquired in single and dual-task conditions would transfer to a new reward structure. Results confirmed the two forms of learning mediated by the secondary task: A declarative memory encoding process that simultaneously assigned credits to actions and a reinforcement-learning process that slowly propagated credits backward from the feedback. The results showed that both forms of learning were engaged during training, but only at the response selection stage, one form of knowledge may dominate over the other depending on the availability of attentional resources. (c) 2008 APA, all rights reserved

  1. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    Science.gov (United States)

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  2. DUAL-PROCESS, a highly reliable process control system

    International Nuclear Information System (INIS)

    Buerger, L.; Gossanyi, A.; Parkanyi, T.; Szabo, G.; Vegh, E.

    1983-02-01

    A multiprocessor process control system is described. During its development the reliability was the most important aspect because it is used in the computerized control of a 5 MW research reactor. DUAL-PROCESS is fully compatible with the earlier single processor control system PROCESS-24K. The paper deals in detail with the communication, synchronization, error detection and error recovery problems of the operating system. (author)

  3. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    Science.gov (United States)

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  4. Markovian Interpretations of Dual Retrieval Processes

    Science.gov (United States)

    Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.

    2013-01-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840

  5. Markovian Interpretations of Dual Retrieval Processes.

    Science.gov (United States)

    Gomes, C F A; Brainerd, C J; Nakamura, K; Reyna, V F

    2014-04-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes' work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes.

  6. DualTemperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  7. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  8. Development of materials and process technology for dual alloy disks

    Science.gov (United States)

    Marder, J. M.; Kortovich, C. S.

    1981-01-01

    Techniques for the preparation of dual alloy disks were developed and evaluated. Four material combinations were evaluated in the form of HIP consolidated and heat treated cylindrical and plate shapes in terms of elevated temperature tensile, stress rupture and low cycle fatigue properties. The process evaluation indicated that the pe-HIP AF-115 rim/loose powder Rene 95 hub combination offered the best overall range of mechanical properties for dual disk applications. The feasibility of this dual alloy concept for the production of more complex components was demonstrated by the scale up fabrication of a prototype CFM-56 disk made from this AF-115/Rene 95 combination. The hub alloy ultimate tensile strength was approximately 92 percent of the program goal of 1520 MPa (220 ksi) at 480 C (900 F) and the rim alloy stress rupture goal of 300 hours at 675 C (1250 F)/925 MPa (134 ksi) was exceeded by 200 hours. The low cycle fatigue properties were equivalent to those exhibited by HIP and heat treated alloys. There was an absence of rupture notch sensitivity in both alloys. The joint tensile properties were approximately 85 percent of the weaker of the two materials (Rene 95) and the stress rupture properties were equivalent to those of the weaker of the two materials (Rene 95).

  9. The Complexity of Developmental Predictions from Dual Process Models

    Science.gov (United States)

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  10. Dual-Process Theories and Cognitive Development: Advances and Challenges

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive…

  11. Dual-temperature acoustic levitation and sample transport apparatus

    Science.gov (United States)

    Trinh, E.; Robey, J.; Jacobi, N.; Wang, T.

    1986-01-01

    The properties of a dual-temperature resonant chamber to be used for acoustical levitation and positioning have been theoretically and experimentally studied. The predictions of a first-order dissipationless treatment of the generalized wave equation for an inhomogeneous medium are in close agreement with experimental results for the temperature dependence of the resonant mode spectrum and the acoustic pressure distribution, although the measured magnitude of the pressure variations does not correlate well with the calculated one. Ground-based levitation of low-density samples has been demonstrated at 800 C, where steady-state forces up to 700 dyn were generated.

  12. Serial Learning Process: Test of Chaining, Position, and Dual-Process Hypotheses

    Science.gov (United States)

    Giurintano, S. L.

    1973-01-01

    The chaining, position, and dual-process hypotheses of serial learning (SL) as well as serial recall, reordering, and relearning of paired-associate learning were examined to establish learning patterns. Results provide evidence for dual-process hypothesis. (DS)

  13. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  14. Dual processing model of medical decision-making

    OpenAIRE

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-01-01

    Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administe...

  15. Emotion response coherence: A dual-process perspective

    NARCIS (Netherlands)

    Evers, C.; Hopp, H.; Gross, J.J.; Fischer, A.H.; Manstead, A.S.R.; Mauss, I.B.

    2014-01-01

    Emotions are widely thought to involve coordinated responses across multiple responses (e.g., experiential, behavioral, and physiological). However, empirical support for this general "response coherence" postulate is inconsistent. The present research takes a dual-process perspective, suggesting

  16. Emotion response coherence : a dual-process perspective

    NARCIS (Netherlands)

    Evers, Catharine; Hopp, Henrik; Gross, James J; Fischer, Agneta H; Manstead, Antony S R; Mauss, Iris B

    Emotions are widely thought to involve coordinated responses across multiple responses (e.g., experiential, behavioral, and physiological). However, empirical support for this general "response coherence" postulate is inconsistent. The present research takes a dual-process perspective, suggesting

  17. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  18. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  19. Dual-processing accounts of reasoning, judgment, and social cognition.

    Science.gov (United States)

    Evans, Jonathan St B T

    2008-01-01

    This article reviews a diverse set of proposals for dual processing in higher cognition within largely disconnected literatures in cognitive and social psychology. All these theories have in common the distinction between cognitive processes that are fast, automatic, and unconscious and those that are slow, deliberative, and conscious. A number of authors have recently suggested that there may be two architecturally (and evolutionarily) distinct cognitive systems underlying these dual-process accounts. However, it emerges that (a) there are multiple kinds of implicit processes described by different theorists and (b) not all of the proposed attributes of the two kinds of processing can be sensibly mapped on to two systems as currently conceived. It is suggested that while some dual-process theories are concerned with parallel competing processes involving explicit and implicit knowledge systems, others are concerned with the influence of preconscious processes that contextualize and shape deliberative reasoning and decision-making.

  20. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    Science.gov (United States)

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  1. Conflict Monitoring in Dual Process Theories of Thinking

    Science.gov (United States)

    De Neys, Wim; Glumicic, Tamara

    2008-01-01

    Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman…

  2. Dual-Process Theories of Higher Cognition: Advancing the Debate.

    Science.gov (United States)

    Evans, Jonathan St B T; Stanovich, Keith E

    2013-05-01

    Dual-process and dual-system theories in both cognitive and social psychology have been subjected to a number of recently published criticisms. However, they have been attacked as a category, incorrectly assuming there is a generic version that applies to all. We identify and respond to 5 main lines of argument made by such critics. We agree that some of these arguments have force against some of the theories in the literature but believe them to be overstated. We argue that the dual-processing distinction is supported by much recent evidence in cognitive science. Our preferred theoretical approach is one in which rapid autonomous processes (Type 1) are assumed to yield default responses unless intervened on by distinctive higher order reasoning processes (Type 2). What defines the difference is that Type 2 processing supports hypothetical thinking and load heavily on working memory. © The Author(s) 2013.

  3. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29...... that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications...

  4. A dynamic dual process model of risky decision making.

    Science.gov (United States)

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. [Description of clinical thinking by the dual-process theory].

    Science.gov (United States)

    Peña G, Luis

    2012-06-01

    Clinical thinking is a very complex process that can be described by the dual-process theory, it has an intuitive part (that recognizes patterns) and an analytical part (that tests hypotheses). It is vulnerable to cognitive bias that professionals must be aware of, to minimize diagnostic errors.

  6. Reasoning on the Autism Spectrum: A Dual Process Theory Account

    Science.gov (United States)

    Brosnan, Mark; Lewton, Marcus; Ashwin, Chris

    2016-01-01

    Dual process theory proposes two distinct reasoning processes in humans, an intuitive style that is rapid and automatic and a deliberative style that is more effortful. However, no study to date has specifically examined these reasoning styles in relation to the autism spectrum. The present studies investigated deliberative and intuitive reasoning…

  7. Direct social perception and dual process theories of mindreading.

    Science.gov (United States)

    Herschbach, Mitchell

    2015-11-01

    The direct social perception (DSP) thesis claims that we can directly perceive some mental states of other people. The direct perception of mental states has been formulated phenomenologically and psychologically, and typically restricted to the mental state types of intentions and emotions. I will compare DSP to another account of mindreading: dual process accounts that posit a fast, automatic "Type 1" form of mindreading and a slow, effortful "Type 2" form. I will here analyze whether dual process accounts' Type 1 mindreading serves as a rival to DSP or whether some Type 1 mindreading can be perceptual. I will focus on Apperly and Butterfill's dual process account of mindreading epistemic states such as perception, knowledge, and belief. This account posits a minimal form of Type 1 mindreading of belief-like states called registrations. I will argue that general dual process theories fit well with a modular view of perception that is considered a kind of Type 1 process. I will show that this modular view of perception challenges and has significant advantages over DSP's phenomenological and psychological theses. Finally, I will argue that if such a modular view of perception is accepted, there is significant reason for thinking Type 1 mindreading of belief-like states is perceptual in nature. This would mean extending the scope of DSP to at least one type of epistemic state. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  9. Direct Evidence for a Dual Process Model of Deductive Inference

    Science.gov (United States)

    Markovits, Henry; Brunet, Marie-Laurence; Thompson, Valerie; Brisson, Janie

    2013-01-01

    In 2 experiments, we tested a strong version of a dual process theory of conditional inference (cf. Verschueren et al., 2005a, 2005b) that assumes that most reasoners have 2 strategies available, the choice of which is determined by situational variables, cognitive capacity, and metacognitive control. The statistical strategy evaluates inferences…

  10. Dual-Process Theories of Reasoning: The Test of Development

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…

  11. On Dual Processing and Heuristic Approaches to Moral Cognition

    Science.gov (United States)

    Lapsley, Daniel K.; Hill, Patrick L.

    2008-01-01

    We examine the implications of dual-processing theories of cognition for the moral domain, with particular emphasis upon "System 1" theories: the Social Intuitionist Model (Haidt), moral heuristics (Sunstein), fast-and-frugal moral heuristics (Gigerenzer), schema accessibility (Lapsley & Narvaez) and moral expertise (Narvaez). We argue that these…

  12. Better dual-task processing in simultaneous interpreters

    Science.gov (United States)

    Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone

    2015-01-01

    Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232

  13. Training and dual processes in human thinking

    OpenAIRE

    Neilens, Helen Louise

    2005-01-01

    The aim of the research presented in this thesis was to investigate the effects of trainin- on reasoning and decision making performance. In Experiment Ia study is reported which examined the relationships between performance on a variety of reasoning tasks and measures of individual differences. Tasks employed were documented in the literature for their differential responding according to heuristic and analytic processes. The reasoning tasks to be utilised in the training stu...

  14. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  15. Reggeon, Pomeron and annihilation processes in the dual unitarization scheme

    International Nuclear Information System (INIS)

    Dias de Deus, J.

    1976-07-01

    In the framework of the dual unitarization scheme the connection between particle production in processes dominated by Reggeon, Pomeron and Annihilation diagrams is discussed and critical tests of the scheme are suggested. The simple relation for average multiplicities anti nsup(R) = 1/2 anti nsup(P) = 1/3 anti nsup(A) and other relations for inclusive cross-sections and higher moments of the particle distribution are shown to be in reasonable agreement with data. (author)

  16. [Dual process in large number estimation under uncertainty].

    Science.gov (United States)

    Matsumuro, Miki; Miwa, Kazuhisa; Terai, Hitoshi; Yamada, Kento

    2016-08-01

    According to dual process theory, there are two systems in the mind: an intuitive and automatic System 1 and a logical and effortful System 2. While many previous studies about number estimation have focused on simple heuristics and automatic processes, the deliberative System 2 process has not been sufficiently studied. This study focused on the System 2 process for large number estimation. First, we described an estimation process based on participants’ verbal reports. The task, corresponding to the problem-solving process, consisted of creating subgoals, retrieving values, and applying operations. Second, we investigated the influence of such deliberative process by System 2 on intuitive estimation by System 1, using anchoring effects. The results of the experiment showed that the System 2 process could mitigate anchoring effects.

  17. Recollection is a continuous process: implications for dual-process theories of recognition memory.

    Science.gov (United States)

    Mickes, Laura; Wais, Peter E; Wixted, John T

    2009-04-01

    Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.

  18. [The dual process model of addiction. Towards an integrated model?].

    Science.gov (United States)

    Vandermeeren, R; Hebbrecht, M

    2012-01-01

    Neurobiology and cognitive psychology have provided us with a dual process model of addiction. According to this model, behavior is considered to be the dynamic result of a combination of automatic and controlling processes. In cases of addiction the balance between these two processes is severely disturbed. Automated processes will continue to produce impulses that ensure the continuance of addictive behavior. Weak, reflective or controlling processes are both the reason for and the result of the inability to forgo addiction. To identify features that are common to current neurocognitive insights into addiction and psychodynamic views on addiction. The picture that emerges from research is not clear. There is some evidence that attentional bias has a causal effect on addiction. There is no evidence that automatic associations have a causal effect, but there is some evidence that automatic action-tendencies do have a causal effect. Current neurocognitive views on the dual process model of addiction can be integrated with an evidence-based approach to addiction and with psychodynamic views on addiction.

  19. Dual processing model of medical decision-making

    Science.gov (United States)

    2012-01-01

    Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical

  20. Dual processing model of medical decision-making.

    Science.gov (United States)

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-09-03

    Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. We show that physician's beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker's threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the

  1. Dual processing model of medical decision-making

    Directory of Open Access Journals (Sweden)

    Djulbegovic Benjamin

    2012-09-01

    Full Text Available Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I and/or an analytical, deliberative (system II processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to

  2. Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making

    NARCIS (Netherlands)

    Glöckner, A.; Witteman, C.L.M.

    2010-01-01

    Intuitive-automatic processes are crucial for making judgements and decisions. The fascinating complexity of these processes has attracted many decision researchers, prompting them to start investigating intuition empirically and to develop numerous models. Dual-process models assume a clear

  3. A dual-process account of auditory change detection.

    Science.gov (United States)

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  4. Schwinger type processes via branes and their gravity duals

    International Nuclear Information System (INIS)

    Gorsky, A.S.; Saraikin, K.A.; Selivanov, K.G.

    2002-01-01

    We consider Schwinger type processes involving the creation of the charge and monopole pairs in the external fields and propose interpretation of these processes via corresponding brane configurations in type IIB string theory. We suggest simple description of some new interesting nonperturbative processes like monopole/dyon transitions in the electric field and W-boson decay in the magnetic field using the brane language. Nonperturbative pair production in the strong coupling regime using the AdS/CFT correspondence is studied. The treatment of the similar processes in the noncommutative theories when noncommutativity is traded for the background fields is presented and the possible role of the critical magnetic field which is S-dual to the critical electric field is discussed

  5. Predicting sugar consumption: Application of an integrated dual-process, dual-phase model.

    Science.gov (United States)

    Hagger, Martin S; Trost, Nadine; Keech, Jacob J; Chan, Derwin K C; Hamilton, Kyra

    2017-09-01

    Excess consumption of added dietary sugars is related to multiple metabolic problems and adverse health conditions. Identifying the modifiable social cognitive and motivational constructs that predict sugar consumption is important to inform behavioral interventions aimed at reducing sugar intake. We tested the efficacy of an integrated dual-process, dual-phase model derived from multiple theories to predict sugar consumption. Using a prospective design, university students (N = 90) completed initial measures of the reflective (autonomous and controlled motivation, intentions, attitudes, subjective norm, perceived behavioral control), impulsive (implicit attitudes), volitional (action and coping planning), and behavioral (past sugar consumption) components of the proposed model. Self-reported sugar consumption was measured two weeks later. A structural equation model revealed that intentions, implicit attitudes, and, indirectly, autonomous motivation to reduce sugar consumption had small, significant effects on sugar consumption. Attitudes, subjective norm, and, indirectly, autonomous motivation to reduce sugar consumption predicted intentions. There were no effects of the planning constructs. Model effects were independent of the effects of past sugar consumption. The model identified the relative contribution of reflective and impulsive components in predicting sugar consumption. Given the prominent role of the impulsive component, interventions that assist individuals in managing cues-to-action and behavioral monitoring are likely to be effective in regulating sugar consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparative Analysis of Single and Dual Irradiation Pass of Deep Burn High Temperature Reactor Scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Jo, Chang Keun; Noh, Jae Man

    2012-01-01

    A concept of a deep-burn (DB) of trans uranic (TRU) elements in a high temperature reactor (HTR) has been proposed and studied with a single irradiation pass. However, there is still a significant amount of TRU after burn in an HTR. Therefore, it is necessary to burn more TRU in a fast reactor (FR) with repeated reprocessing such as a pyro-process. In this study, the fuel cycle calculations are performed and the results are compared for a singlepass DB-HHR scenario and a dual-pass sodium-cooled fast reactor (SFR) scenario. For the analysis, front-end and back-end parameters are compared. The calculations were performed by the DANESS (Dynamic Analysis of Nuclear Energy System Strategies), which is an integrated system dynamic fuel cycle analysis code

  7. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Modification of Banding in Dual-Phase Steels via Thermal Processing

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Thomas, L. S.; Bos, C.

    2014-01-01

    The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures...... simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical...... microscopic techniques. Results are presented to illustrate that the extent of banding depended on control of both heating and cooling rates, and a specific processing history based on a two-stage heating rate can be used to minimize visible banding in selected final heat treated products....

  9. A novel dual-functional MEMS sensor integrating both pressure and temperature units

    Energy Technology Data Exchange (ETDEWEB)

    Chen Tao; Zhang Zhaohua; Ren Tianling; Miao Gujin; Zhou Changjian; Lin Huiwang; Liu Litian, E-mail: RenTL@tsinghua.edu.c [National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-07-15

    This paper proposes a novel miniature dual-functional sensor integrating both pressure and temperature sensitive units on a single chip. The device wafer of SOI is used as a pizeoresistive diaphragm which features excellent consistency in thickness. The conventional anisotropic wet etching has been abandoned, while ICP etching has been employed to etch out the reference cave to minimize the area of individual device in the way that the 57.4{sup 0} slope has been eliminated. As a result, the average cost of the single chip is reduced. Two PN junctions with constant ratio of the areas of depletion regions have also been integrated on the same chip to serve as a temperature sensor, and each PN junction shows high linearity over -40 to 100 {sup 0}C and low power consumption. The iron implanting process for PN junction is exactly compatible with the piezoresistor, with no additional expenditure. The pressure sensitivity is 86 mV/MPa, while temperature sensitivity is 1.43 mV/{sup 0}C, both complying with the design objective.

  10. A novel dual-functional MEMS sensor integrating both pressure and temperature units

    International Nuclear Information System (INIS)

    Chen Tao; Zhang Zhaohua; Ren Tianling; Miao Gujin; Zhou Changjian; Lin Huiwang; Liu Litian

    2010-01-01

    This paper proposes a novel miniature dual-functional sensor integrating both pressure and temperature sensitive units on a single chip. The device wafer of SOI is used as a pizeoresistive diaphragm which features excellent consistency in thickness. The conventional anisotropic wet etching has been abandoned, while ICP etching has been employed to etch out the reference cave to minimize the area of individual device in the way that the 57.4 0 slope has been eliminated. As a result, the average cost of the single chip is reduced. Two PN junctions with constant ratio of the areas of depletion regions have also been integrated on the same chip to serve as a temperature sensor, and each PN junction shows high linearity over -40 to 100 0 C and low power consumption. The iron implanting process for PN junction is exactly compatible with the piezoresistor, with no additional expenditure. The pressure sensitivity is 86 mV/MPa, while temperature sensitivity is 1.43 mV/ 0 C, both complying with the design objective.

  11. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    Yu, Yin; Ma, Yong; Li, Hao; Huang, Jun; Fang, Yu; Liang, Kun; Zhou, Bo

    2014-01-01

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  12. Conflict monitoring in dual process theories of thinking.

    Science.gov (United States)

    De Neys, Wim; Glumicic, Tamara

    2008-03-01

    Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman [Kahneman, D. (2002). Maps of bounded rationality: A perspective on intuitive judgement and choice. Nobel Prize Lecture. Retrieved January 11, 2006, from: http://nobelprize.org/nobel_prizes/economics/laureates/2002/kahnemann-lecture.pdf] and Evans [Evans, J. St. B. T. (1984). Heuristic and analytic processing in reasoning. British Journal of Psychology, 75, 451-468], for example, claim that the monitoring of the heuristic system is typically quite lax whereas others such as Sloman [Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119, 3-22] and Epstein [Epstein, S. (1994). Integration of the cognitive and psychodynamic unconscious. American Psychologists, 49, 709-724] claim it is flawless and people typically experience a struggle between what they "know" and "feel" in case of a conflict. The present study contrasted these views. Participants solved classic base rate neglect problems while thinking aloud. In these problems a stereotypical description cues a response that conflicts with the response based on the analytic base rate information. Verbal protocols showed no direct evidence for an explicitly experienced conflict. As Kahneman and Evans predicted, participants hardly ever mentioned the base rates and seemed to base their judgment exclusively on heuristic reasoning. However, more implicit measures of conflict detection such as participants' retrieval of the base rate information in an unannounced recall test, decision making latencies, and the tendency to review the base rates indicated that the base rates had been thoroughly processed. On control problems where base rates and

  13. Experts’ Misinterpretation of Box Plots – a Dual Processing Approach

    Directory of Open Access Journals (Sweden)

    Stephanie Lem

    2014-11-01

    Full Text Available Recent studies have shown that students often misinterpret the area of the box in box plots as representing the frequency or proportion of observations in that interval, while it actually represents density. This misinterpretation has been shown to be based on the saliency of this area and can be explained by heuristic reasoning as defined by dual process theories. In this study we tested whether expert users of box plots also display this misinterpretation and show signs of the same heuristic reasoning as found in students. Using a reaction time test, we found signs of heuristic reasoning in experts, both with respect to accuracy and reaction times. If even experts have difficulty interpreting box plots, one can question whether these are an appropriate form of representation to use when reporting data and deserve the prominent place they currently have in the statistics curriculum.

  14. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    Science.gov (United States)

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  15. A Continuous Dual-Process Model of Remember/Know Judgments

    Science.gov (United States)

    Wixted, John T.; Mickes, Laura

    2010-01-01

    The dual-process theory of recognition memory holds that recognition decisions can be based on recollection or familiarity, and the remember/know procedure is widely used to investigate those 2 processes. Dual-process theory in general and the remember/know procedure in particular have been challenged by an alternative strength-based…

  16. Soluble polymeric dual sensor for temperature and pH value

    NARCIS (Netherlands)

    Pietsch, C.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    Two birds with one stone: A thermoresponsive copolymer (see picture, blue beads) bearing a pH-responsive solvatochromic dye (red beads) acts as the first dual sensor for temperature and pH value (black curve). When the hydrophilicity of the copolymer is increased by using a monomer with more

  17. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  18. A dual-route approach to orthographic processing.

    Science.gov (United States)

    Grainger, Jonathan; Ziegler, Johannes C

    2011-01-01

    In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint), and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint). These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes) and for the sublexical translation of print to sound (multi-letter graphemes).

  19. A dual-route approach to orthographic processing

    Directory of Open Access Journals (Sweden)

    Jonathan eGrainger

    2011-04-01

    Full Text Available In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint, and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint. These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes and for the sublexical translation of print to sound (multi-letter graphemes.

  20. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  1. High-temperature expansion along the self-dual line of three-dimensional Z(2) spin-gauge theory

    International Nuclear Information System (INIS)

    Bhanot, G.

    1981-01-01

    We exploit the self-duality of the three-dimensional Ising spin-gauge theory to develop an eighth-order high-temperature expansion for the partition function along the self-dual line. This generates a high-temperature series for the gauge-invariant, nearest-neighbor spin-spin correlation function. A Pade analysis of this series reveals a pole along the self-dual line. Recent Monte Carlo simulations indicate that this theory has a first-order self-dual line emerging from a triple point. We interpret the Pade pole as a theoretical estimate of the end point of this self-dual line

  2. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  3. Dual constituent-exchange dynamics in soft and hard hadronic processes

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Kobylinskij, N.A.; Martynov, E.S.; Shelest, V.P.

    1987-01-01

    A possibility to match the dual theory of soft hadronic processes to the dimensional counting rules for hard processes has been studied. This aim is shown to be attained within the framework of the dual analytical model under certain conditions on the shape and parameters of the Regge trajectories

  4. Dual dynamics of constituent interchange in soft and hard hadronic processes

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Kobylinskii, N.A.; Martynov, E.S.; Shelest, V.P.

    1987-01-01

    The possibility of combining the dual theory of soft hadronic processes with the rules of dimensional counting for hard processes is investigated. It is shown that this is achieved in the framework of a dual analytic model with certain conditions on the form and parameters of the Regge trajectories

  5. Concepts, Perception and the Dual Process Theories of Mind

    Directory of Open Access Journals (Sweden)

    Marcello Frixione

    2014-12-01

    Full Text Available In this article we argue that the problem of the relationships between concepts and perception in cognitive science is blurred by the fact that the very notion of concept is rather confused. Since it is not always clear exactly what concepts are, it is not easy to say, for example, whether and in what measure concept possession involves entertaining and manipulating perceptual representations, whether concepts are entirely different from perceptual representations, and so on. As a paradigmatic example of this state of affairs, we will start by taking into consideration the distinction between conceptual and nonconceptual content. The analysis of such a distinction will lead us to the conclusion that concept is a heterogeneous notion. Then we shall take into account the so called dual process theories of mind; this approach also points to concepts being a heterogeneous phenomenon: different aspects of conceptual competence are likely to be ascribed to different types of systems. We conclude that without a clear specification of what concepts are, the problem of the relationships between concepts and perception is somewhat ill-posed.

  6. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Tianyou; Jia, Yao; Wang, Hong; Su, Chun-Yi

    2017-07-09

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperature are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.

  7. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhui; Ning, Yongquan, E-mail: ningke521@163.com; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-06-05

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s{sup −1} with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s{sup −1} with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s

  8. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    International Nuclear Information System (INIS)

    Liu, Yanhui; Ning, Yongquan; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-01-01

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s −1 with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s −1 with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s −1 with

  9. Perceiving pain in others: validation of a dual processing model.

    Science.gov (United States)

    McCrystal, Kalie N; Craig, Kenneth D; Versloot, Judith; Fashler, Samantha R; Jones, Daniel N

    2011-05-01

    Accurate perception of another person's painful distress would appear to be accomplished through sensitivity to both automatic (unintentional, reflexive) and controlled (intentional, purposive) behavioural expression. We examined whether observers would construe diverse behavioural cues as falling within these domains, consistent with cognitive neuroscience findings describing activation of both automatic and controlled neuroregulatory processes. Using online survey methodology, 308 research participants rated behavioural cues as "goal directed vs. non-goal directed," "conscious vs. unconscious," "uncontrolled vs. controlled," "fast vs. slow," "intentional (deliberate) vs. unintentional," "stimulus driven (obligatory) vs. self driven," and "requiring contemplation vs. not requiring contemplation." The behavioural cues were the 39 items provided by the PROMIS pain behaviour bank, constructed to be representative of the diverse possibilities for pain expression. Inter-item correlations among rating scales provided evidence of sufficient internal consistency justifying a single score on an automatic/controlled dimension (excluding the inconsistent fast vs. slow scale). An initial exploratory factor analysis on 151 participant data sets yielded factors consistent with "controlled" and "automatic" actions, as well as behaviours characterized as "ambiguous." A confirmatory factor analysis using the remaining 151 data sets replicated EFA findings, supporting theoretical predictions that observers would distinguish immediate, reflexive, and spontaneous reactions (primarily facial expression and paralinguistic features of speech) from purposeful and controlled expression (verbal behaviour, instrumental behaviour requiring ongoing, integrated responses). There are implicit dispositions to organize cues signaling pain in others into the well-defined categories predicted by dual process theory. Copyright © 2011 International Association for the Study of Pain. Published by

  10. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jensen, Jakob M.

    2012-01-01

    In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... that captures the environmental temperature differences inside the reactor using distributed parameters. A Kalman filter is then added to account for any missing dynamics and the overall model is embedded into a temperature soft sensor. The operator of the plant will be able to observe the temperature in any...

  11. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  12. A Test of Two Alternative Cognitive Processing Models: Learning Styles and Dual Coding

    Science.gov (United States)

    Cuevas, Joshua; Dawson, Bryan L.

    2018-01-01

    This study tested two cognitive models, learning styles and dual coding, which make contradictory predictions about how learners process and retain visual and auditory information. Learning styles-based instructional practices are common in educational environments despite a questionable research base, while the use of dual coding is less…

  13. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  14. Cardiac examination and the effect of dual-processing instruction in a cardiopulmonary simulator.

    Science.gov (United States)

    Sibbald, Matt; McKinney, James; Cavalcanti, Rodrigo B; Yu, Eric; Wood, David A; Nair, Parvathy; Eva, Kevin W; Hatala, Rose

    2013-08-01

    Use of dual-processing has been widely touted as a strategy to reduce diagnostic error in clinical medicine. However, this strategy has not been tested among medical trainees with complex diagnostic problems. We sought to determine whether dual-processing instruction could reduce diagnostic error across a spectrum of experience with trainees undertaking cardiac physical exam. Three experiments were conducted using a similar design to teach cardiac physical exam using a cardiopulmonary simulator. One experiment was conducted in each of three groups: experienced, intermediate and novice trainees. In all three experiments, participants were randomized to receive undirected or dual-processing verbal instruction during teaching, practice and testing phases. When tested, dual-processing instruction did not change the probability assigned to the correct diagnosis in any of the three experiments. Among intermediates, there was an apparent interaction between the diagnosis tested and the effect of dual-processing instruction. Among relative novices, dual processing instruction may have dampened the harmful effect of a bias away from the correct diagnosis. Further work is needed to define the role of dual-processing instruction to reduce cognitive error. This study suggests that it cannot be blindly applied to complex diagnostic problems such as cardiac physical exam.

  15. The dual career process in the Brazilian perspective: Unraveling typologies

    Directory of Open Access Journals (Sweden)

    Heliani Berlato

    2015-12-01

    Full Text Available ABSTRACT A phenomenon closely linked to changes in social, economic, and cultural context is growing and growing as the years go by and attracting the attention of researchers for the development of studies involving both the individual and the organizational field. Named as "dual career family", this phenomenon emphasizes a joint move from a husband and wife (a couple in the family sphere and in the development of both careers. Thus, in order to know how these relationships are being established, this study set out to investigate what are the determining factors that compose the dual career phenomenon in the Brazilian context. The research involved 340 participants, all former students of a public university, married or living in a marital status. The results allowed to feature, through descriptive statistics, the profile of dual career couples in the Brazilian scene and check what are the types of dual career in the country. We obtained five types of dual career: coordinated familistic, conventional familistic, coordinated careerist, conventional careerist and acrobat.

  16. Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system

    International Nuclear Information System (INIS)

    Asakura, Yamato; Uchida, Shunsuke

    1984-01-01

    A proposed dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is evaluated experimentally. The proposed system is composed of low temperature co-current reactors for reaction between water mists and hydrogen gas and high temperature co-current reactors for reaction between water vapor and hydrogen gas. Thus, operation is possible under atmospheric pressure with high reaction efficiency. Using the pilot test system which is composed of ten low temperature (30 0 C) reaction units and ten high temperature (200 0 C) reaction units, an experimental separation of deuterium from light water is carried out. The enrichment factor under steady state conditions, its dependency on operating time, and the reaction period necessary to obtain the steady state enrichment factor are determined experimentally and compared with calculations. It is shown that separation ability in a multistage reaction system can be estimated by numerical calculation using actual reaction efficiency in a unit reactor. (author)

  17. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  18. A dual-unit pressure sensor for on-chip self-compensation of zero-point temperature drift

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2014-01-01

    A novel dual-unit piezoresistive pressure sensor, consisting of a sensing unit and a dummy unit, is proposed and developed for on-chip self-compensation for zero-point temperature drift. With an MIS (microholes inter-etch and sealing) process implemented only from the front side of single (1 1 1) silicon wafers, a pressure sensitive unit and another identically structured pressure insensitive dummy unit are compactly integrated on-chip to eliminate unbalance factors induced zero-point temperature-drift by mutual compensation between the two units. Besides, both units are physically suspended from silicon substrate to further suppress packaging-stress induced temperature drift. A simultaneously processes ventilation hole-channel structure is connected with the pressure reference cavity of the dummy unit to make it insensitive to detected pressure. In spite of the additional dummy unit, the sensor chip dimensions are still as small as 1.2 mm × 1.2 mm × 0.4 mm. The proposed dual-unit sensor is fabricated and tested, with the tested sensitivity being 0.104 mV kPa −1 3.3 V −1 , nonlinearity of less than 0.08% · FSO and overall accuracy error of ± 0.18% · FSO. Without using any extra compensation method, the sensor features an ultra-low temperature coefficient of offset (TCO) of 0.002% °C −1 · FSO that is much better than the performance of conventional pressure sensors. The highly stable and small-sized sensors are promising for low cost production and applications. (paper)

  19. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  20. Probabilities, beliefs, and dual processing: The paradigm shift in the psychology of reasoning

    OpenAIRE

    Elqayam, Shira; Over, D. E

    2012-01-01

    In recent years, the psychology of reasoning has been undergoing a paradigm shift, with general Bayesian, probabilistic approaches replacing the older, much more restricted binary logic paradigm. At the same time, dual processing theories have been gaining influence. We argue that these developments should be integrated and moreover that such integration is already underway. The new reasoning paradigm should be grounded in dual processing for its algorithmic level of analysis just as it uses ...

  1. Application of the dual reciprocity boundary element method for numerical modelling of solidification process

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.

  2. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    Science.gov (United States)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as

  3. Increased recovery in dual temperature isotope exchange process

    International Nuclear Information System (INIS)

    Babcock, D.F.; Neill, J.S.

    1978-01-01

    The improvement comprises increasing the flow ratio of liquid with respect to gas within the upper portion of the first tower, wherein the liquid is enriched in the isotope, and within the lower portion of the second tower, wherein the liquid is depleted in the isotope each to a value of at least 5% above the corresponding flow ratio within the remaining lower portion of the first tower and the remaining upper portion of the second tower respectively. The increased flow ratios are provided by increasing the rate of liquid substance being fed to the first tower and withdrawing up to about 50% of the increased liquid substance flow from a location within the upper one-half of the first tower and reintroducing the withdrawn liquid at a location within the lower one-half portion of the second tower. (author)

  4. Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application

    International Nuclear Information System (INIS)

    Zhao, Dan; Ji, Chenzhen; Li, Shihuai; Li, Junwei

    2014-01-01

    The present work considers energy harvesting by implementing both thermo- and piezo-electric power generation modules on a bifurcating tube, which produces dual-temperature thermoacoustic oscillations. The present system distinguished from the conventional standing-wave one does not involve heat exchangers and uses two different energy conversion processes to produce electricity. To measure and analyze the sound waves generated, an infrared thermal imaging camera, hot wire anemometry, and two arrays of K-type thermocouples and microphones are employed. It is found that the total electric power is approximately 5.71 mW, of which the piezo module produces about 0.21 mW. It is about 61% more than that generated by a similar conduction-driven thermo-acoustic-piezo harvester. In order to gain insight on the heat-driven acoustic oscillations and to simulate the experiment, thermodynamic laws are used to develop a nonlinear thermoacoustic model. Comparison is then made between the numerical and experimental results. Good agreement is obtained in terms of frequency and sound pressure level. Finally, Rayleigh index is examined to characterize the conversion between thermal and sound energy. In addition, energy redistribution between different thermoacoustic modes is estimated. It is found that lower frequency thermoacoustic oscillations are easier to trigger. - Highlights: • Energy harvesting from thermo- and piezo-electric diaphragms is obtained. • Total electrical power is approximately 5.71 mW. • Thermodynamic analysis of heat-driven oscillations is performed. • Rayleigh index characterizing heat-to-sound conversion is estimated. • Energy redistribution between various eigenmodes is calculated

  5. Coherent multiscale image processing using dual-tree quaternion wavelets.

    Science.gov (United States)

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  6. Dual cell conductivity during ionic exchange processes: the intelligent transmitter EXA DC 400

    International Nuclear Information System (INIS)

    Mier, A.

    1997-01-01

    Why is differential conductivity important versus standard conductivity measurement? That entirely depends on the application. If we have a process where the conductivity changes ge.. Cation exchanger, then standard conductivity measurement is not appropriate. With dual cell conductivity we can rate the process and eliminate conductivity changes outside the process. Therefore we achieve more precise control or monitoring of that process. (Author)

  7. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Science.gov (United States)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  8. Parisian ruin for the dual risk process in discrete-time

    OpenAIRE

    Palmowski, Zbigniew; Ramsden, Lewis; Papaioannou, Apostolos D.

    2017-01-01

    In this paper we consider the Parisian ruin probabilities for the dual risk model in a discrete-time setting. By exploiting the strong Markov property of the risk process we derive a recursive expression for the fnite-time Parisian ruin probability, in terms of classic discrete-time dual ruin probabilities. Moreover, we obtain an explicit expression for the corresponding infnite-time Parisian ruin probability as a limiting case. In order to obtain more analytic results, we employ a conditioni...

  9. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  10. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  11. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory.

    Science.gov (United States)

    Pelaccia, Thierry; Tardif, Jacques; Triby, Emmanuel; Charlin, Bernard

    2011-03-14

    Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. It is considered as the physician's most critical competence, and has been widely studied by physicians, educationalists, psychologists and sociologists. Since the 1970s, many theories about clinical reasoning in medicine have been put forward. This paper aims at exploring a comprehensive approach: the "dual-process theory", a model developed by cognitive psychologists over the last few years. After 40 years of sometimes contradictory studies on clinical reasoning, the dual-process theory gives us many answers on how doctors think while making diagnoses and decisions. It highlights the importance of physicians' intuition and the high level of interaction between analytical and non-analytical processes. However, it has not received much attention in the medical education literature. The implications of dual-process models of reasoning in terms of medical education will be discussed.

  12. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory

    Directory of Open Access Journals (Sweden)

    Thierry Pelaccia

    2011-03-01

    Full Text Available Context. Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. It is considered as the physician's most critical competence, and has been widely studied by physicians, educationalists, psychologists and sociologists. Since the 1970s, many theories about clinical reasoning in medicine have been put forward.Purpose. This paper aims at exploring a comprehensive approach: the “dual-process theory”, a model developed by cognitive psychologists over the last few years.Discussion. After 40 years of sometimes contradictory studies on clinical reasoning, the dual-process theory gives us many answers on how doctors think while making diagnoses and decisions. It highlights the importance of physicians’ intuition and the high level of interaction between analytical and non-analytical processes. However, it has not received much attention in the medical education literature. The implications of dual-process models of reasoning in terms of medical education will be discussed.

  13. Memory for pictures and words as a function of level of processing: Depth or dual coding?

    Science.gov (United States)

    D'Agostino, P R; O'Neill, B J; Paivio, A

    1977-03-01

    The experiment was designed to test differential predictions derived from dual-coding and depth-of-processing hypotheses. Subjects under incidental memory instructions free recalled a list of 36 test events, each presented twice. Within the list, an equal number of events were assigned to structural, phonemic, and semantic processing conditions. Separate groups of subjects were tested with a list of pictures, concrete words, or abstract words. Results indicated that retention of concrete words increased as a direct function of the processing-task variable (structural memory performance. These data provided strong support for the dual-coding model.

  14. A dual-mode proximity sensor with integrated capacitive and temperature sensing units

    International Nuclear Information System (INIS)

    Qiu, Shihua; Huang, Ying; He, Xiaoyue; Sun, Zhiguang; Liu, Ping; Liu, Caixia

    2015-01-01

    The proximity sensor is one of the most important devices in the field of robot application. It can accurately provide the proximity information to assistant robots to interact with human beings and the external environment safely. In this paper, we have proposed and demonstrated a dual-mode proximity sensor composed of capacitive and resistive sensing units. We defined the capacitive type proximity sensor perceiving the proximity information as C-mode and the resistive type proximity sensor detecting as R-mode. Graphene nanoplatelets (GNPs) were chosen as the R-mode sensing material because of its high performance. The dual-mode proximity sensor presents the following features: (1) the sensing distance of the dual-mode proximity sensor has been enlarged compared with the single capacitive proximity sensor in the same geometrical pattern; (2) experiments have verified that the proposed sensor can sense the proximity information of different materials; (3) the proximity sensing capability of the sensor has been improved by two modes perceive collaboratively, for a plastic block at a temperature of 60 °C: the R-mode will perceive the proximity information when the distance d between the sensor and object is 6.0–17.0 mm and the C-mode will do that when their interval is 0–2.0 mm; additionally two modes will work together when the distance is 2.0–6.0 mm. These features indicate our transducer is very valuable in skin-like sensing applications. (paper)

  15. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  16. Dual-Process Theories of Reasoning: Contemporary Issues and Developmental Applications

    Science.gov (United States)

    Evans, Jonathan St. B. T.

    2011-01-01

    In this paper, I discuss the current state of theorising about dual processes in adult performance on reasoning and decision making tasks, in which Type 1 intuitive processing is distinguished from Type 2 reflective thinking. I show that there are many types of theory some of which distinguish modes rather than types of thinking and that…

  17. Individual Differences in Working Memory Capacity and Dual-Process Theories of the Mind

    Science.gov (United States)

    Barrett, Lisa Feldman; Tugade, Michele M.; Engle, Randall W.

    2004-01-01

    Dual-process theories of the mind are ubiquitous in psychology. A central principle of these theories is that behavior is determined by the interplay of automatic and controlled processing. In this article, the authors examine individual differences in the capacity to control attention as a major contributor to differences in working memory…

  18. Dual Systems Competence [Image Omitted] Procedural Processing: A Relational Developmental Systems Approach to Reasoning

    Science.gov (United States)

    Ricco, Robert B.; Overton, Willis F.

    2011-01-01

    Many current psychological models of reasoning minimize the role of deductive processes in human thought. In the present paper, we argue that deduction is an important part of ordinary cognition and we propose that a dual systems Competence [image omitted] Procedural processing model conceptualized within relational developmental systems theory…

  19. Adapting Nielsen's Design Heuristics to Dual Processing for Clinical Decision Support.

    Science.gov (United States)

    Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene

    2016-01-01

    The study objective was to improve the applicability of Nielson's standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access.

  20. Adapting Nielsen’s Design Heuristics to Dual Processing for Clinical Decision Support

    Science.gov (United States)

    Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene

    2016-01-01

    The study objective was to improve the applicability of Nielson’s standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access. PMID:28269915

  1. Lyophilization Cycle Design for Dual Chamber Cartridges and a Method for Online Process Control: The "DCC LyoMate" Procedure.

    Science.gov (United States)

    Korpus, Christoph; Friess, Wolfgang

    2017-08-01

    Freeze-drying process design is a challenging task that necessitates a profound understanding of the complex interrelation among critical process parameters (e.g., shelf temperature and chamber pressure), heat transfer characteristics of the involved materials (e.g., product containers and holder devices), and critical quality attributes of the product (e.g., collapse temperatures). The Dual Chamber Cartridge "(DCC) LyoMate" (from lyophilization and automated) is a manometric temperature measurement-based process control strategy that was developed within this study to streamline this complicated task. It was successfully applied using 5% sucrose formulations with 0.5 and 1 mL fill volumes. The system was further challenged using 2, 20, and 100 mg/mL monoclonal antibody formulations. The DCC LyoMate method did not only produce pharmaceutically acceptable cakes but was also able to maintain the desired product temperature irrespective of formulation and protein content. It enabled successful process design even at high protein concentrations and aided the design and online control of the lyophilization process for drying in DCCs within a single development run. Thus, it helps to reduce development cost and the DCC LyoMate can also be easily installed on every freeze-dryer capable of performing a manometric temperature measurement, without the need for hardware modification. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  3. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  4. A Processing Approach to the Dual Coding Hypothesis

    Science.gov (United States)

    Kosslyn, Stephen M.; And Others

    1976-01-01

    Investigates whether imagery and verbal encoding use different processing mechanisms and attempts to discover whether the processes underlying the use of imagery to retain words are also involved in like-modality perception. (Author/RK)

  5. Processing Resources in Attention, Dual Task Performance, and Workload Assessment.

    Science.gov (United States)

    1981-07-01

    levels of processing in encoding and memory ( Craik & Lockhart , 1972) employs the capacity metaphore when describing the amount of processing ...depending upon the nature of a paired task. Second, encoding or rehearsal of verbal material may differ in the "depth of processing " ( Craik & Lockhart ...F.I.M., & Lockhart , F.S. Levels of processing : A framework for mem- ory research. Journal of Verbal Learning & Verbal Behavior, 1972, 11, 671-684.

  6. Morální hodnocení v kontextu dual process theory

    OpenAIRE

    Schinková, Kristýna

    2017-01-01

    The philosopher and psychologist Joshua Greene came up with a theory of moral judgement that integrates both rationalism and intuitionism - the dual process theory. It says that during moral judgement the unconscious, emotional processes as well as the conscious, rational processes play an important role. At the same time it binds together the process and the respective moral output. If the judgement is made based on intuition, it will be of a deontological type and on the other hand the cont...

  7. Automatic-heuristic and executive-analytic processing during reasoning: Chronometric and dual-task considerations.

    Science.gov (United States)

    De Neys, Wim

    2006-06-01

    Human reasoning has been shown to overly rely on intuitive, heuristic processing instead of a more demanding analytic inference process. Four experiments tested the central claim of current dual-process theories that analytic operations involve time-consuming executive processing whereas the heuristic system would operate automatically. Participants solved conjunction fallacy problems and indicative and deontic selection tasks. Experiment 1 established that making correct analytic inferences demanded more processing time than did making heuristic inferences. Experiment 2 showed that burdening the executive resources with an attention-demanding secondary task decreased correct, analytic responding and boosted the rate of conjunction fallacies and indicative matching card selections. Results were replicated in Experiments 3 and 4 with a different secondary-task procedure. Involvement of executive resources for the deontic selection task was less clear. Findings validate basic processing assumptions of the dual-process framework and complete the correlational research programme of K. E. Stanovich and R. F. West (2000).

  8. A Dual-Process Account of the Development of Scientific Reasoning: The Nature and Development of Metacognitive Intercession Skills

    Science.gov (United States)

    Amsel, Eric; Klaczynski, Paul A.; Johnston, Adam; Bench, Shane; Close, Jason; Sadler, Eric; Walker, Rick

    2008-01-01

    Metacognitive knowledge of the dual-processing basis of judgment is critical to resolving conflict between analytic and experiential processing responses [Klaczynski, P. A. (2004). A dual-process model of adolescent development: Implications for decision making, reasoning, and identity. In R. V. Kail (Ed.), "Advances in child development and…

  9. 30 CFR 206.181 - How do I establish processing costs for dual accounting purposes when I do not process the gas?

    Science.gov (United States)

    2010-07-01

    ... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...

  10. Theory and Metatheory in the Study of Dual Processing: Reply to Comments.

    Science.gov (United States)

    Evans, Jonathan St B T; Stanovich, Keith E

    2013-05-01

    In this article, we respond to the four comments on our target article. Some of the commentators suggest that we have formulated our proposals in a way that renders our account of dual-process theory untestable and less interesting than the broad theory that has been critiqued in recent literature. Our response is that there is a confusion of levels. Falsifiable predictions occur not at the level of paradigm or metatheory-where this debate is taking place-but rather in the instantiation of such a broad framework in task level models. Our proposal that many dual-processing characteristics are only correlated features does not weaken the testability of task-level dual-processing accounts. We also respond to arguments that types of processing are not qualitatively distinct and discuss specific evidence disputed by the commentators. Finally, we welcome the constructive comments of one commentator who provides strong arguments for the reality of the dual-process distinction. © The Author(s) 2013.

  11. Pathwise duals of monotone and additive Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sturm, A.; Swart, Jan M.

    -, - (2018) ISSN 0894-9840 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : pathwise duality * monotone Markov process * additive Markov process * interacting particle system Subject RIV: BA - General Mathematics Impact factor: 0.854, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0465436.pdf

  12. Comparison of thermal and radical effects of EGR gases on combustion process in dual fuel engines at part loads

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Khoshbakhti Saray, R.; Sohrabi, A.; Niaei, A.

    2007-01-01

    Dual fuel engines at part load inevitably suffer from lower thermal efficiency and higher emission of carbon monoxide and unburned fuel. This work is conducted to investigate the combustion characteristics of a dual fuel (Diesel-gas) engine at part loads using a single zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. In this home made software, the presence of the pilot fuel is considered as a heat source that is deriving form two superposed Wiebe's combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR) and species concentration. Therefore, this work is an attempt to investigate the combustion phenomenon at part load and using exhaust gas recirculation (EGR) to improve the above mentioned problems. Also, the results of this work show that each of the different cases of EGR (thermal, chemical and radical cases) has an important role on the combustion process in dual fuel engines at part loads. It is found that all the different cases of EGR have positive effects on the performance and emission parameters of dual fuel engines at part loads despite the negative effect of some diluent gases in the chemical case, which moderates too much the positive effects of the thermal and radical cases of EGR. Predicted values show good agreement with corresponding experimental values over the whole range of engine operating conditions. Implications will be discussed in detail

  13. Processing temperature effects on molybdenum disilicide

    International Nuclear Information System (INIS)

    Wade, R.K.; Petrovic, J.J.

    1992-01-01

    This paper reports on a series of MoSi 2 compacts that were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500 degrees to 1800 degrees C, MoSi 2 had a constant 67% transgranular fracture and linearly increasing rain size from 14 to 21 μm. Above 1800 degrees C, the fracture percentage increased rapidly to 97% transgranular at 1920 degrees C (32 μ grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi 2 processed at 1600 degrees C had the highest fracture toughness and hardness values of 3.6 MPa·m 1/2 and 9.9 GPa, respectively. The effects of SiO 2 formation from oxygen impurities in the MoSi 2 starting powders and MoSi 2 -Mo 5 Si 3 eutectic liquid formation were studied

  14. Habituation, Response to Novelty, and Dishabituation in Human Infants: Tests of a Dual-Process Theory of Visual Attention.

    Science.gov (United States)

    Kaplan, Peter S.; Werner, John S.

    1986-01-01

    Tests infants' dual-process performance (a process mediating response decrements called habituation and a state-dependent process mediating response increments called sensitization) on visual habituation-dishabituation tasks. (HOD)

  15. Behavioural investigations into uncertainty perception in service exchanges: Lessons from dual-processing theory

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2015-01-01

    by experience and knowledge. Based on dual-processing theory, this paper proposes an analysis method for assessing both explicit and implicit uncertainty perception depending on the individual’s use of tacit or explicit knowledge. Analysing two industrial case studies of service relationships, this paper...

  16. Dual-Process Theory and Signal-Detection Theory of Recognition Memory

    Science.gov (United States)

    Wixted, John T.

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…

  17. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model

    Science.gov (United States)

    Reyna, Valerie F.; Brainerd, Charles J.

    2011-01-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals--that reasoning biases emerge with development--have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts…

  18. A Dual-Process Model of the Alcohol-Behavior Link for Social Drinking

    Science.gov (United States)

    Moss, Antony C.; Albery, Ian P.

    2009-01-01

    A dual-process model of the alcohol-behavior link is presented, synthesizing 2 of the major social-cognitive approaches: expectancy and myopia theories. Substantial evidence has accrued to support both of these models, and recent neurocognitive models of the effects of alcohol on thought and behavior have provided evidence to support both as well.…

  19. Hadronic processes with large transfer momenta and quark counting rules in multiparticle dual amplitude

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Kobylinskij, N.A.; Martynov, E.S.

    1989-01-01

    A dual N-particle amplitude satisfying the quark counting rules for the processes with large transfer momenta is constructed. The multiparticle channels are shown to give an essential contribution to the amplitude decreasing power in a hard kinematic limit. 19 refs.; 9 figs

  20. A Split-Attention Effect in Multimedia Learning: Evidence for Dual Processing Systems in Working Memory.

    Science.gov (United States)

    Mayer, Richard E.; Moreno, Roxana

    1998-01-01

    Multimedia learners (n=146 college students) were able to integrate words and computer-presented pictures more easily when the words were presented aurally rather than visually. This split-attention effect is consistent with a dual-processing model of working memory. (SLD)

  1. A Dual Process Motivational Model of Ambivalent Sexism and Gender Differences in Romantic Partner Preferences

    Science.gov (United States)

    Sibley, Chris G.; Overall, Nickola C.

    2011-01-01

    We tested a dual process motivational model of ambivalent sexism and gender differences in intimate partner preferences. Meta-analysis of 32 samples (16 with men, 16 with women; N = 5,459) indicated that Benevolent Sexism (BS) in women was associated with greater preferences for high-resource partners (r = 0.24), whereas Hostile Sexism (HS) in men…

  2. Elaborations on the Socioegocentric and Dual-Level Connectionist Models of Group Interaction Processes

    Science.gov (United States)

    Hewes, Dean E.

    2009-01-01

    The purpose of the author's contribution to this colloquy was to spark conversation on the theoretical nature of communication processes and the evidentiary requirements for testing their relationship to group outcomes. Co-discussants have raised important issues concerning the philosophical basis of the socioegocentric model (SM) and dual-level…

  3. Can Dual Processing Theory Explain Physics Students' Performance on the Force Concept Inventory?

    Science.gov (United States)

    Wood, Anna K.; Galloway, Ross K.; Hardy, Judy

    2016-01-01

    According to dual processing theory there are two types, or modes, of thinking: system 1, which involves intuitive and nonreflective thinking, and system 2, which is more deliberate and requires conscious effort and thought. The Cognitive Reflection Test (CRT) is a widely used and robust three item instrument that measures the tendency to override…

  4. Cross-training workers in dual resource constrained systems with heterogeneous processing times

    NARCIS (Netherlands)

    Bokhorst, J. A. C.; Gaalman, G. J. C.

    2009-01-01

    In this paper, we explore the effect of cross-training workers in Dual Resource Constrained (DRC) systems with machines having different mean processing times. By means of queuing and simulation analysis, we show that the detrimental effects of pooling (cross-training) previously found in single

  5. Due Process in Dual Process: Model-Recovery Simulations of Decision-Bound Strategy Analysis in Category Learning

    Science.gov (United States)

    Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J.

    2018-01-01

    Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…

  6. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    Science.gov (United States)

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  7. Nursing's ways of knowing and dual process theories of cognition.

    Science.gov (United States)

    Paley, John; Cheyne, Helen; Dalgleish, Len; Duncan, Edward A S; Niven, Catherine A

    2007-12-01

    This paper is a comparison of nursing's patterns of knowing with the systems identified by cognitive science, and evaluates claims about the equal-status relation between scientific and non-scientific knowledge. Ever since Carper's seminal paper in 1978, it has been taken for granted in the nursing literature that there are ways of knowing, or patterns of knowing, that are not scientific. This idea has recently been used to argue that the concept of evidence, typically associated with evidence-based practice, is inappropriately restricted because it is identified exclusively with scientific research. The paper reviews literature in psychology which appears to draw a comparable distinction between rule-based, analytical cognitive processes and other forms of cognitive processing which are unconscious, holistic and intuitive. There is a convincing parallel between the 'patterns of knowing' distinction in nursing and the 'cognitive processing' distinction in psychology. However, there is an important difference in the way the relation between different forms of knowing (or cognitive processing) is depicted. In nursing, it is argued that the different patterns of knowing have equal status and weight. In cognitive science, it is suggested that the rule-based, analytical form of cognition has a supervisory and corrective function with respect to the other forms. Scientific reasoning and evidence-based knowledge have epistemological priority over the other forms of nursing knowledge. The implications of this claim for healthcare practice are briefly indicated.

  8. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    Science.gov (United States)

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  9. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  10. Electroporation of DC-3F cells is a dual process.

    Science.gov (United States)

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere

  11. Familiarity Breeds Attempts: A Critical Review of Dual-Process Theories of Recognition.

    Science.gov (United States)

    Mandler, George

    2008-09-01

    Recognition memory and recall/recollection are the major divisions of the psychology of human memory. Theories of recognition have shifted from a "strength" approach to a dual-process view, which distinguishes between knowing that one has experienced an object before and knowing what it was. In this article, I discuss the history of this approach and the two processes of familiarity and recollection and locate their origin in pattern matching and organization. I evaluate various theories in terms of their basic requirements and their defining research and propose the extension of the original two process theory to domains such as pictorial recognition. Finally, I present the main phenomena that a dual-process theory of recognition must account for and discuss future needs and directions of research and development. © 2008 Association for Psychological Science.

  12. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  13. Using dual-task methodology to dissociate automatic from nonautomatic processes involved in artificial grammar learning.

    Science.gov (United States)

    Hendricks, Michelle A; Conway, Christopher M; Kellogg, Ronald T

    2013-09-01

    Previous studies have suggested that both automatic and intentional processes contribute to the learning of grammar and fragment knowledge in artificial grammar learning (AGL) tasks. To explore the relative contribution of automatic and intentional processes to knowledge gained in AGL, we utilized dual-task methodology to dissociate automatic and intentional grammar- and fragment-based knowledge in AGL at both acquisition and at test. Both experiments used a balanced chunk strength grammar to assure an equal proportion of fragment cues (i.e., chunks) in grammatical and nongrammatical test items. In Experiment 1, participants engaged in a working memory dual-task either during acquisition, test, or both acquisition and test. The results showed that participants performing the dual-task during acquisition learned the artificial grammar as well as the single-task group, presumably by relying on automatic learning mechanisms. A working memory dual-task at test resulted in attenuated grammar performance, suggesting a role for intentional processes for the expression of grammatical learning at test. Experiment 2 explored the importance of perceptual cues by changing letters between the acquisition and test phase; unlike Experiment 1, there was no significant learning of grammatical information for participants under dual-task conditions in Experiment 2, suggesting that intentional processing is necessary for successful acquisition and expression of grammar-based knowledge under transfer conditions. In sum, it appears that some aspects of learning in AGL are indeed relatively automatic, although the expression of grammatical information and the learning of grammatical patterns when perceptual similarity is eliminated both appear to require explicit resources. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  15. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  16. Proportional reasoning as a heuristic-based process: time constraint and dual task considerations.

    Science.gov (United States)

    Gillard, Ellen; Van Dooren, Wim; Schaeken, Walter; Verschaffel, Lieven

    2009-01-01

    The present study interprets the overuse of proportional solution methods from a dual process framework. Dual process theories claim that analytic operations involve time-consuming executive processing, whereas heuristic operations are fast and automatic. In two experiments to test whether proportional reasoning is heuristic-based, the participants solved "proportional" problems, for which proportional solution methods provide correct answers, and "nonproportional" problems known to elicit incorrect answers based on the assumption of proportionality. In Experiment 1, the available solution time was restricted. In Experiment 2, the executive resources were burdened with a secondary task. Both manipulations induced an increase in proportional answers and a decrease in correct answers to nonproportional problems. These results support the hypothesis that the choice for proportional methods is heuristic-based.

  17. Dual process interaction model of HIV-risk behaviors among drug offenders.

    Science.gov (United States)

    Ames, Susan L; Grenard, Jerry L; Stacy, Alan W

    2013-03-01

    This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.

  18. Mothers Coping With Bereavement in the 2008 China Earthquake: A Dual Process Model Analysis.

    Science.gov (United States)

    Chen, Lin; Fu, Fang; Sha, Wei; Chan, Cecilia L W; Chow, Amy Y M

    2017-01-01

    The purpose of this study is to explore the grief experiences of mothers after they lost their children in the 2008 China earthquake. Informed by the Dual Process Model, this study conducted in-depth interviews to explore how six bereaved mothers coped with such grief over a 2-year period. Right after the earthquake, these mothers suffered from intensive grief. They primarily coped with loss-oriented stressors. As time passed, these mothers began to focus on restoration-oriented stressors to face changes in life. This coping trajectory was a dynamic and integral process, which bereaved mothers oscillated between loss- and restoration-oriented stressors. This study offers insight in extending the existing empirical evidence of the Dual Process Model.

  19. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process

    International Nuclear Information System (INIS)

    Altaee, Ali; Zaragoza, Guillermo; Drioli, Enrico; Zhou, John

    2017-01-01

    Highlights: •Single and dual stage PRO was evaluated at different membrane configurations. •Impact of increasing module area or numbers on the power efficiency was studied. •DSPRO reduced the impact of CP & restored the osmotic potential of salinity gradient. •DSPRO outperforms single stage PRO process but depends on salinity gradient type. -- Abstract: Power generation by means of Pressure Retarded Osmosis (PRO) has been proposed for harvesting the energy of a salinity gradient. Energy recovery by the PRO process decreases along the membrane module due to depleting of the chemical potential across the membrane and concentration polarization effects. A dual stage PRO (DSPRO) design can be used to rejuvenate the chemical potential difference and reduce the concentration polarization on feed solution. Several design configurations were suggested for the membrane module arrangements in the first and second stage of the PRO process. PRO performance was evaluated for a number of salinity gradients proposed by coupling Dead Sea water or Reverse Osmosis (RO) brine with seawater or wastewater effluent. Maximum specific energy of inlet and outlet feeds was calculated using a developed computer model to identify the amount of recovered and remaining energy. Initially, specific power generation by the PRO process increased by increasing the number of modules of the first stage. Maximum specific energy is calculated along the PRO module to understand the degradation of the maximum specific energy in each module before introducing a second stage PRO process. Adding a second stage PRO process resulted in a sharp increase of the chemical potential difference and the specific energy yield of the process. Between 10% and 13% increase of the specific power generation was achieved by the DSPRO process for the Dead Sea-seawater salinity gradient depending on the dual stage design configuration. For Dead Sea-RO brine, 12–16% increase of the specific power generation was

  20. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  1. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  2. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    Science.gov (United States)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  3. Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory.

    Science.gov (United States)

    Kounios, J; Holcomb, P J

    1994-07-01

    Dual-coding theory argues that processing advantages for concrete over abstract (verbal) stimuli result from the operation of 2 systems (i.e., imaginal and verbal) for concrete stimuli, rather than just 1 (for abstract stimuli). These verbal and imaginal systems have been linked with the left and right hemispheres of the brain, respectively. Context-availability theory argues that concreteness effects result from processing differences in a single system. The merits of these theories were investigated by examining the topographic distribution of event-related brain potentials in 2 experiments (lexical decision and concrete-abstract classification). The results were most consistent with dual-coding theory. In particular, different scalp distributions of an N400-like negativity were elicited by concrete and abstract words.

  4. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  5. Dual-process models of health-related behaviour and cognition: a review of theory.

    Science.gov (United States)

    Houlihan, S

    2018-03-01

    The aim of this review was to synthesise a spectrum of theories incorporating dual-process models of health-related behaviour. Review of theory, adapted loosely from Cochrane-style systematic review methodology. Inclusion criteria were specified to identify all relevant dual-process models that explain decision-making in the context of decisions made about human health. Data analysis took the form of iterative template analysis (adapted from the conceptual synthesis framework used in other reviews of theory), and in this way theories were synthesised on the basis of shared theoretical constructs and causal pathways. Analysis and synthesis proceeded in turn, instead of moving uni-directionally from analysis of individual theories to synthesis of multiple theories. Namely, the reviewer considered and reconsidered individual theories and theoretical components in generating the narrative synthesis' main findings. Drawing on systematic review methodology, 11 electronic databases were searched for relevant dual-process theories. After de-duplication, 12,198 records remained. Screening of title and abstract led to the exclusion of 12,036 records, after which 162 full-text records were assessed. Of those, 21 records were included in the review. Moving back and forth between analysis of individual theories and the synthesis of theories grouped on the basis of theme or focus yielded additional insights into the orientation of a theory to an individual. Theories could be grouped in part on their treatment of an individual as an irrational actor, as social actor, as actor in a physical environment or as a self-regulated actor. Synthesising identified theories into a general dual-process model of health-related behaviour indicated that such behaviour is the result of both propositional and unconscious reasoning driven by an individual's response to internal cues (such as heuristics, attitude and affect), physical cues (social and physical environmental stimuli) as well as

  6. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory

    OpenAIRE

    Pelaccia, Thierry; Tardif, Jacques; Triby, Emmanuel; Charlin, Bernard

    2011-01-01

    Context: Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. It is considered as the physician’s most critical competence, and has been widely studied by physicians, educationalists, psychologists and sociologists. Since the 1970s, many theories about clinical reasoning in medicine have been put forward. Purpose: This paper aims at exploring a comprehensive approach: the ‘‘dual-process theory’’, a model developed by co...

  7. Decision and intuition during organizational change : an evolutionary critique of dual process theory

    OpenAIRE

    Talat, U; Chang, K; Nguyen, B

    2017-01-01

    Purpose: The purpose of this paper is to review intuition in the context of organizational change. We argue that intuition as a concept requires attention and its formulation is necessary prior to its application in organizations. The paper provides a critique of Dual Process Theory and highlights shortcomings in organization theorizing of intuition.\\ud Design/methodology/approach: The paper is conceptual and provides in-depth theoretical discussions by drawing from the literature on decision...

  8. Does Joshua Greene’s Dual Process Theory of Moral Judgment Commit the Naturalistic Fallacy?

    OpenAIRE

    Javier Gracia Calandín

    2017-01-01

    In this article I analyse whether Joshua Greene’s dual process theory of moral judgment commits the naturalistic fallacy. Firstly, and against current authors such as Patricia S. Churchland, I uphold the validity of the naturalistic fallacy denounced by Moore for more than a century. Secondly, I highlight and question Greene’s naturalized way of understanding Deontologism. Thirdly, I assert the distinction between "neural basis" and "moral foundation" as the key to avoid committing the natura...

  9. Immediate survival focus: synthesizing life history theory and dual process models to explain substance use.

    Science.gov (United States)

    Richardson, George B; Hardesty, Patrick

    2012-01-01

    Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  10. Immediate Survival Focus: Synthesizing Life History Theory and Dual Process Models to Explain Substance Use

    Directory of Open Access Journals (Sweden)

    George B. Richardson

    2012-10-01

    Full Text Available Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  11. Study of thermocline development inside a dual-media storage tank at the beginning of dynamic processes

    Science.gov (United States)

    Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther

    2017-06-01

    This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.

  12. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  13. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    Science.gov (United States)

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  14. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  15. Two-particle lepton-nucleon processes in the dual QCD approach

    International Nuclear Information System (INIS)

    Bel'kov, A.A.

    1984-01-01

    The data on elastic and quasielastic lepton-nucleon scattering and on Δ 33 electro- and neutrino-production are analyzed in the dual approach based on finite-energy sum rules and QCD. A large class of two-particle lepton-nucleon processes at small and moderate momentum transfers 0.4 (GeV/c) 2 2 2 are described. It is shown that the data on these processes, used as an additional information, essentially decrease the ambiguity in determination of QCD parameters from analysis of deep inelastic lepton-nucleon scattering

  16. Two-particle lepton--nucleon processes in the dual QCD approach

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ivanov, Y.P.; Kovalenko, S.G.

    1984-01-01

    Using a dual approach based on finite-energy sum rules and QCD, an analysis is made of data on elastic and quasielastic lepton--nucleon scattering and on the reactions of electron- and neutrino-induced production of the Δ 33 isobar. A description is obtained of a wide range of two-particle lepton--nucleon processes in the region of small and moderate momentum transfers 0.4 (GeV/c) 2 2 2 . It is shown that the use of data on these processes as additional information substantially reduces the ambiguity in the determination of the QCD parameters in the analysis of deep inelastic lepton--nucleon scattering

  17. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    Science.gov (United States)

    Lu, Jue [Okemos, MI; Okeke, Benedict [Montgomery, AL

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  18. Characterization and processing of bipolar semiconductor electrodes in a dual electrolyte cell

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S.; Musiani, M.M. [Istituto di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)

    1995-11-01

    Photoelectrochemical (PEC) processes may be induced at both faces of a bipolar semiconductor electrode without application of metal contacts by using the dual electrolyte arrangement -- metal/electrolyte 1/semiconductor/electrolyte 2/metal -- and by applying a voltage to the end metal electrodes. The possibilities of semiconductor characterization (determination of action spectra and doping level) and processing (photoetching and metal electrodeposition) are discussed on the basis of model experiments, performed with n-InP wafers. The advantages of this approach over traditional PEC and electroless techniques are discussed with particular emphasis on etching.

  19. Age Differences in Dual Information-Processing Modes: Implications for Cancer Decision Making

    Science.gov (United States)

    Peters, Ellen; Diefenbach, Michael A.; Hess, Thomas M.; Västfjäll, Daniel

    2008-01-01

    Age differences in affective/experiential and deliberative processes have important theoretical implications for cancer decision making as cancer is often a disease of older adulthood. We examine evidence for adult age differences in affective and deliberative information processes, review the sparse evidence about age differences in decision making and introduce how dual process theories and their findings might be applied to cancer decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age, particularly when decisions are unfamiliar and the information is numeric. However, age-related adaptive processes, including an increased focus on emotional goals and greater experience, can influence decision making and potentially offset age-related declines. A better understanding of the mechanisms that underlie cancer decision processes in our aging population should ultimately allow us to help older adults to better help themselves. PMID:19058148

  20. Age differences in dual information-processing modes: implications for cancer decision making.

    Science.gov (United States)

    Peters, Ellen; Diefenbach, Michael A; Hess, Thomas M; Västfjäll, Daniel

    2008-12-15

    Age differences in affective/experiential and deliberative processes have important theoretical implications for cancer decision making, as cancer is often a disease of older adulthood. The authors examined evidence for adult age differences in affective and deliberative information processes, reviewed the sparse evidence about age differences in decision making, and introduced how dual process theories and their findings might be applied to cancer decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age, particularly when decisions are unfamiliar and the information is numeric. However, age-related adaptive processes, including an increased focus on emotional goals and greater experience, can influence decision making and potentially offset age-related declines. A better understanding of the mechanisms that underlie cancer decision processes in our aging population should ultimately allow us to help older adults to better help themselves.

  1. Dual process theory and intermediate effect: are faculty and residents' performance on multiple-choice, licensing exam questions different?

    NARCIS (Netherlands)

    Dong, T.; Durning, S.J.; Artino, A.R.; Vleuten, C.P.M. van der; Holmboe, E.; Lipner, R.; Schuwirth, L.

    2015-01-01

    BACKGROUND: Clinical reasoning is essential for the practice of medicine. Dual process theory conceptualizes reasoning as falling into two general categories: nonanalytic reasoning (pattern recognition) and analytic reasoning (active comparing and contrasting of alternatives). The debate continues

  2. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  3. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  4. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  5. Fast logic?: Examining the time course assumption of dual process theory.

    Science.gov (United States)

    Bago, Bence; De Neys, Wim

    2017-01-01

    Influential dual process models of human thinking posit that reasoners typically produce a fast, intuitive heuristic (i.e., Type-1) response which might subsequently be overridden and corrected by slower, deliberative processing (i.e., Type-2). In this study we directly tested this time course assumption. We used a two response paradigm in which participants have to give an immediate answer and afterwards are allowed extra time before giving a final response. In four experiments we used a range of procedures (e.g., challenging response deadline, concurrent load) to knock out Type 2 processing and make sure that the initial response was intuitive in nature. Our key finding is that we frequently observe correct, logical responses as the first, immediate response. Response confidence and latency analyses indicate that these initial correct responses are given fast, with high confidence, and in the face of conflicting heuristic responses. Findings suggest that fast and automatic Type 1 processing also cues a correct logical response from the start. We sketch a revised dual process model in which the relative strength of different types of intuitions determines reasoning performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  7. Deconfinement and universality in the 3DU(1) lattice gauge theory at finite temperature: study in the dual formulation

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, O.; Chelnokov, V. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine,UA-03680 Kiev (Ukraine); Gravina, M.; Papa, A. [Dipartimento di Fisica, Università della Calabria, and INFN - Gruppo collegato di Cosenza,I-87036 Arcavacata di Rende, Cosenza (Italy)

    2015-09-10

    We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior of the model in the vicinity of the deconfinement phase transition. These equations are used to check the validity of the Svetitsky-Yaffe conjecture regarding the critical behavior of the lattice U(1) model. Furthermore, we perform numerical simulations of the model for N{sub t}=1,2,4,8 and compute, by a cluster algorithm, the dual correlation functions and the corresponding second moment correlation length. In this way we locate the position of the critical point and calculate critical indices.

  8. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  9. Dual-process theory and consumer response to front-of-package nutrition label formats.

    Science.gov (United States)

    Sanjari, S Setareh; Jahn, Steffen; Boztug, Yasemin

    2017-11-01

    Nutrition labeling literature yields fragmented results about the effect of front-of-package (FOP) nutrition label formats on healthy food choice. Specifically, it is unclear which type of nutrition label format is effective across different shopping situations. To address this gap, the present review investigates the available nutrition labeling literature through the prism of dual-process theory, which posits that decisions are made either quickly and automatically (system 1) or slowly and deliberately (system 2). A systematically performed review of nutrition labeling literature returned 59 papers that provide findings that can be explained according to dual-process theory. The findings of these studies suggest that the effectiveness of nutrition label formats is influenced by the consumer's dominant processing system, which is a function of specific contexts and personal variables (eg, motivation, nutrition knowledge, time pressure, and depletion). Examination of reported findings through a situational processing perspective reveals that consumers might prefer different FOP nutrition label formats in different situations and can exhibit varying responses to the same label format across situations. This review offers several suggestions for policy makers and researchers to help improve current FOP nutrition label formats. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  11. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  12. Reduction of implantation shadowing effect by dual-wavelength exposure photo process

    CERN Document Server

    Gu, Yiming; Lee Sang Yun; Roche, William; Sturtevant, John

    2003-01-01

    As transistor engineering continues to well below 100 nm length devices, ion implantation process tolerances are making these formerly "non-critical" lithography levels more and more difficult. In order to minimize the channeling effect and to obtain a controllable profile of dopant, an angle implantation is often required. However, a shadow area of resist pattern is always accompanied with an angle implantation. This shadowing effect consumes silicon real estate, and reduces the line edge placement (LEP) tolerances. Therefore, methodologies to reduce the shadowing effect in angled implantation become a critical consideration not only for device engineering but also for photolithography. Based on the model analysis, simulation and experiments, this paper presents an effective novel process utilizing dual-wavelength exposure (DWE) to reduce the shadowing effect. The DWE process is realized by two consecutive exposures for an I-line resist with a DUV stepper/scanner and an I-line stepper. The process leverages ...

  13. Does Joshua Greene’s Dual Process Theory of Moral Judgment Commit the Naturalistic Fallacy?

    Directory of Open Access Journals (Sweden)

    Javier Gracia Calandín

    2017-02-01

    Full Text Available In this article I analyse whether Joshua Greene’s dual process theory of moral judgment commits the naturalistic fallacy. Firstly, and against current authors such as Patricia S. Churchland, I uphold the validity of the naturalistic fallacy denounced by Moore for more than a century. Secondly, I highlight and question Greene’s naturalized way of understanding Deontologism. Thirdly, I assert the distinction between "neural basis" and "moral foundation" as the key to avoid committing the naturalistic fallacy. Finally and according to that key distinction I assess Greene’s neuroethical approach and I analyse some of its most critical aspects related to normative issues.

  14. Dual parton model and the process π + n → pω

    International Nuclear Information System (INIS)

    Bandyopad, P.

    1975-01-01

    The differential cross section for the process π + n→pω has been determined on the basis of the dynamical dual model of hadrons. It is shown that the theoretical prediction is in excellent agreement with the experimental results. Also, it can nicely explain the fact that there is no dip in the differential cross section. Moreover, it is shown that the large value of the density matrix element σsub(oo) in the Gottfried-Jackson frame, as observed in experiments, can be interpreted in a nice way. (author)

  15. Motivation and justification: a dual-process model of culture in action.

    Science.gov (United States)

    Vaisey, Stephen

    2009-05-01

    This article presents a new model of culture in action. Although most sociologists who study culture emphasize its role in post hoc sense making, sociologists of religion and social psychologists tend to focus on the role beliefs play in motivation. The dual-process model integrates justificatory and motivational approaches by distinguishing between "discursive" and "practical" modes of culture and cognition. The author uses panel data from the National Study of Youth and Religion to illustrate the model's usefulness. Consistent with its predictions, he finds that though respondents cannot articulate clear principles of moral judgment, their choice from a list of moral-cultural scripts strongly predicts later behavior.

  16. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-01-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  17. Interactions between Depression and Facilitation within Neural Networks: Updating the Dual-Process Theory of Plasticity

    Science.gov (United States)

    Prescott, Steven A.

    1998-01-01

    Repetitive stimulation often results in habituation of the elicited response. However, if the stimulus is sufficiently strong, habituation may be preceded by transient sensitization or even replaced by enduring sensitization. In 1970, Groves and Thompson formulated the dual-process theory of plasticity to explain these characteristic behavioral changes on the basis of competition between decremental plasticity (depression) and incremental plasticity (facilitation) occurring within the neural network. Data from both vertebrate and invertebrate systems are reviewed and indicate that the effects of depression and facilitation are not exclusively additive but, rather, that those processes interact in a complex manner. Serial ordering of induction of learning, in which a depressing locus precedes the modulatory system responsible for inducing facilitation, causes the facilitation to wane. The parallel and/or serial expression of depression and waning facilitation within the stimulus–response pathway culminates in the behavioral changes that characterize dual-process learning. A mathematical model is presented to formally express and extend understanding of the interactions between depression and facilitation. PMID:10489261

  18. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  19. Investigating risky, distracting, and protective peer passenger effects in a dual process framework.

    Science.gov (United States)

    Ross, Veerle; Jongen, Ellen M M; Brijs, Kris; Brijs, Tom; Wets, Geert

    2016-08-01

    Prior studies indicated higher collision rates among young novice drivers with peer passengers. This driving simulator study provided a test for a dual process theory of risky driving by examining social rewards (peer passengers) and cognitive control (inhibitory control). The analyses included age (17-18 yrs, n=30; 21-24 yrs, n=20). Risky, distracting, and protective effects were classified by underlying driver error mechanisms. In the first drive, participants drove alone. In the second, participants drove with a peer passenger. Red-light running (violation) was more prevalent in the presence of peer passengers, which provided initial support for a dual process theory of risk driving. In a subgroup with low inhibitory control, speeding (violation) was more prevalent in the presence of peer passengers. Reduced lane-keeping variability reflected distracting effects. Nevertheless, possible protective effects for amber-light running and hazard handling (cognition and decision-making) were found in the drive with peer passengers. Avenues for further research and possible implications for targets of future driver training programs are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dual processing theory and experts' reasoning: exploring thinking on national multiple-choice questions.

    Science.gov (United States)

    Durning, Steven J; Dong, Ting; Artino, Anthony R; van der Vleuten, Cees; Holmboe, Eric; Schuwirth, Lambert

    2015-08-01

    An ongoing debate exists in the medical education literature regarding the potential benefits of pattern recognition (non-analytic reasoning), actively comparing and contrasting diagnostic options (analytic reasoning) or using a combination approach. Studies have not, however, explicitly explored faculty's thought processes while tackling clinical problems through the lens of dual process theory to inform this debate. Further, these thought processes have not been studied in relation to the difficulty of the task or other potential mediating influences such as personal factors and fatigue, which could also be influenced by personal factors such as sleep deprivation. We therefore sought to determine which reasoning process(es) were used with answering clinically oriented multiple-choice questions (MCQs) and if these processes differed based on the dual process theory characteristics: accuracy, reading time and answering time as well as psychometrically determined item difficulty and sleep deprivation. We performed a think-aloud procedure to explore faculty's thought processes while taking these MCQs, coding think-aloud data based on reasoning process (analytic, nonanalytic, guessing or combination of processes) as well as word count, number of stated concepts, reading time, answering time, and accuracy. We also included questions regarding amount of work in the recent past. We then conducted statistical analyses to examine the associations between these measures such as correlations between frequencies of reasoning processes and item accuracy and difficulty. We also observed the total frequencies of different reasoning processes in the situations of getting answers correctly and incorrectly. Regardless of whether the questions were classified as 'hard' or 'easy', non-analytical reasoning led to the correct answer more often than to an incorrect answer. Significant correlations were found between self-reported recent number of hours worked with think-aloud word count

  1. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    Science.gov (United States)

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice.

  2. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    Directory of Open Access Journals (Sweden)

    Athanasios Tsalatsanis

    Full Text Available Dual Processing Theories (DPT assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive and type 2 (deliberative. Based on DPT we have derived a Dual Processing Model (DPM to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice.

  3. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  4. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  5. Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

    Directory of Open Access Journals (Sweden)

    Mochnacki B.

    2016-12-01

    Full Text Available Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered. The external heating (a laser action is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.

  6. Clinical cognition and diagnostic error: applications of a dual process model of reasoning.

    Science.gov (United States)

    Croskerry, Pat

    2009-09-01

    Both systemic and individual factors contribute to missed or delayed diagnoses. Among the multiple factors that impact clinical performance of the individual, the caliber of cognition is perhaps the most relevant and deserves our attention and understanding. In the last few decades, cognitive psychologists have gained substantial insights into the processes that underlie cognition, and a new, universal model of reasoning and decision making has emerged, Dual Process Theory. The theory has immediate application to medical decision making and provides an overall schema for understanding the variety of theoretical approaches that have been taken in the past. The model has important practical applications for decision making across the multiple domains of healthcare, and may be used as a template for teaching decision theory, as well as a platform for future research. Importantly, specific operating characteristics of the model explain how diagnostic failure occurs.

  7. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    Science.gov (United States)

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  8. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    Science.gov (United States)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  9. Adolescents at Risk for Drug Abuse: A 3-Year Dual Process Analysis

    Science.gov (United States)

    Ames, S.L.; Xie, B.; Shono, Y.; Stacy, A.W.

    2016-01-01

    Aims To test longitudinal additive and synergistic dual process models in youth at documented risk for drug use. The specific dual process approach examined suggests that engaging in drug use behaviors results from a dynamic interplay between automatically-activated associative memory processes and executive reflective/control processes. Design This 3-year, three-wave population-based prospective study used mobile computer-based assessments. Setting Self-directed computer assessments were completed in school settings in the Los Angeles metropolitan area, California, USA. Participants 725 at-risk adolescents (44% female) in continuation high schools were recruited during 9th grade (age at recruitment, 14 to 16). Measurements Key outcome measures included past year alcohol, marijuana and cigarette use at each assessment. Predictors included working memory capacity (WMC), associative memory, the interaction term WMC by associative memory, sex, age, ethnicity, and acculturation. Findings A significant cross-sectional interaction revealed tobacco-relevant associations were weaker predictors of cigarette use among males with higher WMC than among those with lower WMC (p<0.004). Alternatively, drug-relevant associations were stronger predictors of past year alcohol (p<0.001) and marijuana use (p=0.02) among females with higher WMC than among those with lower WMC. Longitudinal analyses revealed no significant interactions after adjusting for predictive effects of previous drug use. With respect to WMC, females with higher WMC were less likely to use marijuana at two-year follow-up (p=0.03). First-order effects of drug-related associations prospectively predicted greater alcohol and marijuana use in males at one and two-year follow up (p≤0.03), and greater past year alcohol and marijuana use in females at one-year follow up (p≤0.03). Conclusions Drug-relevant memory associations play a key role in drug use behavior in at-risk youth. PMID:28010052

  10. An integrated model of clinical reasoning: dual-process theory of cognition and metacognition.

    Science.gov (United States)

    Marcum, James A

    2012-10-01

    Clinical reasoning is an important component for providing quality medical care. The aim of the present paper is to develop a model of clinical reasoning that integrates both the non-analytic and analytic processes of cognition, along with metacognition. The dual-process theory of cognition (system 1 non-analytic and system 2 analytic processes) and the metacognition theory are used to develop an integrated model of clinical reasoning. In the proposed model, clinical reasoning begins with system 1 processes in which the clinician assesses a patient's presenting symptoms, as well as other clinical evidence, to arrive at a differential diagnosis. Additional clinical evidence, if necessary, is acquired and analysed utilizing system 2 processes to assess the differential diagnosis, until a clinical decision is made diagnosing the patient's illness and then how best to proceed therapeutically. Importantly, the outcome of these processes feeds back, in terms of metacognition's monitoring function, either to reinforce or to alter cognitive processes, which, in turn, enhances synergistically the clinician's ability to reason quickly and accurately in future consultations. The proposed integrated model has distinct advantages over other models proposed in the literature for explicating clinical reasoning. Moreover, it has important implications for addressing the paradoxical relationship between experience and expertise, as well as for designing a curriculum to teach clinical reasoning skills. © 2012 Blackwell Publishing Ltd.

  11. Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A., E-mail: maezzat2000@yahoo.com [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia); El-Karamany, Ahmed S., E-mail: qaramani@gmail.com [Department of Mathematical and Physical Sciences, Nizwa University, P.O. Box 1357, Nizwa 611 (Oman); Ezzat, Shereen M. [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We model fractional order dual-phase-lag heat conduction law. Black-Right-Pointing-Pointer We applied the model on a perfect conducting half-space of elastic material. Black-Right-Pointing-Pointer Some theories of generalized thermoelasticity follow as limit cases. Black-Right-Pointing-Pointer State space approach is adopted for the solution of one-dimensional problems. Black-Right-Pointing-Pointer The model will improve the efficiency of thermoelectric material. - Abstract: A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order dual-phase-lag heat conduction law is considered. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of a transverse magnetic field. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some theories of generalized thermoelasticity follow as limit cases. Some comparisons have been shown in figures to estimate effects of temperature discrepancy and fractional order parameter on all the studied fields.

  12. Reason and reaction: the utility of a dual-focus, dual-processing perspective on promotion and prevention of adolescent health risk behaviour.

    Science.gov (United States)

    Gibbons, Frederick X; Houlihan, Amy E; Gerrard, Meg

    2009-05-01

    A brief overview of theories of health behaviour that are based on the expectancy-value perspective is presented. This approach maintains that health behaviours are the result of a deliberative decision-making process that involves consideration of behavioural options along with anticipated outcomes associated with those options. It is argued that this perspective is effective at explaining and predicting many types of health behaviour, including health-promoting actions (e.g. UV protection, condom use, smoking cessation), but less effective at predicting risky health behaviours, such as unprotected, casual sex, drunk driving or binge drinking. These are behaviours that are less reasoned or premeditated - especially among adolescents. An argument is made for incorporating elements of dual-processing theories in an effort to improve the 'utility' of these models. Specifically, it is suggested that adolescent health behaviour involves both analytic and heuristic processing. Both types of processing are incorporated in the prototype-willingness (prototype) model, which is described in some detail. Studies of health behaviour based on the expectancy-value perspective (e.g. theory of reasoned action) are reviewed, along with studies based on the prototype model. These two sets of studies together suggest that the dual-processing perspective, in general, and the prototype model, in particular, add to the predictive validity of expectancy-value models for predicting adolescent health behaviour. Research and interventions that incorporate elements of dual-processing and elements of expectancy-value are more effective at explaining and changing adolescent health behaviour than are those based on expectancy-value theories alone.

  13. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    Science.gov (United States)

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  14. Overriding Moral Intuitions – Does It Make Us Immoral? Dual-Process Theory of Higher Cognition Account for Moral Reasoning

    OpenAIRE

    Michał Białek; Simon J. Handley

    2013-01-01

    Moral decisions are considered as an intuitive process, while conscious reasoning is mostly used only to justify those intuitions. This problem is described in few different dual-process theories of mind, that are being developed e.g. by Frederick and Kahneman, Stanovich and Evans. Those theories recently evolved into tri-process theories with a proposed process that makes ultimate decision or allows to paraformal processing with focal bias.. Presented experiment compares...

  15. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (N2, O2, H2O, CO2, CO, H2, DME) and major combustion intermediates (CH4, CH2O, C2H2, C2H4 and C2H6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.

  16. A longitudinal investigation of older adults' physical activity: Testing an integrated dual-process model.

    Science.gov (United States)

    Arnautovska, Urska; Fleig, Lena; O'Callaghan, Frances; Hamilton, Kyra

    2017-02-01

    To assess the effects of conscious and non-conscious processes for prediction of older adults' physical activity (PA), we tested a dual-process model that integrated motivational (behavioural intention) and volitional (action planning and coping planning) processes with non-conscious, automatic processes (habit). Participants (N = 215) comprised community-dwelling older adults (M = 73.8 years). A longitudinal design was adopted to investigate direct and indirect effects of intentions, habit strength (Time 1), and action planning and coping planning (Time 2) on PA behaviour (Time 3). Structural equation modelling was used to evaluate the model. The model provided a good fit to the data, accounting for 44% of the variance in PA behaviour at Time 3. PA was predicted by intentions, action planning, and habit strength, with action planning mediating the intention-behaviour relationship. An effect of sex was also found where males used fewer planning strategies and engaged in more PA than females. By investigating an integration of conscious and non-conscious processes, this study provides a novel understanding of older adults' PA. Interventions aiming to promote PA behaviour of older adults should target the combination of psychological processes.

  17. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  18. The Cortical Organization of Speech Processing: Feedback Control and Predictive Coding the Context of a Dual-Stream Model

    Science.gov (United States)

    Hickok, Gregory

    2012-01-01

    Speech recognition is an active process that involves some form of predictive coding. This statement is relatively uncontroversial. What is less clear is the source of the prediction. The dual-stream model of speech processing suggests that there are two possible sources of predictive coding in speech perception: the motor speech system and the…

  19. Effects of Epistemological Beliefs and Topic-Specific Beliefs on Undergraduates' Cognitive and Strategic Processing of Dual-Positional Text.

    Science.gov (United States)

    Kardash, CarolAnne M.; Howell, Karen L.

    2000-01-01

    Investigates effects of epistemological beliefs and topic-specific beliefs on undergraduates' (N=40) cognitive and strategic processing of a dual-positional text. Findings reveal that epistemological beliefs about the speed of learning affected the overall number of cognitive processes exhibited, whereas topic-specific beliefs interacted with the…

  20. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress

    Science.gov (United States)

    Lotfy, Kh.

    2017-07-01

    The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.

  1. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  2. Process and system - A dual definition, revisited with consequences in metrology

    Science.gov (United States)

    Ruhm, K. H.

    2010-07-01

    Lets assert that metrology life could be easier scientifically as well as technologically, if we, intentionally, would make an explicit distinction between two outstanding domains, namely the given, really existent domain of processes and the just virtually existent domain of systems, the latter of which is designed and used by the human mind. The abstract domain of models, by which we map the manifold reality of processes, is itself part of the domain of systems. Models support comprehension and communication, although they are normally extreme simplifications of properties and behaviour of a concrete reality. So, systems and signals represent processes and quantities, which are described by means of Signal and System Theory as well as by Stochastics and Statistics. The following presentation of this new, demanding and somehow irritating definition of the terms process and system as a dual pair is unusual indeed, but it opens the door widely to a better and more consistent discussion and understanding of manifold scientific tools in many areas. Metrology [4] is one of the important fields of concern due to many reasons: One group of the soft and hard links between the domain of processes and the domain of systems is realised by concepts of measurement science on the one hand and by instrumental tools of measurement technology on the other hand.

  3. Critique of the Naturalization of Deontologism in Joshua Greene's Dual Process Theory of Moral Judgment

    Directory of Open Access Journals (Sweden)

    Javier Gracia

    2018-05-01

    Full Text Available In this paper I propose to question the Joshua Greene’s neuroethical thesis about the essentially emotional character of so-called “deontological moral judgments”. Frist, I focus on the dual process theory of moral judgment and I criticize that they are considered only and mainly intuitive and non reflective. Se condly, I question that the “utilitarian judgment” is linked to mathematical calculation and the deontological judgment is exclusively reduced to non-reflective factor of emotion. The main objection to Greene’s naturalism raised by me is trying to eliminate the philosophical justification about the moral validity defended by Kant’s deontologism; meanwhile Greene reduces “deontological moral judgment” to exclusively psychological and neurophysiological factors associated with emotion.

  4. A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements. The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.

  5. Sieve estimation in a Markov illness-death process under dual censoring.

    Science.gov (United States)

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Determination of temperature and pressure in the calcium reduction process

    International Nuclear Information System (INIS)

    Arceri, Mariana E.

    1997-01-01

    The calcium reduction process consists in the reduction of uranium tetrafluoride (UF 4 ) with calcium in a refractory material crucible, in order to obtain metallic uranium. The crucible is in turn contained in a steel reactor, heated by means of an induction coil to bring the reagents from the environmental temperature to the temperature necessary for the reaction starting. For the design of the reactor, mathematical expressions that allow to estimate the temperature and pressure of the system have been developed

  7. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.

    Science.gov (United States)

    Reyna, Valerie F; Brainerd, Charles J

    2011-09-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.

  8. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model

    Science.gov (United States)

    Reyna, Valerie F.; Brainerd, Charles J.

    2011-01-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals—that reasoning biases emerge with development —have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects—that risk preferences shift when the same decisions are phrases in terms of gains versus losses—emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making—prospect theory—can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes. PMID:22096268

  9. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  10. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  11. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang; Huang, Ronghua

    2015-01-01

    Highlights: • A 5D PDF table was used to model the dual-fuel turbulence–chemistry interactions. • The cooling effect of ethanol direct injection (EDI) was examined. • The higher flame speed of ethanol in EDI + GPI increased the thermal efficiency. • The partially premixed combustion in EDI + GPI reduced the combustion temperature. • Ethanol’s low evaporation rate in low temperature led to incomplete combustion. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k−ε turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence–chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in EDI + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of

  12. What makes us think? A three-stage dual-process model of analytic engagement.

    Science.gov (United States)

    Pennycook, Gordon; Fugelsang, Jonathan A; Koehler, Derek J

    2015-08-01

    The distinction between intuitive and analytic thinking is common in psychology. However, while often being quite clear on the characteristics of the two processes ('Type 1' processes are fast, autonomous, intuitive, etc. and 'Type 2' processes are slow, deliberative, analytic, etc.), dual-process theorists have been heavily criticized for being unclear on the factors that determine when an individual will think analytically or rely on their intuition. We address this issue by introducing a three-stage model that elucidates the bottom-up factors that cause individuals to engage Type 2 processing. According to the model, multiple Type 1 processes may be cued by a stimulus (Stage 1), leading to the potential for conflict detection (Stage 2). If successful, conflict detection leads to Type 2 processing (Stage 3), which may take the form of rationalization (i.e., the Type 1 output is verified post hoc) or decoupling (i.e., the Type 1 output is falsified). We tested key aspects of the model using a novel base-rate task where stereotypes and base-rate probabilities cued the same (non-conflict problems) or different (conflict problems) responses about group membership. Our results support two key predictions derived from the model: (1) conflict detection and decoupling are dissociable sources of Type 2 processing and (2) conflict detection sometimes fails. We argue that considering the potential stages of reasoning allows us to distinguish early (conflict detection) and late (decoupling) sources of analytic thought. Errors may occur at both stages and, as a consequence, bias arises from both conflict monitoring and decoupling failures. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Temperature and Recognition Dual Responsive Poly(N-Isopropylacrylamide) and Poly(N,N-Dimethylacrylamide) with Adamantyl Side Group.

    Science.gov (United States)

    Dong, Qiujing; Luo, Chunhua; Li, Na; Chi, Jiaxiang; Zhang, Qingqing

    2018-03-22

    A series of copolymers with an adamantyl side group (poly(NIPAM-co-AdMA) and poly(DMAM-co-AdMA)) were prepared by radical copolymerization of N -isopropylacrylamide (NIPAM) and N , N -dimethylacrylamide (DMAM) with a 2-methyl-2-adamantylmethacrylate (AdMA) monomer. The structure and composition of the as-synthesized copolymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (¹H NMR) spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), and elemental analysis. Temperature and recognition dual responsivity of the copolymers was investigated by cloud point (T cp ) and dynamic light scattering (DLS), respectively. The results show that the as-synthesized copolymers are a kind of temperature-responsive polymer with a lower critical solution temperature (LCST). T cp was approximately consistent with the critical temperature of intermolecular copolymer association (T ass ) from DLS. For these copolymers, T cp decreases with increasing content of AdMA unit in the copolymers. After the addition of β-cyclodextrins (β-CD), T cp increases, and the increment of T cp values gradually became large with increasing content of AdMA in the copolymers. It is host-guest molecular recognition of β-CD and adamantyl groups that endows the as-synthesized copolymers with recognition-tunable thermosensitivity.

  14. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    OpenAIRE

    Miriam Solgajová; Helena Frančáková; Štefan Dráb; Žigmund Tóth

    2013-01-01

    Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wo...

  15. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The bosonic thermal Green function, its dual, and the fermion correlators of the massive Thirring model at finite temperature

    International Nuclear Information System (INIS)

    Mondaini, Leonardo; Marino, E.C.

    2011-01-01

    Full text: Despite the fact that quantum field theories are usually formulated in coordinate space, calculations, in both T = 0 and T ≠ 0 cases, are almost always performed in momentum space. However, when we are faced with the exact calculation of correlation functions we are naturally led to the problem of finding closed-form expressions for Green functions in coordinate space. In the present work, we derive an exact closed-form representation for the Euclidian thermal Green function of the two-dimensional (2D) free massless scalar field in coordinate space. This can be interpreted as the real part of a complex analytic function of a variable that conformally maps the infinite strip -∞ < x < ∞ (0 < τ < β of the z = x + iτ (τ: imaginary time) plane into the upper-half-plane. Use of the Cauchy-Riemann conditions, then allows us to identify the dual thermal Green function as the imaginary part of that function. Using both the thermal Green function and its dual, we obtain an explicit series expression for the fermionic correlation functions of the massive Thirring model (MTM) at a finite temperature. (author)

  17. Implementation science: a role for parallel dual processing models of reasoning?

    Directory of Open Access Journals (Sweden)

    Phillips Paddy A

    2006-05-01

    Full Text Available Abstract Background A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Discussion Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence and cognitive processing (e.g., thinking styles influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of

  18. Implementation science: a role for parallel dual processing models of reasoning?

    Science.gov (United States)

    Sladek, Ruth M; Phillips, Paddy A; Bond, Malcolm J

    2006-05-25

    A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence) and cognitive processing (e.g., thinking styles) influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of reasoning are important considerations in any

  19. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...... of ZnO particles and microstructure evolution at different sintering temperatures were investigated by simulation of the self-Joule-heating effect of the individual particles....

  20. Rethinking of the heuristic-analytic dual process theory: a comment on Wada and Nittono (2004) and the reasoning process in the Wason selection task.

    Science.gov (United States)

    Cardaci, Maurizio; Misuraca, Raffaella

    2005-08-01

    This paper raises some methodological problems in the dual process explanation provided by Wada and Nittono for their 2004 results using the Wason selection task. We maintain that the Nittono rethinking approach is weak and that it should be refined to grasp better the evidence of analytic processes.

  1. Development of Dual-Retrieval Processes in Recall: Learning, Forgetting, and Reminiscence

    Science.gov (United States)

    Brainerd, C. J.; Aydin, C.; Reyna, V. F.

    2012-01-01

    We investigated the development of dual-retrieval processes with a low-burden paradigm that is suitable for research with children and neurocognitively impaired populations (e.g., older adults with mild cognitive impairment or dementia). Rich quantitative information can be obtained about recollection, reconstruction, and familiarity judgment by defining a Markov model over simple recall tasks like those that are used in clinical neuropsychology batteries. The model measures these processes separately for learning, forgetting, and reminiscence. We implemented this procedure in some developmental experiments, whose aims were (a) to measure age changes in recollective and nonrecollective retrieval during learning, forgetting, and reminiscence and (b) to measure age changes in content dimensions (e.g., taxonomic relatedness) that affect the two forms of retrieval. The model provided excellent fits in all three domains. Concerning (a), recollection, reconstruction, and familiarity judgment all improved during the child-to-adolescent age range in the learning domain, whereas only recollection improved in the forgetting domain, and the processes were age-invariant in the reminiscence domain. Concerning (b), although some elements of the adult pattern of taxonomic relatedness effects were detected by early adolescence, the adult pattern differs qualitatively from corresponding patterns in children and adolescents. PMID:22778491

  2. Word attributes and lateralization revisited: implications for dual coding and discrete versus continuous processing.

    Science.gov (United States)

    Boles, D B

    1989-01-01

    Three attributes of words are their imageability, concreteness, and familiarity. From a literature review and several experiments, I previously concluded (Boles, 1983a) that only familiarity affects the overall near-threshold recognition of words, and that none of the attributes affects right-visual-field superiority for word recognition. Here these conclusions are modified by two experiments demonstrating a critical mediating influence of intentional versus incidental memory instructions. In Experiment 1, subjects were instructed to remember the words they were shown, for subsequent recall. The results showed effects of both imageability and familiarity on overall recognition, as well as an effect of imageability on lateralization. In Experiment 2, word-memory instructions were deleted and the results essentially reinstated the findings of Boles (1983a). It is concluded that right-hemisphere imagery processes can participate in word recognition under intentional memory instructions. Within the dual coding theory (Paivio, 1971), the results argue that both discrete and continuous processing modes are available, that the modes can be used strategically, and that continuous processing can occur prior to response stages.

  3. A Case Study: Dual-Process Theories of Higher Cognition-Commentary on Evans & Stanovich (2013).

    Science.gov (United States)

    Osman, Magda

    2013-05-01

    Dual-process theories of higher order cognition (DPTs) have been enjoying much success, particularly since Kahneman's 2002 Nobel prize address and recent book Thinking, Fast and Slow (2009). Historically, DPTs have attempted to provide a conceptual framework that helps classify and predict differences in patterns of behavior found under some circumstances and not others in a host of reasoning, judgment, and decision-making tasks. As evidence has changed and techniques for examining behavior have moved on, so too have DPTs. Killing two birds with one stone, Evans and Stanovich (2013, this issue) respond to five main criticisms of DPTs. Along with addressing each criticism in turn, they set out to clarify the essential defining characteristics that distinguish one form of higher order cognition from the other. The aim of this commentary is to consider the defining characteristics of Type 1 and Type 2 processing that have been proposed and to suggest that the evidence can be taken to support quantitative differences rather than qualitatively distinct processes. © The Author(s) 2013.

  4. Dual-memory processes in crack cocaine dependents: The effects of childhood neglect on recall.

    Science.gov (United States)

    Tractenberg, Saulo G; Viola, Thiago W; Gomes, Carlos F A; Wearick-Silva, Luis Eduardo; Kristensen, Christian H; Stein, Lilian M; Grassi-Oliveira, Rodrigo

    2015-01-01

    Exposure to adversities during sensitive periods of neurodevelopment is associated with the subsequent development of substance dependence and exerts harmful, long-lasting effects upon memory functioning. In this study, we investigated the relationship between childhood neglect (CN) and memory using a dual-process model that quantifies recollective and non-recollective retrieval processes in crack cocaine dependents. Eighty-four female crack cocaine-dependent inpatients who did (N = 32) or did not (N = 52) report a history of CN received multiple opportunities to study and recall a short list composed of familiar and concrete words and then received a delayed-recall test. Crack cocaine dependents with a history of CN showed worse performance on free-recall tests than did dependents without a history of CN; this finding was associated with declines in recollective retrieval (direct access) rather than non-recollective retrieval. In addition, we found no evidence of group differences in forgetting rates between immediate- and delayed-recall tests. The results support developmental models of traumatology and suggest that neglect of crack cocaine dependents in early life disrupts the adult memory processes that support the retrieval of detailed representations of events from the past.

  5. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    Science.gov (United States)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  6. Adolescents at risk for drug abuse: a 3-year dual-process analysis.

    Science.gov (United States)

    Ames, Susan L; Xie, Bin; Shono, Yusuke; Stacy, Alan W

    2017-05-01

    To test longitudinal additive and synergistic dual-process models in youth at documented risk for drug use. The specific dual-process approach examined suggests that engaging in drug use behaviors results from a dynamic interplay between automatically activated associative memory processes and executive reflective/control processes. This 3-year, three-wave population-based prospective study used mobile computer-based assessments. Self-directed computer assessments were completed in school settings in the Los Angeles metropolitan area, California, USA. Seven hundred and twenty-five at-risk adolescents (44% female) in continuation high schools were recruited during 9th grade (age at recruitment, 14-16). Key outcome measures included past year alcohol, marijuana and cigarette use at each assessment. Predictors included working memory capacity (WMC), associative memory, the interaction term WMC by associative memory, sex, age, ethnicity and acculturation. A significant cross-sectional interaction revealed tobacco-relevant associations were weaker predictors of cigarette use among males with higher WMC than among those with lower WMC (P < 0.004). Alternatively, drug-relevant associations were stronger predictors of past year alcohol (P < 0.001) and marijuana use (P = 0.02) among females with higher WMC than among those with lower WMC. Longitudinal analyses revealed no significant interactions after adjusting for predictive effects of previous drug use. With respect to WMC, females with higher WMC were less likely to use marijuana at 2-year follow-up (P = 0.03). First-order effects of drug-related associations predicted greater alcohol and marijuana use prospectively in males at 1- and 2-year follow up (P ≤ 0.03), and greater past year alcohol and marijuana use in females at 1-year follow up (P ≤ 0.03). Drug-relevant memory associations play a key role in drug use behavior in at-risk youth. © 2016 Society for the Study of Addiction.

  7. Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS

    Science.gov (United States)

    Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.

    2014-11-01

    In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.

  8. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords

    Science.gov (United States)

    Oberauer, Klauss; Lange, Elke B.

    2009-01-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  9. A nonlinear dynamical systems theory perspective on dual-processing accounts of decision-making under uncertainty

    NARCIS (Netherlands)

    Rooij, M.M.J.W. van; Favela, L.H.; Papafragou, A.; Grodner, D.; Mirman, D.; Trueswell, J.

    2016-01-01

    Dual-processing accounts of reasoning have gained renewed attention in the past decade, particularly in the fields of social judgment, learning, and decision-making under uncertainty. Although the various accounts differ, the common thread is the distinction between two qualitatively different types

  10. Dual-Task Processing as a Measure of Executive Function: A Comparison between Adults with Williams and Down Syndromes

    Science.gov (United States)

    Kittler, Phyllis M.; Krinsky-McHale, Sharon J.; Devenny, Darlynne A.

    2008-01-01

    Behavioral phenotypes of individuals with Williams syndrome and individuals with Down syndrome have been contrasted in relation to short-term memory. People with Down syndrome are stronger visuospatially and those with Williams syndrome are stronger verbally. We examined short-term memory, then explored whether dual-task processing further…

  11. A dual process model of diversity outcomes : The case of the South African Police Service in the Pretoria area

    NARCIS (Netherlands)

    Jackson, L.T.B.; van de Vijver, F.J.R.; Molokoane, D.H.

    2013-01-01

    Orientation: The study addresses the question of how employees of the South African Police Service (SAPS) cope with intercultural relations in an increasingly diverse organisation. Research purpose: A dual-process model of diversity outcomes was tested in which a distinction is made between a

  12. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  13. Output Information Based Fault-Tolerant Iterative Learning Control for Dual-Rate Sampling Process with Disturbances and Output Delay

    Directory of Open Access Journals (Sweden)

    Hongfeng Tao

    2018-01-01

    Full Text Available For a class of single-input single-output (SISO dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method.

  14. Evidence for a neural dual-process account for adverse effects of cognitive control.

    Science.gov (United States)

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  15. Assessment of very high-temperature reactors in process applications

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Gambill, W.R.; Fox, E.C.

    1976-11-01

    An overview is presented of the technical and economic feasibility for the development of a very high-temperature reactor (VHTR) and associated processes. A critical evaluation of VHTR technology for process temperatures of 1400 and 2000 0 F is made. Additionally, an assessment of potential market impact is made to determine the commercial viability of the reactor system. It is concluded that VHTR process heat in the range of 1400 to 1500 0 F is attainable with near-term technology. However, process heat in excess of 1600 0 F would require considerably more materials development. The potential for the VHTR could include a major contribution to synthetic fuel, hydrogen, steel, and fertilizer production and to systems for transport and storage of high-temperature heat. A recommended development program including projected costs is presented

  16. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    International Nuclear Information System (INIS)

    Martinez, J.D.; Toledo, J.; Esteve, R.; Sebastia, A.; Mora, F.J.; Benlloch, J.M.; Fernandez, M.M.; Gimenez, M.; Gimenez, E.N.; Lerche, Ch.W.; Pavon, N.; Sanchez, F.

    2005-01-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer

  17. Can dual processing theory explain physics students’ performance on the Force Concept Inventory?

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-07-01

    Full Text Available According to dual processing theory there are two types, or modes, of thinking: system 1, which involves intuitive and nonreflective thinking, and system 2, which is more deliberate and requires conscious effort and thought. The Cognitive Reflection Test (CRT is a widely used and robust three item instrument that measures the tendency to override system 1 thinking and to engage in reflective, system 2 thinking. Each item on the CRT has an intuitive (but wrong answer that must be rejected in order to answer the item correctly. We therefore hypothesized that performance on the CRT may give useful insights into the cognitive processes involved in learning physics, where success involves rejecting the common, intuitive ideas about the world (often called misconceptions and instead carefully applying physical concepts. This paper presents initial results from an ongoing study examining the relationship between students’ CRT scores and their performance on the Force Concept Inventory (FCI, which tests students’ understanding of Newtonian mechanics. We find that a higher CRT score predicts a higher FCI score for both precourse and postcourse tests. However, we also find that the FCI normalized gain is independent of CRT score. The implications of these results are discussed.

  18. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  19. Output Position and Word Relatedness Effects in a DRM Paradigm: Support for a Dual-Retrieval Process Theory of Free Recall and False Memories

    Science.gov (United States)

    Barnhardt, T. M.; Choi, H.; Gerkens, D. R.; Smith, S. M.

    2006-01-01

    Five experiments investigated predictions--derived from a dual-retrieval process approach to free recall (Brainerd, C. J., Wright, R., Reyna, V. F., & Payne, D. G. (2002). Dual-retrieval processes in free and associative recall. Journal of Memory and Language, 46, 120-152.)--about false memories in a DRM-like paradigm. In all the experiments, the…

  20. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  1. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Science.gov (United States)

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  2. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  3. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  4. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  5. Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu

    2016-01-01

    To construct an effective method to analyze the combustion process of dual fuel engines at low loads, effects of combustion boundaries on the combustion process of an electronically controlled diesel natural gas dual-fuel engine at low loads were investigated. Three typical combustion modes, including h, m and n, appeared under different combustion boundaries. In addition, the time-sequenced characteristic and the heat release rate-imbalanced characteristic were found in the dual fuel engine combustion process. To quantify these characteristics, two quantitative indicators, including the TSC (time-sequenced coefficient) and the HBC (HRR-balanced coefficient) were defined. The results show that increasing TSC and HBC can decrease HC (hydrocarbon) emissions and improve the BTE (brake thermal efficiency) significantly. The engine with the n combustion mode can obtain the highest BTE and the lowest HC emissions, followed by m, and then h. However, the combustion process of the engine will deteriorate sharply if boundary conditions are not strictly controlled in the n combustion mode. Based on the n combustion mode, advancing the start of diesel injection significantly, using large EGR (exhaust gas recirculation) rate and appropriately intake throttling can effectively reduce HC emissions and improve the BTE of dual fuel engines at low loads with relatively high natural gas PES (percentage energy substitution). - Highlights: • We reported three typical combustion modes of a dual-fuel engine at low loads. • Time-sequenced characteristic was put forward and qualified. • HRR-imbalanced characteristic was put forward and qualified. • Three combustion modes appeared as equivalence ratio/diesel injection timing varied. • The engine performance varied significantly with different combustion mode.

  6. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  7. Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide

    Science.gov (United States)

    to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.

  8. Influence of annealing temperature on ZnO thin films grown by dual ...

    Indian Academy of Sciences (India)

    Administrator

    In electrical characterization as well, when annealing temperature was increased .... of ZnO (002) peaks and (c) crystallite size and stress generation on ZnO thin films ... sufficient kinetic energy and surface mobility to occupy stable positions ...

  9. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.

    Science.gov (United States)

    Brainerd, C J; Reyna, V F

    2001-01-01

    Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and

  10. Properties of quasi-elastic processes due to exchange of one dual pomeron

    International Nuclear Information System (INIS)

    Gedalin, Eh.V.; Gurvich, E.G.

    1975-01-01

    The asymptotic (at S tending to infinity) characteristics of four-particle amplitudes of diffraction scattering of resonance states in the dual-resonance model is considered in the lower order of the dual theory of perturbations. It is shown that for transverse transferred momentum K→0, at least for part of the spectrum of states of the dual resonance model - i.e. of the transverse states -, the scattering amplitudes are zero, except for the elastically scattered ones, which are all identical. (author)

  11. Dual-task and electrophysiological markers of executive cognitive processing in older adult gait and fall-risk

    OpenAIRE

    Walshe, Elizabeth A.; Patterson, Matthew R.; Commins, Se?n; Roche, Richard A. P.

    2015-01-01

    The role of cognition is becoming increasingly central to our understanding of the complexity of walking gait. In particular, higher-level executive functions are suggested to play a key role in gait and fall-risk, but the specific underlying neurocognitive processes remain unclear. Here, we report two experiments which investigated the cognitive and neural processes underlying older adult gait and falls. Experiment 1 employed a dual-task (DT) paradigm in young and older adults, to assess the...

  12. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity

    OpenAIRE

    Künstler, E. C. S.; Finke, K.; Günther, A.; Klingner, C.; Witte, O.; Bublak, P.

    2017-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the ‘theory of visual attention’ (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual sh...

  13. A nonlinear dynamical systems theory perspective on dual-processing accounts of decision-making under uncertainty

    OpenAIRE

    Rooij, M.M.J.W. van; Favela, L.H.; Papafragou, A.; Grodner, D.; Mirman, D.; Trueswell, J.

    2016-01-01

    Dual-processing accounts of reasoning have gained renewed attention in the past decade, particularly in the fields of social judgment, learning, and decision-making under uncertainty. Although the various accounts differ, the common thread is the distinction between two qualitatively different types of reasoning: explicit/implicit, rational/affective, fast/slow, etc. Consequently, much research has focused on characterizing the two different processes. Less extensive are the attempts to find ...

  14. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  15. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    Science.gov (United States)

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  16. Formulaic language in cortical and subcortical disease: Evidence of the dual process model.

    Directory of Open Access Journals (Sweden)

    Kelly Bridges

    2014-04-01

    Full Text Available Introduction: It is known that an intact cortical left hemisphere is crucial for language production. Recently, more credit is given to the right hemisphere and subcortical areas in the production of non-novel language, including formulaic language. John Hughlings Jackson (1874/1958, first described how propositional and non-propositional speech are differentially affected by neural impairment. Non-propositional language is often preserved following left hemisphere stroke even when aphasia is present (Code, 1982; Sidtis et al., 2009; Van Lancker Sidtis & Postman, 2006. With right hemisphere and subcortical stroke, formulaic language is reduced (Sidtis et al., 2009; Van Lancker Sidtis & Postman, 2006; Speedie et al., 1993. The dual process model of language competence states that propositional and non-propositional speech are processed differently in the brain, with novel speech controlled by the left hemisphere, and a right hemisphere/subcortical circuit modulating formulaic language (Van Lancker Sidtis, 2004; 2012. Two studies of formulaic language will be presented as further evidence of the dual process model: a study of formulaic language in Alzheimer’s disease, and a study of recited speech in Parkinson’s disease. Formulaic language includes overlearned words, phrases or longer linguistic units that are known to the native speaker, occur naturally in discourse, and are important for normal social interaction (Fillmore, 1979; Pawley & Syder, 1983; Van Lancker, 1988; Van Lancker Sidtis, 2004; Wray, 2002. Formulaic expressions include conversational speech formulas, idioms, proverbs, expletives, pause fillers, discourse elements, and sentence stems (stereotyped sentence-initials. Longer units of linguistic material, such as prayers, rhymes, and poems, termed recited speech, is another subtype of formulaic language that is learned in childhood and recited periodically throughout life. Cortical disease: Alzheimer’s disease and formulaic

  17. Logical reasoning versus information processing in the dual-strategy model of reasoning.

    Science.gov (United States)

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2017-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and statistical strategies underlying probabilistic models. The dual-strategy model, proposed by Verschueren, Schaeken, & d'Ydewalle (2005a, 2005b), which suggests that people might have access to both kinds of strategy has been supported by several recent studies. These have shown that statistical reasoners make inferences based on using information about premises in order to generate a likelihood estimate of conclusion probability. However, while results concerning counterexample reasoners are consistent with a counterexample detection model, these results could equally be interpreted as indicating a greater sensitivity to logical form. In order to distinguish these 2 interpretations, in Studies 1 and 2, we presented reasoners with Modus ponens (MP) inferences with statistical information about premise strength and in Studies 3 and 4, naturalistic MP inferences with premises having many disabling conditions. Statistical reasoners accepted the MP inference more often than counterexample reasoners in Studies 1 and 2, while the opposite pattern was observed in Studies 3 and 4. Results show that these strategies must be defined in terms of information processing, with no clear relations to "logical" reasoning. These results have additional implications for the underlying debate about the nature of human reasoning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Reasoning, biases and dual processes: The lasting impact of Wason (1960).

    Science.gov (United States)

    Evans, Jonathan St B T

    2016-10-01

    Wason (1960) published a relatively short experimental paper, in which he introduced the 2-4-6 problem as a test of inductive reasoning. This paper became one of the most highly cited to be published in the Quarterly Journal of Experimental Psychology and is significant for a number of reasons. First, the 2-4-6 task itself was ingenious and yielded evidence of error and bias in the intelligent participants who attempted it. Research on the 2-4-6 problem continues to the present day. More importantly, it was Wason's first paper on reasoning and one which made strong claims for bias and irrationality in a period dominated by rationalist writers like Piaget. It set in motion the study of cognitive biases in thinking and reasoning, well before the start of Tversky and Kahneman's famous heuristics and biases research programme. I also show here something for which Wason has received insufficient credit. It was Wason's work on this task and his later studies of his four card selection task that led to the first development of the dual process theory of reasoning which is so dominant in the current literature on the topic more than half a century later.

  19. The Structural Evolution and Segregation in a Dual Alloy Ingot Processed by Electroslag Remelting

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2016-12-01

    Full Text Available The structural evolution and segregation in a dual alloy made by electroslag remelting (ESR was investigated by various analytical techniques. The results show that the macrostructure of the ingot consists of two crystallization structures: one is a quite narrow, fine, equiaxed grain region at the edge and the other is a columnar grain region, which plays a leading role. The typical columnar structure shows no discontinuity between the CrMoV, NiCrMoV, and transition zones. The average secondary arm-spacing is coarsened from 35.3 to 49.2 μm and 61.5 μm from the bottom to the top of the ingot. The distinctive features of the structure are attributed to the different cooling conditions during the ESR process. The Ni, Cr, and C contents markedly increase in the transition zone (TZ and show a slight increase from the bottom to the top and from the surface to the center of the ESR ingot due to the partition ratios, gravity segregation, the thermal buoyancy flow, the solutal buoyancy flow, and the inward Lorentz force. Less dendrite segregation exists in the CrMoV zone and the transition zone due to a stronger cooling rate (11.1 and 4.5 °C/s and lower Cr and C contents. The precipitation of carbides was observed in the ingot due to a lower solid solubility of the carbon element in the α phase.

  20. Testing a Dual Process Model of Gender-Based Violence: A Laboratory Examination.

    Science.gov (United States)

    Berke, Danielle S; Zeichner, Amos

    2016-01-01

    The dire impact of gender-based violence on society compels development of models comprehensive enough to capture the diversity of its forms. Research has established hostile sexism (HS) as a robust predictor of gender-based violence. However, to date, research has yet to link men's benevolent sexism (BS) to physical aggression toward women, despite correlations between BS and HS and between BS and victim blaming. One model, the opposing process model of benevolent sexism (Sibley & Perry, 2010), suggests that, for men, BS acts indirectly through HS to predict acceptance of hierarchy-enhancing social policy as an expression of a preference for in-group dominance (i. e., social dominance orientation [SDO]). The extent to which this model applies to gender-based violence remains untested. Therefore, in this study, 168 undergraduate men in a U. S. university participated in a competitive reaction time task, during which they had the option to shock an ostensible female opponent as a measure of gender-based violence. Results of multiple-mediation path analyses indicated dual pathways potentiating gender-based violence and highlight SDO as a particularly potent mechanism of this violence. Findings are discussed in terms of group dynamics and norm-based violence prevention.

  1. Application of a Dual-Arm Robot in Complex Sample Preparation and Measurement Processes.

    Science.gov (United States)

    Fleischer, Heidi; Drews, Robert Ralf; Janson, Jessica; Chinna Patlolla, Bharath Reddy; Chu, Xianghua; Klos, Michael; Thurow, Kerstin

    2016-10-01

    Automation systems with applied robotics have already been established in industrial applications for many years. In the field of life sciences, a comparable high level of automation can be found in the areas of bioscreening and high-throughput screening. Strong deficits still exist in the development of flexible and universal fully automated systems in the field of analytical measurement. Reasons are the heterogeneous processes with complex structures, which include sample preparation and transport, analytical measurements using complex sensor systems, and suitable data analysis and evaluation. Furthermore, the use of nonstandard sample vessels with various shapes and volumes results in an increased complexity. The direct use of existing automation solutions from bioscreening applications is not possible. A flexible automation system for sample preparation, analysis, and data evaluation is presented in this article. It is applied for the determination of cholesterol in biliary endoprosthesis using gas chromatography-mass spectrometry (GC-MS). A dual-arm robot performs both transport and active manipulation tasks to ensure human-like operation. This general robotic concept also enables the use of manual laboratory devices and equipment and is thus suitable in areas with a high standardization grade. © 2016 Society for Laboratory Automation and Screening.

  2. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  3. Habituation and sensitization of aggression in bullfrogs (Rana catesbeiana): testing the dual-process theory of habituation.

    Science.gov (United States)

    Bee, M A

    2001-09-01

    The aggressive response of male bullfrogs (Rana catesbeiana) habituates with repeated broadcasts of acoustic stimuli simulating a new territorial neighbor. The effects of stimulus repetition rate and stimulus intensity on bullfrog aggressive responses were tested in a field experiment designed to test the assumptions of a dual-process theory of habituation. Synthetic advertisement calls were broadcast at 2 repetition rates and 2 intensities in a factorial design. Bullfrogs were more aggressive at the higher stimulus intensity at both repetition rates. Aggressive responses habituated more slowly at the higher stimulus intensity and slower repetition rate compared with other treatments. Several biotic and abiotic factors had small or negligible effects on aggressive responses. Although consistent with the operation of 2 opposing processes, habituation and sensitization, the data provide only partial support for the assumptions of dual-process theory.

  4. Testing of the coping flexibility hypothesis based on the dual-process theory: Relationships between coping flexibility and depressive Symptoms.

    Science.gov (United States)

    Kato, Tsukasa

    2015-12-15

    According to the dual-process theory of coping flexibility (Kato, 2012), coping flexibility is the ability to discontinue an ineffective coping strategy (i.e., evaluation coping process) and implement an alternative strategy (i.e., adaptive coping process). The coping flexibility hypothesis (CFH) proposes that the ability to engage in flexible coping is related to better psychological functioning and physical health, including less depression. I the present study, participants were 393 American Whites, 429 Australian Whites, and 496 Chinese, selected from the data pool of the 2013 Coping and Health Survey (see Kato, 2014b). They completed both the Coping Flexibility Scale (Kato, 2012), which is based on the dual-process theory of coping flexibility, and the Center for Epidemiologic Studies Depression Scale (CES-D). For all nationalities and genders, evaluation coping and adaptive coping were significantly correlated with lower levels of depressive symptoms. Structural equation modeling revealed that evaluation coping was associated with lower depressive symptoms for all nationalities and genders, whereas no significant relationships between adaptive coping and depressive symptoms were found for any nationalities. Our results partially supported that the CFH fits with the dual-process theory of coping flexibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. High Temperature Epoxy Foam: Optimization of Process Parameters

    Directory of Open Access Journals (Sweden)

    Samira El Gazzani

    2016-06-01

    Full Text Available For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.

  6. Temperature sensor realized by inkjet printing process on flexible substrate

    International Nuclear Information System (INIS)

    Dankoco, M.D.; Tesfay, G.Y.; Benevent, E.; Bendahan, M.

    2016-01-01

    Highlights: • Flexible temperature sensor was realized by inkjet printing process on Kapton substrate. • The jetting parameters were optimized to obtain evenly distributed silver coating layers and a large meander forming the sensor. • The Temperature sensor studied offers a good sensitivity, a good linearity and less than 5% hysteresis in extended measurement in the range of 20–60 °C. - Abstract: The objective of this study is to realize a printed and flexible temperature sensor to achieve surface temperature measurement of the human body. The sensor is a thermistor composed silver (Ag) deposited on a Polyimide substrate (Kapton HN). The meander was patterned by inkjet printing with a drop-on-demand Jetlab4 (Microfab Technologies Inc.). The resistance temperature coefficients have been studied in the temperature range of 20–60 °C with a range of voltage between 0 and 1 V. The stability versus time has also been measured without a sensor layer protection. The sensitive area of the sensor, silver lines width and the gap between the electrical conductors were, respectively 6.2 cm 2 , 300 μm, 60 μm. The mean temperature sensor sensitivity found was 2.23 × 10 −3 °C −1 . The results show a good linearity and less than 5% hysteresis in the extended measurement.

  7. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  8. Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys

    International Nuclear Information System (INIS)

    Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2015-01-01

    We have found that thermodynamic state and kinetic process co-determine the dual ferromagnetic (FM) orders in high-Si content FeMnP 1−x Si x (0.25 < x < 0.5). Alloys undergoing high temperature annealing and quenching process prefer a high magnetic moment FM state in a chemically partial disordered structure with low c/a ratio. This mechanism is suggested to be responsible for the often discussed virgin effect as well. A chemically ordered structure obtained by a slow cooling process from a relatively low annealing temperature and the increase in Si content stabilize a metastable lattice with high c/a ratio and FM order with low magnetic moment. The non-simultaneity of the magnetic and structural transitions can be responsible for the occurrence of FM state in the high c/a range. Thus, a c/a ratio that changes from high to low is physically plausible to stabilize the metastable FM order at low temperature. Our theoretical observations indicate that suitable thermodynamic state and kinetic diffusion process is crucial for optimizing magnetocaloric properties and exploring feasible magnetocaloric materials

  9. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  10. Deep Drawing for high LDR by a new Hydro-rim Forming Process with Differential Temperature- Analysis and Experiments

    International Nuclear Information System (INIS)

    Simon, Y. Ben; Tirosh, J.; Rubinski, Ludmila

    2005-01-01

    The purpose of this study is to analyze and test a possible increase of the Limit Drawing Ratio (LDR) in Deep Drawing by Hydro-rim process (a certain subset of the classical Hydroforming) which includes the newly differential temperature effect. The idea is to facilitate the plastic flow by local heating along the flange and to cool the area where strength is needed. The suggested analysis is based on the dual bounds approach (upper and lower bounds simultaneously) using the highly versatile Johnson-Cook constitutive material model. The advantage of combined high hydraulic pressure (about 1000 bar) with relatively high blank temperature (with magnitude of about one third the melting temperature of the considered material) in the same operation is discussed. Emphasis is given to the rule of blank temperature difference (between the flange and the wall of the product) conjugate with optimal hydro rim pressure in increasing the limit drawing ratio of the products (Aluminum, Copper and various Steels)

  11. Processing Interband Cascade Laser for High Temperature CW Operation

    National Research Council Canada - National Science Library

    Tober, Richard

    2004-01-01

    A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSh heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K...

  12. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  13. [Scientific connotation of processing Bombyx Batryticatus under high temperature].

    Science.gov (United States)

    Ma, Li; Wang, Xuan; Ma, Lin; Wang, Man-yuan; Qiu, Feng

    2015-12-01

    The aim of this study was to elucidate the scientific connotation of Bombyx Batryticatus processing with wheat bran under high temperature. The contents of soluble protein extracted from Bombyx Batryticatus and its processed products and the limited content of AFT in Bombyx Batryticatus and the processed one were compared. The concentration of protein was measured with the Bradford methods and the difference of protein between Bombyx Batryticatus and its processed products was compared by SDS-PAGE analysis. Aflatoxin B1, B2, G1, and G2 were determined by reversed-phase HPLC. The results showed that the soluble protein content of Bombyx Batryticatus and its processed products were (47.065 +/- 0.249), (29.756 +/- 1.961) mg x g(-1), correspondingly. Analysis of protein gel electrophoresis showed that there were no significant differences between the crude and processed one in protein varieties. 6 bands were detected: 31.90, 26.80, 18.71, 15.00, 10.18, 8.929 kDa. Below 10 kDa, the color of bands of the processed one was deeper than the crude one, which demonstrate that macromolecular protein was degradated into micromolecule. The content of AFG1, AFB1, AFG2, AFB2 were 0.382, 0.207, 0.223, 0.073 g x kg(-1), not exceeded 5 microg x kg(-1) while the processed one was not detected. Through processing with wheat bran under high temperature, the content of soluble protein in Bombyx Batryticatus decreased, the processing purpose for alleviating drug property was achieved. Meanwhile, the limited content of aflatoxins were reduced or cleared by processing procedure or absorbed by processing auxillary material, adding the safety of the traditional Chinese Medicine. In conclusion, as a traditional processing method, bran frying Bombyx Batryticatus was scientific and reasonable.

  14. Assessment of very high temperature reactors in process applications

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Spiewak, I.; Gambill, W.R.

    1976-01-01

    In April 1974, the United States Energy Research and Development Administration (ERDA) authorized General Atomic Company, General Electric Company, and Westinghouse Astronuclear Laboratory to assess the available technology for producing process heat utilizing a very high temperature nuclear reactor (VHTR). The VHTR is defined as a gas-cooled graphite-moderated reactor. Oak Ridge National Laboratory has been given a lead role in evaluating the VHTR reactor studies and potential applications of the VHTR. Process temperatures up to the 760 to 871 0 C range appear to be achievable with near-term technology. The major development considerations are high temperature materials, the safety questions (especially regarding the need for an intermediate heat exchanger) and the process heat exchanger. The potential advantages of the VHTR over competing fossil energy sources are conservation of fossil fuels and reduced atmospheric impacts. Costs are developed for nuclear process heat supplied from a 3000-MW(th) VHTR. The range of cost in process applications is competitive with current fossil fuel alternatives

  15. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2015-01-01

    Highlights: • H 2 energy share increased from 18% with DDM to 36% with WDM (water injection). • H 2 energy share improved marginally with retarded injection timing mode (RDM). • Energy efficiency increased with increasing amount of H 2 in dual-fuel engine. • NO x emission decreased with water injection and retarded pilot fuel injection. • HC, CO and smoke emissions increased slightly with low temperature combustion. - Abstract: A limited hydrogen (H 2 ) energy share due to knocking is the major hurdle for effective utilization of H 2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H 2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H 2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H 2 energy share under dual-fuel operation; however, for a particular energy share of 18% H 2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H 2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H 2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions

  16. A dual-process approach to exploring the role of delay discounting in obesity.

    Science.gov (United States)

    Price, Menna; Higgs, Suzanne; Maw, James; Lee, Michelle

    2016-08-01

    Delay discounting of financial rewards has been related to overeating and obesity. Neuropsychological evidence supports a dual-system account of both discounting and overeating behaviour where the degree of impulsive decision making is determined by the relative strength of reward desire and executive control. A dual-parameter model of discounting behaviour is consistent with this theory. In this study, the fit of the commonly used one-parameter model was compared to a new dual-parameter model for the first time in a sample of adults with wide ranging BMI. Delay discounting data from 79 males and females (males=26) across a wide age (M=28.44years (SD=8.81)) and BMI range (M=25.42 (SD=5.16)) was analysed. A dual-parameter model (saturating-hyperbolic; Doya, [Doya (2008) ]) was applied to the data and compared on model fit indices to the single-parameter model. Discounting was significantly greater in the overweight/obese participants using both models, however, the two parameter model showed a superior fit to data (pdual-system account of inter-temporal choice behaviour. The dual-parameter model showed superior fit to data and the two parameters were shown to be related yet distinct indices sensitive to differences between weight groups. Findings are discussed in terms of the impulsive reward and executive control systems that contribute to unhealthy food choice and within the context of obesity related research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Examination of a dual-process model predicting riding with drinking drivers.

    Science.gov (United States)

    Hultgren, Brittney A; Scaglione, Nichole M; Cleveland, Michael J; Turrisi, Rob

    2015-06-01

    Nearly 1 in 5 of the fatalities in alcohol-related crashes are passengers. Few studies have utilized theory to examine modifiable psychosocial predictors of individuals' tendencies to be a passenger in a vehicle operated by a driver who has consumed alcohol. This study used a prospective design to test a dual-process model featuring reasoned and reactive psychological influences and psychosocial constructs as predictors of riding with drinking drivers (RWDD) in a sample of individuals aged 18 to 21. College students (N = 508) completed web-based questionnaires assessing RWDD, psychosocial constructs (attitudes, expectancies, and norms), and reasoned and reactive influences (intentions and willingness) at baseline (the middle of the spring semester) and again 1 and 6 months later. Regression was used to analyze reasoned and reactive influences as proximal predictors of RWDD at the 6-month follow-up. Subsequent analyses examined the relationship between the psychosocial constructs as distal predictors of RWDD and the mediation effects of reasoned and reactive influences. Both reasoned and reactive influences predicted RWDD, while only the reactive influence had a significant unique effect. Reactive influences significantly mediated the effects of peer norms, attitudes, and drinking influences on RWDD. Nearly all effects were constant across gender except parental norms (significant for females). Findings highlight that the important precursors of RWDD were reactive influences, attitudes, and peer and parent norms. These findings suggest several intervention methods, specifically normative feedback interventions, parent-based interventions, and brief motivational interviewing, may be particularly beneficial in reducing RWDD. Copyright © 2015 by the Research Society on Alcoholism.

  18. Overview of dual process behavioural models and their implications on decision-making of private dwellers regarding deep energy renovation

    OpenAIRE

    Taranu, Victoria; Verbeeck, Griet

    2016-01-01

    Understanding both rational and heuristic thinking is important for explaining proenvironmental behaviour. Theoretical findings regarding dual process models can be useful to explain and influence decisions of private owners in the context of energy renovation. The existing building stock has a big potential in contributing to the reduction of energy consumption. Even though surveys show that dwellers acknowledge the importance of energy efficient buildings and the technologies to achieve ...

  19. Gravity dual corrections to the heavy quark potential at finite-temperature

    International Nuclear Information System (INIS)

    Grigoryan, Hovhannes R.; Kovchegov, Yuri V.

    2011-01-01

    We apply gauge/gravity duality to compute 1/N c 2 corrections to the heavy quark potentials of a quark-anti-quark pair (QQ-bar) and of a quark-quark pair (QQ) immersed into the strongly coupled N=4 SYM plasma. On the gravity side these corrections come from the exchanges of supergravity modes between two string worldsheets stretching from the UV boundary of AdS space to the black hole horizon in the bulk and smeared over S 5 . We find that the contributions to the QQ-bar potential coming from the exchanges of all of the relevant modes (such as dilaton, massive scalar, 2-form field, and graviton) are all attractive, leading to an attractive net QQ-bar potential. We show that at large separations r and/or high-temperature T the potential is of Yukawa-type, dominated by the graviton exchange, in agreement with earlier findings. On the other hand, at small-rT the QQ-bar potential scales as ∼(1/r)ln(1/rT). In the case of QQ potential the 2-form contribution changes sign and becomes repulsive: however, the net QQ potential remains attractive. At large-rT it is dominated by the graviton exchange, while at small-rT the QQ potential becomes Coulomb-like.

  20. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  1. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  2. Dual N-Back Working Memory Training in Healthy Adults: A Randomized Comparison to Processing Speed Training

    Science.gov (United States)

    Lawlor-Savage, Linette; Goghari, Vina M.

    2016-01-01

    Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141

  3. Dual N-Back Working Memory Training in Healthy Adults: A Randomized Comparison to Processing Speed Training.

    Directory of Open Access Journals (Sweden)

    Linette Lawlor-Savage

    Full Text Available Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30-60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed training program.Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population.

  4. Exploring the role of experiential avoidance from the perspective of attachment theory and the dual process model.

    Science.gov (United States)

    Shear, M Katherine

    2010-01-01

    Avoidance can be adaptive and facilitate the healing process of acute grief or it can be maladaptive and hinder this same process. Maladaptive cognitive or behavioral avoidance comprises the central feature of the condition of complicated grief. This article explores the concept of experiential avoidance as it applies to bereavement, including when it is adaptive when it is problematic. Adaptive avoidance is framed using an attachment theory perspective and incorporates insights from the dual process model (DPM). An approach to clinical management of experiential avoidance in the syndrome of complicated grief is included.

  5. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  6. Acoustic levitation for high temperature containerless processing in space

    Science.gov (United States)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  7. Flow processes at low temperatures in ultrafine-grained aluminum

    International Nuclear Information System (INIS)

    Chinh, Nguyen Q.; Szommer, Peter; Csanadi, Tamas; Langdon, Terence G.

    2006-01-01

    Experiments were conducted to evaluate the flow behavior of pure aluminum at low temperatures. Samples were processed by equal-channel angular pressing (ECAP) to give a grain size of ∼1.2 μm and compression samples were cut from the as-pressed billets and tested over a range of strain rates at temperatures up to 473 K. The results show the occurrence of steady-state flow in these highly deformed samples and a detailed analysis gives a low strain rate sensitivity and an activation energy similar to the value for grain boundary diffusion. By using depth-sensing indentation testing and atomic force microscopy, it is shown that grain boundary sliding occurs in this material at low temperatures. This result is attributed to the presence of high-energy non-equilibrium boundaries in the severely deformed samples

  8. Monitoring temperatures in coal conversion and combustion processes via ultrasound

    Science.gov (United States)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    The state of the art of instrumentation for monitoring temperatures in coal conversion and combustion systems is examined. The instrumentation types studied include thermocouples, radiation pyrometers, and acoustical thermometers. The capabilities and limitations of each type are reviewed. A feasibility study of the ultrasonic thermometry is described. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible.

  9. Temperature measurement of RE123 bulk superconductors on magnetizing process

    International Nuclear Information System (INIS)

    Yokoyama, K.; Kaneyama, M.; Oka, T.; Fujishiro, H.; Noto, K.

    2004-01-01

    We study on the magnetization behavior of to magnetize RE123 bulk superconductors to apply it as strong magnets. Through magnetizing process, the temperature of bulk superconductors is raised by pinning loss caused by the magnetic fluxes motion (e.g. flux jump of flux flow), and the trapped field is decreased. This paper presents the measurement of temperature changes of Sm123 bulk superconductors during the exciting process by iteratively magnetizing pulsed-field operation with reducing amplitudes (IMRA) method. Five thermocouples are put on the surface of Sm123 bulk superconductor of 46 mm in diameter. The temperatures at the center, on the growth sector boundary (GSB) line and in the sector region surrounded by GSB's line (inter-GSB region) are monitored. The temperature at a cold stage is also measured. A Hall sensor is attached near the center thermocouple to measure the trapped field. After a bulk superconductor is cooled by the GM type refrigerator until 40 K, iterative pulsed-fields of 2.32-5.42 T are applied by a magnetizing coil. When high magnetic field of 5.42 T is applied, a temperature of bulk superconductor reaches to 72.4 K and the magnetic field distribution has C form with which a part of circle is dented, and then, a trapped field is 2.28 T. When a lower magnetic field of 4.64 T is applied, a maximum temperature is 68.3 K and a trapped field is raised to 2.70 T, and moreover, the distribution becomes round shape like field-cooling method (FC). We showed clearly that heat generation by pinning loss was related to the mechanism of magnetic field capture

  10. Spectroscopy for Industrial Applications: High-Temperature Processes

    DEFF Research Database (Denmark)

    Fateev, Alexander; Grosch, Helge; Clausen, Sønnik

    -dependent spectral absorption features gases of interest fora specic instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However...... use of HITRAN is limited to low-temperature processes (available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.......g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a developmentof hot line lists have been made; those have been implemented in the latest HITRAN-2012 database. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV,0...

  11. Modelling the behaviour of 210Po in high temperature processes

    International Nuclear Information System (INIS)

    Mora, J.C.; Robles, B.; Corbacho, J.A.; Gasco, Catalina; Gazquez, M.J.

    2011-01-01

    In several Naturally Occurring Radioactive Material (NORM) industries, relatively high temperatures are used as part of their industrial processes. In coal combustion, as occur in other high temperature processes, an increase of the activity concentration of every natural radioisotope is produced both, in residues and by-products. An additional increase can be observed in the activity concentration of radionuclides of elements with low boiling point. This work is centred in the increase of polonium, more precisely in its radioisotope Po-210, present in the natural chains, and with a half-life long enough to be considered for radiation protection purposes. This additional increase appears mainly in the residual particles that are suspended in the flue gases: the fly-ashes. Besides, scales, with a high concentration of this radioisotope, were observed. These scales are produced on surfaces with a temperature lower than the boiling point of the chemical element. Both, the accumulation in particles and the production of scales are attributed to condensation effects. When effective doses for the public and the workers are evaluated, taking into account these increases in activity concentrations, the use of theoretical models is necessary. In this work a theoretical description of those effects is presented. Moreover, a verification of the predictions of the model was performed by comparing them with measurements carried on in coal-fired power plants. The same description here presented is applicable in general to the behaviour of Po-210 in other NORM industries where high temperature processes involving raw materials are used, as can be ceramic, cement production, tiles production or steel processing.

  12. Pedestrians' intention to jaywalk: Automatic or planned? A study based on a dual-process model in China.

    Science.gov (United States)

    Xu, Yaoshan; Li, Yongjuan; Zhang, Feng

    2013-01-01

    The present study investigates the determining factors of Chinese pedestrians' intention to violate traffic laws using a dual-process model. This model divides the cognitive processes of intention formation into controlled analytical processes and automatic associative processes. Specifically, the process explained by the augmented theory of planned behavior (TPB) is controlled, whereas the process based on past behavior is automatic. The results of a survey conducted on 323 adult pedestrian respondents showed that the two added TPB variables had different effects on the intention to violate, i.e., personal norms were significantly related to traffic violation intention, whereas descriptive norms were non-significant predictors. Past behavior significantly but uniquely predicted the intention to violate: the results of the relative weight analysis indicated that the largest percentage of variance in pedestrians' intention to violate was explained by past behavior (42%). According to the dual-process model, therefore, pedestrians' intention formation relies more on habit than on cognitive TPB components and social norms. The implications of these findings for the development of intervention programs are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. High temperature properties and processes in ceramics: thermomigration

    International Nuclear Information System (INIS)

    1978-01-01

    The focus of this program is on the effects of large temperature gradients on the transport processes, the defect structure and resulting physical properties of ceramics. In particular, the transport of ions due to thermal gradients is one of the least understood phenomenon in materials science and is presumably based on fundamental understanding of thermodynamics, atomistic kinetic processes, and structure-property relationships. The purpose of this research is to systematically consider each of the elements of atomic transport due to driving forces other than composition gradients in a model ceramic system

  14. Processing methods for temperature-dependent MCNP libraries

    International Nuclear Information System (INIS)

    Li Songyang; Wang Kan; Yu Ganglin

    2008-01-01

    In this paper,the processing method of NJOY which transfers ENDF files to ACE (A Compact ENDF) files (point-wise cross-Section file used for MCNP program) is discussed. Temperatures that cover the range for reactor design and operation are considered. Three benchmarks are used for testing the method: Jezebel Benchmark, 28 cm-thick Slab Core Benchmark and LWR Benchmark with Burnable Absorbers. The calculation results showed the precision of the neutron cross-section library and verified the correct processing methods in usage of NJOY. (authors)

  15. Logical Reasoning versus Information Processing in the Dual-Strategy Model of Reasoning

    Science.gov (United States)

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2017-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and statistical strategies underlying probabilistic models. The dual-strategy model, proposed by Verschueren, Schaeken, & d'Ydewalle (2005a, 2005b), which suggests that people might have access to both…

  16. Dual-task and electrophysiological markers of executive cognitive processing in older adult gait and fall-risk.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Walshe

    2015-04-01

    Full Text Available The role of cognition is becoming increasingly central to our understanding of the complexity of walking gait. Here, we report two experiments which investigated the cognitive and neural processes underlying older adult gait and fall-risk. Experiment 1 employed a dual-task paradigm in young and older adults, to assess the relative effects of higher-level executive function tasks (n-Back, Serial Subtraction and visuo-spatial Clock task in comparison to non-executive distracter tasks (motor response task and alphabet recitation on gait. All dual-tasks elicited changes in gait for both young and older adults, relative to baseline walking. Significantly greater dual-task costs were observed for the executive tasks in the older adult group, as hypothesized. Experiment 2 compared normal walking gait, seated cognitive performances and concurrent event-related brain potentials (ERPs in healthy young and older adults, to older adult fallers. No significant differences in cognitive performances were found between fallers and non-fallers. However, a clear P3a peak was evident on the Stroop task for older non-fallers, which was notably absent in older fallers. This may be indicative of the presence of some cortically-based compensatory process in this group, contributing to their reduced risk of falling. We argue that executive functions play a prominent role in walking and gait, but the role of higher cognition as a predictor of fall-risk needs further investigation.

  17. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  18. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  19. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  20. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  1. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  2. Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process.

    Science.gov (United States)

    Gu, Rui; Xu, Jinglei

    2014-01-01

    The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.

  3. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2013-02-01

    Full Text Available Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wort has been recorded, during the process of primary fermentation carried out in mini brewery of SPU. We have compared our results with theoretical values of primary fermentation process commonly achieved in conditions of industrial breweries. It was found out that our results differ in some ways, moreover they exceed theoretically given values which was caused due to different construction of mini brewery fermentation tank in comparison with industrial brewery technologies. Beer produced in mini brewery of SPU showed in sensorial tests very good quality without any strange odour and any strange taste.

  4. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  5. Adult Age Differences in Dual Information Processes: Implications for the Role of Affective and Deliberative Processes in Older Adults' Decision Making.

    Science.gov (United States)

    Peters, Ellen; Hess, Thomas M; Västfjäll, Daniel; Auman, Corinne

    2007-03-01

    Age differences in affective/experiential and deliberative processes have important theoretical implications for judgment and decision theory and important pragmatic implications for older-adult decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age. However, age-related adaptive processes, including motivated selectivity in the use of deliberative capacity, an increased focus on emotional goals, and greater experience, predict better or worse decisions for older adults depending on the situation. The aim of the current review is to examine adult age differences in affective and deliberative information processes in order to understand their potential impact on judgments and decisions. We review evidence for the role of these dual processes in judgment and decision making and then review two representative life-span perspectives (based on aging-related changes to cognitive or motivational processes) on the interplay between these processes. We present relevant predictions for older-adult decisions and make note of contradictions and gaps that currently exist in the literature. Finally, we review the sparse evidence about age differences in decision making and how theories and findings regarding dual processes could be applied to decision theory and decision aiding. In particular, we focus on prospect theory (Kahneman & Tversky, 1979) and how prospect theory and theories regarding age differences in information processing can inform one another. © 2007 Association for Psychological Science.

  6. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  7. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  8. New insights on SOI Tunnel FETs with low-temperature process flow for CoolCube™ integration

    Science.gov (United States)

    Diaz Llorente, C.; Le Royer, C.; Batude, P.; Fenouillet-Beranger, C.; Martinie, S.; Lu, C.-M. V.; Allain, F.; Colinge, J.-P.; Cristoloveanu, S.; Ghibaudo, G.; Vinet, M.

    2018-06-01

    This paper reports the fabrication and electrical characterization of planar SOI Tunnel FETs (TFETs) made using a Low-Temperature (LT) process designed for 3D sequential integration. These proof-of-concept TFETs feature junctions obtained by Solid Phase Epitaxy Regrowth (SPER). Their electrical behavior is analyzed and compared to reference samples (regular process using High-Temperature junction formation, HT). Dual ID-VDS measurements verify that the TFET structures present Band-to-Band tunnelling (BTBT) carrier injection and not Schottky Barrier tunnelling. P-mode operating LT TFETs deliver an ON state current similar to that of the HT reference, opening the door towards optimized devices operating with very low threshold voltage VTH and low supply voltage VDD.

  9. Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle

    International Nuclear Information System (INIS)

    Tian, Hua; Liu, Lina; Shu, Gequn; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • Among all examined working fluids, toluene possesses the maximum W net , highest η e and η ec . • The increase of T 3 worsens system performance, decreasing W net , η e and η ec . • Condenser C LT and turbine T LT possesses the least system irreversibility. • Turbines and exhaust evaporators are optimization components. - Abstract: In this paper, a regenerative transcritical dual-loop organic Rankine cycle is proposed to recover the waste heat of the exhaust, engine coolant and all the residual heat of the HT loop. Double regenerators are adopted in this system. Transcritical cycles are used in both loops. Hexamethyldisiloxane (MM), octamethyl cyclotetrasiloxane (D 4 ), octamethyltrisiloxane (MDM), cyclohexane, toluene and n-decane are chosen as the candidate working fluids of the HT loop and R143a is chosen as the working fluid of the LT loop. Influences of inlet temperature of turbine T HT (T 3 ) on mass flow rates (m f,HT and m f,LT ), net output power (W net ), energy conversion efficiency (η ec ), volumetric expansion ratio (VER), ratio of power consumed to power output (COR) and component irreversibility are analyzed and performance comparison of these working fluids is also evaluated. Results show that toluene possesses the maximum W net (42.46 kW), highest η e (51.92%) and η ec (12.77%). The increase of T 3 worsens system performance, decreasing W net , η e and η ec . Condenser C LT and turbine T LT possess the least system irreversibility. In addition, turbines and exhaust evaporators are optimized components

  10. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  11. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  12. Dual process theory and intermediate effect: are faculty and residents' performance on multiple-choice, licensing exam questions different?

    Science.gov (United States)

    Dong, Ting; Durning, Steven J; Artino, Anthony R; van der Vleuten, Cees; Holmboe, Eric; Lipner, Rebecca; Schuwirth, Lambert

    2015-04-01

    Clinical reasoning is essential for the practice of medicine. Dual process theory conceptualizes reasoning as falling into two general categories: nonanalytic reasoning (pattern recognition) and analytic reasoning (active comparing and contrasting of alternatives). The debate continues regarding how expert performance develops and how individuals make the best use of analytic and nonanalytic processes. Several investigators have identified the unexpected finding that intermediates tend to perform better on licensing examination items than experts, which has been termed the "intermediate effect." We explored differences between faculty and residents on multiple-choice questions (MCQs) using dual process measures (both reading and answering times) to inform this ongoing debate. Faculty (board-certified internists; experts) and residents (internal medicine interns; intermediates) answered live licensing examination MCQs (U.S. Medical Licensing Examination Step 2 Clinical Knowledge and American Board of Internal Medicine Certifying Examination) while being timed. We conducted repeated analysis of variance to compare the 2 groups on average reading time, answering time, and accuracy on various types of items. Faculty and residents did not differ significantly in reading time [F (1,35) = 0.01, p = 0.93], answering time [F (1,35) = 0.60, p = 0.44], or accuracy [F (1,35) = 0.24, p = 0.63] regardless of easy or hard items. Dual process theory was not evidenced in this study. However, this lack of difference between faculty and residents may have been affected by the small sample size of participants and MCQs may not reflect how physicians made decisions in actual practice setting. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  13. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  14. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  15. Wave Characteristics of Temperature Inversion Process of Nighttime Radiation,

    Science.gov (United States)

    1983-12-09

    CHARACTERISTICS OF TEMPERATURE INVERSION PROCESS OF NIGHTTIME RADIATION By: Zhou Mingyu and Zhang ¥i English pages: 8 Source: Kexue Tongbao, 1982, pp. 156...lJournal of Meteorology], 39 (1981), 1:70-81. 3. Drazin, P. G., J. Fluid. Mech., 4 (1958), 214-224. 4. Zhou Mingyu et al., QIXIANG XUEBAO, 38 (1980), 3: 250...258. 5. Emnanuel, C. B., B-L. Meteor., 5(1973), N(1/2)8 19-27. 6. Zhou Mingyu et al., J. Acoust. Soc., A. m., 68 (1980), 1: 303-308. 8 I iI

  16. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  17. Limit of grain refinement during ECAP process. Temperature influence

    International Nuclear Information System (INIS)

    Chuvil'deev, V.N.; Kopylov, V.I.; Nokhrin, A.V.; Makarov, I.M.; Lopatin, Yu.G.

    2004-01-01

    Experimental and theoretical study results are reported for the process of deformation grain refinement under severe plastic deformation. A generalization is made for experimental study results on deformation dispersing of unalloyed metals and aluminium and magnesium base alloys. The model is built that allows calculating the value of minimum grain size attained by the method of equal-channel angular pressing. The expressions are derived which describe the dependence of grain refinement limit on the nature of material and the temperature of severe plastic deformation [ru

  18. Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression.

    Science.gov (United States)

    Haeffel, Gerald J; Abramson, Lyn Y; Brazy, Paige C; Shah, James Y; Teachman, Bethany A; Nosek, Brian A

    2007-06-01

    Two studies were conducted to test a dual-process theory of cognitive vulnerability to depression. According to this theory, implicit and explicit cognitive processes have differential effects on depressive reactions to stressful life events. Implicit processes are hypothesized to be critical in determining an individual's immediate affective reaction to stress whereas explicit cognitions are thought to be more involved in long-term depressive reactions. Consistent with hypotheses, the results of study 1 (cross-sectional; N=237) showed that implicit, but not explicit, cognitions predicted immediate affective reactions to a lab stressor. Study 2 (longitudinal; N=251) also supported the dual-process model of cognitive vulnerability to depression. Results showed that both the implicit and explicit measures interacted with life stress to predict prospective changes in depressive symptoms, respectively. However, when both implicit and explicit predictors were entered into a regression equation simultaneously, only the explicit measure interacted with stress to remain a unique predictor of depressive symptoms over the five-week prospective interval.

  19. A dual-process model of diversity outcomes: The case South African police service in the Pretoria area

    Directory of Open Access Journals (Sweden)

    Leon T.B. Jackson

    2013-09-01

    Full Text Available Orientation: The study addresses the question of how employees of the South African Police Service (SAPS cope with intercultural relations in an increasingly diverse organisation. Research purpose: A dual-process model of diversity outcomes was tested in which a distinction is made between a positive (work-related stream that links positive diversity conditions through active coping to work outcomes and a relatively independent health related stream of negative antecedents, mediating passive coping skills and ill-health related outcomes. Motivation for the study: To test the viability of a dual-process model to understand diversity outcomes in the workplace. Research design, approach and methods: A convenience sample (n= 158 was recruited from members of the SAPS in Gauteng, using a cross-sectional design. Instruments used in previous acculturation research were adapted to measure contextual factors, coping and diversity outcomes. Main findings: A very good fit for the proposed hypothetical model was found. Approach coping partially mediated the relationship between positive acculturation conditions and the subjective experience of work success whereas avoidance coping fully mediated the relationship between discrimination, and ill-health symptoms are related to ill-health symptoms. Practical/managerial implications: Mainstream-facilitating conditions and discrimination influence individual coping styles, which in turn impact on ill-health and the subjective experience of work success. In addition, ill-health also impacts negatively on work-success experiences amongst the sampled SAPS members. It would thus make sense for the SAPS to sanction discrimination. Contribution/value added: A variation of the mediated dual-process model for diversity (Jackson & Van de Vijver, in press, using coping strategies as mediators was supported. The model adds new insights in diversity in organisations.

  20. Temperature Field Simulation of Powder Sintering Process with ANSYS

    Science.gov (United States)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  1. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  2. High temperature reactor and application to nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  3. Cancel and rethink in the Wason selection task: further evidence for the heuristic-analytic dual process theory.

    Science.gov (United States)

    Wada, Kazushige; Nittono, Hiroshi

    2004-06-01

    The reasoning process in the Wason selection task was examined by measuring card inspection times in the letter-number and drinking-age problems. 24 students were asked to solve the problems presented on a computer screen. Only the card touched with a mouse pointer was visible, and the total exposure time of each card was measured. Participants were allowed to cancel their previous selections at any time. Although rethinking was encouraged, the cards once selected were rarely cancelled (10% of the total selections). Moreover, most of the cancelled cards were reselected (89% of the total cancellations). Consistent with previous findings, inspection times were longer for selected cards than for nonselected cards. These results suggest that card selections are determined largely by initial heuristic processes and rarely reversed by subsequent analytic processes. The present study gives further support for the heuristic-analytic dual process theory.

  4. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  5. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  6. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  7. Dual-Band Modulation of Visible and Near-Infrared Light Transmittance in an All-Solution-Processed Hybrid Micro-Nano Composite Film.

    Science.gov (United States)

    Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai

    2017-11-22

    Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.

  8. Behavior of mercury in high-temperature vitrification processes

    International Nuclear Information System (INIS)

    Goles, R.W.; Holton, K.K.; Sevigny, G.J.

    1992-01-01

    This paper reports that the Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests were performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg 2 Cl 2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg 2 Cl 2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller

  9. Will the Conscious-Subconscious Pacing Quagmire Help Elucidate the Mechanisms of Self-Paced Exercise? New Opportunities in Dual Process Theory and Process Tracing Methods.

    Science.gov (United States)

    Micklewright, Dominic; Kegerreis, Sue; Raglin, John; Hettinga, Florentina

    2017-07-01

    The extent to which athletic pacing decisions are made consciously or subconsciously is a prevailing issue. In this article we discuss why the one-dimensional conscious-subconscious debate that has reigned in the pacing literature has suppressed our understanding of the multidimensional processes that occur in pacing decisions. How do we make our decisions in real-life competitive situations? What information do we use and how do we respond to opponents? These are questions that need to be explored and better understood, using smartly designed experiments. The paper provides clarity about key conscious, preconscious, subconscious and unconscious concepts, terms that have previously been used in conflicting and confusing ways. The potential of dual process theory in articulating multidimensional aspects of intuitive and deliberative decision-making processes is discussed in the context of athletic pacing along with associated process-tracing research methods. In attempting to refine pacing models and improve training strategies and psychological skills for athletes, the dual-process framework could be used to gain a clearer understanding of (1) the situational conditions for which either intuitive or deliberative decisions are optimal; (2) how intuitive and deliberative decisions are biased by things such as perception, emotion and experience; and (3) the underlying cognitive mechanisms such as memory, attention allocation, problem solving and hypothetical thought.

  10. Soft tissue freezing process. Identification of the dual-phase lag model parameters using the evolutionary algorithm

    Science.gov (United States)

    Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek

    2018-01-01

    In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.

  11. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry.

    Science.gov (United States)

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-07-16

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.

  12. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    International Nuclear Information System (INIS)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui

    2016-01-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m 2 were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m 2 for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  13. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  14. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; De Vrieze, J.; Li, Ch.; Li, J.; Li, J.; Yao, M.; Heděnec, Petr; Li, H.; Li, T.; Rui, J.; Frouz, Jan; Li, X.

    2017-01-01

    Roč. 123, October (2017), s. 134-143 ISSN 0043-1354 Institutional support: RVO:60077344 Keywords : anaerobic digestion * deterministic process * microbial interactions * modularity * temperature gradient Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 6.942, year: 2016

  15. Antarctic Temperature Extremes from MODIS Land Surface Temperatures: New Processing Methods Reveal Data Quality Puzzles

    Science.gov (United States)

    Grant, G.; Gallaher, D. W.

    2017-12-01

    New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.

  16. Steel surface treatment by a dual process of ion nitriding and thermal shock

    International Nuclear Information System (INIS)

    Feugeas, J.N.; Gomez, B.J.; Nachez, L.; Lesage, J.

    2003-01-01

    Samples of AISI 4140 steel were surface treated under two different processes: ion nitriding and high energy pulsed plasma irradiation. Ion nitriding was performed with a 100 Hz square wave glow discharge, in an atmosphere of an 80% N 2 and 20% H 2 mixture, under a total pressure of 5.6 mbar. Pulsed plasma irradiation consisted in the surface irradiation with a predetermined number of pulses of high energy and short duration argon plasmas, accelerated in a Z-Pinch experiment. Each pulse can induce high temperatures in a short time (<200 ns), followed by an also fast (∼10 μs) cooling down. The samples, ion nitrided and post-irradiated with pulsed plasmas showed important surface property improvements with respect to samples subjected only to ion nitriding. Those improvements consisted of an increase in the thickness of the hardened layer, and in a reduction of the micro-hardness gradient. These results show a complex surface layer structure that improves the support base for loads, reducing the probability of surface layer loosening

  17. Steel surface treatment by a dual process of ion nitriding and thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Feugeas, J.N.; Gomez, B.J.; Nachez, L.; Lesage, J

    2003-01-22

    Samples of AISI 4140 steel were surface treated under two different processes: ion nitriding and high energy pulsed plasma irradiation. Ion nitriding was performed with a 100 Hz square wave glow discharge, in an atmosphere of an 80% N{sub 2} and 20% H{sub 2} mixture, under a total pressure of 5.6 mbar. Pulsed plasma irradiation consisted in the surface irradiation with a predetermined number of pulses of high energy and short duration argon plasmas, accelerated in a Z-Pinch experiment. Each pulse can induce high temperatures in a short time (<200 ns), followed by an also fast ({approx}10 {mu}s) cooling down. The samples, ion nitrided and post-irradiated with pulsed plasmas showed important surface property improvements with respect to samples subjected only to ion nitriding. Those improvements consisted of an increase in the thickness of the hardened layer, and in a reduction of the micro-hardness gradient. These results show a complex surface layer structure that improves the support base for loads, reducing the probability of surface layer loosening.

  18. Examining the Affordances of Dual Cognitive Processing to Explain the Development of High School Students' Nature of Science Views

    Science.gov (United States)

    Jackson, Luke M.

    This mixed method study was aimed at examining the influence of dual processing (Type 1 and Type 2 thinking) on the development of high school students' nature of science (NOS) views. Type 1 thinking is intuitive, experiential, and heuristic. Type 2 thinking is rational, analytical, and explicit. Three research questions were asked: (1) Do the experiential process (Type 1) and the logical process (Type 2) influence the development of students' NOS views? (2) If there is an influence on students' NOS views, then what is the nature of relationship between the experiential process (Type 1) and the development of NOS views? (3) What is the nature of relationship between the logical process (Type 2) and the development of NOS views? The Views of Nature of Science Questionnaire C (VNOS-C; Lederman, Abd-El-Khalick, Bell, & Schwartz, 2002) was administered to 29 high school students at the beginning and at the end of an explicit-reflective NOS intervention offered in an Advanced Placement environmental science course. Changes in students' NOS views were calculated through a chi-square test and examining the percentage of students holding NOS views at various levels of sophistication. With the chi-square goodness of fit test performed, the relationship between pre and post NOS scores was not significant, X2(3, 29) = 4.78, p <.05. The informed and preinformed NOS views increased (14%, 17%) in frequency while the mixed and uninformed NOS views decreased (i.e. improved 26%, 24%) in frequency from pre to posttest. The reading discussions were coded based on the EBR framework (Furtak et al., 2010) to analyze the use of dual processing. Type1 and Type 2 thinking were both used during the intervention and reading reflections. Type 2 thinking was more prominent when analyzing a problem, formulating a hypothesis, or stating logical claims. The association of NOS education and Type 1 and Type 2 thinking in scientific literacy was examined, and implications and future research are

  19. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  20. A dual-process perspective on fluency-based aesthetics: the pleasure-interest model of aesthetic liking.

    Science.gov (United States)

    Graf, Laura K M; Landwehr, Jan R

    2015-11-01

    In this article, we develop an account of how aesthetic preferences can be formed as a result of two hierarchical, fluency-based processes. Our model suggests that processing performed immediately upon encountering an aesthetic object is stimulus driven, and aesthetic preferences that accrue from this processing reflect aesthetic evaluations of pleasure or displeasure. When sufficient processing motivation is provided by a perceiver's need for cognitive enrichment and/or the stimulus' processing affordance, elaborate perceiver-driven processing can emerge, which gives rise to fluency-based aesthetic evaluations of interest, boredom, or confusion. Because the positive outcomes in our model are pleasure and interest, we call it the Pleasure-Interest Model of Aesthetic Liking (PIA Model). Theoretically, this model integrates a dual-process perspective and ideas from lay epistemology into processing fluency theory, and it provides a parsimonious framework to embed and unite a wealth of aesthetic phenomena, including contradictory preference patterns for easy versus difficult-to-process aesthetic stimuli. © 2015 by the Society for Personality and Social Psychology, Inc.

  1. Practice Evaluation Strategies Among Social Workers: Why an Evidence-Informed Dual-Process Theory Still Matters.

    Science.gov (United States)

    Davis, Thomas D

    2017-01-01

    Practice evaluation strategies range in style from the formal-analytic tools of single-subject designs, rapid assessment instruments, algorithmic steps in evidence-informed practice, and computer software applications, to the informal-interactive tools of clinical supervision, consultation with colleagues, use of client feedback, and clinical experience. The purpose of this article is to provide practice researchers in social work with an evidence-informed theory that is capable of explaining both how and why social workers use practice evaluation strategies to self-monitor the effectiveness of their interventions in terms of client change. The author delineates the theoretical contours and consequences of what is called dual-process theory. Drawing on evidence-informed advances in the cognitive and social neurosciences, the author identifies among everyday social workers a theoretically stable, informal-interactive tool preference that is a cognitively necessary, sufficient, and stand-alone preference that requires neither the supplementation nor balance of formal-analytic tools. The author's delineation of dual-process theory represents a theoretical contribution in the century-old attempt to understand how and why social workers evaluate their practice the way they do.

  2. The exercise and affect relationship: evidence for the dual-mode model and a modified opponent process theory.

    Science.gov (United States)

    Markowitz, Sarah M; Arent, Shawn M

    2010-10-01

    This study examined the relationship between exertion level and affect using the framework of opponent-process theory and the dual-mode model, with the Activation-Deactivation Adjective Checklist and the State Anxiety Inventory among 14 active and 14 sedentary participants doing 20 min of treadmill exercise at speeds of 5% below, 5% above, and at lactate threshold (LT). We found a significant effect of time, condition, Time × Condition, and Time × Group, but no group, Group × Condition, or Time × Group × Condition effects, such that the 5% above LT condition produced a worsening of affect in-task compared with all other conditions whereas, across conditions, participants experienced in-task increases in energy and tension, and in-task decreases in tiredness and calmness relative to baseline. Posttask, participants experienced mood improvement (decreased tension, anxiety, and increased calmness) across conditions, with a 30-min delay in the above LT condition. These results partially support the dual-mode model and a modified opponent-process theory.

  3. Caregiver social support quality when interacting with cancer survivors: advancing the dual-process model of supportive communication.

    Science.gov (United States)

    Harvey-Knowles, Jacquelyn; Faw, Meara H

    2018-04-01

    Cancer caregivers often experience significant challenges in their motivation and ability to comfort cancer survivors, particularly in a spousal or romantic context. Spousal cancer caregivers have been known to report even greater levels of burden and distress than cancer sufferers, yet still take on the role of acting as an informal caregiver so they can attend to their partner's needs. The current study tested whether a theoretical model of supportive outcomes-the dual-process model of supportive communication-explained variations in cancer caregivers' motivation and ability to create high-quality support messages. The study also tested whether participant engagement with reflective journaling on supportive acts was associated with increased motivation or ability to generate high-quality support messages. Based upon the dual-process model, we posited that, following supportive journaling tasks, caregivers of spouses currently managing a cancer experience would report greater motivation but also greater difficulty in generating high-quality support messages, while individuals caring for a patient in remission would report lower motivation but greater ability to create high-quality support messages. Findings provided support for these assertions and suggested that reflective journaling tasks might be a useful tool for improving remission caregivers' ability to provide high-quality social support to survivors. Corresponding theoretical and applied implications are discussed.

  4. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    Science.gov (United States)

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  5. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  6. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  7. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    Science.gov (United States)

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  8. Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-07-15

    Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.

  9. Information system for characterising emergency situations in H2O-H2S dual temperature isotopic exchange plants

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Anghel, Mihai; Pop, Floarea; Stefanescu, Ioan; Titescu, Gheorghe; Patrascu, Mihai; Watzlawek, Ervin; Cheresdi, Dorin

    2006-01-01

    Full text: In the frame of MENER project 'Information system for response in emergency situation', the National R and D Institute For Cryogenics And Isotopic Technologies - ICIT Rm. Valcea developed calculation programmes to characterise fourteen emergency situations. Emergency situations are presented when process fluids are discharged directly or not to environment. Release of hydrogen sulphide gas or water saturated with hydrogen sulphide into the water feed pipe, steam feed pipe, condense pipe, water distillation plant or waste treating plant represent emergency situations. The information system includes calculation programmes for process fluids break in automatic isolated enclosures, liquid, gas or liquefied gas discharge and atmospheric dispersion. The calculation programs allow including the human or not human intervention in starting the security systems (emergency stack, water inundation, liquid drainage). When the process fluids discharge directly to environment one presents on diagrams the discharge flow rates (local and/or stack), enclosure pressure and/or temperature and the atmospheric dispersion. When the process fluids discharge not directly to environment one presents on diagrams just the variation in time of local discharge flow. (authors)

  10. Volatilization and trapping of ruthenium in high temperature processes

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.

    1983-01-01

    This experimental study has indicated the importance of moisture and NO/sub x/ vapors on the volatility and trapping conditions of ruthenium in high temperature processes. Also the process operating conditions have a great influence on the ruthenium behavior in the off-gas purification units. Of particular interest is the observation that the ruthenium release during direct vitrification of simulated high-level liquid waste is a factor of about 5 smaller than the ruthenium release during calcination of this type of waste. Moreover, in the direct vitrification case the ruthenium escapes mostly in the form of an aerosol whereas in the calcination case a volatile ruthenium compound is dominating. Consequently, a specific ruthenium filter is not needed in the off-gas line of a direct vitrifier simplifying in this way the number of units in this off-gas line and avoiding the handling and controlling problems of such a ruthenium filter. In the future, a similar program will be started on the volatility of cesium and antimony in a liquid fed melter and on the technical reliability of the liquid fed melter and its associated gas purification units on a semi-pilote scale under simulated conditions

  11. Living Slow and Being Moral : Life History Predicts the Dual Process of Other-Centered Reasoning and Judgments.

    Science.gov (United States)

    Zhu, Nan; Hawk, Skyler T; Chang, Lei

    2018-06-01

    Drawing from the dual process model of morality and life history theory, the present research examined the role of cognitive and emotional processes as bridges between basic environmental challenges (i.e., unpredictability and competition) and other-centered moral orientation (i.e., prioritizing the welfare of others). In two survey studies, cognitive and emotional processes represented by future-oriented planning and emotional attachment, respectively (Study 1, N = 405), or by perspective taking and empathic concern, respectively (Study 2, N = 424), positively predicted other-centeredness in prosocial moral reasoning (Study 1) and moral judgment dilemmas based on rationality or intuition (Study 2). Cognitive processes were more closely related to rational aspects of other-centeredness, whereas the emotional processes were more closely related to the intuitive aspects of other-centeredness (Study 2). Finally, the cognitive and emotional processes also mediated negative effects of unpredictability (i.e., negative life events and childhood financial insecurity), as well as positive effects of individual-level, contest competition (i.e., educational and occupational competition) on other-centeredness. Overall, these findings support the view that cognitive and emotional processes do not necessarily contradict each other. Rather, they might work in concert to promote other-centeredness in various circumstances and might be attributed to humans' developmental flexibility in the face of environmental challenges.

  12. The Different Role of Working Memory in Open-Ended versus Closed-Ended Creative Problem Solving: A Dual-Process Theory Account

    Science.gov (United States)

    Lin, Wei-Lun; Lien, Yunn-Wen

    2013-01-01

    This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…

  13. Self-Enhancement on a Self-Categorization Leash: Evidence for a Dual-Process Model of First-and Third-Person Perceptions

    Science.gov (United States)

    Zhang, Jinguang

    2010-01-01

    Research suggests that first- and third-person perceptions are driven by the motive to self-enhance and cognitive processes involving the perception of social norms. This article proposes and tests a dual-process model that predicts an interaction between cognition and motivation. Consistent with the model, Experiment 1 (N = 112) showed that…

  14. Expansion shock waves in the implosion process from a time-reversible molecular-dynamics simulation of a dual explosion process

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Abe, Takashi

    2007-01-01

    Why does not an expansion shock wave exist in a gaseous medium in nature? The reason has been widely believed to be the irreversibility in nature, while an obvious demonstration for this belief has not been accomplished yet. In order to resolve the question from a microscopic viewpoint, an implosion process dual to an explosion process was investigated by means of the molecular-dynamics method (MD). To this aim, we employed a ''bit-reversible algorithm (Bit MD)'' that was completely time-reversible in a microscopic viewpoint and was free from any round-off error. Here we show that, through a dual implosion simulation (i.e., a time-reversible simulation of the explosion), a kind of expansion shock wave is successfully formed in the Bit MD simulation. Furthermore, we show that when the controlled noise is intentionally added to the Bit MD, the expansion shock wave disappears dramatically and turns into an isentropic expansion wave, even if the noise is extremely small. Since the controlled noise gives rise to the irreversibility in the Bit MD simulation, it can be concluded that the irreversibility in the system prohibits the expansion shock wave from appearing in the system

  15. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica

    Directory of Open Access Journals (Sweden)

    J. Wukovits

    2017-06-01

    Full Text Available Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus

  16. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    Science.gov (United States)

    Wukovits, Julia; Enge, Annekatrin Julie; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2017-06-01

    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are

  17. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  18. Dual-process models of associative recognition in young and older adults: evidence from receiver operating characteristics.

    Science.gov (United States)

    Healy, Michael R; Light, Leah L; Chung, Christie

    2005-07-01

    In 3 experiments, young and older adults studied lists of unrelated word pairs and were given confidence-rated item and associative recognition tests. Several different models of recognition were fit to the confidence-rating data using techniques described by S. Macho (2002, 2004). Concordant with previous findings, item recognition data were best fit by an unequal-variance signal detection theory model for both young and older adults. For both age groups, associative recognition performance was best explained by models incorporating both recollection and familiarity components. Examination of parameter estimates supported the conclusion that recollection is reduced in old age, but inferences about age differences in familiarity were highly model dependent. Implications for dual-process models of memory in old age are discussed. ((c) 2005 APA, all rights reserved).

  19. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    International Nuclear Information System (INIS)

    Chen Zhou; Qiu-Nan Tong; Zhang Cong-Cong; Hu Zhan

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. (paper)

  20. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    Science.gov (United States)

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  1. Low Cost Heat Treatment Process for Production of Dual Microstructure Superalloy Disks

    Science.gov (United States)

    Gayda, John; Gabb, Tim; Kantzos, Pete; Furrer, David

    2003-01-01

    There are numerous incidents where operating conditions imposed on a component mandate different and distinct mechanical property requirements from location to location within the component. Examples include a crankshaft in an internal combustion engine, gears for an automotive transmission, and disks for a gas turbine engine. Gas turbine disks are often made from nickel-base superalloys, because these disks need to withstand the temperature and stresses involved in the gas turbine cycle. In the bore of the disk where the operating temperature is somewhat lower, the limiting material properties are often tensile and fatigue strength. In the rim of the disk, where the operating temperatures are higher than those of the bore, because of the proximity to the combustion gases, resistance to creep and crack growth are often the limiting properties.

  2. The determinants of response time in a repeated constant-sum game: A robust Bayesian hierarchical dual-process model.

    Science.gov (United States)

    Spiliopoulos, Leonidas

    2018-03-01

    The investigation of response time and behavior has a long tradition in cognitive psychology, particularly for non-strategic decision-making. Recently, experimental economists have also studied response time in strategic interactions, but with an emphasis on either one-shot games or repeated social-dilemmas. I investigate the determinants of response time in a repeated (pure-conflict) game, admitting a unique mixed strategy Nash equilibrium, with fixed partner matching. Response times depend upon the interaction of two decision models embedded in a dual-process framework (Achtziger and Alós-Ferrer, 2014; Alós-Ferrer, 2016). The first decision model is the commonly used win-stay/lose-shift heuristic and the second the pattern-detecting reinforcement learning model in Spiliopoulos (2013b). The former is less complex and can be executed more quickly than the latter. As predicted, conflict between these two models (i.e., each one recommending a different course of action) led to longer response times than cases without conflict. The dual-process framework makes other qualitative response time predictions arising from the interaction between the existence (or not) of conflict and which one of the two decision models the chosen action is consistent with-these were broadly verified by the data. Other determinants of RT were hypothesized on the basis of existing theory and tested empirically. Response times were strongly dependent on the actions chosen by both players in the previous rounds and the resulting outcomes. Specifically, response time was shortest after a win in the previous round where the maximum possible payoff was obtained; response time after losses was significantly longer. Strongly auto-correlated behavior (regardless of its sign) was also associated with longer response times. I conclude that, similar to other tasks, there is a strong coupling in repeated games between behavior and RT, which can be exploited to further our understanding of decision

  3. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  4. A dual-task investigation of automaticity in visual word processing

    Science.gov (United States)

    McCann, R. S.; Remington, R. W.; Van Selst, M.

    2000-01-01

    An analysis of activation models of visual word processing suggests that frequency-sensitive forms of lexical processing should proceed normally while unattended. This hypothesis was tested by having participants perform a speeded pitch discrimination task followed by lexical decisions or word naming. As the stimulus onset asynchrony between the tasks was reduced, lexical-decision and naming latencies increased dramatically. Word-frequency effects were additive with the increase, indicating that frequency-sensitive processing was subject to postponement while attention was devoted to the other task. Either (a) the same neural hardware shares responsibility for lexical processing and central stages of choice reaction time task processing and cannot perform both computations simultaneously, or (b) lexical processing is blocked in order to optimize performance on the pitch discrimination task. Either way, word processing is not as automatic as activation models suggest.

  5. An Octave/MATLAB® Interface for Rapid Processing of SMOS L1C Full Polarization Brightness Temperature

    Directory of Open Access Journals (Sweden)

    Pablo Saavedra

    2018-01-01

    Full Text Available A tool to process the SMOS microwave radiometer level 1C polarized brightness temperatures data product has been developed. The SMOS L1C science product contains the dual and full (Stokes vector polarization brightness temperatures at L-band for multiple incidence angles. In order to use the L1C product, the measurements are processed by a number of procedures including radio frequency interference (RFI filters, conversion of the polarization plane from the antenna (X- & Y-pol to the Earth’s surface frame (H- & V-pol, and averaging to fixed classes of incidence angles. The software allows for the processing of data for the entire daily half-orbit product, or for specific regions of interest, and can be adapted as a bash-job to process a large number of data files e.g. for time series analysis. This paper describes the tool which was developed in GNU C++ with the capability to be compiled as MEX function to work with Octave or MATLAB® without any source code adjustment. Funding statement: 'Deutsche Forschungsgemeinschaft' DFG under grant number SI 606/24-1.

  6. High Strength-High Ductility Combination Ultrafine-Grained Dual-Phase Steels Through Introduction of High Degree of Strain at Room Temperature Followed by Ultrarapid Heating During Continuous Annealing of a Nb-Microalloyed Steel

    Science.gov (United States)

    Deng, Yonggang; Di, Hongshuang; Hu, Meiyuan; Zhang, Jiecen; Misra, R. D. K.

    2017-07-01

    Ultrafine-grained dual-phase (UFG-DP) steel consisting of ferrite (1.2 μm) and martensite (1 μm) was uniquely processed via combination of hot rolling, cold rolling and continuous annealing of a low-carbon Nb-microalloyed steel. Room temperature tensile properties were evaluated and fracture mechanisms studied and compared to the coarse-grained (CG) counterpart. In contrast to the CG-DP steel, UFG-DP had 12.7% higher ultimate tensile strength and 10.7% greater uniform elongation. This is partly attributed to the increase in the initial strain-hardening rate, decrease in nanohardness ratio of martensite and ferrite. Moreover, a decreasing number of ferrite grains with {001} orientation increased the cleavage fracture stress and increased the crack initiation threshold stress with consequent improvement in ductility UFG-DP steel.

  7. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  8. Dual Psychological Processes Underlying Public Stigma and the Implications for Reducing Stigma

    OpenAIRE

    Reeder, Glenn D.; Pryor, John B.

    2008-01-01

    People with serious illness or disability are often burdened with social stigma that promotes a cycle of poverty via unemployment, inadequate housing and threats to mental health. Stigma may be conceptualized in terms of self-stigma (e.g., shame and lowered self-esteem) or public stigma (e.g., the general public's prejudice towards the stigmatized). This article examines two psychological processes that underlie public stigma: associative processes and rule-based processes. Associative proces...

  9. Intuition & reason: re-assessing dual-process theories with representational sub-activation

    OpenAIRE

    Trafford, James; Tillas, Alexandros

    2015-01-01

    There is a prevalent distinction in the literature on reasoning, between Type-1 processes, (fast, automatic, associative, heuristic and intuitive); and Type-2 processes (rule-based, analytical and reflective). In this paper, we follow up recent empirical evidence [De Neys (2006b); Osman (2013)] in favour of a unitary cognitive system. More specifically, we suggest that intuitions (T1-processes) are sub-activated representations, which are in turn influenced by the weightings of the connection...

  10. Dual processing and organizational justice: the role of rational versus experiential processing in third-party reactions to workplace mistreatment.

    Science.gov (United States)

    Skarlicki, Daniel P; Rupp, Deborah E

    2010-09-01

    The moral perspective of justice proposes that when confronted by another person's mistreatment, third parties can experience a deontic response, that is, an evolutionary-based emotional reaction that motivates them to engage in retribution toward the transgressor. In this article, we tested whether the third party's deontic reaction is less strong when a rational (vs. experiential) processing frame is primed. Further, we tested whether third parties high (vs. low) in moral identity are more resistant to the effects of processing frames. Results from a sample of 185 French managers revealed that following an injustice, managers primed to use rational processing reported lower retribution tendencies compared with managers primed to use experiential processing. Third parties high in moral identity, however, were less affected by the framing; they reported a high retribution response regardless of processing frame. Theoretical and practical implications of these findings are discussed. Copyright 2010 APA, all rights reserved

  11. High critical temperature superconducting composite and fabrication process

    International Nuclear Information System (INIS)

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  12. VARTM Processing of High Temperature Polymer Matrix Composites

    National Research Council Canada - National Science Library

    Criss, Jr, Jim M

    2008-01-01

    The overall technical objective of the Phase 1 effort was to extend and advance the state the-art in high temperature composite fabrication techniques by developing a High Tempera Vacuum Assisted Resin Transfer Molding (VARTM...

  13. FEM Analyses for T-H-M-M Coupling Processes in Dual-Porosity Rock Mass under Stress Corrosion and Pressure Solution

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2012-01-01

    Full Text Available The models of stress corrosion and pressure solution established by Yasuhara et al. were introduced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-porosity medium developed by the authors. Aiming at a hypothetical model for geological disposal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two computation conditions were designed. Then the corresponding two-dimensional numerical simulation for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow velocities, nuclide concentrations and stresses in the rock mass were investigated. The results show: the aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore tend towards stability; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the fracture aperture and porosity are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide concentrations in pore and fracture in this case are higher than those in case 2.

  14. Dual resonance approach to optical signal processing beyond the carrier relaxation rate

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    We propose using two optical cavities in a differential control scheme to increase the bandwidth of cavity-based semiconductor optical signal processing devices beyond the limit given by the slowest carrier relaxation rate of the medium.......We propose using two optical cavities in a differential control scheme to increase the bandwidth of cavity-based semiconductor optical signal processing devices beyond the limit given by the slowest carrier relaxation rate of the medium....

  15. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    Science.gov (United States)

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  16. Neural Correlates of Confidence during Item Recognition and Source Memory Retrieval: Evidence for Both Dual-Process and Strength Memory Theories

    Science.gov (United States)

    Hayes, Scott M.; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto

    2011-01-01

    Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength…

  17. Examining the Affordances of Dual Cognitive Processing to Explain the Development of High School Students' Nature of Science Views

    Science.gov (United States)

    Jackson, Luke M.

    2017-01-01

    This mixed method study was aimed at examining the influence of dual processing (Type 1 and Type 2 thinking) on the development of high school students' nature of science (NOS) views. Type 1 thinking is intuitive, experiential, and heuristic. Type 2 thinking is rational, analytical, and explicit. Three research questions were asked: (1) Do the…

  18. Massive Violent Death and Contested National Mourning in Post-Authoritarian Chile and Argentina : A Sociocultural Application of the Dual Process Model

    NARCIS (Netherlands)

    Robben, Antonius C G M

    2014-01-01

    This article uses the dual process model (DPM) in an analysis of the national mourning of tens of thousands of disappeared in Chile and Argentina by adapting the model from the individual to the collective level where society as a whole is bereaved. Perpetrators are also involved in the national

  19. Recognition Memory zROC Slopes for Items with Correct versus Incorrect Source Decisions Discriminate the Dual Process and Unequal Variance Signal Detection Models

    Science.gov (United States)

    Starns, Jeffrey J.; Rotello, Caren M.; Hautus, Michael J.

    2014-01-01

    We tested the dual process and unequal variance signal detection models by jointly modeling recognition and source confidence ratings. The 2 approaches make unique predictions for the slope of the recognition memory zROC function for items with correct versus incorrect source decisions. The standard bivariate Gaussian version of the unequal…

  20. The Effects of Argument Quality and Involvement Type on Attitude Formation and Attitude Change: A Test of Dual-Process and Social Judgment Predictions

    Science.gov (United States)

    Park, Hee Sun; Levine, Timothy R.; Kingsley Westerman, Catherine Y.; Orfgen, Tierney; Foregger, Sarah

    2007-01-01

    Involvement has long been theoretically specified as a crucial factor determining the persuasive impact of messages. In social judgment theory, ego-involvement makes people more resistant to persuasion, whereas in dual-process models, high-involvement people are susceptible to persuasion when argument quality is high. It is argued that these…

  1. A dual contribution to the involuntary semantic processing of unexpected spoken words.

    Science.gov (United States)

    Parmentier, Fabrice B R; Turner, Jacqueline; Perez, Laura

    2014-02-01

    Sounds are a major cause of distraction. Unexpected to-be-ignored auditory stimuli presented in the context of an otherwise repetitive acoustic background ineluctably break through selective attention and distract people from an unrelated visual task (deviance distraction). This involuntary capture of attention by deviant sounds has been hypothesized to trigger their semantic appraisal and, in some circumstances, interfere with ongoing performance, but it remains unclear how such processing compares with the automatic processing of distractors in classic interference tasks (e.g., Stroop, flanker, Simon tasks). Using a cross-modal oddball task, we assessed the involuntary semantic processing of deviant sounds in the presence and absence of deviance distraction. The results revealed that some involuntary semantic analysis of spoken distractors occurs in the absence of deviance distraction but that this processing is significantly greater in its presence. We conclude that the automatic processing of spoken distractors reflects 2 contributions, one that is contingent upon deviance distraction and one that is independent from it.

  2. On the Time-Temperature-Transformation Behavior of a New Dual-Superlattice Nickel-Based Superalloy

    Science.gov (United States)

    Mignanelli, P. M.; Jones, N. G.; Hardy, M. C.; Stone, H. J.

    2018-03-01

    Recent research has identified compositions of nickel-based superalloys with microstructures containing appreciable and comparable volume fractions of γ' and γ″ precipitates. In this work, an alloy capable of forming such a dual-superlattice microstructure was subjected to a range of thermal exposures between 873 K and 1173 K (600 °C and 900 °C) for durations of 1 to 1000 hours. The microstructures and nature of the precipitating phases were characterized using synchrotron X-ray diffraction and electron microscopy. These data have enabled the construction of a T-T-T diagram for the precipitating phases. Hardness measurements following each thermal exposure have identified the age-hardening behavior of this alloy and allowed preliminary mechanical properties to be assessed.

  3. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  4. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    Science.gov (United States)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  5. Beyond single syllables: large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model.

    Science.gov (United States)

    Perry, Conrad; Ziegler, Johannes C; Zorzi, Marco

    2010-09-01

    Most words in English have more than one syllable, yet the most influential computational models of reading aloud are restricted to processing monosyllabic words. Here, we present CDP++, a new version of the Connectionist Dual Process model (Perry, Ziegler, & Zorzi, 2007). CDP++ is able to simulate the reading aloud of mono- and disyllabic words and nonwords, and learns to assign stress in exactly the same way as it learns to associate graphemes with phonemes. CDP++ is able to simulate the monosyllabic benchmark effects its predecessor could, and therefore shows full backwards compatibility. CDP++ also accounts for a number of novel effects specific to disyllabic words, including the effects of stress regularity and syllable number. In terms of database performance, CDP++ accounts for over 49% of the reaction time variance on items selected from the English Lexicon Project, a very large database of several thousand of words. With its lexicon of over 32,000 words, CDP++ is therefore a notable example of the successful scaling-up of a connectionist model to a size that more realistically approximates the human lexical system. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Feasibility study of using thin aluminum nitride film as a buffer layer for dual metal gate process

    International Nuclear Information System (INIS)

    Park, Chang Seo; Cho, Byung Jin; Balasubramanian, N.; Kwong, Dim-Lee

    2004-01-01

    We evaluated the feasibility of using an ultra thin aluminum nitride (AlN) buffer layer for dual metal gates CMOS process. Since the buffer layer should not affect the thickness of gate dielectric, it should be removed or consumed during subsequent process. In this work, it was shown that a thin AlN dielectric layer would be reacted with initial gate metals and would be consumed during subsequent annealing, resulting in no increase of equivalent oxide thickness (EOT). The reaction of AlN layer with tantalum (Ta) and hafnium (Hf) during subsequent annealing, which was confirmed with X-ray photoelectron spectroscopy (XPS) analysis, shifted the flat-band voltage of AlN buffered MOS capacitors. No contribution to equivalent oxide thickness (EOT) was also an indication showing the full consumption of AIN, which was confirmed with TEM analysis. The work functions of gate metals were modulated through the reaction, suggesting that the consumption of AlN resulted in new thin metal alloys. Finally, it was found that the barrier heights of the new alloys were consistent with their work functions

  7. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  8. A Dual Coding Model of Processing Chinese as a Second Language: A Cognitive-Load Approach

    Science.gov (United States)

    Sham, Diana Po Lan

    2002-01-01

    The research was conducted in Sydney and Hong Kong using students, from grades 5 to 9, whose first language or teaching medium was English, learning to read Chinese as second language. According to cognitive load theory, the processing of single Chinese characters accompanied by pictures should impose extraneous cognitive load and thus hinders…

  9. Rational misbehavior? Evaluating an integrated dual-process model of criminal decision making

    NARCIS (Netherlands)

    van Gelder, J.L.; de Vries, R.E.

    2014-01-01

    Objectives: Test the hypothesis that dispositional self-control and morality relate to criminal decision making via different mental processing modes, a 'hot' affective mode and a 'cool' cognitive one. Methods: Structural equation modeling in two studies under separate samples of undergraduate

  10. Dual Rubrics and the Process of Writing: Assessment and Best Practices in a Developmental English Course

    Science.gov (United States)

    Pireh, Diane Flanegan

    2014-01-01

    This article presents strategies for using two types of essay-writing rubrics in a developmental English class of students transitioning into college-level writing. One checklist rubric is student-facing, designed to serve as a guide for students throughout the writing process and as a self-assessment tool. The other checklist rubric is…

  11. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    , which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin

  12. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  13. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho-Kyun; Kim, Han-Ki [Department of Display Materials Research Center, Materials Research Center for Information Displays (MRCID), Kyung Hee University, 1 Seocheon-dong, Youngin-si, Gyeonggi-do 446-701 (Korea); Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science(KIMS), 66 Sangnam-dong, Changwon-si, Gyeongnam 641-831 (Korea); Na, Seok-In; Kim, Don-Yu. [Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryoung-dong, Gwangju 500-712 (Korea)

    2009-11-15

    We compared the electrical, optical, structural and surface properties of indium-free Ga-doped ZnO (GZO)/Ag/GZO and Al-doped ZnO (AZO)/Ag/AZO multilayer electrodes deposited by dual target direct current sputtering at room temperature for low-cost organic photovoltaics. It was shown that the electrical and optical properties of the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes could be improved by the insertion of an Ag layer with optimized thickness between oxide layers, due to its very low resistivity and surface plasmon effect. In addition, the Auger electron spectroscopy depth profile results for the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes showed no interfacial reaction between the Ag layer and GZO or AZO layer, due to the low preparation temperature and the stability of the Ag layer. Moreover, the bulk heterojunction organic solar cell fabricated on the multilayer electrodes exhibited higher power conversion efficiency than the organic solar cells fabricated on the single GZO or AZO layer, due to much lower sheet resistance of the multilayer electrode. This indicates that indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes are a promising low-cost and low-temperature processing electrode scheme for low-cost organic photovoltaics. (author)

  14. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  15. Single- versus dual-process models of lexical decision performance: insights from response time distributional analysis.

    Science.gov (United States)

    Yap, Melvin J; Balota, David A; Cortese, Michael J; Watson, Jason M

    2006-12-01

    This article evaluates 2 competing models that address the decision-making processes mediating word recognition and lexical decision performance: a hybrid 2-stage model of lexical decision performance and a random-walk model. In 2 experiments, nonword type and word frequency were manipulated across 2 contrasts (pseudohomophone-legal nonword and legal-illegal nonword). When nonwords became more wordlike (i.e., BRNTA vs. BRANT vs. BRANE), response latencies to nonwords were slowed and the word frequency effect increased. More important, distributional analyses revealed that the Nonword Type = Word Frequency interaction was modulated by different components of the response time distribution, depending on the specific nonword contrast. A single-process random-walk model was able to account for this particular set of findings more successfully than the hybrid 2-stage model. (c) 2006 APA, all rights reserved.

  16. Dual-process Accounts of Reasoning in User's Information System Risky Behavior

    OpenAIRE

    Li, Ying; Zhang, Nan

    2016-01-01

    End user of information system (IS) is the weakest point in terms of IS security. A variety of approaches are developed to convince end users to avoid IS risky behaviors. However, they do not always work. We would like to argue that one of the reasons is that previous studies focused on System 2 thinking (analytic, deliberate, rule-governed and effortful process) and overlooked the factors that can influence people who are using System 1 thinking (automatic, effortless, associa...

  17. Temperature processes at two sliding surfaces subjected to dry friction

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Cibulka, Jan; Bula, Vítězslav

    2012-01-01

    Roč. 63, 5/6 (2012), s. 277-292 ISSN 0039-2472 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * vibration damping * experimental set * increase of temperature * lost energy Subject RIV: BI - Acoustics

  18. Plastic creep flow processes in fracture at elevated temperatures

    International Nuclear Information System (INIS)

    Rice, J.R.

    1979-01-01

    Recent theoretical developments on fracture at elevated temperature in the presence of overall plastic (dislocation) creep are discussed. Two topics are considered: stress fields at tips of macroscopic cracks in creeping solids; and diffusive growth of microscopic grain boundary cavities in creeping solids

  19. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  20. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  1. Fairness, fast and slow: A review of dual process models of fairness

    DEFF Research Database (Denmark)

    Hallsson, Bjørn Gunnar; Hulme, Oliver; Siebner, Hartwig Roman

    2018-01-01

    -control to override with reasoning-based fairness concerns, or whether fairness itself can be intuitive. While we find strong support for rejecting the notion that self-interest is always intuitive, the literature has reached conflicting conclusions about the neurocognitive systems underpinning fairness. We propose...... that this disagreement can largely be resolved in light of an extended Social Heuristics Hypothesis. Divergent findings may be attributed to the interpretation of behavioral effects of ego depletion or neurostimulation, reverse inference from brain activity to the underlying psychological process, and insensitivity...

  2. Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

    Directory of Open Access Journals (Sweden)

    Weijing Chen

    2017-03-01

    Full Text Available Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System brightness temperature (TB and MODIS (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (LST products, which also corrects model bias by simultaneously updating model states and parameters with a dual ensemble Kalman filter (DEnKS. Common Land Model (CoLM and a Radiative Transfer Model (RTM are adopted as model and observation operator, respectively. The assimilation experiment was conducted in Naqu on the Tibet Plateau from 31 May to 27 September 2011. The updated soil temperature at surface obtained by assimilating MODIS LST serving as inputs of RTM is to reduce the differences between the simulated and observed TB, then AMSR-E TB is assimilated to update soil moisture and model parameters. Compared with in situ measurements, the accuracy of soil moisture estimation derived from the assimilation experiment has been tremendously improved at a variety of scales. The updated parameters effectively reduce the states bias of CoLM. The results demonstrate the potential of assimilating AMSR-E TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study indicates that the developed scheme is an effective way to retrieve downscaled soil moisture when assimilating the coarse-scale microwave TB.

  3. Nuclear heat for high temperature fossil fuel processing

    International Nuclear Information System (INIS)

    Walton, G.N.

    1981-01-01

    This is a report of a one-day symposium held at the Royal Institution, London, on 28 April 1981. It was organized by the Institute of Energy (London and Home Counties section) under the chairmanship of Dr A M Brown with the assistance of the Institute of Energy's Nuclear Special Interest Group. The following five papers were presented (available as a booklet, from the Institute of Energy, price Pound12.00): 1) The Dragon project and the High Temperature Reactor (HTR) position. Dr L Shepherd, UKAEA, Winfrith. 2) Coal gasification technology. Dr M St J Arnold, NCB, Stoke Orchard Laboratories. 3) The utilization of nuclear energy for coal gasification. Dr K H van Heek, G Hewing, R Kirchhoff and H J Schroter, Bergbau Forschung, Essen, West Germany. 4) The hydrogen economy. K F Langley, Energy Technology Support Unit, Harwell. 5) Economic perspectives and high temperature reactors. J D Thorn, director, Technical Services and Planning, UKAEA. (author)

  4. Temperature dependent investigation on optically active process of higher-order bands in irradiated silicon

    International Nuclear Information System (INIS)

    Shi Yi; Nanjing Univ., JS; Wu Fengmei; Nanjing Univ., JS; Zheng Youdou; Nanjing Univ., JS; Suezawa, M.; Imai, M.; Sumino, K.

    1996-01-01

    Optically active processes of the higher-order bands (HOB) are investigated at different temperatures in fast neutron irradiated silicon using Fourier transform infrared absorption measurement. It is shown that the optically active process is nearly temperature independent below 80 K, the slow decay process remains up to a heating temperature of 180 K. The observations are analyzed in terms of the relaxation behavior of photoexcited carriers governed by fast neutron radiation induced defect clusters. (orig.)

  5. When Challenging Art Gets Liked: Evidences for a Dual Preference Formation Process for Fluent and Non-Fluent Portraits.

    Science.gov (United States)

    Belke, Benno; Leder, Helmut; Carbon, Claus-Christian

    2015-01-01

    line with a dual-process view of human preference formation with art. Theoretical implications and boundary conditions are discussed.

  6. When Challenging Art Gets Liked: Evidences for a Dual Preference Formation Process for Fluent and Non-Fluent Portraits.

    Directory of Open Access Journals (Sweden)

    Benno Belke

    , findings were in line with a dual-process view of human preference formation with art. Theoretical implications and boundary conditions are discussed.

  7. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    Science.gov (United States)

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  8. Mechanisms of placebo analgesia: A dual-process model informed by insights from cross-species comparisons.

    Science.gov (United States)

    Schafer, Scott M; Geuter, Stephan; Wager, Tor D

    2018-01-01

    Placebo treatments are pharmacologically inert, but are known to alleviate symptoms across a variety of clinical conditions. Associative learning and cognitive expectations both play important roles in placebo responses, however we are just beginning to understand how interactions between these processes lead to powerful effects. Here, we review the psychological principles underlying placebo effects and our current understanding of their brain bases, focusing on studies demonstrating both the importance of cognitive expectations and those that demonstrate expectancy-independent associative learning. To account for both forms of placebo analgesia, we propose a dual-process model in which flexible, contextually driven cognitive schemas and attributions guide associative learning processes that produce stable, long-term placebo effects. According to this model, the placebo-induction paradigms with the most powerful effects are those that combine reinforcement (e.g., the experience of reduced pain after placebo treatment) with suggestions and context cues that disambiguate learning by attributing perceived benefit to the placebo. Using this model as a conceptual scaffold, we review and compare neurobiological systems identified in both human studies of placebo analgesia and behavioral pain modulation in rodents. We identify substantial overlap between the circuits involved in human placebo analgesia and those that mediate multiple forms of context-based modulation of pain behavior in rodents, including forebrain-brainstem pathways and opioid and cannabinoid systems in particular. This overlap suggests that placebo effects are part of a set of adaptive mechanisms for shaping nociceptive signaling based on its information value and anticipated optimal response in a given behavioral context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Experimental Lamb mode identification in a plate containing a hole using dual signal processing

    International Nuclear Information System (INIS)

    Grondel, Sébastien; Assaad, Jamal; Youbi, Faysal El; Moulin, Emmanuel; Leyla, Najib Abou

    2008-01-01

    The identification of Lamb mode amplitude variation as a function of the damage evolution is still the most difficult step in the process of damage monitoring using embedded Lamb wave-based systems. The aim of this paper is to propose a simple system based on the generation of two different frequencies in order to better identify Lamb mode amplitude and to avoid false data interpretation in plates containing a hole of variable diameter. This identification is based on a simple relation between the short-time Fourier transform and the two-dimensional Fourier transform. Experimentally, a 3 mm thick aluminium plate is used and the two frequencies have been chosen equal to 400 kHz and 600 kHz in order to generate the two first fundamental Lamb waves

  10. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.

    Science.gov (United States)

    Verma, Sharad; Singh, Amit; Mishra, Abha

    2012-07-01

    Hsp90 (heat shock protein 90), a molecular chaperone, stabilizes more than 200 mutated and over expressed oncogenic proteins in cancer development. Cdc37 (cell division cycle protein 37), a co-chaperone of Hsp90, has been found to facilitate the maturation of protein kinases by acting as an adaptor and load these kinases onto the Hsp90 complex. Taxifolin (a natural phytochemical) was found to bind at ATP-binding site of Hsp90 and stabilized the inactive "open" or "lid-up" conformation as evidenced by molecular dynamic simulation. Furthermore, taxifolin was found to bind to interface of Hsp90 and Cdc37 complex and disrupt the interaction of residues of both proteins which were essential for the formation of active super-chaperone complex. Thus, taxifolin was found to act as an inhibitor of chaperoning process and may play a potential role in the cancer chemotherapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  12. Probing student reasoning approaches through the lens of dual-process theories: A case study in buoyancy

    Science.gov (United States)

    Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2018-06-01

    A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the "five-block problem," which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing) and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.

  13. Using dual-process theory and analogical transfer to explain facilitation on a hypothetico-deductive reasoning task.

    Science.gov (United States)

    Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A

    2007-07-01

    Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.

  14. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    Science.gov (United States)

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Probing student reasoning approaches through the lens of dual-process theories: A case study in buoyancy

    Directory of Open Access Journals (Sweden)

    Cody R. Gette

    2018-03-01

    Full Text Available A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students’ written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the “five-block problem,” which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.

  16. Process assessment of small scale low temperature methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hendriyana [Chemical Engineering Department, Faculty of Engineering, Jenderal Achmad Yani Univerity (Indonesia); Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia); Susanto, Herri, E-mail: herri@che.itb.ac.id; Subagjo [Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia)

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  17. Process assessment of small scale low temperature methanol synthesis

    International Nuclear Information System (INIS)

    Hendriyana; Susanto, Herri; Subagjo

    2015-01-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H 2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H 2 for increasing H 2 /CO ratio. CO 2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  18. Fairness, fast and slow: A review of dual process models of fairness.

    Science.gov (United States)

    Hallsson, Bjørn G; Siebner, Hartwig R; Hulme, Oliver J

    2018-06-01

    Fairness, the notion that people deserve or have rights to certain resources or kinds of treatment, is a fundamental dimension of moral cognition. Drawing on recent evidence from economics, psychology, and neuroscience, we ask whether self-interest is always intuitive, requiring self-control to override with reasoning-based fairness concerns, or whether fairness itself can be intuitive. While we find strong support for rejecting the notion that self-interest is always intuitive, the literature has reached conflicting conclusions about the neurocognitive systems underpinning fairness. We propose that this disagreement can largely be resolved in light of an extended Social Heuristics Hypothesis. Divergent findings may be attributed to the interpretation of behavioral effects of ego depletion or neurostimulation, reverse inference from brain activity to the underlying psychological process, and insensitivity to social context and inter-individual differences. To better dissect the neurobiological basis of fairness, we outline how future research should embrace cross-disciplinary methods that combine psychological manipulations with neuroimaging, and that can probe inter-individual, and cultural heterogeneities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Eyewitness decisions in simultaneous and sequential lineups: a dual-process signal detection theory analysis.

    Science.gov (United States)

    Meissner, Christian A; Tredoux, Colin G; Parker, Janat F; MacLin, Otto H

    2005-07-01

    Many eyewitness researchers have argued for the application of a sequential alternative to the traditional simultaneous lineup, given its role in decreasing false identifications of innocent suspects (sequential superiority effect). However, Ebbesen and Flowe (2002) have recently noted that sequential lineups may merely bring about a shift in response criterion, having no effect on discrimination accuracy. We explored this claim, using a method that allows signal detection theory measures to be collected from eyewitnesses. In three experiments, lineup type was factorially combined with conditions expected to influence response criterion and/or discrimination accuracy. Results were consistent with signal detection theory predictions, including that of a conservative criterion shift with the sequential presentation of lineups. In a fourth experiment, we explored the phenomenological basis for the criterion shift, using the remember-know-guess procedure. In accord with previous research, the criterion shift in sequential lineups was associated with a reduction in familiarity-based responding. It is proposed that the relative similarity between lineup members may create a context in which fluency-based processing is facilitated to a greater extent when lineup members are presented simultaneously.

  20. On dual nature of effect of adsorbed polymeric hydroxide films on rate of different electrode processes

    International Nuclear Information System (INIS)

    Zakharkina, P.S.; Korshunov, V.N.

    1985-01-01

    The effect of cation Er 3+ hydrolysis products on the electrochemical behaviour of Zn and Na amalgams is studied. The i, t-curves are presented which are moasUred from a film Hg-electrode in 1M LiCl- and 1MNaCl solUtions both with and without the 10 -3 MErCl 3 addition, along with the I, t-dependences obtained from a rotation disk Zn-electrode at E=-1.45 B against the background of 0.1 MLi 2 SO 4 with the 1.5x10 -3 M Er 2 (SO 4 ) 3 addition. Polymeric films of REE oxohydroxo compounds exhibit a distinct dualism in the effect on the rate of different electrode reactions; provided a proton donor is the depolarizator, the films being considered confirm their name of catalytically active matrices accelerating hydrogen evolution by a modified bridge mechanism variant. In case of metal charge-ionization process these films become inhibitors and the more effective, the more hydrated is the corresponding REE ion

  1. The Influence of Effortful Thought and Cognitive Proficiencies on the Conjunction Fallacy: Implications for Dual-Process Theories of Reasoning and Judgment.

    Science.gov (United States)

    Scherer, Laura D; Yates, J Frank; Baker, S Glenn; Valentine, Kathrene D

    2017-06-01

    Human judgment often violates normative standards, and virtually no judgment error has received as much attention as the conjunction fallacy. Judgment errors have historically served as evidence for dual-process theories of reasoning, insofar as these errors are assumed to arise from reliance on a fast and intuitive mental process, and are corrected via effortful deliberative reasoning. In the present research, three experiments tested the notion that conjunction errors are reduced by effortful thought. Predictions based on three different dual-process theory perspectives were tested: lax monitoring, override failure, and the Tripartite Model. Results indicated that participants higher in numeracy were less likely to make conjunction errors, but this association only emerged when participants engaged in two-sided reasoning, as opposed to one-sided or no reasoning. Confidence was higher for incorrect as opposed to correct judgments, suggesting that participants were unaware of their errors.

  2. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  3. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; McKellar, Michael; Anderson, Nolan

    2011-01-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  5. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  6. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    Science.gov (United States)

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  7. Associations and propositions: the case for a dual-process account of learning in humans.

    Science.gov (United States)

    McLaren, I P L; Forrest, C L D; McLaren, R P; Jones, F W; Aitken, M R F; Mackintosh, N J

    2014-02-01

    research on individual differences suggests that variation in intelligence and explicit problem solving ability are quite unrelated to variation in implicit (associative) learning, and briefly consider the computational implications of our argument, by asking how both associative and propositional processes can be accommodated within a single framework for cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Huixian [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Shi, Zhenqi [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Qiao, Ping [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Department of Pharmacology, Norman Bethune Medical College, Jilin University, Changchun, Jilin 130021 (China); Li, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); McCoy, Erin M. [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Mao, Ping [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Xu, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Feng, Xu [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Wang, Shunqing, E-mail: shqwang_cn@yahoo.com [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China)

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  9. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    Science.gov (United States)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  10. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (U

    NARCIS (Netherlands)

    Rodrigo-Gámiz, M.; Martínez-Ruiz, F.; Rampen, S.W.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e., the U-37(K) index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative

  11. Radiation-stimulated processes in transistor temperature sensors

    International Nuclear Information System (INIS)

    Pavlyk, B. V.; Grypa, A. S.

    2016-01-01

    The features of the radiation-stimulated changes in the I–V and C–V characteristics of the emitter–base junction in KT3117 transistors are considered. It is shown that an increase in the current through the emitter junction is observed at the initial stage of irradiation (at doses of D < 4000 Gy for the “passive” irradiation mode and D < 5200 Gy for the “active” mode), which is caused by the effect of radiation-stimulated ordering of the defect-containing structure of the p–n junction. It is also shown that the X-ray irradiation (D < 14000 Gy), the subsequent relaxation (96 h), and thermal annealing (2 h at 400 K) of the transistor temperature sensors under investigation result in an increase in their radiation resistance.

  12. Mechanism and the origins of stereospecificity in copper-catalyzed ring expansion of vinyl oxiranes: a traceless dual transition-metal-mediated process.

    Science.gov (United States)

    Mustard, Thomas J L; Mack, Daniel J; Njardarson, Jon T; Cheong, Paul Ha-Yeon

    2013-01-30

    Density functional theory computations of the Cu-catalyzed ring expansion of vinyloxiranes is mediated by a traceless dual Cu(I)-catalyst mechanism. Overall, the reaction involves a monomeric Cu(I)-catalyst, but a single key step, the Cu migration, requires two Cu(I)-catalysts for the transformation. This dual-Cu step is found to be a true double Cu(I) transition state rather than a single Cu(I) transition state in the presence of an adventitious, spectator Cu(I). Both Cu(I) catalysts are involved in the bond forming and breaking process. The single Cu(I) transition state is not a stationary point on the potential energy surface. Interestingly, the reductive elimination is rate-determining for the major diastereomeric product, while the Cu(I) migration step is rate-determining for the minor. Thus, while the reaction requires dual Cu(I) activation to proceed, kinetically, the presence of the dual-Cu(I) step is untraceable. The diastereospecificity of this reaction is controlled by the Cu migration step. Suprafacial migration is favored over antarafacial migration due to the distorted Cu π-allyl in the latter.

  13. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  14. HTGR high temperature process heat design and cost status report

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes the status of the studies conducted on the 850 0 C ROT indirect cycle and the 950 0 C ROT direct cycle through the end of Fiscal Year 1981. Volume I provides summaries of the design and optimization studies and the resulting capital and product costs, for the HTGR/thermochemical pipeline concept. Additionally, preliminary evaluations are presented for coupling of candidate process applications to the HTGR system

  15. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I.; Lambri, O.A.; Bozzano, P.B.; Garcia, J.A.; Celauro, C.A.

    2008-01-01

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement

  16. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  17. Task stressfulness moderates the effects of verbal person centeredness on cardiovascular reactivity: a dual-process account of the reactivity hypothesis.

    Science.gov (United States)

    Bodie, Graham D

    2012-01-01

    This study sought to investigate the impact of person-centered comfort on cardiovascular reactivity and to test a recently developed dual-process theory of supportive message outcomes proposing that the impact of supportive communication is moderated by the motivation and ability to attend to message content. Participants (n = 179) completed a public speaking task that served to experimentally manipulate stress. During the preparation period, instant messages containing either low or high person-centered messages or containing no imbedded supportive message were sent. Results indicated that, in line with theoretical predictions, message content did influence mean arterial pressure and heart rate for participants exposed to moderate but not to low or high stress. Results are discussed in terms of the dual-process theory of supportive message outcomes, and the discussion offers both theoretical and practical implications of the research.

  18. Propositional Versus Dual-Process Accounts of Evaluative Conditioning: I. The Effects of Co-Occurrence and Relational Information on Implicit and Explicit Evaluations.

    Science.gov (United States)

    Hu, Xiaoqing; Gawronski, Bertram; Balas, Robert

    2017-01-01

    Evaluative conditioning (EC) is defined as the change in the evaluation of a conditioned stimulus (CS) due to its pairing with a valenced unconditioned stimulus (US). According to propositional accounts, EC effects should be qualified by the relation between the CS and the US. Dual-process accounts suggest that relational information should qualify EC effects on explicit evaluations, whereas implicit evaluations should reflect the frequency of CS-US co-occurrences. Experiments 1 and 2 showed that, when relational information was provided before the encoding of CS-US pairings, it moderated EC effects on explicit, but not implicit, evaluations. In Experiment 3, relational information moderated EC effects on both explicit and implicit evaluations when it was provided simultaneously with CS-US pairings. Frequency of CS-US pairings had no effect on implicit evaluations. Although the results can be reconciled with both propositional and dual-process accounts, they are more parsimoniously explained by propositional accounts.

  19. In defense of the personal/impersonal distinction in moral psychology research: Cross-cultural validation of the dual process model of moral judgment

    Directory of Open Access Journals (Sweden)

    Adam B. Moore

    2011-04-01

    Full Text Available The dual process model of moral judgment (DPM; Greene et al., 2004 argues that such judgments are influenced by both emotion-laden intuition and controlled reasoning. These influences are associated with distinct neural circuitries and different response tendencies. After reanalyzing data from an earlier study, McGuire et al. (2009 questioned the level of support for the dual process model and asserted that the distinction between emotion evoking moral dilemmas (personal dilemmas and those that do not trigger such intuitions (impersonal dilemmas is spurious. Using similar reanalysis methods on data reported by Moore, Clark, and Kane (2008, we show that the personal/impersonal distinction is reliable. Furthermore, new data show that this distinction is fundamental to moral judgment across widely different cultures (U.S. and China and supports claims made by the DPM.

  20. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  1. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  2. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  3. Dual impact of temperature on growth and mortality of marine fish larvae in a shallow estuarine habitat

    Science.gov (United States)

    Arula, Timo; Laur, Kerli; Simm, Mart; Ojaveer, Henn

    2015-12-01

    High individual growth and mortality rates of herring Clupea harengus membras and goby Pomatoschistus spp. larvae were observed in the estuarine habitat of the Gulf of Riga, Baltic Sea. Both instantaneous mortality (0.76-1.05) as well as growth rate (0.41-0.82 mm day-1) of larval herring were amongst highest observed elsewhere previously. Mortality rates of goby larvae were also high (0.57-1.05), while first ever data on growth rates were provided in this study (0.23-0.35 mm day-1). Our study also evidenced that higher growth rate of marine fish larvae did not result in lower mortalities. We suggest that high growth and mortality rates primarily resulted from a rapidly increasing and high (>18 °C) water temperature that masked potential food-web effects. The explanation for observed patterns lies in the interactive manner temperature contributed: i) facilitating prey production, which supported high growth rate and decreased mortalities; ii) exceeding physiological thermal optimum of larvae, which resulted in decreased growth rate and generally high mortalities. Our investigation suggests that the projected climate warming may have significant effect on early life history stages of the dominating marine fish species inhabiting shallow estuaries.

  4. Low temperature stabilization process for production of carbon fiber having structural order

    Science.gov (United States)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie; Tenhaeff, Wyatt Evan; Menchhofer, Paul A.; Paulauskas, Felix Leonard

    2017-08-15

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presence of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.

  5. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91

    Science.gov (United States)

    Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.

  6. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  7. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  8. Chemical interaction of dual-fuel mixtures in low-temperature oxidation, comparing n -pentane/dimethyl ether and n -pentane/ethanol

    KAUST Repository

    Jin, Hanfeng

    2018-03-22

    With the aim to study potential cooperative effects in the low-temperature oxidation of dual-fuel combinations, we have investigated prototypical hydrocarbon (CH) / oxygenated (CHO) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of ϕ = 0.7, at a pressure of p = 970 mbar, and in the temperature range of 450–930 K using electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three pure fuels and mixtures of n-pentane containing 25% and 50% of CHO. Mole fractions and signals of a significant number of species with elemental composition CHO (n = 1–5, x = 0–(n + 2), y = 0–3) were analyzed to characterize the behavior of the mixtures in comparison to that of the individual components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal synergistic interactions between n-pentane and DME, showing a stronger effect on the negative temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons for this behavior were investigated and show several oxygenated intermediates to be involved in enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again involving key OH radical reactions. Although the main focus here is on the experimental results, we have attempted, in a first approximation, to complement the experimental observations by simulations with recent kinetic models. Interesting differences were observed in this comparison for both, fuel consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the experimental results with current

  9. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  10. An analysis of hot plate initial temperature effect on rectangular narrow gap quenching process

    International Nuclear Information System (INIS)

    M-Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan; Nandy Putra

    2012-01-01

    The understanding about thermal management in the event of a severe accident such as the melting nuclear reactor fuel and reactor core, became a priority to maintain the integrity of reactor pressure vessel. Thus the debris will not out from the reactor pressure vessel and resulting impact of more substantial to the environment. One way to maintain the integrity of the reactor pressure vessel was cooling of the excess heat generated due to the accident. To get understanding of this aspect, there search focused on the effect of the initial temperature of the hot plate in the rectangular narrow gap quenching process. The initial temperature effect on quenching process is related to cooling process (thermal management) when the occurrence of a nuclear accident due to loss of coolant accident or severe accident. In order to address the problem, it is crucial to conduct research to get a better understanding of thermal management regarding to nuclear cooling accident. The research focused on determining the rewetting temperature of hot plate cooling on 220°C, 400°C, and 600°C with 0.2 liters/sec cooling water flowrate. Experiments were carried out by injecting 85°C cooling water temperature into the narrow gap at flowrates of 0.2 liters/sec. Data of transient temperature measurements were recorded using a data acquisition system in order to know the rewetting temperature during the quenching process. This study aims to understand the effect of hot plate initial temperature on rewetting during rectangular narrow gap quenching process. The results obtained show that the rewetting point on cooling the hot plate 220°C, 400°C and 600°occurs at varying rewetting temperatures. At 220°C hot plate initial temperature, the rewetting temperature occurs on 220°C. At 400°C hot plate initial temperature, the rewetting temperature occurs on 379.51°C. At 600°C hot plate initial temperature, the rewetting temperature occurs on 426.63°C. Significant differences of hot plate

  11. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); JST-CREST, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Asakura, Yuji [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Yokoyama, Haruki [NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

    2014-06-30

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  12. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    Science.gov (United States)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  13. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    Science.gov (United States)

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  15. Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Han Sheng; Cheng, C.-H.; Shih, H.C.

    2004-01-01

    Aluminum nitride (AlN) films were successfully deposited at room temperature onto p-type (1 0 0) silicon wafers by manipulating argon ion beam voltages in a dual ion beam sputtering (DIBS). X-ray diffraction spectra showed that aluminum nitride films could be synthesized above 800 V. The (0 0 2) orientation was dominant at 800 V, above which the orientation was random. The atomic force microscope (AFM) images displayed a relatively smooth surface with the root-mean-square roughness of 2-3 nm, where this roughness decreased with argon ion beam voltage. The Al 2p 3/2 and N 1s spectra indicated that both the aluminum-aluminum bond and aluminum-nitrogen bond appeared at 600 V, above which only the aluminum-nitrogen bond was detected. Moreover, the atomic concentration in aluminum nitride films was concentrated in aluminum-rich phases in all cases. Nevertheless, the aluminum concentration markedly increased with argon ion beam voltages below 1000 V, above which the concentration decreased slightly. The correlation between the microstructure of aluminum nitride films and argon ion beam voltages is also discussed

  16. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  17. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  18. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kole, A. K.; Kumbhakar, P. [Nanoscience Laboratory, Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India); Tiwary, C. S. [Department of Materials Engineering, Indian Institute of Science (IISc.), Bangalore 560012 (India)

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  19. Massive violent death and contested national mourning in post-authoritarian Chile and Argentina: a sociocultural application of the dual process model.

    Science.gov (United States)

    Robben, Antonius C G M

    2014-01-01

    This article uses the dual process model (DPM) in an analysis of the national mourning of tens of thousands of disappeared in Chile and Argentina by adapting the model from the individual to the collective level where society as a whole is bereaved. Perpetrators are also involved in the national mourning process as members of a bereaved society. This article aims to (a) demonstrate the DPMs significance for the analysis of national mourning in post-conflict societies and (b) explain oscillations between loss orientation and restoration orientation in coping with massive losses that seem contradictory from a grief work perspective.

  20. Studies on the low temperature infrared heat processing of soybeans and maize

    NARCIS (Netherlands)

    Kouzeh Kanani, M.

    1985-01-01

    A modified process for the infrared heat processing of oilseeds and cereal grains at relatively low temperatures is put forward. The process which involves an additional holding step and potentials for saving energy was investigated on a pilot plant on the basis of which a design is proposed for

  1. Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors

    International Nuclear Information System (INIS)

    Wiggins, D.S.; Williams, J.J.

    1977-04-01

    An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others

  2. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    Science.gov (United States)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  3. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    Science.gov (United States)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  4. Temperature effect on protection diode for plasma-process induced charging damage

    NARCIS (Netherlands)

    Wang, Zhichun; Scarpa, A.; Smits, Sander M.; Kuper, F.G.; Salm, Cora

    2002-01-01

    In this paper, the leakage current of different drain-well diodes for plasma-charging protection has been simulated at high temperature. The simulation shows that the high ambient temperature, especially during plasma deposition process, enormously enhances the efficacy of the protection diodes in

  5. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  6. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  7. Permanent antistatic phthalocyanine/epoxy nanocomposites – Influence of crosslinking agent, solvent and processing temperature

    NARCIS (Netherlands)

    Yuan, M.; Brokken-Zijp, J.C.M.; With, de G.

    2010-01-01

    Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and

  8. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  9. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  10. The Electrophysiological Signature of Remember-Know Is Confounded with Memory Strength and Cannot Be Interpreted as Evidence for Dual-process Theory of Recognition.

    Science.gov (United States)

    Brezis, Noam; Bronfman, Zohar Z; Yovel, Galit; Goshen-Gottstein, Yonatan

    2017-02-01

    The quantity and nature of the processes underlying recognition memory remains an open question. A majority of behavioral, neuropsychological, and brain studies have suggested that recognition memory is supported by two dissociable processes: recollection and familiarity. It has been conversely argued, however, that recollection and familiarity map onto a single continuum of mnemonic strength and hence that recognition memory is mediated by a single process. Previous electrophysiological studies found marked dissociations between recollection and familiarity, which have been widely held as corroborating the dual-process account. However, it remains unknown whether a strength interpretation can likewise apply for these findings. Here we describe an ERP study, using a modified remember-know (RK) procedure, which allowed us to control for mnemonic strength. We find that ERPs of high and low mnemonic strength mimicked the electrophysiological distinction between R and K responses, in a lateral positive component (LPC), 500-1000 msec poststimulus onset. Critically, when contrasting strength with RK experience, by comparing weak R to strong K responses, the electrophysiological signal mapped onto strength, not onto subjective RK experience. Invoking the LPC as support for dual-process accounts may, therefore, be amiss.

  11. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Science.gov (United States)

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  12. How the dual process model of human cognition can inform efforts to de-implement ineffective and harmful clinical practices: A preliminary model of unlearning and substitution.

    Science.gov (United States)

    Helfrich, Christian D; Rose, Adam J; Hartmann, Christine W; van Bodegom-Vos, Leti; Graham, Ian D; Wood, Suzanne J; Majerczyk, Barbara R; Good, Chester B; Pogach, Leonard M; Ball, Sherry L; Au, David H; Aron, David C

    2018-02-01

    One way to understand medical overuse at the clinician level is in terms of clinical decision-making processes that are normally adaptive but become maladaptive. In psychology, dual process models of cognition propose 2 decision-making processes. Reflective cognition is a conscious process of evaluating options based on some combination of utility, risk, capabilities, and/or social influences. Automatic cognition is a largely unconscious process occurring in response to environmental or emotive cues based on previously learned, ingrained heuristics. De-implementation strategies directed at clinicians may be conceptualized as corresponding to cognition: (1) a process of unlearning based on reflective cognition and (2) a process of substitution based on automatic cognition. We define unlearning as a process in which clinicians consciously change their knowledge, beliefs, and intentions about an ineffective practice and alter their behaviour accordingly. Unlearning has been described as "the questioning of established knowledge, habits, beliefs and assumptions as a prerequisite to identifying inappropriate or obsolete knowledge underpinning and/or embedded in existing practices and routines." We hypothesize that as an unintended consequence of unlearning strategies clinicians may experience "reactance," ie, feel their professional prerogative is being violated and, consequently, increase their commitment to the ineffective practice. We define substitution as replacing the ineffective practice with one or more alternatives. A substitute is a specific alternative action or decision that either precludes the ineffective practice or makes it less likely to occur. Both approaches may work independently, eg, a substitute could displace an ineffective practice without changing clinicians' knowledge, and unlearning could occur even if no alternative exists. For some clinical practice, unlearning and substitution strategies may be most effectively used together. By taking into

  13. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  14. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  15. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  16. Influence of processing temperature on the rheological behavior of PCL/MMT nanocomposites

    International Nuclear Information System (INIS)

    Marini, Juliano; Beatrice, Cesar A.G.; Favaro, Marcia M.; Bretas, Rosario E.S.; Branciforti, Marcia C.

    2009-01-01

    Polycaprolactone (PCL) is a biodegradable polymer; however, this polymer had low mechanical strength, limiting its applications. The addition of a lamellar silicate (MMT) can alter this behavior, especially when the filler is well dispersed and distributed thru the polymeric matrix. In this work the influence of the processing temperature in the structure of PCL/MMT nanocomposites was studied. The nanocomposites were obtained by melt intercalation in a Haake rheometer at two temperatures: 80 and 120 deg C. Wide angle X-ray analysis showed that the intercalation of the polymer chains into the clay's galleries was not influenced by the processing temperature. However, the steady state and dynamic rheological properties showed that the higher the processing temperature the better the dispersion and distribution of the clay thru the matrix, without having polymer degradation. (author)

  17. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    Science.gov (United States)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  18. Is empathy one of the Big Three? Identifying its role in a dual-process model of ideology and blatant and subtle prejudice

    Science.gov (United States)

    2018-01-01

    In the field of the social psychology of prejudice, John Duckitt's Dual-Process Cognitive-Motivational Model of Ideology and Prejudice has gained a firm grounding over the past decade and a half, while empathy has become one of the most powerful predictors of prejudice, alongside right-wing authoritarianism and social dominance orientation. This study integrates empathy into the dual-process model, exploring the effects of this variable, along with the impact of personality and ideological attitudes, on prejudice in both its blatant and subtle forms. A cross-sectional research design was used to collect data from 260 university students by self-report measures. Despite its cross-sectional nature, a pattern of causal relationships was hypothesized according to experimental and longitudinal findings from previous studies. The path analysis results show that in the model fitted to the data, empathy does not have any direct impact on prejudice, although it plays a significant role in the prediction of prejudice towards a particular immigrant group. On the other hand, the dual-process model is confirmed in the explanation of blatant prejudice and, in a weaker and indirect way, of subtle prejudice; sustaining the distinctive nature of these constructs on some differential predictors and paths. In the discussion, this study proposes that when ideological and personality-based variables are both included in the model, general empathy is not so robust in the explanation of prejudice, since some of the empathetic components might become diluted among other covariates. But even so, its indirect effectiveness through personality and ideological attitudes remains relevant. PMID:29621307

  19. Is empathy one of the Big Three? Identifying its role in a dual-process model of ideology and blatant and subtle prejudice.

    Science.gov (United States)

    Álvarez-Castillo, José Luis; Fernández-Caminero, Gemma; González-González, Hugo

    2018-01-01

    In the field of the social psychology of prejudice, John Duckitt's Dual-Process Cognitive-Motivational Model of Ideology and Prejudice has gained a firm grounding over the past decade and a half, while empathy has become one of the most powerful predictors of prejudice, alongside right-wing authoritarianism and social dominance orientation. This study integrates empathy into the dual-process model, exploring the effects of this variable, along with the impact of personality and ideological attitudes, on prejudice in both its blatant and subtle forms. A cross-sectional research design was used to collect data from 260 university students by self-report measures. Despite its cross-sectional nature, a pattern of causal relationships was hypothesized according to experimental and longitudinal findings from previous studies. The path analysis results show that in the model fitted to the data, empathy does not have any direct impact on prejudice, although it plays a significant role in the prediction of prejudice towards a particular immigrant group. On the other hand, the dual-process model is confirmed in the explanation of blatant prejudice and, in a weaker and indirect way, of subtle prejudice; sustaining the distinctive nature of these constructs on some differential predictors and paths. In the discussion, this study proposes that when ideological and personality-based variables are both included in the model, general empathy is not so robust in the explanation of prejudice, since some of the empathetic components might become diluted among other covariates. But even so, its indirect effectiveness through personality and ideological attitudes remains relevant.

  20. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding