WorldWideScience

Sample records for dual temperature process

  1. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    Science.gov (United States)

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO2-selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  2. New process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high cata-lytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h con-tinuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.

  3. New process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis

    Institute of Scientific and Technical Information of China (English)

    曾健青; TSUBAKINoritatsu; FUJIMOTOKaoru

    2002-01-01

    A new process of low-temperature methanol synthesis from CO/CO2/H2 based on dual-catalysis has been developed. Some alcohols, especially 2-alcohol, were found to have high catalytic promoting effect on the synthesis of methanol from CO hydrogenation. At 443 K and 5 MPa, the synthesis of methanol could process high effectively, resulting from the synergic catalysis of Cu/ZnO solid catalyst and 2-alcohol solvent catalyst. The primary results showed that when 2-butanol was used as reaction solvent, the one-pass average yield and the selectivity of methanol, in 40 h continuous reaction at temperature as low as 443 K and 5 MPa, were high up to 46.51% and 98.94% respectively. The catalytic activity was stable and the reaction temperature was 80 K or so lower than that in current industry synthesis process. This new process hopefully will become a practical method for methanol synthesis at low temperature.

  4. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  5. Influence of Process Temperatures on Blister Creation in Micro Film Insert Molding of a Dual Layer Membrane

    DEFF Research Database (Denmark)

    Wöhner, Timo; R. Whiteside, Ben; Tosello, Guido

    2016-01-01

    In this work the suitability of a dual layer membrane, consisting of a non-woven Polypropylene (PP) support and a membrane layer made out of Polyethylene Terephthalate (PET) for Micro Film Insert Molding (μFIM) was investigated. The emergence of blisters at the surface of the PET-membrane layer...

  6. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process

    Institute of Scientific and Technical Information of China (English)

    Feng Peng; Zhang Qi; Wu Nanjian

    2011-01-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor.The chip tag integrates a temperature sensor,an RF/analog front-end circuit,an NVM memory and a digital baseband in a standard CMOS process.The sensor with a low power sigma-delta (Σ△) ADC is designed to operate in low and high resolution modes.It can not only achieve the target accuracy but also reduce the power consumption and the sensing time.A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip.The 192-bit-NVM tag chip with an area of 1 mm2 is implemented in a 0.18-μm standard CMOS process.The sensitivity of the tag is -10.7 dBm/-8.4 dBm when the sensor is disabled/enabled.It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP.The inaccuracy of the sensor is -0.6 ℃/0.5 ℃ (-1.0 ℃/1.2 ℃) in the operating range from 5 to 15 ℃ in high resolution mode (-30 to 50 ℃ in low resolution mode).The resolution of the sensor achieves 0.02 ℃ (0.18 ℃) in high (low) resolution mode.

  7. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    Science.gov (United States)

    Peng, Feng; Qi, Zhang; Nanjian, Wu

    2011-11-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is -10.7 dBm/-8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is -0.6 °C/0.5 °C (-1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (-30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode.

  8. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  9. Design of dual-phase Fe/Mn/C steel for low-temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, N.J.

    1981-09-01

    An investigation has been made to improve the impact properties of a dual phase Fe/1.5Mn/.06C steel for potential low temperature application. The research involved establishing the microstructure-property relationships, especially with regard to the morphology of the constituents. Dual phase processing was done in two ways, viz., controlled rolling and intercritical annealing of the as-hot-rolled structure.

  10. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  11. Dual processing streams in chemosensory perception

    Directory of Open Access Journals (Sweden)

    Johannes eFrasnelli

    2012-10-01

    Full Text Available Higher order sensory processing follows a general subdivision into a ventral and a dorsal stream for visual, auditory, and tactile information. Object identification is processed in temporal structures (ventral stream, whereas object localization leads to activation of parietal structures (dorsal stream. To examine whether the chemical senses demonstrate a similar dissociation, we investigated odor identification and odor localization in 16 healthy young subjects using functional MRI. We used two odors (1. eucalyptol; 2. a mixture of phenylethanol and carbon dioxide which were delivered to only one nostril. During odor identification subjects had to recognize the odor; during odor localisation they had to detect the stimulated nostril.We used General Linear Model (GLM as a classical method as well as Independent Component Analysis (ICA in order to investigate a possible neuroanatomical dissociation between both tasks. Both methods showed differences between tasks - confirming a dual processing stream in the chemical senses - but revealed complementary results. Specifically, GLM identified the left intraparietal sulcus and the right superior frontal sulcus to be more activated when subjects were localising the odorants. For the same task, ICA identified a significant cluster in the left parietal lobe (paracentral lobule but also in the right hippocampus. While GLM did not find significant activations for odor identification, ICA revealed two clusters (in the left central fissure and the left superior frontal gyrus for this task. These data demonstrate that higher order chemosensory processing shares the general subdivision into a ventral and a dorsal processing stream with other sensory systems and suggest that this is a global principle, independent of sensory channels.

  12. Dual-Process Theories and Cognitive Development: Advances and Challenges

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive…

  13. Carbon dioxide heat pump for dual-temperature drinking fountain

    Institute of Scientific and Technical Information of China (English)

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  14. Dual-processing accounts of reasoning, judgment, and social cognition.

    Science.gov (United States)

    Evans, Jonathan St B T

    2008-01-01

    This article reviews a diverse set of proposals for dual processing in higher cognition within largely disconnected literatures in cognitive and social psychology. All these theories have in common the distinction between cognitive processes that are fast, automatic, and unconscious and those that are slow, deliberative, and conscious. A number of authors have recently suggested that there may be two architecturally (and evolutionarily) distinct cognitive systems underlying these dual-process accounts. However, it emerges that (a) there are multiple kinds of implicit processes described by different theorists and (b) not all of the proposed attributes of the two kinds of processing can be sensibly mapped on to two systems as currently conceived. It is suggested that while some dual-process theories are concerned with parallel competing processes involving explicit and implicit knowledge systems, others are concerned with the influence of preconscious processes that contextualize and shape deliberative reasoning and decision-making.

  15. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  16. Integrated process and dual-function catalyst for olefin epoxidation

    Science.gov (United States)

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of olefin oxides such as propylene oxide without formation of undesired co-products.

  17. Conflict Monitoring in Dual Process Theories of Thinking

    Science.gov (United States)

    De Neys, Wim; Glumicic, Tamara

    2008-01-01

    Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman…

  18. Reasoning on the Autism Spectrum: A Dual Process Theory Account

    Science.gov (United States)

    Brosnan, Mark; Lewton, Marcus; Ashwin, Chris

    2016-01-01

    Dual process theory proposes two distinct reasoning processes in humans, an intuitive style that is rapid and automatic and a deliberative style that is more effortful. However, no study to date has specifically examined these reasoning styles in relation to the autism spectrum. The present studies investigated deliberative and intuitive reasoning…

  19. Reasoning on the Autism Spectrum: A Dual Process Theory Account

    Science.gov (United States)

    Brosnan, Mark; Lewton, Marcus; Ashwin, Chris

    2016-01-01

    Dual process theory proposes two distinct reasoning processes in humans, an intuitive style that is rapid and automatic and a deliberative style that is more effortful. However, no study to date has specifically examined these reasoning styles in relation to the autism spectrum. The present studies investigated deliberative and intuitive reasoning…

  20. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29......-4C. The reaction kinetics is followed by measuring the mass increase of the samples over time. The oxide scale microstructure and chemical composition are investigated by scanning electron microscopy/energy dispersive spectroscopy. The kinetic data follow the parabolic rate law. It is found...... that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications...

  1. IMAGING AND MTI PROCESSING BASED ON DUAL-FREQUENCIES DUAL-APERTURES SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Li Daojing; Wu Yirong

    2009-01-01

    Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper. SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode I, and MTI is completed by the Mode II. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.

  2. Dual Transport Process for Targeted Delivery in Porous Media

    Science.gov (United States)

    Deng, W.; Fan, J.

    2015-12-01

    The targeted delivery in porous media is a promising technology to encapsulate the solute (i.e., the cargo) in colloid-like microcapsules (i.e., the carriers), transport the microcapsules in the targeted location in porous media, and then release the solute. While extensive literatures and applications about the drug delivery in human and animal bodies exist, the targeted delivery using similar delivery carriers in subsurface porous media is not well understood. The dual transport process study is an explorative study for the targeted delivery in porous media. While the colloid transport is dominated by the advection process and the solute transport is dominated by the advection-dispersion, the dual transport process is the process with the first step of carrier transport, which is dominated by advection, and then after the release of cargo, the transport of cargo is dominated by advection-dispersion. By applying the random walk particle tracking (RWPT) approach, we investigate how the carriers transport in porous media and how the cargo release mechanisms affect the cargo distribution for the targeted delivery in various patterns of porous media. The RWPT numerical model will be verified against the experimental results of dual transport process in packed-disk 2D micromodels. The understanding of the mechanism of dual transport process is crucial to achieve the potential applications of targeted delivery in improved oil and gas recovery, CO2 sequestration, environmental remediation, and soil biomediation.

  3. Direct social perception and dual process theories of mindreading.

    Science.gov (United States)

    Herschbach, Mitchell

    2015-11-01

    The direct social perception (DSP) thesis claims that we can directly perceive some mental states of other people. The direct perception of mental states has been formulated phenomenologically and psychologically, and typically restricted to the mental state types of intentions and emotions. I will compare DSP to another account of mindreading: dual process accounts that posit a fast, automatic "Type 1" form of mindreading and a slow, effortful "Type 2" form. I will here analyze whether dual process accounts' Type 1 mindreading serves as a rival to DSP or whether some Type 1 mindreading can be perceptual. I will focus on Apperly and Butterfill's dual process account of mindreading epistemic states such as perception, knowledge, and belief. This account posits a minimal form of Type 1 mindreading of belief-like states called registrations. I will argue that general dual process theories fit well with a modular view of perception that is considered a kind of Type 1 process. I will show that this modular view of perception challenges and has significant advantages over DSP's phenomenological and psychological theses. Finally, I will argue that if such a modular view of perception is accepted, there is significant reason for thinking Type 1 mindreading of belief-like states is perceptual in nature. This would mean extending the scope of DSP to at least one type of epistemic state. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Direct Evidence for a Dual Process Model of Deductive Inference

    Science.gov (United States)

    Markovits, Henry; Brunet, Marie-Laurence; Thompson, Valerie; Brisson, Janie

    2013-01-01

    In 2 experiments, we tested a strong version of a dual process theory of conditional inference (cf. Verschueren et al., 2005a, 2005b) that assumes that most reasoners have 2 strategies available, the choice of which is determined by situational variables, cognitive capacity, and metacognitive control. The statistical strategy evaluates inferences…

  5. Dual-Process Theories of Reasoning: The Test of Development

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…

  6. Process for Operating a Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  7. Reasoning on the Autism Spectrum: A Dual Process Theory Account.

    Science.gov (United States)

    Brosnan, Mark; Lewton, Marcus; Ashwin, Chris

    2016-06-01

    Dual process theory proposes two distinct reasoning processes in humans, an intuitive style that is rapid and automatic and a deliberative style that is more effortful. However, no study to date has specifically examined these reasoning styles in relation to the autism spectrum. The present studies investigated deliberative and intuitive reasoning profiles in: (1) a non-clinical sample from the general population with varying degrees of autism traits (n = 95), and (2) males diagnosed with ASD (n = 17) versus comparisons (n = 18). Taken together, the results suggest reasoning on the autism spectrum is compatible with the processes proposed by Dual Process Theory and that higher autism traits and ASD are characterised by a consistent bias towards deliberative reasoning (and potentially away from intuition).

  8. Commercial Test of Flexible Dual-Riser Catalytic Cracking Process

    Institute of Scientific and Technical Information of China (English)

    Tang Haitao; Wang Longyan; Wang Guoliang; Zhang Lixin; Wei Jialu; Chen Zhenghong; Teng Tiancan; Sun Zhonghang

    2003-01-01

    The technical features and commercial test results of flexible dual-riser fluidized catalytic cracking(FDFCC) process are presented for refiners to choose an efficient process to upgrade FCC naphtha and boostpropylene production in a RFCC unit. The commercial test results indicate that the olefin content of catalyti-25% and RON increased by 0.5-2 units in a RFCC unit. In addition, propylene yield and the production ratioof diesel to gasoline can also be remarkably enhanced in the RFCC unit.

  9. Modification of Banding in Dual-Phase Steels via Thermal Processing

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Thomas, L. S.; Bos, C.

    2014-01-01

    The potential to utilize controlled thermal processing to minimize banding in a DP780 steel with 2 wt pct Mn was evaluated on samples processed on a Gleeble® 3500 thermomechanical processing simulator. All processing histories were selected to result in final dual-phase steel microstructures...... simulating microstructures achievable during annealing of initially cold rolled sheet. Strip samples were processed to evaluate the effects of heating rate, annealing time, annealing temperature, and cooling rate. The degree of banding in the final microstructures was evaluated with standard light optical...

  10. Temperature measurement of supercooled droplet in icing phenomenon by means of dual-luminescent imaging

    Science.gov (United States)

    Tanaka, M.; Morita, K.; Mamori, H.; Fukushima, N.; Yamamoto, M.

    2017-08-01

    The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.

  11. Nonword reading: comparing dual-route cascaded and connectionist dual-process models with human data.

    Science.gov (United States)

    Pritchard, Stephen C; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-10-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither model has been appropriately tested for nonword reading pronunciation accuracy to date. We argue that empirical data on the nonword reading pronunciation of people is the ideal benchmark for testing. Data were gathered from 45 Australian-English-speaking psychology undergraduates reading aloud 412 nonwords. To provide contrast between the models, the nonwords were chosen specifically because DRC and CDP+ disagree on their pronunciation. Both models failed to accurately match the experiment data, and both have deficiencies in nonword reading performance. However, the CDP+ model performed significantly worse than the DRC model. CDP++, the recent successor to CDP+, had improved performance over CDP+, but was also significantly worse than DRC. In addition to highlighting performance shortcomings in each model, the variety of nonword responses given by participants points to a need for models that can account for this variety.

  12. An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation.

    Science.gov (United States)

    Dong, Xueliang; Ortiz Landeros, José; Lin, Y S

    2013-10-25

    For the first time, a tubular asymmetric ceramic-carbonate dual phase membrane was prepared by a centrifugal casting technique and used for high temperature CO2 separation. This membrane shows high CO2 permeation flux and permeance.

  13. Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making

    NARCIS (Netherlands)

    Glöckner, A.; Witteman, C.L.M.

    2010-01-01

    Intuitive-automatic processes are crucial for making judgements and decisions. The fascinating complexity of these processes has attracted many decision researchers, prompting them to start investigating intuition empirically and to develop numerous models. Dual-process models assume a clear distinc

  14. Ambient temperature-independent dual-band mid-infrared radiation thermometry.

    Science.gov (United States)

    Lü, You; He, Xin; Wei, Zhong-Hui; Sun, Zhi-Yuan; Chang, Song-Tao

    2016-03-20

    For temperature measurements of targets at low temperatures, dual-band radiation thermometry using mid-infrared detectors has been investigated extensively. However, the accuracy is greatly affected by the reflected ambient radiation and stray radiation, which depend on the ambient temperature. To ensure measurement accuracy, an improved dual-band measurement model is established by considering the reflected ambient radiation and the stray radiation. The effect of ambient temperature fluctuation on temperature measurement is then further analyzed in detail. Experimental results of measuring a gray-body confirm that the proposed method yields high accuracy at varying ambient temperatures. This method provides a practical approach to remove the effect of ambient temperature fluctuations on temperature measurements.

  15. Influence of notch orientation and temperature on the impact behavior of a dual hardness steel composite

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.P. [Seção de Engenharia Mecânica e de Materiais/Instituto Militar de Engenharia/ Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Chawla, K.K. [Department of Materials Science and Engineering/The University of Alabama at Birmingham/Birmingham, AL 35294 (United States); Miguez Suarez, J.C., E-mail: jmiguez@ime.eb.br [Seção de Engenharia Mecânica e de Materiais/Instituto Militar de Engenharia/ Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-09-15

    The need for materials with good characteristics for critical applications, such as in defense and aerospace, has led to the development of new metallic materials. In the present work the impact fracture behavior of a dual hardness steel composite was studied in two geometries, “crack arrester” and “crack divider”. The composite was produced by forging and rolling followed by treatments of quenching and tempering and then annealing. The composite was characterized by optical microscopy as well as hardness, microhardness, tensile and impact tests. The failure mechanisms in impact at different temperatures were analyzed by scanning electron microscopy. The results showed that the mechanical behavior was significantly affected by the heat treating processes, with higher impact resistance associated with the crack arrester orientation. These results are analyzed in terms of the state of stress at the crack tip.

  16. When parsimony is not enough: considering dual processes and dual levels of influence in sexual decision making.

    Science.gov (United States)

    Rendina, H Jonathon

    2015-10-01

    The literature on sexual decision making that has been used to understand behaviors relevant to HIV and STI risk has relied primarily on cognitive antecedents of behavior. In contrast, several prominent models of decision making outside of the sexual behavior literature rely on dual process models, in which both affective and cognitive processing are considered as important precursors to behavior. Moreover, much of the literature on sexual behavior utilizes individual-level traits and characteristics to predict aggregated sexual behavior, despite decision making itself being a situational or event-level process. This article proposes a framework for understanding sexual decision making as the result of dual processes (affective and cognitive) operating at dual level of influence (individual and situational). Finally, this article ends with a discussion of the conceptual and methodological benefits and challenges to its use and future directions for research.

  17. When parsimony is not enough: Considering dual processes and dual levels of influence in sexual decision making

    Science.gov (United States)

    Rendina, H. Jonathon

    2015-01-01

    The literature on sexual decision making that has been used to understand behaviors relevant to HIV and STI risk has relied primarily on cognitive antecedents of behavior. In contrast, several prominent models of decision making outside of the sexual behavior literature rely on dual process models, in which both affective and cognitive processing are considered important precursors to behavior. Moreover, much of the literature on sexual behavior utilizes individual-level traits and characteristics to predict aggregated sexual behavior, despite decision making itself being a situational or event-level process. This paper proposes a framework for understanding sexual decision making as the result of dual processes (affective and cognitive) operating at dual level of influence (individual and situational). Finally, the paper ends with a discussion of the conceptual and methodological benefits and challenges to its use and future directions for research. PMID:26168978

  18. Dual Control with Active Learning using Gaussian Process Regression

    CERN Document Server

    Alpcan, Tansu

    2011-01-01

    In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (identification, exploration) and control (optimization, exploitation) necessitates an active learning approach for iteratively selecting the control actions which concurrently provide the data points for system identification. This paper presents a dual control approach where the information acquired at each control step is quantified using the entropy measure from information theory and serves as the training input to a state-of-the-art Gaussian process regression (Bayesian learning) method. The explicit quantification of the information obtained from each data point allows for iterative optimization of both identifica...

  19. Experts’ Misinterpretation of Box Plots – a Dual Processing Approach

    Directory of Open Access Journals (Sweden)

    Stephanie Lem

    2014-11-01

    Full Text Available Recent studies have shown that students often misinterpret the area of the box in box plots as representing the frequency or proportion of observations in that interval, while it actually represents density. This misinterpretation has been shown to be based on the saliency of this area and can be explained by heuristic reasoning as defined by dual process theories. In this study we tested whether expert users of box plots also display this misinterpretation and show signs of the same heuristic reasoning as found in students. Using a reaction time test, we found signs of heuristic reasoning in experts, both with respect to accuracy and reaction times. If even experts have difficulty interpreting box plots, one can question whether these are an appropriate form of representation to use when reporting data and deserve the prominent place they currently have in the statistics curriculum.

  20. Infants' understanding of everyday social interactions: a dual process account.

    Science.gov (United States)

    Gredebäck, Gustaf; Melinder, Annika

    2010-02-01

    Six- and 12-month-old infant's eye movements were recorded as they observed feeding actions being performed in a rational or non-rational manner. Twelve-month-olds fixated the goal of these actions before the food arrived (anticipation); the latency of these gaze shifts being dependent (r=.69) on infants life experience being feed. In addition, 6- and 12-month-olds dilated their pupil during observation of non-rational feeding actions. This effect could not be attributed to light differences or differences in familiarity, but was interpreted to reflect sympathetic-like activity and arousal caused by a violation of infant's expectations about rationality. We argue that evaluation of rationality requires less experience than anticipations of action goals, suggesting a dual process account of preverbal infants' everyday action understanding.

  1. Wavelength influence in sub-pixel temperature retrieval using the dual-band technique

    Directory of Open Access Journals (Sweden)

    M. F. Buongiorno

    2006-06-01

    Full Text Available The thermal model proposed by Crisp and Baloga (1990 for active lava flows considers thermal flux as a function of the fractional area of two thermally distinct radiant surfaces. In this model, the larger surface area corresponds to the cooler crust of the flow and the other, much smaller to fractures in the crust. These cracks temperature is much higher than the crust one and approaches the temperature of the molten or plastic interior flow. The dual-band method needs two distinct SWIR (short wave infrared bands to formulate a two equations system from the simultaneous solution of the Planck equation in each band. The system solutions consist in the crust temperature and the fractional area of the hot component. The dual band technique originally builds on data acquired by sensors (such as Landsat TM with two SWIR bands only. The use of hyperspectral imaging spectrometers allows us to test the dual-band technique using different wavelengths in the SWIR range of the spectrum. DAIS 7915 is equipped with 40 bands into the range 1.54-2.49 nm which represent potential input in dual band calculation. This study aims to compare results derived by inserting assorted couples of wavelengths into the equation system. The analysis of these data provides useful information on dual-band technique accuracy.

  2. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    Science.gov (United States)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  3. Measurement and research on improving the performance of dual-temperature refrigerator system

    Science.gov (United States)

    Jwo, Ching-Song; Lin, Ming-Wei; Lin, Chien-Yu; Hsu, Ching-Wei; Chen, Sih-Li

    2010-08-01

    This study presents a "cold-stored liquid-vapor heat exchanger" to improve the performance of dual-temperature refrigerator system, for the installation of "cold-stored liquid-vapor heat exchanger" to measure the improving the performance of system. The study designs four different experimental models for making analytical discussion, and these models include: Model-A, dual-temperature refrigerator system (control group); Model-B, electronic expansion valve, which replaces mechanical evaporating pressure regulating valve; Model-C, dual-temperature refrigerator system equipped with a "traditional liquid heat exchanger" and Model-D, dual-temperature refrigerator system equipped with an "cold-stored liquid-vapor heat exchanger" developed by the study. As known from analysis of the experimental data, under the operation of Model-B, the overheating situation at the return conduit of medium-temperature evaporator can be effectively controlled. Furthermore, the model can enhance the refrigeration speed, and improve the problems of accumulation of refrigerator oil as well as the shutdown and instability of pump appeared in traditional evaporating pressure regulating valve. After making analysis and comparison under the operation of Model-C, the COP of dual-temperature refrigerator is found improved by around 21.7%. When experimental analysis and comparison are made under the operation of Model-D, it is found that air-cooled liquid-gas heat exchanger can effectively provide better overcooling degree, and this device can improve the exhaust of compressor and excessively high temperature of machine shell. Eventually, the overall COP can be effectively improved by around 29.5%.

  4. A dual measurement method of strain and temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-li; SUN Wei-min; ZHANG Cong; LIU Zhi-hai; JIANG Fu-qiang; ZHANG Yang

    2007-01-01

    With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious.The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose,because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.

  5. A dual-route approach to orthographic processing

    Directory of Open Access Journals (Sweden)

    Jonathan eGrainger

    2011-04-01

    Full Text Available In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint, and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint. These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes and for the sublexical translation of print to sound (multi-letter graphemes.

  6. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    Science.gov (United States)

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  7. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  8. Comment on "Dual path integral representation for finite temperature quantum field theory"

    CERN Document Server

    Kazinski, P O

    2008-01-01

    I show that the novel dual path integral representation for finite temperature quantum field theory proposed in [Phys. Rev. D 77, 105030 (2008), arXiv:0803.1667 ] is a well-known representation of quantum mechanics in terms of symbols of operators.

  9. Dual-Phase Glass Ceramic: Structure, Dual-Modal Luminescence, and Temperature Sensing Behaviors.

    Science.gov (United States)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhou, Xiangzhi; Yu, Yunlong; Zhong, Jiasong; Ding, Mingye; Ji, Zhenguo

    2015-09-02

    Yb(3+)/Er(3+)/Cr(3+) triply doped transparent bulk glass ceramic containing orthorhombic YF3 and cubic Ga2O3 nanocrystals was fabricated by a melt-quenching route to explore its possible application in optical thermometry with high spatial and temperature resolution. It was experimentally observed that Yb(3+)/Er(3+) ions incorporated into the precipitated YF3 nanophase, while Cr(3+) ions partitioned into the crystallized Ga2O3 nanophase after glass crystallization. Importantly, such spatial isolation strategy efficiently suppressed adverse energy transfer among different active ions. As a consequence, intense green anti-Stokes luminescence originated from Er(3+): (2)H11/2,(4)S3/2 → (4)I15/2 transitions, and deep-red Stokes luminescence transitions assigned to Cr(3+): (2)E → (4)A2 radiation were simultaneously realized. Impressively, the intermediate crystal-field environment for Cr(3+) in Ga2O3 made it possible for lifetime-based temperature sensing owing to the competition of radiation transitions from the thermally coupled Cr(3+) (2)E and (4)T2 excited states. In the meantime, the low-phonon-energy environment for Er(3+) in YF3 was beneficial for upconversion fluorescence intensity ratio-based temperature sensing via thermal population between the (2)H11/2 state and (4)S3/2 state. The Boltzmann distribution theory and the two-level kinetic model were adopted to interpret these temperature-dependent luminescence of Er(3+) and Cr(3+), respectively, which gave the highest temperature sensitivities of 0.25% K(-1) at 514 K for Er(3+) and 0.59% K(-1) at 386 K for Cr(3+).

  10. Concepts, Perception and the Dual Process Theories of Mind

    Directory of Open Access Journals (Sweden)

    Marcello Frixione

    2014-12-01

    Full Text Available In this article we argue that the problem of the relationships between concepts and perception in cognitive science is blurred by the fact that the very notion of concept is rather confused. Since it is not always clear exactly what concepts are, it is not easy to say, for example, whether and in what measure concept possession involves entertaining and manipulating perceptual representations, whether concepts are entirely different from perceptual representations, and so on. As a paradigmatic example of this state of affairs, we will start by taking into consideration the distinction between conceptual and nonconceptual content. The analysis of such a distinction will lead us to the conclusion that concept is a heterogeneous notion. Then we shall take into account the so called dual process theories of mind; this approach also points to concepts being a heterogeneous phenomenon: different aspects of conceptual competence are likely to be ascribed to different types of systems. We conclude that without a clear specification of what concepts are, the problem of the relationships between concepts and perception is somewhat ill-posed.

  11. Spatially distributed fiber sensor with dual processed outputs

    Science.gov (United States)

    Xu, X.; Spillman, William B., Jr.; Claus, Richard O.; Meissner, K. E.; Chen, K.

    2005-05-01

    Given the rapid aging of the world"s population, improvements in technology for automation of patient care and documentation are badly needed. We have previously demonstrated a 'smart bed' that can non-intrusively monitor a patient in bed and determine a patient's respiration, heart rate and movement without intrusive or restrictive medical measurements. This is an application of spatially distributed integrating fiber optic sensors. The basic concept is that any patient movement that also moves an optical fiber within a specified area will produce a change in the optical signal. Two modal modulation approaches were considered, a statistical mode (STM) sensor and a high order mode excitation (HOME) sensor. The present design includes an STM sensor combined with a HOME sensor, using both modal modulation approaches. A special lens system allows only the high order modes of the optical fiber to be excited and coupled into the sensor. For handling output from the dual STM-HOME sensor, computer processing methods are discussed that offer comprehensive perturbation analysis for more reliable patient monitoring.

  12. A mechanical cooler for dual-temperature applications

    Science.gov (United States)

    Gully, W.; Carrington, H.; Kiehl, W.; Byrne, Kevin

    1998-01-01

    Ball Aerospace has been developing Stirling cycle mechanical cryocoolers specifically for space applications. These coolers are special in that they are designed from the beginning for power efficiency, high reliability, and compatibility with sensitive instruments. We have delivered several of these coolers to NASA Goddard Space Flight Center, and are currently assembling one for the High Resolution Dynamics Limb Sounder (HIRDLS) program. In our current research effort, funded by the Ballistic Missile Defense Organization (BMDO), we are tailoring our basic design to new requirements from the Air Force Research Laboratory and its customers. We describe our success in optimizing a cooler to efficiently provide refrigeration at two different temperatures simultaneously. This two-temperature application requires 0.4 W of cooling at 35 K, and 0.6 W of cooling at 60 K. We have met these requirements with an input power of approximately 70 W from a dc source with a breadboard version of the cooler. We expect to deliver the protoflight version of this cooler to the Air Force Research Laboratory in January 1998.

  13. Dual-responsive capsules with tunable low critical solution temperatures and their loading and release behavior.

    Science.gov (United States)

    Ma, Zhiyuan; Jia, Xin; Hu, Jiamei; Zhang, Guoxiang; Zhou, Feng; Liu, Zhiyong; Wang, Heyun

    2013-05-14

    Dual-responsive capsules sensitive to pH and temperature changes were successfully prepared by grafting random copolymer brushes of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA) from polydopamine (Pdop)-coated SiO2 via a surface-initiated atom-transfer radical polymerization (SI-ATRP) method with subsequent removal of the SiO2 core. The uptake and release properties of the resulting capsules are highly affected by changes in the pH values and temperature of the solution. The capsules can take up cationic dye rhodamine 6G (Rh6G) at high pH and T LCST. In contrast, the capsules can release Rh6G at pH < 7 and temperature below the LCST, but release is less efficient under the opposite conditions. This dual-responsive property was also observed for the anionic dye methyl orange.

  14. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  15. Effect of temperature gradient on heavy quark anti-quark potential using gravity dual model

    CERN Document Server

    Ganesh, S

    2016-01-01

    The Quark-gluon plasma (QGP) is an expanding fireball, with finite dimensions. Given the finite dimensions, the temperature would be highest at the center, and close to the critical temperature, $T_c$, at the boundary, giving rise to a temperature gradient inside the QGP. A heavy quark anti-quark pair immersed in the QGP medium would see this temperature gradient. The effect of the temperature gradient on the quark anti-quark potential is analyzed using a gravity dual model. The resulting modification to the potential due to the temperature gradient is seen to have a $L^{-2}$ correction term. This could be a possible fallout of the breaking of conformal invariance at finite temperature.

  16. Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation.

    Science.gov (United States)

    Lu, Ping; Wang, Zinan; Luo, Rongya; Zhao, Dayu; Peng, Chao; Li, Zhengbin

    2015-04-15

    Polarization nonreciprocity (PN) is one of the most critical factors that degrades the performance of interferometric fiber-optic gyroscopes (IFOGs), particularly under varying temperature. We present an experimental investigation of PN error suppression in a dual-polarization IFOG. Both experimental results and theoretical analysis indicate that the PN errors of the two orthogonally polarized light waves always have opposite signs that can be effectively compensated despite the temperature variation. As a result, the long-term stability of the IFOG has been significantly improved. This study is promising for reducing the temperature fragility of IFOGs.

  17. Design trends in low temperature gas processing

    Energy Technology Data Exchange (ETDEWEB)

    White, W.E.; Battershell, D.D.

    1966-01-01

    The following basic trends reflected in recent design of low-temperature gas processing are discussed: (1) higher recovery levels of light hydrocarbon products; (2) lower process temperatures and lighter absorption oils; (3) increased thermodynamic efficiencies; (4) automation; (5) single rather than multiple units; and (6) prefabrication and preassembly of the operating unit.

  18. Synthesis of multi-hydroxyl and sulfonyl dual-functionalized room temperature ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Guo Yang Zhu; Rong Wang; Guo Hua Liu; Li Qun Xu; Bei Zhang; Xia Qin Wu

    2007-01-01

    Starting from the hydroxylamine (dimethyl amino ethanol, triethanolamine) and 1,3-propane sultone, a series of hydroxyl and sulfonyl dual-functionalized zwitterionic salts and corresponding acidic room temperature ionic liquids have been synthesized.The hydroxyl groups of the synthesized substances were confirmed by the 1H NMR measurement.These zwitterionic salts and ionic liquids may be used for synthesizing other functionalized ionic liquids or ionic liquid-polymer (polyelectrolyte).

  19. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, D.; Barman, P. B.; Hazra, S. K., E-mail: surajithazra@yahoo.co.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh-173234 (India); Dutta, D. [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); Kumar, M.; Som, T. [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  20. Cholesteric liquid crystalline materials with a dual circularly polarized light reflection band fixed at room temperature.

    Science.gov (United States)

    Agez, Gonzague; Mitov, Michel

    2011-05-26

    An unpolarized normal-incidence light beam reflected by a cholesteric liquid crystal is left- or right-circularly polarized, in the cholesteric temperature range. In this article, we present a novel approach for fabricating a cholesteric liquid crystalline material that exhibits reflection bands with both senses of polarization at room temperature. A cholesteric liquid crystal that presents a twist inversion at a critical temperature T(c) is blended with a small quantity of photopolymerizable monomers. Upon ultraviolet irradiation above T(c), the liquid crystal becomes a polymer-stabilized liquid crystal. Below T(c), the material reflects a dual circularly polarized band in the infrared. By quenching the experimental cell at a temperature below the blend's melting point, the optical properties of the material in an undercooled state are conserved for months at room temperature, which is critical to potential applications such as heat-repelling windows and polarization-independent photonic devices.

  1. Application of the dual reciprocity boundary element method for numerical modelling of solidification process

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.

  2. Coherent multiscale image processing using dual-tree quaternion wavelets.

    Science.gov (United States)

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  3. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    2012-01-01

    In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...

  4. Hybrid DPWM with Process and Temperature Calibration

    Science.gov (United States)

    Lu, Jing

    In this thesis, a 12-bit high resolution, power and area efficiency hybrid DPWM with process and temperature calibration is proposed for DPWM controller IC for DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential segmented tapped delay line structure and a 6-bit counter-comparator structure, resulting in a power and area saving solution. Furthermore, the 6-bit differential segmented delay line structure serves as the clock to the high 6-bit counter-comparator structure, thus a high frequency clock is eliminated and power is significantly saved. In order to have simple delay cell and flexible delay time controllability, voltage controlled inverter is adopted to build the differential delay cell, which allows fine-tuning of the delay time. The process and temperature calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs, and a lookup table. The monitor circuits sense the process and temperature variations, and the flash ADC converts the data into digital code. The lookup table combines both the process and the temperature digital information and provides an appropriate value to the control voltage of the differential delay cell. The complete circuits design has been verified under different corners of CMOS 0.11um process technology node.

  5. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  6. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Science.gov (United States)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; Vendra, V. K.; Woodbury, C.; Hari, P.; Roberts, K. P.; Jones, A. D., Jr.

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  7. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    Science.gov (United States)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  8. Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

    Indian Academy of Sciences (India)

    Sushil Kumar Pandey; Saurabh Kumar Pandey; Vishnu Awasthi; Ashish Kumar; Uday P Deshpande; Mukul Gupta; Shaibal Mukherjee

    2014-08-01

    We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on -type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ∼ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

  9. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory

    Directory of Open Access Journals (Sweden)

    Thierry Pelaccia

    2011-03-01

    Full Text Available Context. Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. It is considered as the physician's most critical competence, and has been widely studied by physicians, educationalists, psychologists and sociologists. Since the 1970s, many theories about clinical reasoning in medicine have been put forward.Purpose. This paper aims at exploring a comprehensive approach: the “dual-process theory”, a model developed by cognitive psychologists over the last few years.Discussion. After 40 years of sometimes contradictory studies on clinical reasoning, the dual-process theory gives us many answers on how doctors think while making diagnoses and decisions. It highlights the importance of physicians’ intuition and the high level of interaction between analytical and non-analytical processes. However, it has not received much attention in the medical education literature. The implications of dual-process models of reasoning in terms of medical education will be discussed.

  10. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  11. The temperature dependence of single-event transients in 90-nm CMOS dual-well and triple-well NMOSFETs

    Institute of Scientific and Technical Information of China (English)

    Li Da-Wei; Qin Jun-Rui; Chen Shu-Ming

    2013-01-01

    This paper investigates the temperature dependence of single-event transients (SETs) in 90-nm complementary metat-oxide semiconductor (CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors (NMOSFETs).Technology computer-aided design (TCAD) three-dimensional (3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55 ℃C to 125 ℃C,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.

  12. Dual-Process Theories of Reasoning: Contemporary Issues and Developmental Applications

    Science.gov (United States)

    Evans, Jonathan St. B. T.

    2011-01-01

    In this paper, I discuss the current state of theorising about dual processes in adult performance on reasoning and decision making tasks, in which Type 1 intuitive processing is distinguished from Type 2 reflective thinking. I show that there are many types of theory some of which distinguish modes rather than types of thinking and that…

  13. Dual Systems Competence [Image Omitted] Procedural Processing: A Relational Developmental Systems Approach to Reasoning

    Science.gov (United States)

    Ricco, Robert B.; Overton, Willis F.

    2011-01-01

    Many current psychological models of reasoning minimize the role of deductive processes in human thought. In the present paper, we argue that deduction is an important part of ordinary cognition and we propose that a dual systems Competence [image omitted] Procedural processing model conceptualized within relational developmental systems theory…

  14. Using Dual-Task Methodology to Dissociate Automatic from Nonautomatic Processes Involved in Artificial Grammar Learning

    Science.gov (United States)

    Hendricks, Michelle A.; Conway, Christopher M.; Kellogg, Ronald T.

    2013-01-01

    Previous studies have suggested that both automatic and intentional processes contribute to the learning of grammar and fragment knowledge in artificial grammar learning (AGL) tasks. To explore the relative contribution of automatic and intentional processes to knowledge gained in AGL, we utilized dual-task methodology to dissociate automatic and…

  15. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  16. Dual Weighted Markov Branching Processes%对偶加权Markov分支过程

    Institute of Scientific and Technical Information of China (English)

    蔡雨; 李扬荣

    2008-01-01

    研究对偶加权Markov分支过程的正则性、唯一性、单调性和Feller性, 得到了判断这些性质的充要以及充分或必要条件.%This paper focuses on discussing some basic properties of the dual weighted Markov branching processes which are by definition of a Siegmund's pre-dual of some weighted Markov branching processes. The regularity and uniqueness criteria, which are very easy to verify, are established. And the Feller property and monotonicity are obtained.

  17. A dual-mode proximity sensor with integrated capacitive and temperature sensing units

    Science.gov (United States)

    Qiu, Shihua; Huang, Ying; He, Xiaoyue; Sun, Zhiguang; Liu, Ping; Liu, Caixia

    2015-10-01

    The proximity sensor is one of the most important devices in the field of robot application. It can accurately provide the proximity information to assistant robots to interact with human beings and the external environment safely. In this paper, we have proposed and demonstrated a dual-mode proximity sensor composed of capacitive and resistive sensing units. We defined the capacitive type proximity sensor perceiving the proximity information as C-mode and the resistive type proximity sensor detecting as R-mode. Graphene nanoplatelets (GNPs) were chosen as the R-mode sensing material because of its high performance. The dual-mode proximity sensor presents the following features: (1) the sensing distance of the dual-mode proximity sensor has been enlarged compared with the single capacitive proximity sensor in the same geometrical pattern; (2) experiments have verified that the proposed sensor can sense the proximity information of different materials; (3) the proximity sensing capability of the sensor has been improved by two modes perceive collaboratively, for a plastic block at a temperature of 60 °C: the R-mode will perceive the proximity information when the distance d between the sensor and object is 6.0-17.0 mm and the C-mode will do that when their interval is 0-2.0 mm additionally two modes will work together when the distance is 2.0-6.0 mm. These features indicate our transducer is very valuable in skin-like sensing applications.

  18. Dual frequency microstrip antenna sensor for water content measurements independent of temperature variation

    Science.gov (United States)

    Ghretli, Mohamed; Khalid, Kaida; Valeriu Grozescu, Ionel; Sahri, Hamami; Abbas, Zulkifly

    2007-04-01

    Temperature variation causes errors in all indirect moisture measurement methods. To increase the accuracy of moisture content determination and to reduce the influence of temperature, a two-parameter measurement is used. The method uses the magnitude of reflected waves at two microwave frequencies in the X-band region. A dual frequency sensor system is developed to measure moisture content of dielectric-lossy liquids. The experiment is based on measurements of far-field reflection magnitudes at two different frequencies 8.48 GHz and 10.69 GHz using circular microstrip antennas. A calibration equation is sought that instantly gives temperature-independent moisture content of the samples under consideration. The sensor is integrated with a data acquisition card to record the detected reflection signals. The data analysis and error-correction technique are implemented using custom designed software. The system is tested using diluted rubber latex with moisture content ranging from 39.8% to 91.2% wet basis. The moisture content was predicted with a standard error less than 1.3% for the temperature range of 25 °C to 63 °C compared to the standard oven-drying technique.

  19. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    Science.gov (United States)

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery.

  20. Low temperature waste form process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  1. Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis

    OpenAIRE

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. C...

  2. Effects of temperature and difference-wavelength on mode stability in Dual-λ QD lasers

    Science.gov (United States)

    Shutts, Samuel; Smowton, Peter M.; Krysa, Andrey B.

    2015-03-01

    We employ a device which exploits the properties of InP quantum dots (QD), (emitting from 650-730 nm), to produce simultaneous dual-λ lasing from a single ridge-waveguide comprising two sections. Due to the effects of state-filling in an inhomogeneously broadened QD ensemble, the wavelength is strongly dependent on magnitude of the gain (or cavity loss). Therefore, by altering the loss of each section of the device we are able to demonstrate a large range of difference-wavelengths, up to 63 nm. Here, we test the performance of the device and measure effects of temperature and difference-wavelength on the stability of the two lasing modes.

  3. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model

    Science.gov (United States)

    Reyna, Valerie F.; Brainerd, Charles J.

    2011-01-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals--that reasoning biases emerge with development--have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts…

  4. Development of Dual-Retrieval Processes in Recall: Learning, Forgetting, and Reminiscence

    Science.gov (United States)

    Brainerd, C. J.; Aydin, C.; Reyna, V. F.

    2012-01-01

    We investigated the development of dual-retrieval processes with a low-burden paradigm that is suitable for research with children and neurocognitively impaired populations (e.g., older adults with mild cognitive impairment or dementia). Rich quantitative information can be obtained about recollection, reconstruction, and familiarity judgment by…

  5. A Dual Process Motivational Model of Ambivalent Sexism and Gender Differences in Romantic Partner Preferences

    Science.gov (United States)

    Sibley, Chris G.; Overall, Nickola C.

    2011-01-01

    We tested a dual process motivational model of ambivalent sexism and gender differences in intimate partner preferences. Meta-analysis of 32 samples (16 with men, 16 with women; N = 5,459) indicated that Benevolent Sexism (BS) in women was associated with greater preferences for high-resource partners (r = 0.24), whereas Hostile Sexism (HS) in men…

  6. Cross-training workers in dual resource constrained systems with heterogeneous processing times

    NARCIS (Netherlands)

    Bokhorst, J. A. C.; Gaalman, G. J. C.

    2009-01-01

    In this paper, we explore the effect of cross-training workers in Dual Resource Constrained (DRC) systems with machines having different mean processing times. By means of queuing and simulation analysis, we show that the detrimental effects of pooling (cross-training) previously found in single res

  7. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model

    Science.gov (United States)

    Reyna, Valerie F.; Brainerd, Charles J.

    2011-01-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals--that reasoning biases emerge with development--have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts…

  8. A Dual-Process Model of the Alcohol-Behavior Link for Social Drinking

    Science.gov (United States)

    Moss, Antony C.; Albery, Ian P.

    2009-01-01

    A dual-process model of the alcohol-behavior link is presented, synthesizing 2 of the major social-cognitive approaches: expectancy and myopia theories. Substantial evidence has accrued to support both of these models, and recent neurocognitive models of the effects of alcohol on thought and behavior have provided evidence to support both as well.…

  9. Electroporation of DC-3F cells is a dual process.

    Science.gov (United States)

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-01

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere

  10. Temperature of the Central Processing Unit

    Directory of Open Access Journals (Sweden)

    Ivan Lavrov

    2016-10-01

    Full Text Available Heat is inevitably generated in the semiconductors during operation. Cooling in a computer, and in its main part – the Central Processing Unit (CPU, is crucial, allowing the proper functioning without overheating, malfunctioning, and damage. In order to estimate the temperature as a function of time, it is important to solve the differential equations describing the heat flow and to understand how it depends on the physical properties of the system. This project aims to answer these questions by considering a simplified model of the CPU + heat sink. A similarity with the electrical circuit and certain methods from electrical circuit analysis are discussed.

  11. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    Science.gov (United States)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  12. Plasma diagnostic approach for the low-temperature deposition of silicon quantum dots using dual frequency PECVD

    Science.gov (United States)

    Sahu, B. B.; Yin, Y.; Lee, J. S.; Han, Jeon G.; Shiratani, M.

    2016-10-01

    Although studies of silicon (Si) quantum dots (QDs) were started just a few years ago, progress is noteworthy concerning unique film properties and their potential application for devices. In particular, relating to the Si QD process optimization, it is essential to control the deposition environment by studying the role of plasma parameters and atomic and molecular species in the process plasmas. In this work, we report on advanced material processes for the low-temperature deposition of Si QDs by utilizing radio frequency and ultrahigh frequency dual frequency (DF) plasma enhanced chemical vapor deposition (PECVD) method. DF PECVD can generate a very high plasma density in the range ~9  ×  1010 cm-3 to 3.2  ×  1011 cm-3 at a very low electron temperature (T e) ~ 1.5 to 2.4 eV. The PECVD processes, using a reactive mixture of H2/SiH4/NH3 gases, are carefully studied to investigate the operating regime and to optimize the deposition parameters by utilizing different plasma diagnostic tools. The analysis reveals that a higher ion flux at a higher plasma density on the substrate is conducive to enhancing the overall crystallinity of the deposited film. Along with high-density plasmas, a high concentration of atomic H and N is simultaneously essential for the high growth rate deposition of Si QDs. Numerous plasma diagnostics methods and film analysis tools are used to correlate the effect of plasma- and atomic-radical parameters on the structural and chemical properties of the deposited Si QD films prepared in the reactive mixtures of H2/SiH4/NH3 at various pressures.

  13. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  14. Modeling Low-temperature Geochemical Processes

    Science.gov (United States)

    Nordstrom, D. K.

    2003-12-01

    Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for

  15. Numerical Prediction of Dual-Cooled Annular Fuel Temperature During Control Rod Ejection Accident in OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Eun; In, Wang Kee; Yang, Soo Hyung; Chun, Tae Hyun; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    A dual-cooled annular fuel concept for a light water reactor has been introduced by MIT for a significant amount of reactor power uprate. MIT proposed a 13x13 annular fuel array replacing the 17x17 solid fuel in the Westinghouse 4-loop plant, which could increase the core power up to 50% with the considerable changes in the major reactor components. The Korea Atomic Energy Research Institute (KAERI) is also conducting a research to develop a dual-cooled fuel for its employment in an optimized pressurized water reactor in Korea, OPR1000. The dual-cooled fuel for the OPR1000 is targeted to increase the reactor power by 20% as well as reduce the fuel-pellet temperature by more than 30% without a change to the reactor components other than the fuel. Numerous technical tasks exist for assessing the applicability of the dual cooled annular fuel to the power uprate in the OPR1000. One of the important tasks is to evaluate the performance of the annular fuel during the design basis events. Particularly, the fuel temperature and the peak cladding temperature (PCT) are the important variables during the control rod ejection accident (REA), since the rod averaged fuel enthalpy should be lower than its safety limit. The fuel enthalpy is known to largely depend on the fuel temperature. This paper presents the predictions of the fuel and peak cladding temperatures during the REA. A general-purpose structural code, ABAQUS-6.8 and a computational fluid dynamics code, ANSYS CFX-11.0 were used to perform the numerical analysis of a heat transfer in the annular fuel as well as the solid fuel. The numerical predictions of the fuel maximum temperature (FMT) and PCT are compared against those predicted by a best-estimate system transient analysis code, MARS.

  16. Immediate survival focus: synthesizing life history theory and dual process models to explain substance use.

    Science.gov (United States)

    Richardson, George B; Hardesty, Patrick

    2012-01-01

    Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  17. Immediate Survival Focus: Synthesizing Life History Theory and Dual Process Models to Explain Substance Use

    Directory of Open Access Journals (Sweden)

    George B. Richardson

    2012-10-01

    Full Text Available Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers.

  18. Design of Synthetic Optimizing Neuro Fuzzy Temperature Controller for Dual Screw Profile Plastic Extruder Using Labview

    Directory of Open Access Journals (Sweden)

    Ravi Samikannu

    2011-01-01

    Full Text Available Problem statement: The temperature control in plastic extrusion machine is an important factor to produce high quality plastic products. The first order temperature control system in plastic extrusion comprises of coupling effects, long delay time and large time constants. Controlling temperature is very difficult as the process is multistage process and the system coupled with each other. In order to conquer this problem the system is premeditated with neuro fuzzy controller using LabVIEW. Approach: The existing technique involved is conventional PID controller, Neural controller, mamdani type Fuzzy Logic Controller and the proposed method is neuro fuzzy controller. Results: Manifest feature of the proposed method is smoothing of undesired control signal of conventional PID, neural controller and mamdani type FLC controller. The software incorporated the LabVIEW graphical programming language and MATLAB toolbox were used to design temperature control in plastic extrusion system. Hence neuro fuzzy controller is most powerful approach to retrieve the adaptiveness in the case of nonlinear system. Conclusion: The tuning of the controller was synchronized with the controlled variable and allowing the process at its desired operating condition. The results indicated that the use of proposed controller improve the process in terms of time domain specification, set point tracking and also reject disturbances with optimum stability.

  19. Study of thermocline development inside a dual-media storage tank at the beginning of dynamic processes

    Science.gov (United States)

    Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther

    2017-06-01

    This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.

  20. DualBeam metrology: a new technique for optimizing 0.13-um photo processes

    Science.gov (United States)

    Berger, Steven D.; Desloge, Denis; Virgalla, Robert J.; Davis, Todd; Paxton, Ted A.; Witko, David

    2001-08-01

    A DualBeam Metrology system was investigated for the application of obtaining 3-dimensional (3D) characterization of a 130 nm ground rule KrF photolithography process. Integrated circuit devices are 3-dimensional in structure and, hence, should be best characterized using 3-dimensional techniques to ensure adherence to the design architecture and the desired process window for manufacturing. The need for 3D metrology is further required for the characterization and monitoring of critical layer processes and equipment performance. The metrology used in this investigation is a novel technique for critical feature cross sectioning. The process for DualBeam metrology uses a focused ion beam (FIB) for milling or cutting the cross section through the photoresist or process film. An integrated scanning electron microscope (SEM) provides high-resolution imaging of the features, and a flexible automated metrology package collects and analyzes the data. To demonstrate the feasibility of the technique, critical dimension (CD) data and sidewall angle (SWA) measurements were captured from 130 nm lines and 150 nm contacts at 1:1 densities. The critical criteria for the characterization of the photolithography process window are CD control, depth of focus (DOF), exposure latitude, and feature sidewall angle or profile. Using the DualBeam technique, 2D and 3D data are captured on a single machine platform using a cut, look, and measure routine. A further benefit is the availability of high-resolution cross-sectional SEM images that can be used qualitatively to validate the quantitative data. The results presented here show the performance of this 130 nm ground rule process and the benefits of utilizing this efficient characterization technique.

  1. Hybrid Organic/Inorganic Coatings Through Dual-Cure Processes: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Giulio Malucelli

    2016-03-01

    Full Text Available This paper reviews the current state of the art related to the synthesis and characterization of hybrid organic-inorganic (O/I coatings obtained through the exploitation of dual-cure processes, which involve a photo-induced polymerization followed by a thermal treatment: this latter allows the occurrence of sol-gel reactions of suitable alkoxy precursors already embedded in the UV-curable system. After a brief introduction on hybrid organic-inorganic coatings, the first part of the review is focused on the design and feasibility issues provided by the dual-cure method, emphasizing the possibility of tuning the structure of the final hybrid network on the basis of the composition of the starting liquid mixture. Then, some recent examples of hybrid organic-inorganic networks are thoroughly described, showing their potential advances and the application fields to which they can be addressed.

  2. Design, syntheses, and properties of tunable, dual-stimuli (temperature and pH) responsive copolymers

    Science.gov (United States)

    Manokruang, Kiattikhun

    polymer aggregates for each pH, rather than random/polydisperse structures. TEM images of the collapsed morphology showed polymer aggregates that included numerous small hydrophobic cores, demonstrating that the phase transition of these copolymers involved the formation of micelles with many hydrophobic clusters. Finally, these copolymers were used to prepare hollow microcapsules that provided an exceptional protection and a prolonged stability of an encapsulated matter at acidic conditions (pH 2) and a sharp and fast pH-triggered release at physiological conditions (pH 7). A second series of copolymers was synthesized to compose of ethylene glycol oligomers (EOm) connected in an alternating fashion with hydrophobic alkyls (EEn), (EOm-alt-EE n). Also, terpolymers were synthesized to compose of EOm connected in an alternating fashion with EEn and lysine ethyl ester (LyE), (EOm-alt-(EEn;LyE). Both copolymers and terpolymers demonstrated temperature responsive LCST phase behavior in aqueous solution, whose critical temperature is dictated by the thermodynamics of the hydrophilic/hydrophobic balance. In addition, the terpolymers' LCST can be further tuned by tailoring the ratio of EEn to LyE yielding dual responsive, viz. temperature and pH responsive, polymers upon conversion of LyE to ionizable Lysine (Lys). These last polymers that included ionizable units showed a reversible temperature and pH sensitive phase transition, allowing for such polymers to exhibit a phase separation with both-or-either temperature increase and pH-decrease. The extended phase diagrams, collected from turbidity measurements and modulated differential scanning callorimetry (MDSC), showed that the phase diagram remained a genuine LCST binodal throughout the complete concentration range. In addition, 1H-NMR provided additional strong evidence that the phase transition proceeded without micelle formation. Finally, hydrogels were prepared from EOm-alt-EEn, which exhibited reversible swelling

  3. Elucidation of Dual Magnetic Relaxation Processes in Dinuclear Dysprosium(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets Depending on the Octacoordination Geometry.

    Science.gov (United States)

    Katoh, Keiichi; Aizawa, Yu; Morita, Takaumi; Breedlove, Brian K; Yamashita, Masahiro

    2017-08-07

    When applying single-molecule magnets (SMMs) to spintronic devices, control of the quantum tunneling of the magnetization (QTM) as well as a spin-lattice interactions are important. Attempts have been made to use not only coordination geometry but also magnetic interactions between SMMs as an exchange bias. In this manuscript, dinuclear dysprosium(III) (Dy(III) ) SMMs with the same octacoordination geometry undergo dual magnetic relaxation processes at low temperature. In the dinuclear Dy(III) phthalocyaninato (Pc(2-) ) triple-decker type complex [(Pc)Dy(ooPc)Dy(Pc)] (1) (ooPc(2-) =2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato) with a square-antiprismatic (SAP) geometry, the ground state is divided by the Zeeman effect, and level intersection occurs when a magnetic field is applied. Due to the ground state properties of 1, since the Zeeman diagram where the levels intersect in an Hdc of 2500 Oe, two kinds of QTM and direct processes occur. However, dinuclear Dy(III) -Pc systems with C4 geometry, which have a twist angle (ϕ) of less than 45° do not undergo dual magnetic relaxation processes. From magnetic field and temperature dependences, the dual magnetic relaxation processes were clarified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Causes of Errors in Clinical Reasoning: Cognitive Biases, Knowledge Deficits, and Dual Process Thinking.

    Science.gov (United States)

    Norman, Geoffrey R; Monteiro, Sandra D; Sherbino, Jonathan; Ilgen, Jonathan S; Schmidt, Henk G; Mamede, Silvia

    2017-01-01

    Contemporary theories of clinical reasoning espouse a dual processing model, which consists of a rapid, intuitive component (Type 1) and a slower, logical and analytical component (Type 2). Although the general consensus is that this dual processing model is a valid representation of clinical reasoning, the causes of diagnostic errors remain unclear. Cognitive theories about human memory propose that such errors may arise from both Type 1 and Type 2 reasoning. Errors in Type 1 reasoning may be a consequence of the associative nature of memory, which can lead to cognitive biases. However, the literature indicates that, with increasing expertise (and knowledge), the likelihood of errors decreases. Errors in Type 2 reasoning may result from the limited capacity of working memory, which constrains computational processes. In this article, the authors review the medical literature to answer two substantial questions that arise from this work: (1) To what extent do diagnostic errors originate in Type 1 (intuitive) processes versus in Type 2 (analytical) processes? (2) To what extent are errors a consequence of cognitive biases versus a consequence of knowledge deficits?The literature suggests that both Type 1 and Type 2 processes contribute to errors. Although it is possible to experimentally induce cognitive biases, particularly availability bias, the extent to which these biases actually contribute to diagnostic errors is not well established. Educational strategies directed at the recognition of biases are ineffective in reducing errors; conversely, strategies focused on the reorganization of knowledge to reduce errors have small but consistent benefits.

  5. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    Science.gov (United States)

    Lu, Jue; Okeke, Benedict

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  6. Dual process theory and intermediate effect: are faculty and residents' performance on multiple-choice, licensing exam questions different?

    NARCIS (Netherlands)

    Dong, T.; Durning, S.J.; Artino, A.R.; Vleuten, C.P.M. van der; Holmboe, E.; Lipner, R.; Schuwirth, L.

    2015-01-01

    BACKGROUND: Clinical reasoning is essential for the practice of medicine. Dual process theory conceptualizes reasoning as falling into two general categories: nonanalytic reasoning (pattern recognition) and analytic reasoning (active comparing and contrasting of alternatives). The debate continues r

  7. Development of an i-line attenuated phase shift process for dual inlay interconnect lithography

    Science.gov (United States)

    Sturtevant, John L.; Ho, Benjamin C. P.; Geiszler, Vincent C.; Herrick, Matthew T.; King, Charles F.; Carter, Russell L.; Roman, Bernard J.; Litt, Lloyd C.; Smith, Brad; Strozewski, Kirk J.

    2000-06-01

    The transition from aluminum/oxide to copper/low-k dielectric interconnect technology involves a variety of fundamental changes in the back-end manufacturing process. The most attractive patterning strategy involves the use of a so-called dual inlay approach, which offers lower fabrication costs by the elimination of one inter-level dielectric (ILD) deposition and polish sequence per metal layer. In this paper, the lithographic challenges for dual inlay, including thin-film interference effect, resist bulk effect, and optical proximity effects are reviewed. The use of attenuated phase shift (aPSM) reticles for patterning vias and trenches was investigated, and shown to provide adequate process margin by optimizing the photoresist and exposure tool parameters. Our results indicate that using appropriately sized attenuated phase shift technique increases the photospeed considerably and simultaneously improves the common process window with sufficient sidelobe suppression margin. The cost of ownership tradeoffs between an attenuated PSM I-Line process and a DUV binary process are discussed.

  8. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    Science.gov (United States)

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio.

  9. A MARKOVIAN APPROACH TO DETERMINING PROCESS MEANS WITH DUAL QUALITY CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    Mohammad T.KHASAWNEH; Shannon R.BOWLING; Byung Rae CHO

    2008-01-01

    This paper studies a production system where products are produced continuously and whose specification limits are specified for screening inspection.In this paper,we consider dual quality characteristics and different costs associated with each quality characteristic that falls below a lower specification limit or above an upper specification limit.Due to these different costs,the expected total profit will greatly depend on the process parameters,especially a process mean.This paper develops a Markovian.based model for determining the optimum process means with the consideration of dual quality characteristics in a single-stage system.The proposed model is then illustrated through a numerical example and sensitivity analysis is performed to validate the model.The results showed that the optimum process mean for both quality characteristics have a significant effect on the performance of tlle system.Since the literature survey shows that dealing with multi-quality characteristics is extremely limited,the proposed model,coupled with the Markovian approach,provides a unique contribution to this field.

  10. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  11. Reduction of implantation shadowing effect by dual-wavelength exposure photo process

    CERN Document Server

    Gu, Yiming; Lee Sang Yun; Roche, William; Sturtevant, John

    2003-01-01

    As transistor engineering continues to well below 100 nm length devices, ion implantation process tolerances are making these formerly "non-critical" lithography levels more and more difficult. In order to minimize the channeling effect and to obtain a controllable profile of dopant, an angle implantation is often required. However, a shadow area of resist pattern is always accompanied with an angle implantation. This shadowing effect consumes silicon real estate, and reduces the line edge placement (LEP) tolerances. Therefore, methodologies to reduce the shadowing effect in angled implantation become a critical consideration not only for device engineering but also for photolithography. Based on the model analysis, simulation and experiments, this paper presents an effective novel process utilizing dual-wavelength exposure (DWE) to reduce the shadowing effect. The DWE process is realized by two consecutive exposures for an I-line resist with a DUV stepper/scanner and an I-line stepper. The process leverages ...

  12. Behavioural investigations into uncertainty perception in service exchanges: Lessons from dual-processing theory

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2015-01-01

    by experience and knowledge. Based on dual-processing theory, this paper proposes an analysis method for assessing both explicit and implicit uncertainty perception depending on the individual’s use of tacit or explicit knowledge. Analysing two industrial case studies of service relationships, this paper...... contributes to the literature in three major areas: First, showing the relative importance of the three uncertainty types in inter-organisational relationships complements the literature as existing approaches tend to focus on one uncertainty type such as environmental uncertainty. Second, the different...

  13. A two-dimensional dual-modality tomography technique for a radioactive waste separation process

    Energy Technology Data Exchange (ETDEWEB)

    Cattle, Brian A. [Nexia Solutions Limited, Hinton House, Risley, Warrington WA3 6AS (United Kingdom)]. E-mail: brian.a.cattle@nexiasolutions.com; West, Robert M. [Nexia Solutions University Research Alliance, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2006-09-15

    The monitoring of a waste separation process in the nuclear power industry is considered. Recent advances in gamma ray emission and electrical impedance tomography mean that it is now feasible to unite these two modalities into a novel dual-modality monitoring method. This paper considers a simple model problem for the identification of a boundary between two distinct waste streams in a semi-continuous rotation separator. The simplicity of the problem affords the opportunity to demonstrate the general feasibility of the approach whilst avoiding unnecessary complications.

  14. Beyond inhibition: a dual-process perspective to renew the exploration of binge drinking.

    Science.gov (United States)

    Lannoy, Séverine; Billieux, Joël; Maurage, Pierre

    2014-01-01

    Binge drinking is a widespread alcohol-consumption pattern in youth and is linked to cognitive consequences, mostly for executive functions. However, other crucial factors remain less explored in binge drinking and notably the emotional-automatic processes. Dual-process model postulates that addictive disorders are not only due to impaired reflective system (involved in deliberate behaviors), but rather to an imbalance between under-activated reflective system and over-activated affective-automatic one (involved in impulsive behaviors). This proposal has been confirmed in alcohol-dependence, but has not been tested in binge drinking. The observation of comparable impairments in binge drinking and alcohol-dependence led to the "continuum hypothesis," suggesting similar deficits across different alcohol-related disorders. In this perspective, applying the dual-process model to binge drinking might renew the understanding of this continuum hypothesis. A three-axes research agenda will be proposed, exploring: (1) the affective-automatic system in binge drinking; (2) the systems' interactions and imbalance in binge drinking; (3) the evolution of this imbalance in the transition between binge drinking and alcohol-dependence.

  15. Environmental influences on energy balance-related behaviors: A dual-process view

    Directory of Open Access Journals (Sweden)

    van Mechelen Willem

    2006-05-01

    Full Text Available Abstract Background Studies on the impact of the 'obesogenic' environment have often used non-theoretical approaches. In this journal's debate and in other papers authors have argued the necessity of formulating conceptual models for differentiating the causal role of environmental influences on behavior. Discussion The present paper aims to contribute to the debate by presenting a dual-process view on the environment – behavior relationship. This view is conceptualized in the EnRG framework (Environmental Research framework for weight Gain prevention. In the framework, behavior is postulated to be the result of a simultaneous influence of conscious and unconscious processes. Environmental influences are hypothesized to influence behavior both indirectly and directly. The indirect causal mechanism reflects the mediating role of behavior-specific cognitions in the influence of the environment on behavior. A direct influence reflects the automatic, unconscious, influence of the environment on behavior. Specific personal and behavioral factors are postulated to moderate the causal path (i.e., inducing either the automatic or the cognitively mediated environment – behavior relation. In addition, the EnRG framework applies an energy balance-approach, stimulating the integrated study of determinants of diet and physical activity. Conclusion The application of a dual-process view may guide research towards causal mechanisms linking specific environmental features with energy balance-related behaviors in distinct populations. The present paper is hoped to contribute to the evolution of a paradigm that may help to disentangle the role of 'obesogenic' environmental factors.

  16. Beyond inhibition: A dual-process perspective to renew the exploration of binge drinking.

    Directory of Open Access Journals (Sweden)

    Severine eLannoy

    2014-06-01

    Full Text Available Binge drinking is a widespread alcohol-consumption pattern in youth and is linked to cognitive consequences, mostly for executive functions. However, other crucial factors remain less explored in binge drinking and notably the emotional-automatic processes. Dual-process model postulates that addictive disorders are not only due to impaired reflective system (involved in deliberate behaviours, but rather to an imbalance between under-activated reflective system and over-activated affective-automatic one (involved in impulsive behaviours. This proposal has been confirmed in alcohol-dependence, but has not been tested in binge drinking. The observation of comparable impairments in binge-drinking and alcohol-dependence led to the continuum hypothesis, suggesting similar deficits across different alcohol-related disorders. In this perspective, applying the dual-process model to binge drinking might renew the understanding of this continuum hypothesis. A three-axes research agenda will be proposed, exploring: (1 the affective-automatic system in binge drinking; (2 the systems’ interactions and imbalance in binge drinking; (3 the evolution of this imbalance in the transition between binge drinking and alcohol-dependence.

  17. More evidence for a dual-process model of conditional reasoning.

    Science.gov (United States)

    Markovits, Henry; Forgues, Hugues Lortie; Brunet, Marie-Laurence

    2012-07-01

    Many studies have shown that the deductive inferences that people make have global properties that reflect the statistical information implicit in the premises. This suggests that such reasoning can be explained by a single, underlying probabilistic model. In contrast, the dual process model of conditional reasoning (Verschueren, Schaeken, & d'Ydewalle, 2005b) proposes that people can use either a logical, counterexample-based strategy or a probabilistic one. In two studies, we presented reasoners with sequences of affirmation-of-the-consequent inferences that differed with respect to the statistical properties of the premises, either explicitly or implicitly. As predicted by the dual-process model, an analysis of individual response patterns showed the presence of two distinct strategies, with use of the counterexample strategy being associated with higher levels of abstract-reasoning competence. Use of the counterexample strategy was facilitated by the explicit presentation of counterexample information. In a further study, we then examined explicitly probabilistic inferences. This study showed that although most reasoners made statistically appropriate inferences, the ability to make more-accurate inferences was associated with higher levels of abstract reasoning competence. These results show that deductive inferential reasoning cannot be explained by a single, unitary process and that any analysis of reasoning must consider individual differences in strategy use.

  18. 蛇管与夹套冷却CSTR温度双重控制%Temperature dual control of CSTR with coil cooler and jacket cooler

    Institute of Scientific and Technical Information of China (English)

    王再英; 王正宇

    2012-01-01

    The CSTR is important chemical industrys. The temperature dual temperature control system solution is proposed for CSTR with coil cooling and jacket cooling after researching the insufficiency the single loop control using only one manipulating variable and to be incapable satisfy the dynamic and static performance simultaneity. Under the dual control system, the coil cooler eliminates quickly the error and the temperature returns to set value as soon as the CSTR temperature error appear, then the coil cooler load variety for the CSTR cooling is replaced gradually by the more efficient jacket cooler, namely, CSTR temperature is controlled by the manipulating variable possessing finer dynamic property (coil cooler) in dynamic process, transition shorter and dynamic error smaller; and in the stable process, the main cooling load in the CSTR is shouldered by the jacket cooler, more cooling efficient and lower consumption of cooling water. The dual control solution takes advantage of coil cooling and jacket cooling respectively, so that both dynamic and static characteristic of the CSTR temperature control get more ideal. Finally, the advantage of the CSTR temperature dual control is verified for control precision and dynamic response, and energy-saving and consumption reducing by the semi-physical simulation. The dual control systems solution can also be applied to other production equipment or system with the similar structure features.%连续搅拌釜式化学反应器(CSTR)是重要的化工设备.对蛇管与夹套双冷却CSTR单回路温度控制方案只利用一种操纵变量,无法兼顾动态性能与静态性能的不足进行了深入分析后,提出了CSTR温度双重控制系统方案.通过双重系统的协调控制,在温度出现偏差时由蛇管冷却器快速消除温度偏差,使温度迅速返回设定值;然后由冷却效率高的夹套冷却器逐步取代蛇管冷却器所承担的冷却负荷变化——即在动态过程,由动态性

  19. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.

    Science.gov (United States)

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.

  20. Estimation of torque transmitted by clutch during shifting process for dry dual clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; He, Lu; Yang, Yunyun; Wu, Chaochun; Li, Xueyan; Karl Hedrick, J.

    2016-06-01

    The key toward realizing no-impact gear shifting for dual clutch transmission (DCT) lies in the coordination control between the engine and dual clutches, as well as the accurate closed-loop control of torque transmitted by each clutch and the output torque of the engine. However, the implementation and control precision of closed-loop control are completely dependent on the effective measurement or estimation of the instant transmission torque of the clutch. This study analyzes the DCT shifting process, and builds a three-dimensional (3D) clutch model and mathematical model of a DCT vehicle powertrain system. The torque transmitted by a twin clutch during the upshifting process is estimated by applying the unscented Kalman filter (UKF) algorithm. Then, the torque estimation algorithm is verified using a DCT prototype vehicle installed with a torque sensor on the drive half-shaft. The experimental results show that the designed UKF torque estimation algorithm can estimate the transmission torques of two clutches in real time; further, it can be directly used for DCT shift control and improving the shifting quality.

  1. Dual damascene BEOL processing using multilevel step and flash imprint lithography

    Science.gov (United States)

    Chao, Brook H.; Palmieri, Frank; Jen, Wei-Lun; McMichael, D. Hale; Willson, C. Grant; Owens, Jordan; Berger, Rich; Sotoodeh, Ken; Wilks, Bruce; Pham, Joseph; Carpio, Ronald; LaBelle, Ed; Wetzel, Jeff

    2008-03-01

    Step and Flash Imprint Lithography (S-FIL®) in conjunction with Sacrificial Imprint Materials (SIM) shows promise as a cost effective solution to patterning sub 45nm features and is capable of simultaneously patterning two levels of interconnect structures, which provides a high throughput and low cost BEOL process. This paper describes the integration of S-FIL into an industry standard Cu/low-k dual damascene process that is being practiced in the ATDF at Sematech in Austin. The pattern transferring reactive ion etching (RIE) process is the most critical step and was extensively explored in this study. In addition to successful process development, the results provide useful insight into the optimal design of multilevel templates which must take into account the characteristics of both the imaging material and the dielectric layer. The template used in this study incorporates both the via and trench levels of an M2 (Metal 2) test vehicle that incorporates via chains with varying via dimensions, Kelvin test structures, serpentines, etc. The smallest vias on the template are 120nm vias with an aspect ratio of 2.0 and the smallest dense lines are 125nm/175nm with an aspect ratio of 2.9. Two inter-level dielectrics (ILD), Coral® and Black Diamond® were studied. No trench etch stop was incorporated in the ILD film stack. A multi-step, in-situ etching scheme was developed that achieves faithful pattern transfer from the sacrificial imprint material (SIM) into the underlying low k ILD with surprisingly wide process latitude. This multi-step scheme includes the following etch steps: a residual layer open, a via etch, a trench descum, a trench etch, and an SIM removal ash. Among these steps, the trench etch was found to be the most challenging to develop and it holds the key to producing high aspect ratio dual damascene features. An etching chemistry based on two fluorocarbon gases, CF 4 and C 4F 8, was found to be very effective in delivering the desired etch profiles

  2. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    Science.gov (United States)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  3. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  4. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  5. Simultaneous, inherently temperature and strain insensitive bio-sensors based on dual-resonance long-period gratings

    CERN Document Server

    Tripathi, Saurabh Mani; Bock, Wojtek J; Mikulic, Predrag

    2016-01-01

    Addressing the temperature and strain induced cross-talks simultaneously, we propose an inherently strain and temperature insensitive fiber-optic bio-sensor. The insensitivity has been achieved by properly adjusting the dopants and their concentrations in the optical fiber core region, and by optimizing the grating period and the strength of concatenated dual-resonance long-period-gratings. The simulations have been carried out using the same fiber parameters as used in our earlier experimental studies, which matched excellently with the experimental results. The proposed sensor has a theoretical refractive-index sensitivity of 4607 nm/RIU, which can be used to detect changes as small as 2.2 x10^-7 in ambient refractive indices using a detection system with spectral resolution of 1 pm. Our work finds application in developing precision biosensors with inherent insensitivity towards temperature and axial strain fluctuations. The sensor is currently under fabrication at our lab.

  6. Development of an aluminized multi-phase steel with dual phase properties for high temperature corrosion resistance applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, J.; Cooman, B.C. de [Lab. for Iron and Steelmaking, Dept. of Metallurgy and Materials Science, Ghent Univ., Zwijnaarde (Belgium); Maki, J. [Yawata R and D Lab., Nippon Steel Corp. (Japan); Fiorucci, M. [Galvalange Sarl, Dudelange (Luxembourg); Claessens, S. [OCAS NV, Zelzate (Belgium)

    2003-04-01

    A high strength, high Mn, Cr-Mo containing multi-phase steel grade was aluminized with a 90 wt% Al-10 wt% Si alloy coating, using a laboratory hot-dip simulator. The adhesion of the coating to the steel strip was evaluated and the microstructure of the as deposited material was assessed. The coated sheet steel was tested at high temperatures by monitoring the weight gain of the samples and their mechanical properties as a function of time. It was found that the thermal properties of the aluminized sheet were excellent. The analysis of the coating/substrate interface revealed the dissolution of brittle intermetallic phases, explaining the excellent high temperature resistance performance of the Al-Si coating up to temperatures as high as 900 C. In addition, the use of a continuous annealing cycle common in current aluminizing lines, resulted in a dual phase microstructure. (orig.)

  7. Modelling the Process Chain of Cold Rolled Dual Phase Steel for Automotive Application

    Science.gov (United States)

    Ramazani, A.; Prahl, U.

    This project aims to develop a virtual process chain for the production of components out of cold-rolled dual-phase (DP) steel. The simulation chain starts with cold-rolled strip. During intercritical annealing process all relevant steps like recrystallization, austenite formation and grain growth, ferrite and martensite transformation including bainite fractions and quasi-tempering during hot dip coating and coiling are taken into account. Concerning the final mechanical properties transformation induced micro eigenstresses are described as well as strain partitioning on microscale during cold forming. This multi-scale and process-spanning approach enables the local properties in the part for varying composition and processing conditions. Thus, it can be used for the knowledge driven design and optimization of tailored material and process. To describe all the steps along the process chain, various simulation programs have been linked. By comparison of simulation and experimental results the predictability of this approach can be shown an in a later stage the integrative simulation approach will be further developed towards application for material and process design.

  8. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  9. Reason and reaction: the utility of a dual-focus, dual-processing perspective on promotion and prevention of adolescent health risk behaviour.

    Science.gov (United States)

    Gibbons, Frederick X; Houlihan, Amy E; Gerrard, Meg

    2009-05-01

    A brief overview of theories of health behaviour that are based on the expectancy-value perspective is presented. This approach maintains that health behaviours are the result of a deliberative decision-making process that involves consideration of behavioural options along with anticipated outcomes associated with those options. It is argued that this perspective is effective at explaining and predicting many types of health behaviour, including health-promoting actions (e.g. UV protection, condom use, smoking cessation), but less effective at predicting risky health behaviours, such as unprotected, casual sex, drunk driving or binge drinking. These are behaviours that are less reasoned or premeditated - especially among adolescents. An argument is made for incorporating elements of dual-processing theories in an effort to improve the 'utility' of these models. Specifically, it is suggested that adolescent health behaviour involves both analytic and heuristic processing. Both types of processing are incorporated in the prototype-willingness (prototype) model, which is described in some detail. Studies of health behaviour based on the expectancy-value perspective (e.g. theory of reasoned action) are reviewed, along with studies based on the prototype model. These two sets of studies together suggest that the dual-processing perspective, in general, and the prototype model, in particular, add to the predictive validity of expectancy-value models for predicting adolescent health behaviour. Research and interventions that incorporate elements of dual-processing and elements of expectancy-value are more effective at explaining and changing adolescent health behaviour than are those based on expectancy-value theories alone.

  10. Activation-like processes at zero temperature

    CERN Document Server

    Arteaga, D; Roura, A; Verdaguer, E; Arteaga, Daniel; Calzetta, Esteban; Roura, Albert; Verdaguer, Enric

    2003-01-01

    We examine the possibility that a metastable quantum state could experiment a phenomenon similar to thermal activation but at zero temperature. In order to do that we study the real-time dynamics of the reduced Wigner function in a simple open quantum system: an anharmonic oscillator with a cubic potential linearly interacting with an environment of harmonic oscillators. Our results suggest that this activation-like phenomenon exists indeed as a consequence of the fluctuations induced by the environment and that its associated decay rate is comparable to the tunneling rate as computed by the instanton method, at least for the particular potential of the system and the distribution of frequencies for the environment considered in this paper. However, we are not able to properly deal with the term which leads to tunneling in closed quantum systems, and a definite conclusion cannot be reached until tunneling and activation-like effects are considered simultaneously.

  11. Temperature field of steel plate cooling process after plate rolling

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2015-01-01

    Full Text Available Based on numerical calculation with Matlab, the study on cooling process after plate rolling is carried out, and the temperature field distribution of the plate varying with the time is obtained. The effects of the plate thickness, final rolling temperature, cooling water temperature, average flow rate of the cooling water, carbon content of the plate and cooling method on the plate surface and central temperatures as well as final cooling temperature are discussed. For the same cooling time, the plate surface and central temperatures as well as their temperature difference increase; with the decrease in rolling temperature and the increase in average flow rate of the cooling water, the plate surface and central temperatures decrease. Compared with the single water cooling process, the temperature difference between the plate centre and surface based on intermittent cooling is lower. In this case, the temperature uniformity of the plate is better, and the corresponding thermal stress is lower. The fitting equation of the final cooling temperature with respect to plate thickness, final rolling temperature, cooling water temperature and average flow rate of the cooling water is obtained.

  12. DOWNSLOPE EROSION PROCESS UNDER UPSLOPE RUNOFF AND SEDIMENT USING A DUAL-BOX SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Peiqing XIAO; Fenli ZHENG; Wenyi YAO

    2005-01-01

    Soil erosion at the hilly-gully region of the Loess Plateau has obvious vertical erosion zonation from watershed boundary to gully edge. Meanwhile, upslope runoff and sediment have a significant impact on the downslope erosion process. But due to the limits of research methods, there is not much data available to quantify the effects of upslope runoff and sediment on the downslope erosion process under different conditions. The objective of this study was to quantify the effects of upslope runoff and sediment on the downslope erosion process using a dual-box system with a 15° gradient consisting of a 2 m-long feeder box and a 5 m-long test box under different runoff rates and sediment concentrations in upslope runoff, rainfall intensities and soil surface conditions. The results showed that the sediment regime was detachment-transport dominant at steep hillslopes. The net sediment delivery S caused by upslope runoff was controlled by sediment concentration in upslope runoff, especially by interaction of the rainfall intensity, runoff rate, surface condition and dominant erosion process. The net sediment delivery S accounted for the total sediment delivery Sft at downslope 31.7% to 97.3% and 27.8 to 89.7% for both loose and compact surface treatments, respectively. Rainfall intensity, slope gradient, surface condition, and rill erosion development had important influences on the downslope erosion process.

  13. Process and system - A dual definition, revisited with consequences in metrology

    Science.gov (United States)

    Ruhm, K. H.

    2010-07-01

    Lets assert that metrology life could be easier scientifically as well as technologically, if we, intentionally, would make an explicit distinction between two outstanding domains, namely the given, really existent domain of processes and the just virtually existent domain of systems, the latter of which is designed and used by the human mind. The abstract domain of models, by which we map the manifold reality of processes, is itself part of the domain of systems. Models support comprehension and communication, although they are normally extreme simplifications of properties and behaviour of a concrete reality. So, systems and signals represent processes and quantities, which are described by means of Signal and System Theory as well as by Stochastics and Statistics. The following presentation of this new, demanding and somehow irritating definition of the terms process and system as a dual pair is unusual indeed, but it opens the door widely to a better and more consistent discussion and understanding of manifold scientific tools in many areas. Metrology [4] is one of the important fields of concern due to many reasons: One group of the soft and hard links between the domain of processes and the domain of systems is realised by concepts of measurement science on the one hand and by instrumental tools of measurement technology on the other hand.

  14. Interaction between semantic and phonological processes in stuttering Evidence from the dual-task paradigm

    Institute of Scientific and Technical Information of China (English)

    Luping Song; Danling Peng; Ning Ning

    2010-01-01

    Stuttering is a common neurological deficit and its underlying cognitive mechanisms are a matter of debate,with evidence suggesting abnormal modulation between speech encoding and other cognitive components.Previous studies have mainly used single task experiments to investigate the disturbance of language production.It is unclear whether there is abnormal interaction between the three language tasks(orthographic,phonological and semantic judgment)in stuttering patients.This study used dual tasks and manipulated the stimulus onset asynchrony(SOA)between tasks 1and 2 and the nature of the second task,including orthographic,phonological,and semantic judgments.The results showed that the performance records of orthographic judgment,phonological judgment,and semantic judgment were significantly reduced between the patient and control groups with short SOA(P 0.05).These results indicated that the interaction mechanism between semantic processing and phonological encoding might be an underlying cause for stuttering.

  15. The dual process model of ideology and prejudice: a longitudinal test during a global recession.

    Science.gov (United States)

    Sibley, Chris G; Duckitt, John

    2013-01-01

    This study tested the pathways between personality, social worldviews, and ideology, predicted by the Dual Process Model (DPM) of ideology and prejudice. These paths were tested using a full cross-lagged panel design administered to a New Zealand community sample in early 2008 (before the effects of the global financial crisis reached New Zealand) and again in 2009 (when the crisis was near its peak; n = 247). As hypothesized, low openness to experience predicted residualized change in dangerous worldview, which in turn predicted right-wing authoritarianism (RWA). Low agreeableness predicted competitive worldview, which in turn predicted social dominance orientation (SDO). RWA and SDO also exerted unexpected reciprocal effects on worldviews. This study provides the most comprehensive longitudinal test of the DPM to date, and was conducted during a period of systemic instability when the causal effects predicted by the DPM should be, and were, readily apparent.

  16. The influence of dispositional mindfulness on safety behaviors: a dual process perspective.

    Science.gov (United States)

    Zhang, Jingyu; Wu, Changxu

    2014-09-01

    Based on the dual process model of human cognition, this study investigated the influence of dispositional mindfulness on operators' safety behaviors and its boundary conditions. In a sample of 212 nuclear power plant control room operators, it was found that both safety compliance and safety participation behaviors were positively influenced by dispositional mindfulness as measured by the 14-item Freiburg Mindfulness Inventory. This effect was still positive after controlling for age, intelligence, work experience and conscientiousness. Moreover, two boundary conditions were identified: the impact of dispositional mindfulness of safety behaviors was stronger among operators who were either more experienced or more intelligent. Theoretically, the framework we used to understand the benefit of mindfulness on safety behaviors has been proved to be useful. Practically, it provides a new and valid criterion that could be used in operators' selection and training program to improve organizational safety.

  17. Processing of low Carbon steel by dual rolls equal channel extrusion

    Science.gov (United States)

    Rusz, S.; Cizek, L.; Salajka, M.; Kedron, J.; Tylsar, S.

    2014-08-01

    This paper introduces a new method of forming for achievement of grain structure refinement by processing in DRECE (Dual Rolls Equal Channel Extrusion) equipment. The DRECE device was developed at the VSB - Technical University of Ostrava. It allows grain refinement in strip plate with dimensions of 58 mm (width) × 2 mm (thickness) × 1000 mm (length). The influence of the number of passes on the mechanical properties and related structure refinement was examined experimentally. The effect of a heat treatment (500 °C/1 h/steady air) on the grain refinement of low carbon steel after severe plastic deformation is analysed. Through this novel technique, the grain structure can be converted into a submicron grain structure.

  18. Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A., E-mail: maezzat2000@yahoo.com [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia); El-Karamany, Ahmed S., E-mail: qaramani@gmail.com [Department of Mathematical and Physical Sciences, Nizwa University, P.O. Box 1357, Nizwa 611 (Oman); Ezzat, Shereen M. [Department of Mathematics, Faculty of Sciences and Letters in Al Bukayriyyah, Al-Qassim University, Al-Qassim (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We model fractional order dual-phase-lag heat conduction law. Black-Right-Pointing-Pointer We applied the model on a perfect conducting half-space of elastic material. Black-Right-Pointing-Pointer Some theories of generalized thermoelasticity follow as limit cases. Black-Right-Pointing-Pointer State space approach is adopted for the solution of one-dimensional problems. Black-Right-Pointing-Pointer The model will improve the efficiency of thermoelectric material. - Abstract: A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order dual-phase-lag heat conduction law is considered. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material, which is thermally shocked in the presence of a transverse magnetic field. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some theories of generalized thermoelasticity follow as limit cases. Some comparisons have been shown in figures to estimate effects of temperature discrepancy and fractional order parameter on all the studied fields.

  19. A dual-process model of early substance use: tests in two diverse populations of adolescents.

    Science.gov (United States)

    Wills, Thomas A; Bantum, Erin O'Carroll; Pokhrel, Pallav; Maddock, Jay E; Ainette, Michael G; Morehouse, Ellen; Fenster, Bonnie

    2013-05-01

    We tested a dual-process model based on behavioral and emotional regulation constructs, which posits that good self-control and poor regulation make independent contributions and have different types of pathways to outcomes. The utility of the model for predicting substance use was tested in two diverse populations of younger adolescents. A survey was administered in classrooms to middle-school students in Westchester County, New York (N = 601) and Honolulu, Hawaii (N = 881). The New York sample was 8% African American, 5% Asian American, 47% Caucasian, 31% Hispanic, and 9% other ethnicity. The Hawaii sample was 21% Asian American, 8% Caucasian, 26% Native Hawaiian/Pacific Islander, 34% Filipino, and 10% other ethnicity. Structural equation modeling analyses tested pathways from the four regulation variables through six hypothesized mediators to a criterion construct of substance use (tobacco, alcohol, and marijuana). Results were replicated across samples and were consistent with prediction. Unique contributions were found for good self-control and poor regulation, including both behavioral and emotional aspects. Good self-control had an inverse effect on substance use primarily through relations to higher levels of protective factors (e.g., academic competence). Poor regulation independently had a risk-promoting effect on substance use through relations to higher levels of risk factors (e.g., negative life events). Two field studies showed the dual-process model is robust across different populations. Substance prevention programs should consider approaches for enhancing good self-control as well as procedures for reducing poor regulation and minimizing its impact. Extensions to health behaviors including dietary intake and physical activity are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.

    Science.gov (United States)

    Reyna, Valerie F; Brainerd, Charles J

    2011-09-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.

  1. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...

  2. What makes us think? A three-stage dual-process model of analytic engagement.

    Science.gov (United States)

    Pennycook, Gordon; Fugelsang, Jonathan A; Koehler, Derek J

    2015-08-01

    The distinction between intuitive and analytic thinking is common in psychology. However, while often being quite clear on the characteristics of the two processes ('Type 1' processes are fast, autonomous, intuitive, etc. and 'Type 2' processes are slow, deliberative, analytic, etc.), dual-process theorists have been heavily criticized for being unclear on the factors that determine when an individual will think analytically or rely on their intuition. We address this issue by introducing a three-stage model that elucidates the bottom-up factors that cause individuals to engage Type 2 processing. According to the model, multiple Type 1 processes may be cued by a stimulus (Stage 1), leading to the potential for conflict detection (Stage 2). If successful, conflict detection leads to Type 2 processing (Stage 3), which may take the form of rationalization (i.e., the Type 1 output is verified post hoc) or decoupling (i.e., the Type 1 output is falsified). We tested key aspects of the model using a novel base-rate task where stereotypes and base-rate probabilities cued the same (non-conflict problems) or different (conflict problems) responses about group membership. Our results support two key predictions derived from the model: (1) conflict detection and decoupling are dissociable sources of Type 2 processing and (2) conflict detection sometimes fails. We argue that considering the potential stages of reasoning allows us to distinguish early (conflict detection) and late (decoupling) sources of analytic thought. Errors may occur at both stages and, as a consequence, bias arises from both conflict monitoring and decoupling failures.

  3. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (N2, O2, H2O, CO2, CO, H2, DME) and major combustion intermediates (CH4, CH2O, C2H2, C2H4 and C2H6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.

  4. Post-Processing Enhancement of Reverberation-Noise Suppression in Dual-Frequency SURF Imaging

    CERN Document Server

    Nasholm, Sven Peter; Angelsen, Bjørn A J; 10.1109/TUFFC.2011.1811

    2013-01-01

    A post-processing adjustment technique which aims for enhancement of dual-frequency SURF (Second order UltRasound Field) reverberation-noise suppression imaging in medical ultrasound is analyzed. Two variant methods are investigated through numerical simulations. They both solely involve post-processing of the propagated high-frequency (HF) imaging wave fields, which in real-time imaging corresponds to post-processing of the beamformed receive radio-frequency signals. Hence the transmit pulse complexes are the same as for the previously published SURF reverberation-suppression imaging method. The adjustment technique is tested on simulated data from propagation of SURF pulse complexes consisting of a 3.5 MHz HF imaging pulse added to a 0.5 low-frequency sound-speed manipulation pulse. Imaging transmit beams are constructed with and without adjustment. The post-processing involves filtering, e.g., by a time-shift, in order to equalize the two SURF HF pulses at a chosen depth. This depth is typically chosen to ...

  5. Implementation science: a role for parallel dual processing models of reasoning?

    Directory of Open Access Journals (Sweden)

    Phillips Paddy A

    2006-05-01

    Full Text Available Abstract Background A better theoretical base for understanding professional behaviour change is needed to support evidence-based changes in medical practice. Traditionally strategies to encourage changes in clinical practices have been guided empirically, without explicit consideration of underlying theoretical rationales for such strategies. This paper considers a theoretical framework for reasoning from within psychology for identifying individual differences in cognitive processing between doctors that could moderate the decision to incorporate new evidence into their clinical decision-making. Discussion Parallel dual processing models of reasoning posit two cognitive modes of information processing that are in constant operation as humans reason. One mode has been described as experiential, fast and heuristic; the other as rational, conscious and rule based. Within such models, the uptake of new research evidence can be represented by the latter mode; it is reflective, explicit and intentional. On the other hand, well practiced clinical judgments can be positioned in the experiential mode, being automatic, reflexive and swift. Research suggests that individual differences between people in both cognitive capacity (e.g., intelligence and cognitive processing (e.g., thinking styles influence how both reasoning modes interact. This being so, it is proposed that these same differences between doctors may moderate the uptake of new research evidence. Such dispositional characteristics have largely been ignored in research investigating effective strategies in implementing research evidence. Whilst medical decision-making occurs in a complex social environment with multiple influences and decision makers, it remains true that an individual doctor's judgment still retains a key position in terms of diagnostic and treatment decisions for individual patients. This paper argues therefore, that individual differences between doctors in terms of

  6. Quantum efficiency and temperature coefficients of GaInP/GaAs dual-junction solar cell

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; CHEN NuoFu; BAI YiMing; CUI Ming; ZHANG Han; GAO FuBao; YIN ZhiGang; ZHANG XingWang

    2009-01-01

    GalnP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160℃. The results indicate that the quantum ef-ficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density tem-perature coefficients dJoc/dT of GalnP subcell and GaAs subcell are determined to be 8.9 and 7.4 μA/cm2/℃ from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients d Voc/d T calculated based on a theoretical equation are -2.4 mV/℃ and -2.1 mV/℃ for GalnP subcell and GaAs subcell.

  7. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  8. Rethinking of the heuristic-analytic dual process theory: a comment on Wada and Nittono (2004) and the reasoning process in the Wason selection task.

    Science.gov (United States)

    Cardaci, Maurizio; Misuraca, Raffaella

    2005-08-01

    This paper raises some methodological problems in the dual process explanation provided by Wada and Nittono for their 2004 results using the Wason selection task. We maintain that the Nittono rethinking approach is weak and that it should be refined to grasp better the evidence of analytic processes.

  9. A Hybrid Low Temperature Surface Alloying Process for Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Y. Sun

    2004-01-01

    This paper describes a novel, hybrid process developed to engineer the surfaces of austenitic stainless steels at temperatures below 450℃ for the improvement in wear and corrosion resistance. The process is carried out in the plasma of a glow discharge containing both nitrogen and carbon reactive species, and facilitates the incorporation of both nitrogen and carbon into the austenite surface to form a dual-layer structure comprising a nitrogen-rich layer on top of a carbon-rich layer.Both layers can be precipitation-free at sufficiently low processing temperatures, and contain nitrogen and carbon respectively in supersaturated fcc austenite solid solutions. The resultant hybrid structure offers several advantages over the conventional low temperature nitriding and the newly developed carburizing processes in terms of mechanical and chemical properties, including higher surface hardness, a hardness gradient from the surface towards the layer-core interface, uniform layer thickness, and much enhanced corrosion resistance. This paper discusses the main features of this hybrid process and the various structural and properties characteristics of the resultant engineered surfaces.

  10. Applying Convolution-Based Processing Methods To A Dual-Channel, Large Array Artificial Olfactory Mucosa

    Science.gov (United States)

    Taylor, J. E.; Che Harun, F. K.; Covington, J. A.; Gardner, J. W.

    2009-05-01

    Our understanding of the human olfactory system, particularly with respect to the phenomenon of nasal chromatography, has led us to develop a new generation of novel odour-sensitive instruments (or electronic noses). This novel instrument is in need of new approaches to data processing so that the information rich signals can be fully exploited; here, we apply a novel time-series based technique for processing such data. The dual-channel, large array artificial olfactory mucosa consists of 3 arrays of 300 sensors each. The sensors are divided into 24 groups, with each group made from a particular type of polymer. The first array is connected to the other two arrays by a pair of retentive columns. One channel is coated with Carbowax 20 M, and the other with OV-1. This configuration partly mimics the nasal chromatography effect, and partly augments it by utilizing not only polar (mucus layer) but also non-polar (artificial) coatings. Such a device presents several challenges to multi-variate data processing: a large, redundant dataset, spatio-temporal output, and small sample space. By applying a novel convolution approach to this problem, it has been demonstrated that these problems can be overcome. The artificial mucosa signals have been classified using a probabilistic neural network and gave an accuracy of 85%. Even better results should be possible through the selection of other sensors with lower correlation.

  11. Ambient air temperature effects on the temperature of sewage sludge composting process

    Institute of Scientific and Technical Information of China (English)

    HUANG Qi-fei; CHEN Tong-bin; GAO Ding; HUANG Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5℃ when ambient air temperature changed 13℃. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3℃ when ambient air temperature changed 8-15 ℃. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent(at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate(at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  12. 红外双波段点目标双色比分析与处理%Analysis and processing of infrared dual waveband radiation ratio based point target

    Institute of Scientific and Technical Information of China (English)

    王文博; 王英瑞

    2015-01-01

    Infrared dual waveband radiation ratio can denote the blackbody’s temperature information, and can be used for temperature measurement. When using infrared dual waveband radiation ratio to measure the temperature of point target, it is difficult to achieve high-accuracy because of various kinds of noises. The recurrence plot theory was used to analyze the non-station of infrared dual waveband radiation ratio. According to the non-station of infrared dual waveband radiation ratio, the target’s response signal in IR single waveband was processed by moving average filter. The IR dual waveband radiation ratio was processed by wavelet soft-threshold filter. Experimental result indicate that, when the SNR>12, 1 K temperature accuracy can be achieved with above processing method for static point target, and 2 K temperature accuracy can be achieved for slow moving point target.%红外双色比能够表征目标的温度信息,但点目标双色比受噪声、探测器盲闪元以及跨像元因素干扰,难以准确测量,影响测温精度。应用递归图法定性分析和判断了点目标双色比的非平稳性。针对这一特性,先对点目标信号应用移动平均滤波做预处理,再通过小波软阈值去噪对双色比进行降噪处理。试验结果表明,在信噪比大于12的条件下,该方法可以实现静态点目标1 K温度分辨率,慢速动态点目标2K温度分辨率。

  13. The Development of Recollection and Familiarity in Childhood and Adolescence: Evidence from the Dual-Process Signal Detection Model

    Science.gov (United States)

    Ghetti, Simona; Angelini, Laura

    2008-01-01

    Two experiments examined the development of recollection (recalling qualitative details about an event) and familiarity (recognizing the event) using the dual-process signal detection model. In Experiment 1 (n = 117; ages 6, 8, 10, 14, and 18 years), recollection improved from childhood to adolescence after semantic encoding but not after…

  14. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords

    Science.gov (United States)

    Oberauer, Klauss; Lange, Elke B.

    2009-01-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  15. A nonlinear dynamical systems theory perspective on dual-processing accounts of decision-making under uncertainty

    NARCIS (Netherlands)

    Rooij, M.M.J.W. van; Favela, L.H.

    2016-01-01

    Dual-processing accounts of reasoning have gained renewed attention in the past decade, particularly in the fields of social judgment, learning, and decision-making under uncertainty. Although the various accounts differ, the common thread is the distinction between two qualitatively different types

  16. The Dual Language Process in Young Children. Bilingual Education Paper Series, Vol. 1, No. 4.

    Science.gov (United States)

    Thonis, Eleanor

    A review of available research supports the observation that the young child who lives and grows in the midst of dual language opportunities may enjoy benefits of mental flexibility or may suffer burdens of mental confusion. Further research must explore the language-thought relationship, consider the effects of dual language learning on cognitive…

  17. Non-contact temperature measurement requirements for electronic materials processing

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  18. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  19. Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard

    Directory of Open Access Journals (Sweden)

    Andreu Ana

    2015-12-01

    Full Text Available A two-source model for deriving surface energy fluxes and their soil and canopy components was evaluated using multi-angle airborne observations. In the original formulation (TSEB1, a single temperature observation, Priestley-Taylor parameterization and the vegetation fraction are used to derive the component fluxes. When temperature observations are made from different angles, soil and canopy temperatures can be extracted directly. Two dual angle model versions are compared versus TSEB1: one incorporating the Priestley-Taylor parameterization (TSEB2I and one using the component temperatures directly (TSEB2D, for which data from airborne campaigns over an agricultural area in Spain are used. Validation of TSEB1 versus ground measurements showed RMSD values of 28 and 10 Wm-2 for sensible and latent heat fluxes, respectively. Reasonable agreement between TSEB1 and TSEB2I was found, but a rather low correlation between TSEB1 and TSEB2D was observed. The TSEB2D estimates appear to be more realistic under the given conditions.

  20. Investigation of intercritical heat treatment temperature effect on microstructure and mechanical properties of dual phase (DP steel

    Directory of Open Access Journals (Sweden)

    Mohammad Davari

    2017-06-01

    Full Text Available In the present study, the effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferritic-martensitic dual-phase steel have been investigated utilizing tensile test, microhardness measurement and microscopic observation. Plain carbon steel sheet with a thickness of 2 mm was heat treated at 760, 780, 800, 820 and 840 °C intercritical temperatures. The results showed that martensite volume fraction (Vm increases from 32 to 81%with increasing temperature from 760 to 840 °C. The mechanical properties of samples were examined by tensile and microhardness tests. The results revealed that yield strength was increased linearly with the increase in Vm, but the ultimate strength was increased up to 55% Vm and then decreased afterward. Analyzing the work hardening behavior in term of Hollomon equation showed that in samples with less than 55% Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. More than one stage was observed in the work hardening behavior when Vm was increased. The results of microhardness test showed that microhardness of the martensite is decreased by increase in heat treatment temperature while the ferrite microhardness is nearly constant for all heat-treated samples.

  1. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  2. Process for Forming a High Temperature Single Crystal Canted Spring

    Science.gov (United States)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  3. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    Science.gov (United States)

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the

  4. Engineering aesthetics and aesthetic ergonomics: theoretical foundations and a dual-process research methodology.

    Science.gov (United States)

    Liu, Yili

    Although industrial and product designers are keenly aware of the importance of design aesthetics, they make aesthetic design decisions largely on the basis of their intuitive judgments and "educated guesses". Whilst ergonomics and human factors researchers have made great contributions to the safety, productivity, ease-of-use, and comfort of human-machine-environment systems, aesthetics is largely ignored as a topic of systematic scientific research in human factors and ergonomics. This article discusses the need for incorporating the aesthetics dimension in ergonomics and proposes the establishment of a new scientific and engineering discipline that we can call "engineering aesthetics". This discipline addresses two major questions: How do we use engineering and scientific methods to study aesthetics concepts in general and design aesthetics in particular? How do we incorporate engineering and scientific methods in the aesthetic design and evaluation process? This article identifies two special features that distinguish aesthetic appraisal of products and system designs from aesthetic appreciation of art, and lays out a theoretical foundation as well as a dual-process research methodology for "engineering aesthetics". Sample applications of this methodology are also described.

  5. Can dual processing theory explain physics students' performance on the Force Concept Inventory?

    Science.gov (United States)

    Wood, Anna K.; Galloway, Ross K.; Hardy, Judy

    2016-12-01

    According to dual processing theory there are two types, or modes, of thinking: system 1, which involves intuitive and nonreflective thinking, and system 2, which is more deliberate and requires conscious effort and thought. The Cognitive Reflection Test (CRT) is a widely used and robust three item instrument that measures the tendency to override system 1 thinking and to engage in reflective, system 2 thinking. Each item on the CRT has an intuitive (but wrong) answer that must be rejected in order to answer the item correctly. We therefore hypothesized that performance on the CRT may give useful insights into the cognitive processes involved in learning physics, where success involves rejecting the common, intuitive ideas about the world (often called misconceptions) and instead carefully applying physical concepts. This paper presents initial results from an ongoing study examining the relationship between students' CRT scores and their performance on the Force Concept Inventory (FCI), which tests students' understanding of Newtonian mechanics. We find that a higher CRT score predicts a higher FCI score for both precourse and postcourse tests. However, we also find that the FCI normalized gain is independent of CRT score. The implications of these results are discussed.

  6. A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality.

    Science.gov (United States)

    Zang, Yaping; Shen, Hongguang; Huang, Dazhen; Di, Chong-An; Zhu, Daoben

    2017-02-22

    Organic-device-based tactile-perception systems can open up new opportunities for the next generation of intelligent products. To meet the critical requirements of artificial perception systems, the efficient construction of organic smart elements with integrated sensing and signal processing functionalities is highly desired, but remains a challenge. This study presents a dual-organic-transistor-based tactile-perception element (DOT-TPE) with biomimetic functionality by the construction of organic synaptic transistors with integrated sensing transistors. The unique geometry of the DOT-TPE permits instantaneous sensing of pressure stimuli and synapse-like processing of an electric signal in a single element. More importantly, these organic-transistor-based tactile-perception elements can be built into arrays to serve as bionic tactile-perception systems. The combined biomimetic functionality of tactile-perception systems, together with their promising features of flexibility and large-area fabrication, makes this work represent a step forward toward novel e-skin devices for artificial intelligence.

  7. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.D. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Toledo, J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Esteve, R. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Sebastia, A. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Mora, F.J. [Departamento de Ingenieria Electronica, University Politecnica de Valencia, Camino de Vera s/n 46022, Valencia (Spain); Benlloch, J.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Fernandez, M.M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, M. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Gimenez, E.N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Lerche, Ch.W. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Pavon, N. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain); Sanchez, F. [Instituto de Fisica Corpuscular, CSIC-UV, Valencia (Spain)

    2005-07-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer.

  8. Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Hoon; Kim, Young Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Ju Hahn; Lee, Chun Sik [Dept. of Physics, Chung-Ang University, Seoul (Korea, Republic of)

    2012-03-15

    In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

  9. A Study of Impedance Relationships in Dual Frequency PECVD Process Plasma

    Science.gov (United States)

    Keil, Douglas; Augustyniak, Edward; Sakiyama, Yukinori; Pecvd/Ald Team

    2016-09-01

    Commercial plasma process reactors are commonly operated with a very limited suite of on-board plasma diagnostics. However, as process demands advance so has the need for detailed plasma monitoring and diagnosis. The VI probe is one of the few instruments commonly available for this task. We present a study of voltage, current, impedance and phase trends acquired by off-the-shelf VI probes in Dual Frequency (DF) 400 kHz/13.56MHz capacitively-coupled plasma (CCP) as typically used for Plasma Enhanced Chemical Vapor Deposition (PECVD). These plasmas typically operate at pressures from 1 to 5 Torr and at RF power levels of 3 W/cm2. Interpretation of DF VI probe impedance trends is challenging. Non-linear interactions are known to exist in plasma impedance scaling with low and high frequency RF power. Simple capacitive sheath models typically do not simultaneously reproduce the impedance observed at each drive frequency. This work will compare VI probe observed DF CCP impedance tends with plasma fluid simulation. Also explored is the agreement seen with sheath models presently available in the literature. Prospects for the creation of useful equivalent circuit models is also discussed.

  10. Output Position and Word Relatedness Effects in a DRM Paradigm: Support for a Dual-Retrieval Process Theory of Free Recall and False Memories

    Science.gov (United States)

    Barnhardt, T. M.; Choi, H.; Gerkens, D. R.; Smith, S. M.

    2006-01-01

    Five experiments investigated predictions--derived from a dual-retrieval process approach to free recall (Brainerd, C. J., Wright, R., Reyna, V. F., & Payne, D. G. (2002). Dual-retrieval processes in free and associative recall. Journal of Memory and Language, 46, 120-152.)--about false memories in a DRM-like paradigm. In all the experiments, the…

  11. Process Simulating of Heat Transfer in High-temperature Thermocouples

    Directory of Open Access Journals (Sweden)

    Atroshenko Yuliana K.

    2015-01-01

    Full Text Available Numerical research of integral characteristics of process of heattransfer in sensitive elements of R, A and B types thermocouples in case of measurement of high temperatures (more than 900 K is executed. Theoretical dependences of minimum necessary duration of heating up of the thermocouple on value of temperature on boundary of a sensitive element are received. It is shown the thermocouple of R type requires bigger time of heating for obtaining satisfactory accuracy of measurements. Temperature fields in sensitive elements of the specified thermocouples are received. It is shown that distribution of temperature on the thermocouple not linearly and has similar character for the researched thermocouples.

  12. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriate or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.

  13. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.

    Science.gov (United States)

    Brainerd, C J; Reyna, V F

    2001-01-01

    Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and

  14. Teaching dual-process diagnostic reasoning to doctor of nursing practice students: problem-based learning and the illness script.

    Science.gov (United States)

    Durham, Catherine O; Fowler, Terri; Kennedy, Sally

    2014-11-01

    Accelerating the development of diagnostic reasoning skills for nurse practitioner students is high on the wish list of many faculty. The purpose of this article is to describe how the teaching strategy of problem-based learning (PBL) that drills the hypothetico-deductive or analytic reasoning process when combined with an assignment that fosters pattern recognition (a nonanalytic process) teaches and reinforces the dual process of diagnostic reasoning. In an online Doctor of Nursing Practice program, four PBL cases that start with the same symptom unfold over 2 weeks. These four cases follow different paths as they unfold leading to different diagnoses. Culminating each PBL case, a unique assignment called an illness script was developed to foster the development of pattern recognition. When combined with hypothetico-deductive reasoning drilled during the PBL case, students experience the dual process approach to diagnostic reasoning used by clinicians.

  15. Effects of overaging temperature on the microstructure and properties of 600 MPa cold-rolled dual-phase steel

    Institute of Scientific and Technical Information of China (English)

    Chun-fu Kuang; Zhi-wang Zheng; Gong-ting Zhang; Jun Chang; Shen-gen Zhang; Bo Liu

    2016-01-01

    C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining (2%) and bak-ing treatments (170°C for 20 min) to measure their bake-hardening (BH2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH2 behavior of 600 MPa cold-rolled dual-phase (DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8%to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH2 value initially increases and then decreases. The maximum BH2 value of 83 MPa was observed for the specimen overaged at 350°C.

  16. Dual-ion Conducting Nanocompoiste for Low Temperature Solid Oxide Fuel Cell

    OpenAIRE

    wang, Xiaodi

    2012-01-01

    Solid oxide fuel cells (SOFCs) are considered as one of the most promising power generation technologies due to their high energy conversion efficiency, fuel flexibility and reduced pollution. There is a broad interest in reducing the operating temperature of SOFCs. The key issue to develop low-temperature (300~600 °C) SOFCs (LTSOFCs) is to explore new electrolyte materials. Recently, ceria-based composite electrolytes have been developed as capable alternative electrolyte for LTSOFCs. The ce...

  17. Non-rigid Reconstruction of Casting Process with Temperature Feature

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  18. Testing a Dual Process Model of Gender-Based Violence: A Laboratory Examination.

    Science.gov (United States)

    Berke, Danielle S; Zeichner, Amos

    2016-01-01

    The dire impact of gender-based violence on society compels development of models comprehensive enough to capture the diversity of its forms. Research has established hostile sexism (HS) as a robust predictor of gender-based violence. However, to date, research has yet to link men's benevolent sexism (BS) to physical aggression toward women, despite correlations between BS and HS and between BS and victim blaming. One model, the opposing process model of benevolent sexism (Sibley & Perry, 2010), suggests that, for men, BS acts indirectly through HS to predict acceptance of hierarchy-enhancing social policy as an expression of a preference for in-group dominance (i. e., social dominance orientation [SDO]). The extent to which this model applies to gender-based violence remains untested. Therefore, in this study, 168 undergraduate men in a U. S. university participated in a competitive reaction time task, during which they had the option to shock an ostensible female opponent as a measure of gender-based violence. Results of multiple-mediation path analyses indicated dual pathways potentiating gender-based violence and highlight SDO as a particularly potent mechanism of this violence. Findings are discussed in terms of group dynamics and norm-based violence prevention.

  19. Self-adaptive optimal control of dry dual clutch transmission (DCT) during starting process

    Science.gov (United States)

    Zhao, Zhiguo; He, Lu; Zheng, Zhengxing; Yang, Yunyun; Wu, Chaochun

    2016-02-01

    An optimal control based on the minimum principle is proposed to solve the problems with the starting process of the self-developed five-speed dry dual clutch transmission (DCT). For the slipping phase, the minimum principle and improved engine constant speed control are adopted to obtain the optimal clutch and engine torques and their rotating speeds, with the minimum jerk intensity and friction work as optimization indices. For the stable running phase, the engine torque is converted to the driver's level of demand. The Matlab/Simulink software platform was used to simulate the DCT vehicle in the starting stage. The simulation and related analysis were conducted for different engine speeds and intentions of the driver. The results showed that the proposed clutch starting control strategy not only reduces the level of jerk and the frictional energy loss but also follows the different starting intentions of the driver. The optimum clutch engagement principle was transformed into the clutch position principle, and a test was carried out on the test bench to validate the effectiveness of the optimum clutch position curve.

  20. Reasoning, biases and dual processes: The lasting impact of Wason (1960).

    Science.gov (United States)

    Evans, Jonathan St B T

    2016-10-01

    Wason (1960) published a relatively short experimental paper, in which he introduced the 2-4-6 problem as a test of inductive reasoning. This paper became one of the most highly cited to be published in the Quarterly Journal of Experimental Psychology and is significant for a number of reasons. First, the 2-4-6 task itself was ingenious and yielded evidence of error and bias in the intelligent participants who attempted it. Research on the 2-4-6 problem continues to the present day. More importantly, it was Wason's first paper on reasoning and one which made strong claims for bias and irrationality in a period dominated by rationalist writers like Piaget. It set in motion the study of cognitive biases in thinking and reasoning, well before the start of Tversky and Kahneman's famous heuristics and biases research programme. I also show here something for which Wason has received insufficient credit. It was Wason's work on this task and his later studies of his four card selection task that led to the first development of the dual process theory of reasoning which is so dominant in the current literature on the topic more than half a century later.

  1. Application of a Dual-Arm Robot in Complex Sample Preparation and Measurement Processes.

    Science.gov (United States)

    Fleischer, Heidi; Drews, Robert Ralf; Janson, Jessica; Chinna Patlolla, Bharath Reddy; Chu, Xianghua; Klos, Michael; Thurow, Kerstin

    2016-10-01

    Automation systems with applied robotics have already been established in industrial applications for many years. In the field of life sciences, a comparable high level of automation can be found in the areas of bioscreening and high-throughput screening. Strong deficits still exist in the development of flexible and universal fully automated systems in the field of analytical measurement. Reasons are the heterogeneous processes with complex structures, which include sample preparation and transport, analytical measurements using complex sensor systems, and suitable data analysis and evaluation. Furthermore, the use of nonstandard sample vessels with various shapes and volumes results in an increased complexity. The direct use of existing automation solutions from bioscreening applications is not possible. A flexible automation system for sample preparation, analysis, and data evaluation is presented in this article. It is applied for the determination of cholesterol in biliary endoprosthesis using gas chromatography-mass spectrometry (GC-MS). A dual-arm robot performs both transport and active manipulation tasks to ensure human-like operation. This general robotic concept also enables the use of manual laboratory devices and equipment and is thus suitable in areas with a high standardization grade.

  2. Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2

    Science.gov (United States)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute significant annual methane (CH4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH4 (as well as carbon dioxide (CO2) and other gases), but the ultimate sources of this CH4 flux have not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4 sampled from ten high-temperature geothermal pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ13C and δ2H values of CH4 emitted from hot springs (26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ13CCH4 and δ13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH4, or with equilibration of CH4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ13CCH4 and δ13CCO2 ranged from 250-350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ2HH2O of the thermal springs and the measured δ2HCH4 values are consistent with equilibration between the source water and the CH4 at the formation temperatures. Though the ultimate origin of the CH4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C1/C2 + composition of the gases is more consistent with abiotic origins for most of the samples. Thus, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH4 flux from the Yellowstone National Park volcanic system.

  3. Peak Stir Zone Temperatures during Friction Stir Processing

    Science.gov (United States)

    Swaminathan, Srinivasan; Oh-Ishi, Keiichiro; Zhilyaev, Alexander P.; Fuller, Christian B.; London, Blair; Mahoney, Murray W.; McNelley, Terry R.

    2010-03-01

    The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 °C to 1015 °C (0.90 to 0.97 T Melt) and were not affected by preheating to 400 °C, although the dwell time above 900 °C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement.

  4. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Science.gov (United States)

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  5. Formulaic language in cortical and subcortical disease: Evidence of the dual process model.

    Directory of Open Access Journals (Sweden)

    Kelly Bridges

    2014-04-01

    Full Text Available Introduction: It is known that an intact cortical left hemisphere is crucial for language production. Recently, more credit is given to the right hemisphere and subcortical areas in the production of non-novel language, including formulaic language. John Hughlings Jackson (1874/1958, first described how propositional and non-propositional speech are differentially affected by neural impairment. Non-propositional language is often preserved following left hemisphere stroke even when aphasia is present (Code, 1982; Sidtis et al., 2009; Van Lancker Sidtis & Postman, 2006. With right hemisphere and subcortical stroke, formulaic language is reduced (Sidtis et al., 2009; Van Lancker Sidtis & Postman, 2006; Speedie et al., 1993. The dual process model of language competence states that propositional and non-propositional speech are processed differently in the brain, with novel speech controlled by the left hemisphere, and a right hemisphere/subcortical circuit modulating formulaic language (Van Lancker Sidtis, 2004; 2012. Two studies of formulaic language will be presented as further evidence of the dual process model: a study of formulaic language in Alzheimer’s disease, and a study of recited speech in Parkinson’s disease. Formulaic language includes overlearned words, phrases or longer linguistic units that are known to the native speaker, occur naturally in discourse, and are important for normal social interaction (Fillmore, 1979; Pawley & Syder, 1983; Van Lancker, 1988; Van Lancker Sidtis, 2004; Wray, 2002. Formulaic expressions include conversational speech formulas, idioms, proverbs, expletives, pause fillers, discourse elements, and sentence stems (stereotyped sentence-initials. Longer units of linguistic material, such as prayers, rhymes, and poems, termed recited speech, is another subtype of formulaic language that is learned in childhood and recited periodically throughout life. Cortical disease: Alzheimer’s disease and formulaic

  6. Dynamic behavior of the HTR-10 reactor: Dual temperature feedback model

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Ali

    2015-01-01

    Full Text Available The current work aims at presenting a simple model for PBM-type reactors' dynamic behavior analysis. The proposed model is based on point kinetics equations coupled with feedbacks from fuel and moderator temperatures. The temperature reactivity coefficients were obtained through MCNP code and via available experimental data. Parameters such as heat capacity and heat conductivity were carefully analyzed and the final system of equations was numerically solved. The obtained results, while in partial agreement with previously proposed models, suggest lower sensitivity to step reactivity insertion as compared to other reactor designs and inherent safety of the design.

  7. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  8. Process Simulating of Heat Transfer in High-temperature Thermocouples

    OpenAIRE

    Atroshenko Yuliana K.; Bychkova Alena A.

    2015-01-01

    Numerical research of integral characteristics of process of heattransfer in sensitive elements of R, A and B types thermocouples in case of measurement of high temperatures (more than 900 K) is executed. Theoretical dependences of minimum necessary duration of heating up of the thermocouple on value of temperature on boundary of a sensitive element are received. It is shown the thermocouple of R type requires bigger time of heating for obtaining satisfactory accuracy of measurements. Tempera...

  9. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  10. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy Casey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahamad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it

  11. Spectroscopy for Industrial Applications: High-Temperature Processes

    DEFF Research Database (Denmark)

    Fateev, Alexander; Grosch, Helge; Clausen, Sønnik

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spec......The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature......-dependent spectral absorption features gases of interest fora specic instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However....... Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects....

  12. Decay Process of Quantum Open System at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    肖骁; 高一波

    2012-01-01

    Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initiaJ coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.

  13. Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijiang, E-mail: guijiangli@gmail.com [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Eriksson, Olle [Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Johansson, Börje [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Vitos, Levente [Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2015-12-07

    We have found that thermodynamic state and kinetic process co-determine the dual ferromagnetic (FM) orders in high-Si content FeMnP{sub 1−x}Si{sub x} (0.25 < x < 0.5). Alloys undergoing high temperature annealing and quenching process prefer a high magnetic moment FM state in a chemically partial disordered structure with low c/a ratio. This mechanism is suggested to be responsible for the often discussed virgin effect as well. A chemically ordered structure obtained by a slow cooling process from a relatively low annealing temperature and the increase in Si content stabilize a metastable lattice with high c/a ratio and FM order with low magnetic moment. The non-simultaneity of the magnetic and structural transitions can be responsible for the occurrence of FM state in the high c/a range. Thus, a c/a ratio that changes from high to low is physically plausible to stabilize the metastable FM order at low temperature. Our theoretical observations indicate that suitable thermodynamic state and kinetic diffusion process is crucial for optimizing magnetocaloric properties and exploring feasible magnetocaloric materials.

  14. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  15. Development of a near-infrared/mid-infrared dual-region spectrometer for online process analysis.

    Science.gov (United States)

    Genkawa, Takuma; Watari, Masahiro; Nishii, Takashi; Ozaki, Yukihiro

    2012-07-01

    A near-infrared (NIR) and mid-infrared (mid-IR) dual-region spectrometer having two immersion probes, a transmission probe for NIR, and an attenuated total reflection (ATR) probe for mid-IR has been developed for highly reliable process monitoring and deep process understanding. This spectrometer facilitates sequential acquisition of both NIR (10,000-4000 cm(-1)) and mid-IR (5000-1200 cm(-1)) spectra by switching the light path leading to the probes without the need for probe replacement. The use of a single light source and a single beam splitter enables achievement of a permanent alignment of the optical system and sequential data acquisition. The transmission NIR and ATR mid-IR probes designed and developed in the present study facilitate the acquisition of NIR/mid-IR spectra with optimized absorption intensities in both regions by simply placing the probes into a sample solution. The performance of the developed spectrometer was demonstrated in monitoring the ethanol fermentation process. NIR/mid-IR spectra of the fermentation solution with multiplicative scatter correction (MSC) represent the relative changes in the concentrations of glucose and ethanol in both regions. Principal component analysis (PCA) was performed on the MSC-treated spectra in the regions 6300-5650 cm(-1), 4850-4300 cm(-1), and 3500-2880 cm(-1) to detect the end-point of the fermentation as an example of process monitoring. For all the regions, the score plot of the first principal component (PC) indicates that the fermentation progresses with the fermentation time and stops after 210 minutes and thus the end-point of the fermentation exists at around 210 minutes. The loading plot indicates that all of the first PCs are the relative changes in the concentrations of glucose and ethanol. This result reveals that the same chemical changes are observed in both transmission NIR and ATR mid-IR spectra. Multiple and simultaneous analysis was also performed, and intensity change in light

  16. Process, Voltage and Temperature Compensation Technique for Cascode Modulated PAs

    DEFF Research Database (Denmark)

    Sira, Daniel; Larsen, Torben

    2013-01-01

    This paper presents a process, voltage and temperature (PVT) compensation method for a cascode modulated polar power amplifier (PA). It is shown that it is possible to create a baseband replica circuit of the PA that has the same AM-AM nonlinearity as the PA itself. The replica circuit, that repr......This paper presents a process, voltage and temperature (PVT) compensation method for a cascode modulated polar power amplifier (PA). It is shown that it is possible to create a baseband replica circuit of the PA that has the same AM-AM nonlinearity as the PA itself. The replica circuit...

  17. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, Ralph Barton [ORNL; Love, Lonnie J [ORNL; Rowe, John C [ORNL

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  18. Temperature sensitivity of organic compound destruction in SCWO process.

    Science.gov (United States)

    Tan, Yaqin; Shen, Zhemin; Guo, Weimin; Ouyang, Chuang; Jia, Jinping; Jiang, Weili; Zhou, Haiyun

    2014-03-01

    To study the temperature sensitivity of the destruction of organic compounds in supercritical water oxidation process (SCWO), oxidation effects of twelve chemicals in supercritical water were investigated. The SCWO reaction rates of different compounds improved to varying degrees with the increase of temperature, so the highest slope of the temperature-effect curve (imax) was defined as the maximum ratio of removal ratio to working temperature. It is an important index to stand for the temperature sensitivity effect in SCWO. It was proven that the higher imax is, the more significant the effect of temperature on the SCWO effect is. Since the high-temperature area of SCWO equipment is subject to considerable damage from fatigue, the temperature is of great significance in SCWO equipment operation. Generally, most compounds (imax > 0.25) can be completely oxidized when the reactor temperature reaches 500°C. However, some compounds (imax > 0.25) need a higher temperature for complete oxidation, up to 560°C. To analyze the correlation coefficients between imax and various molecular descriptors, a quantum chemical method was used in this study. The structures of the twelve organic compounds were optimized by the Density Functional Theory B3LYP/6-311G method, as well as their quantum properties. It was shown that six molecular descriptors were negatively correlated to imax while other three descriptors were positively correlated to imax. Among them, dipole moment had the greatest effect on the oxidation thermodynamics of the twelve organic compounds. Once a correlation between molecular descriptors and imax is established, SCWO can be run at an appropriate temperature according to molecular structure.

  19. High Temperature Spin Testing of a Superalloy Disk With a Dual Grain Structure

    Science.gov (United States)

    Gayda, John; Kantzos, Pete

    2002-01-01

    Comparative spin tests were run on superalloy disks at an elevated temperature to determine the benefits of a DMHT disk, with a fine grain bore and coarse grain rim, versus a traditional subsolvus disk with a fine grain structure in the bore and rim. The results of these tests showed that the DMHT disk exhibited significantly lower growth at 1500 F. Further, the results of these tests could be accurately predicted using a 2D viscoelastic finite element analysis. These results indicate DMHT technology can be used to extend disk operating temperatures when compared to traditional subsolvus heat treatment options for superalloy disks. However, additional research is required to ensure the safe operation of a DMHT disk under more realistic engine operating conditions. This includes testing to determine the burst margin and cyclic capability of DMHT disks in a spin pit, at a minimum, and ultimately running an engine test with a DMHT disk.

  20. Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals.

    Science.gov (United States)

    Serbes, Gorkem; Aydin, Nizamettin

    2014-01-01

    Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.

  1. Processing and fusion for human body terahertz dual-band passive image

    Science.gov (United States)

    Tian, Li; Shen, Yanchun; Jin, Weiqi; Zhao, Guozhong; Cai, Yi

    2016-11-01

    Compared with microwave, THz has higher resolution, and compared with infrared, THz has better penetrability. Human body radiate THz also, its photon energy is low, it is harmless to human body. So THz has great potential applications in the body searching system. Dual-band images may contain different information for the same scene, so THz dual-band imaging have been a significant research subject of THz technology. Base on the dual-band THz passive imaging system which is composed of a 94GHz and a 250GHz cell detector, this paper researched the preprocessing and fusion algorithm for THz dual-band images. Firstly, THz images have such problems: large noise, low SNR, low contrast, low details. Secondly, the stability problem of the optical mechanical scanning system makes the images less repetitive, obvious stripes and low definition. Aiming at these situations, this paper used the BM3D de-noising algorithm to filter noise and correct the scanning problem. Furthermore, translation, rotation and scaling exist between the two images, after registered by the intensity-base registration algorithm, and enhanced by the adaptive histogram equalization algorithm, the images are fused by image fusion algorithm based on wavelet. This effectively reduced the image noise, scan distortion and matching error, improved the details, enhanced the contrast. It is helpful to improve the detection efficiency of hidden objects too. Method in this paper has a substantial effect for improving the dual-band THz passive imaging system's performance and promoting technology practical.

  2. Processing and fabrication of high temperature oxide superconductors

    Science.gov (United States)

    Johnson, Sylvia M.

    1989-07-01

    During the past year, a process for synthesizing superconductor powders by freeze drying was optimized. The objectives were to develop an understanding of the processing of these powders and to fabricate simple shapes from freeze dried powders. A series of powders were synthesized from solutions of barium acetate, copper nitrate, and yttrium nitrate, with pH values of 2.8 to 9.8 and calcined at temperatures from 510 to 908 C. The surface area of these powders were determined by BET AND XRD. Selected powders are being characterized by SEM, DTA, ICP analysis (performed at Stanford University), carbon analysis, and tap density. The highest surface area (in lightly milled powders) of 4.4 sq m/g was achieved with a pH of 4 in a series of experiments in which the Ba and Y solutions were mixed together before the Cu nitrate solution was added, then calcined at 825 C. Surface areas decrease with increasing calcining temperature, however. It appears that calcining at 750 or 850 C gives the best critical temperature, with complete transitions at greater than 90 K. Critical temperature measurements performed at Standford show that the goal of a critical temperature of Tc greater than 90 K and a temperature difference, W, between 10 and 90 percent of transition of less than 2 K, were achieved.

  3. High Temperature Epoxy Foam: Optimization of Process Parameters

    Directory of Open Access Journals (Sweden)

    Samira El Gazzani

    2016-06-01

    Full Text Available For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.

  4. Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption.

    Science.gov (United States)

    Stetsyshyn, Yurij; Fornal, Katarzyna; Raczkowska, Joanna; Zemla, Joanna; Kostruba, Andrij; Ohar, Halyna; Ohar, Mariya; Donchak, Volodymyr; Harhay, Khrystyna; Awsiuk, Kamil; Rysz, Jakub; Bernasik, Andrzej; Budkowski, Andrzej

    2013-12-01

    Poly(oligo(ethylene glycol)ethyl ether methacrylate (POEGMA246) coatings were successfully fabricated using novel approach via polymerization from oligoperoxide grafted to premodified glass substrate. Wettability, content and composition of coatings fabricated with different polymerization times were determined using contact angle measurements, ellipsometry and Time of Flight-Secondary Ion Mass Spectrometry (TOF-SIMS). Thermo- and pH-responsive properties of POEGMA246 coatings were found to depend significantly on concentration of the grafted POEGMA246. Coatings fabricated with polymerization time 30 h exhibit not only temperature- but also pH-dependence of wettability. Thermal response of wettability, measured between 20 and 32°C, was prominent at pH 9 and 7 and diminished or was absent at pH 5 and 3, indicating a transition between hydrated loose coils and hydrophobic collapsed chains, blocked at low pH. Protein adsorption, observed by fluorescence microscopy and analyzed semi-quantitatively using integral geometry approach, decreased dramatically for model protein (lentil lectin labeled with fluorescein isothiocyanate) at transition from pH 5 to pH 9, showing only very weak thermal-dependence. Strong protein adsorption response to pH and very weak one to temperature was confirmed by TOF-SIMS and Principal Component Analysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  6. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  7. Dual cure low-VOC coating process. Final technical report, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Kinzer, K.E.

    1993-12-01

    US EPA is implementing increasingly stringent environmental regulations on the emissions of volatile organic compounds (VOCs), which amount to about 7 {times} 10{sup 9} lb/year, largely from paints and other coating systems in industry. Objective of this project is to develop Dual Cure Photocatalyst coating technology for aerospace topcoats (urethane/acrylate), aerospace primers (epoxy/acrylate), and solventless tape backings. Some problems (moisture etc.) were encountered in the primer area. Cost, economic, and energy analyses were conducted. The dual cure technology has already been commercialized in 3M`s flexible diamond resin products. Tabs.

  8. Cognitive processes affect the gait of subjects with Parkinson’s and Alzheimer’s disease in dual tasks

    Directory of Open Access Journals (Sweden)

    Gustavo Christofoletti

    2015-06-01

    Full Text Available Objective To investigate the relation between gait parameters and cognitive impairments in subjects with Parkinson’s disease (PD and Alzheimer’s disease (AD during the performance of dual tasks. Methods This was a cross-sectional study involving 126 subjects divided into three groups: Parkinson group (n = 43, Alzheimer group (n = 38, and control group (n = 45. The subjects were evaluated using the Timed Up and Go test administered with motor and cognitive distracters. Gait analyses consisted of cadence and speed measurements, with cognitive functions being assessed by the Brief Cognitive Screening Battery and the Clock Drawing Test. Statistical procedures included mixed-design analyses of variance to observe the gait patterns between groups and tasks and the linear regression model to investigate the influence of cognitive functions in this process. A 5% significant level was adopted. Results Regarding the subjects’ speed, the data show a significant difference between group vs task interaction (p = 0.009, with worse performance of subjects with PD in motor dual task and of subjects with AD in cognitive dual task. With respect to cadence, no statistical differences was seen between group vs task interaction (p = 0.105, showing low interference of the clinical conditions on such parameter. The linear regression model showed that up to 45.79%, of the variance in gait can be explained by the interference of cognitive processes. Conclusion Dual task activities affect gait pattern in subjects with PD and AD. Differences between groups reflect peculiarities of each disease and show a direct interference of cognitive processes on complex tasks.

  9. Heavy Quark Potential at Finite Temperature in a Dual Gravity Closer to Large N QCD

    CERN Document Server

    Patra, Binoy Krishna

    2014-01-01

    In gauge-gravity duality, heavy quark potential at finite temperature is usually calculated with the pure AdS background, which does not capture the renormalisation group (RG) running in the gauge theory part and the potential also does not contain any confining term in the deconfined phase. Following the developments in \\cite{KS}, a geometry was contructed recently in \\cite{ Mia:NPB2010, Mia:PRD2010}, which captures the RG flow similar to QCD and we employ their geometry to obtain the heavy quark potential by analytically continuing the string configurations into the complex plane. In addition to the attractive terms, the obtained potential has confining terms both at $T=0$ and $T \

  10. Pedestrians' intention to jaywalk: Automatic or planned? A study based on a dual-process model in China.

    Science.gov (United States)

    Xu, Yaoshan; Li, Yongjuan; Zhang, Feng

    2013-01-01

    The present study investigates the determining factors of Chinese pedestrians' intention to violate traffic laws using a dual-process model. This model divides the cognitive processes of intention formation into controlled analytical processes and automatic associative processes. Specifically, the process explained by the augmented theory of planned behavior (TPB) is controlled, whereas the process based on past behavior is automatic. The results of a survey conducted on 323 adult pedestrian respondents showed that the two added TPB variables had different effects on the intention to violate, i.e., personal norms were significantly related to traffic violation intention, whereas descriptive norms were non-significant predictors. Past behavior significantly but uniquely predicted the intention to violate: the results of the relative weight analysis indicated that the largest percentage of variance in pedestrians' intention to violate was explained by past behavior (42%). According to the dual-process model, therefore, pedestrians' intention formation relies more on habit than on cognitive TPB components and social norms. The implications of these findings for the development of intervention programs are discussed.

  11. Stochastic investigation of temperature process for climatic variability identification

    Science.gov (United States)

    Lerias, Eleutherios; Kalamioti, Anna; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2016-04-01

    The temperature process is considered as the most characteristic hydrometeorological process and has been thoroughly examined in the climate-change framework. We use a dataset comprising hourly temperature and dew point records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  12. Logical Reasoning versus Information Processing in the Dual-Strategy Model of Reasoning

    Science.gov (United States)

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2017-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and statistical strategies underlying probabilistic models. The dual-strategy model, proposed by Verschueren, Schaeken, & d'Ydewalle (2005a, 2005b), which suggests that people might have access to both…

  13. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    Science.gov (United States)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  14. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  15. Temperature versus time curves for manual and automated soldering processes

    Energy Technology Data Exchange (ETDEWEB)

    Trent, M.A.

    1978-08-01

    Temperature-versus-time curves were recorded for various electronic components during pre-tinning, hand soldering, and drag soldering operations to determine the temperature ranges encountered. The component types investigated included a wide range of electronic assemblies. The data collected has been arranged by process and will help engineers to: (1) predetermine the thermal profile to which various components are subjected during the soldering operation; (2) decide--on the basis of component heat sensitivity and the need for thermal relief--where hand soldering would be more feasible than drag soldering; and (3) determine the optimum drag solder control parameters.

  16. Considering Process Nonlinearity in Dual-Point Composition Control of a High-Purity Ideal Heat Integrated Distillation Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1) variable scaling; (2) multi-model representation of process dynamics and (3) feedforward compensation. These strategies can offer the developed control systems with several distinct advantages: (1) capability of dealing with severe disturbances; (2) tight tuning of controller parameters and (3) high robustness with respect to variation of operating conditions. Simulation results demonstrate the effectiveness of the proposed methodology.

  17. Temperature dependent dynamic ESD processes in alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, J.; Czuba, P.; Piatkowski, P.; Poradzisz, A.; Postawa, Z. (Inst. of Physics, Jagellonian Univ., Krakow (Poland)); Szymonski, M. (Inst. for Materials Research, McMaster Univ., Hamilton, Ontario (Canada)); Fine, J. (Surface and Microanalysis Div., National Inst. of Standards and Tech., Gaithersburg, MD (United States))

    1992-03-01

    The effect of the sample temperature on angular-resolved kinetic-energy distributions of alkali and halogen atoms, electronically desorbed from single crystal alkali halides, has been measured. It was found that while the emission of particles with thermal energies increased by about a factor of 40 in the temperature range 90-300degC, the nonthermal halogen atom intensity decreased by about a factor of 3. From these temperature dependent measurements the activation energies for thermally assisted defect migration processes have been estimated. The results will be compared with the data available in the literature and the predictions of a recently proposed model for electron-stimulated desorption (ESD) of alkali halides. (orig.).

  18. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; Li, Chaonan; Li, Jiaying; Li, Jiabao; Yao, Minjie; Hedenec, Petr; Li, Huan; Li, Tongtong; Rui, Junpeng; Frouz, Jan; Li, Xiangzhen

    2017-10-15

    Temperature plays crucial roles in microbial interactions that affect the stability and performance of anaerobic digestion. In this study, the microbial interactions and their succession in the anaerobic digestion process were investigated at three levels, represented by (1) present and (2) active micro-organisms, and (3) gene expressions under a temperature gradient from 25 to 55 °C. Network topological features indicated a global variation in microbial interactions at different temperatures. The variations of microbial interactions in terms of network modularity and deterministic processes based on topological features, corresponded well with the variations of methane productions, but not with temperatures. A common successional pattern of microbial interactions was observed at different temperatures, which showed that both deterministic processes and network modularity increased over time during the digestion process. It was concluded that the increase in temperature-mediated network modularity and deterministic processes on shaping the microbial interactions improved the stability and efficiency of anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. High pressure-low temperature processing of food proteins.

    Science.gov (United States)

    Dumay, Eliane; Picart, Laetitia; Regnault, Stéphanie; Thiebaud, Maryse

    2006-03-01

    High pressure-low temperature (HP-LT) processing is of interest in the food field in view of: (i) obtaining a "cold" pasteurisation effect, the level of microbial inactivation being higher after pressurisation at low or sub-zero than at ambient temperature; (ii) limiting the negative impact of atmospheric pressure freezing on food structures. The specific effects of freezing by fast pressure release on the formation of ice I crystals have been investigated on oil in water emulsions stabilized by proteins, and protein gels, showing the formation of a high number of small ice nuclei compared to the long needle-shaped crystals obtained by conventional freezing at 0.1 MPa. It was therefore of interest to study the effects of HP-LT processing on unfolding or dissociation/aggregation phenomena in food proteins, in view of minimizing or controlling structural changes and aggregation reactions, and/or of improving protein functional properties. In the present studies, the effects of HP-LT have been investigated on protein models such as (i) beta-lactoglobulin, i.e., a whey protein with a well known 3-D structure, and (ii) casein micelles, i.e., the main milk protein components, the supramolecular structure of which is not fully elucidated. The effects of HP-LT processing was studied up to 300 MPa at low or sub-zero temperatures and after pressure release, or up to 200 MPa by UV spectroscopy under pressure, allowing to follow reversible structural changes. Pressurisation of approximately 2% beta-lactoglobulin solutions up to 300 MPa at low/subzero temperatures minimizes aggregation reactions, as measured after pressure release. In parallel, such low temperature treatments enhanced the size reduction of casein micelles.

  20. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  1. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  2. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  3. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  4. Temperature control for high pressure processes up to 1400 MPa

    Science.gov (United States)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  5. Temperature control for high pressure processes up to 1400 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, K; Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box: 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 {mu}L sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s{sup -1} and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and

  6. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  7. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  8. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2003-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup

  9. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2013-02-01

    Full Text Available Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wort has been recorded, during the process of primary fermentation carried out in mini brewery of SPU. We have compared our results with theoretical values of primary fermentation process commonly achieved in conditions of industrial breweries. It was found out that our results differ in some ways, moreover they exceed theoretically given values which was caused due to different construction of mini brewery fermentation tank in comparison with industrial brewery technologies. Beer produced in mini brewery of SPU showed in sensorial tests very good quality without any strange odour and any strange taste.

  10. A dual-process model of diversity outcomes: The case South African police service in the Pretoria area

    Directory of Open Access Journals (Sweden)

    Leon T.B. Jackson

    2013-01-01

    Full Text Available Orientation: The study addresses the question of how employees of the South African Police Service (SAPS cope with intercultural relations in an increasingly diverse organisation.Research purpose: A dual-process model of diversity outcomes was tested in which a distinction is made between a positive (work-related stream that links positive diversity conditions through active coping to work outcomes and a relatively independent health related stream of negative antecedents, mediating passive coping skills and ill-health related outcomes.Motivation for the study: To test the viability of a dual-process model to understand diversity outcomes in the workplace.Research design, approach and methods: A convenience sample (n= 158 was recruited from members of the SAPS in Gauteng, using a cross-sectional design. Instruments used in previous acculturation research were adapted to measure contextual factors, coping and diversity outcomes.Main findings: A very good fit for the proposed hypothetical model was found. Approach coping partially mediated the relationship between positive acculturation conditions and the subjective experience of work success whereas avoidance coping fully mediated the relationship between discrimination, and ill-health symptoms are related to ill-health symptoms.Practical/managerial implications: Mainstream-facilitating conditions and discrimination influence individual coping styles, which in turn impact on ill-health and the subjective experience of work success. In addition, ill-health also impacts negatively on work-success experiences amongst the sampled SAPS members. It would thus make sense for the SAPS to sanction discrimination.Contribution/value added: A variation of the mediated dual-process model for diversity (Jackson & Van de Vijver, in press, using coping strategies as mediators was supported. The model adds new insights in diversity in organisations.

  11. Temporal dynamics of interference in Simon and Eriksen tasks considered within the context of a dual-process model.

    Science.gov (United States)

    Mansfield, Karen L; van der Molen, Maurits W; Falkenstein, Michael; van Boxtel, Geert J M

    2013-08-01

    Behavioral and brain potential measures were employed to compare interference in Eriksen and Simon tasks. Assuming a dual-process model of interference elicited in speeded response tasks, we hypothesized that only lateralized stimuli in the Simon task induce fast S-R priming via direct unconditional processes, while Eriksen interference effects are induced later via indirect conditional processes. Delays to responses for incongruent trials were indeed larger in the Eriksen than in the Simon task. Only lateralized stimuli in the Simon task elicited early S-R priming, maximal at parietal areas. Incongruent flankers in the Eriksen task elicited interference later, visible as a lateralized N2. Eriksen interference also elicited an additional component (N350), which accounted for the larger behavioral interference effects in the Eriksen task. The findings suggest that interference and its resolution involve different processes for Simon and Eriksen tasks.

  12. Cancel and rethink in the Wason selection task: further evidence for the heuristic-analytic dual process theory.

    Science.gov (United States)

    Wada, Kazushige; Nittono, Hiroshi

    2004-06-01

    The reasoning process in the Wason selection task was examined by measuring card inspection times in the letter-number and drinking-age problems. 24 students were asked to solve the problems presented on a computer screen. Only the card touched with a mouse pointer was visible, and the total exposure time of each card was measured. Participants were allowed to cancel their previous selections at any time. Although rethinking was encouraged, the cards once selected were rarely cancelled (10% of the total selections). Moreover, most of the cancelled cards were reselected (89% of the total cancellations). Consistent with previous findings, inspection times were longer for selected cards than for nonselected cards. These results suggest that card selections are determined largely by initial heuristic processes and rarely reversed by subsequent analytic processes. The present study gives further support for the heuristic-analytic dual process theory.

  13. The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system.

    Science.gov (United States)

    Xiong, Wei; Gao, Xiang; Zhao, Yanbing; Xu, Huibi; Yang, Xiangliang

    2011-05-01

    Poly(N-isopropylacrylamide-co-acrylic acid) microgels (PNA) may be an excellent formulation for in situ gelling system due to their high sensitivity and fast response rate. Four monodispersed PNA microgels with various contents of acrylic acid (AA) were synthesized by emulsion polymerization in this paper. Their hydrodynamic diameters decreased reversibly with both decreasing pH and increasing temperature. The dual temperature/pH-sensitivity was influenced by many factors such as AA content, cross-link density and ion strength. In addition, high concentration PNA dispersions underwent multiple phase transition according to different temperatures, pHs and concentrations, which were summarized in a 3D sol-gel phase diagram in this study. According to the sol-gel phase transition, 8% PNA-025 dispersion maintained a relatively low viscosity and favorable fluidity at pH 5.0 in the temperature range of 25-40°C, but it rapidly increased in viscosity at pH 7.4 and gelled at 37°C. This feature enabled the dual temperature/pH-sensitive microgels to overcome the troubles in syringing of temperature sensitive materials during the injection. Apart from this, PNA could form gel well in in vitro (e.g., medium and serum) and in in vivo with low cytotoxicity. Therefore, it is promising for PNA to be applied in the in situ gelling system.

  14. Defective iron-oxide nanoparticles synthesised by high temperature plasma processing: a magnetic characterisation versus temperature

    Science.gov (United States)

    Balasubramanian, C.; Joseph, B.; Orpe, PB; Saini, NL; Mukherjee, S.; Dziedzic-Kocurek, K.; Stanek, J.; Di Gioacchino, D.; Marcelli, A.

    2016-11-01

    Magnetic properties and phase compositions of iron-oxide nanoparticles synthesised by a high temperature arc plasma route have been investigated by Mössbauer spectroscopy and high harmonic magnetic AC susceptibility measurements, and correlated with morphological and structural properties for different synthesis conditions. The Mössbauer spectra precisely determined the presence of different iron-oxide fractions in the investigated nanoparticles, while the high harmonic magnetic susceptibility measurements revealed the occurrence of metastable magnetic phases evolving in temperature and time. This study illustrates magnetic properties and dynamics of the magnetic configurations of iron-oxide nanoparticles grown by high temperature plasma, a process less explored so far but extremely useful for synthesising large numbers of nanoparticles for industrial applications.

  15. Behaviour of peat ash in high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.

    1986-01-01

    The ash-forming constituents are in peat as minerals and bound in the organic framework. The kind of binding is dependent on peat type, plant species composition, acidity of the peatland, etc. Studies carried out with brown coal have indicated that the forms of ash occurrence in the fuel have an influence on the slagging ehaviour of ash in the process. The behaviour is also dependent on the reactor type and conditions in the reactor, for example, on the composition of gas atmosphere, on temperature, and gas flows. For example, the reducing conditions affect especially the occurrence of iron in different oxidation degrees in gasification, and this affects further the melting behaviour of ash. In brown coal gasification, as much as a third of the iron content was found to be reduced to metallic iron in the fluid-bed gasifier. To forecast the slagging behaviour of ash, the melting temperatures of ash are measured. Fouling or partial melting of ash cannot always be monitored with standard measuring methods, as these phenomena may start already at temperatures 200 deg C lower than the lowest melting temperature. THey can be studied for example with thermochemical methods.

  16. A high temperature granulation process for ecological ash recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Thomas

    1999-07-01

    This thesis is a summary of three papers dealing with new technologies for facilitating ecological biomass ash recirculation back to forest and farm lands. The present outtake of biomass for paper and energy production may be incompatible with a sustainable forestry. The cycle of nutrients contained in the biomass extracted must be closed by ash recirculation in an environmental compatible way. This implies stabilization of the loose ashes/rest-products to a product with low heavy metal contents, controlled leaching properties and a high spreadability. In the present work, two different techniques were evaluated for the possibilities to separate heavy metals from the nutrient elements by utilizing high process temperatures to vaporize the unwanted metals from the condensed bulk materials. The results indicated that direct in-situ separation in fluidized bed combustion systems is possible, but requires too high process temperatures to be practically attractive. On the other hand, the new proposed high temperature treatment method for granulated raw materials was found to significantly separate As, Cd and Pb, with separation efficiencies exceeding 90 % at optimal operating conditions. In addition, the results indicated that the treatment method could be used to significantly delay and control the leaching characteristics, as well as the content of products of incomplete combustion of the produced granules.

  17. Temperature and oxygen visual estimator for carbonization process control

    Science.gov (United States)

    Martínez, Fredy; Martínez, Fernando; Montiel, Holman

    2017-02-01

    This paper proposes a visual estimator for temperature and oxygen content for closed loop control of carbonization furnace in the production of activated carbon. The carbonization process involves thermal decomposition of vegetal material in the absence of air; this requires rigorous sensing and control of these two variables. The system consists of two cameras, a thermographic camera to estimate the temperature, and a traditional digital camera to estimate the oxygen content. In both cases we use similarity measures between images to estimate the value of the variables into the furnace, estimation that is used to control the furnace flame. The algorithm is tested with reference photos taken at the production plant, and the experimental results prove the performance of the proposed technique.

  18. Exploration of extremophiles for high temperature biotechnological processes.

    Science.gov (United States)

    Elleuche, Skander; Schäfers, Christian; Blank, Saskia; Schröder, Carola; Antranikian, Garabed

    2015-06-01

    Industrial processes often take place under harsh conditions that are hostile to microorganisms and their biocatalysts. Microorganisms surviving at temperatures above 60°C represent a chest of biotechnological treasures for high-temperature bioprocesses by producing a large portfolio of biocatalysts (thermozymes). Due to the unique requirements to cultivate thermophilic (60-80°C) and hyperthermophilic (80-110°C) Bacteria and Archaea, less than 5% are cultivable in the laboratory. Therefore, other approaches including sequence-based screenings and metagenomics have been successful in providing novel thermozymes. In particular, polysaccharide-degrading enzymes (amylolytic enzymes, hemicellulases, cellulases, pectinases and chitinases), lipolytic enzymes and proteases from thermophiles have attracted interest due to their potential for versatile applications in pharmaceutical, chemical, food, textile, paper, leather and feed industries as well as in biorefineries.

  19. 甲醇/柴油双燃料发动机燃烧过程分析%Combustion process analysis of methanol/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    王忠; 李仁春; 张登攀; 李铭迪

    2013-01-01

    In recent years, environment concerns and depletion in petroleum resources have forced researchers to concentrate on exploiting renewable alternatives fuels. As a renewable and alternative fuel, methanol has gained great attendance. As for the application of methanol on compression ignition engines, researchers have focused on partial replacement of diesel with methanol, either blended with diesel or injected into the air intake. Due to the poor miscibility of diesel and methanol, an additive has to be added to form steady methanol/diesel blends. However, majority of these additives have bad influence on NOX emission. Methanol and diesel can also be applied separately to the engine. Dual injection system is one method, which is difficult and expensive to develop. Compared with other methods, intake premixed methanol is more flexible in operation and has greater potential to applied to practical application. In this paper, the methanol injection system was optimally designed according to the former investigation on air-methanol mixture formation inside internal combustion engine. However, previous research results showed that severe knock would happen at high load with high proportion of methanol. In addition, the intake charge temperature declined, owing to the high level of methanol vaporization latent heat. Thirdly, with the addition of methanol, high temperature and low temperature exothermic reaction were delayed, and the ignition delay of dual fuel was prolonged. The premixed methanol injection was controlled by intake manifold electrically system, and the combustion process of methanol/diesel dual fuel was experimentally investigated. Based on the experimental results, the optimization and application of methanol injection system were proposed, and make sure that the output power of optimized dual engine hardly changed. The experimental research was carried out on 4B26 turbocharged diesel engine. The tests were conducted at four different methanol proportion

  20. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  1. Does the Butcher-on-the-Bus Phenomenon Require a Dual-Process Explanation? A Signal Detection Analysis.

    Science.gov (United States)

    Tunney, Richard J; Mullett, Timothy L; Moross, Claudia J; Gardner, Anna

    2012-01-01

    The butcher-on-the-bus is a rhetorical device or hypothetical phenomenon that is often used to illustrate how recognition decisions can be based on different memory processes (Mandler, 1980). The phenomenon describes a scenario in which a person is recognized but the recognition is accompanied by a sense of familiarity or knowing characterized by an absence of contextual details such as the person's identity. We report two recognition memory experiments that use signal detection analyses to determine whether this phenomenon is evidence for a recollection plus familiarity model of recognition or is better explained by a univariate signal detection model. We conclude that there is an interaction between confidence estimates and remember-know judgments which is not explained fully by either single-process signal detection or traditional dual-process models.

  2. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  3. Modeling dual-scale epidemic dynamics on complex networks with reaction diffusion processes

    Institute of Scientific and Technical Information of China (English)

    Xiao-gang JIN; Yong MIN

    2014-01-01

    The frequent outbreak of severe foodborne diseases (e.g., haemolytic uraemic syndrome and Listeriosis) in 2011 warns of a potential threat that world trade could spread fatal pathogens (e.g., enterohemorrhagic Escherichia coli). The epidemic potential from trade involves both intra-proliferation and inter-diffusion. Here, we present a worldwide vegetable trade network and a stochastic computational model to simulate global trade-mediated epidemics by considering the weighted nodes and edges of the network and the dual-scale dynamics of epidemics. We address two basic issues of network structural impact in global epi-demic patterns:(1) in contrast to the prediction of heterogeneous network models, the broad variability of node degree and edge weights of the vegetable trade network do not determine the threshold of global epidemics;(2) a‘penetration effect’, by which community structures do not restrict propagation at the global scale, quickly facilitates bridging the edges between communities, and leads to synchronized diffusion throughout the entire network. We have also defined an appropriate metric that combines dual-scale behavior and enables quantification of the critical role of bridging edges in disease diffusion from widespread trading. The unusual structure mechanisms of the trade network model may be useful in producing strategies for adaptive immunity and reducing international trade frictions.

  4. Specifying social cognitive processes with a social dual-task paradigm

    Directory of Open Access Journals (Sweden)

    Roman eLiepelt

    2012-04-01

    Full Text Available Automatic imitation tasks measuring motor priming effects showed that we directly map observed actions of other agents onto our own motor repertoire (direct matching. A recent joint-action study using a social dual-task paradigm provided evidence for task monitoring. In the present study, we aimed to test a if automatic imitation is disturbed during joint action and b if task monitoring is content or time dependent. We used a social dual task that was made of an automatic imitation task (Person 1: Task 1 and a two-choice number task (Person 2: Task 2. Each participant performed one of the two tasks, which were given with a variable stimulus onset asynchrony (SOA, in an individual and a joint condition. We found a regular motor priming effect in individual and joint conditions. Under joint conditions, we replicated the previous finding of an increase of reaction times for Person 2 with decreasing SOA. The latter effect was not related to the specific responses performed by both persons. Further, we did not find evidence for a representation of the other’s specific S-R mappings. Our findings suggest that a automatic imitation is not disturbed during joint action and b task monitoring is time dependent.

  5. A dual-process perspective on fluency-based aesthetics: the pleasure-interest model of aesthetic liking.

    Science.gov (United States)

    Graf, Laura K M; Landwehr, Jan R

    2015-11-01

    In this article, we develop an account of how aesthetic preferences can be formed as a result of two hierarchical, fluency-based processes. Our model suggests that processing performed immediately upon encountering an aesthetic object is stimulus driven, and aesthetic preferences that accrue from this processing reflect aesthetic evaluations of pleasure or displeasure. When sufficient processing motivation is provided by a perceiver's need for cognitive enrichment and/or the stimulus' processing affordance, elaborate perceiver-driven processing can emerge, which gives rise to fluency-based aesthetic evaluations of interest, boredom, or confusion. Because the positive outcomes in our model are pleasure and interest, we call it the Pleasure-Interest Model of Aesthetic Liking (PIA Model). Theoretically, this model integrates a dual-process perspective and ideas from lay epistemology into processing fluency theory, and it provides a parsimonious framework to embed and unite a wealth of aesthetic phenomena, including contradictory preference patterns for easy versus difficult-to-process aesthetic stimuli.

  6. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  7. Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared

    Science.gov (United States)

    Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.

  8. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  9. Room-temperature dual-wavelength erbium-doped fibre laser based on a sampled fibre Bragg grating and a photonic Robin Hood

    Science.gov (United States)

    Liu, Xueming; Zhao, Wei; Lu, Keqing; Zhang, Tongyi; Sun, Chuandong; Wang, Yishan; Hou, Xun; Chen, Guofu

    2006-12-01

    With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].

  10. Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-07-15

    Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.

  11. Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process.

    Science.gov (United States)

    Roy, Prasanta; Roy, Binoy Krishna

    2016-07-01

    The Quadruple Tank Process (QTP) is a well-known benchmark of a nonlinear coupled complex MIMO process having both minimum and nonminimum phase characteristics. This paper presents a novel self tuning type Dual Mode Adaptive Fractional Order PI controller along with an Adaptive Feedforward controller for the QTP. The controllers are designed based on a novel Variable Parameter Transfer Function model. The effectiveness of the proposed model and controllers is tested through numerical simulation and experimentation. Results reveal that the proposed controllers work successfully to track the reference signals in all ranges of output. A brief comparison with some of the earlier reported similar works is presented to show that the proposed control scheme has some advantages and better performances than several other similar works.

  12. On the use of the dual process Langmuir model for predicting unary and binary isosteric heats of adsorption.

    Science.gov (United States)

    Bhadra, Shubhra J; Ebner, Armin D; Ritter, James A

    2012-05-01

    Analytic expressions for unary and binary isosteric heats of adsorption as a function of the adsorbed phase loading were derived from the dual process Langmuir (DPL) model using the Clausius-Clapeyron equation. Unary isosteric heats of adsorption predicted from these expressions for several adsorbate-adsorbent systems were compared to values in the literature predicted from the well-accepted graphical approach using Toth and unilan models (Adsorption Equilibrium Data Handbook; Prentice Hall: NJ, 1989). Predictions from the DPL model were also compared to rare experimental unary and binary isosteric heats of adsorption in the literature for another adsorbate-adsorbent system. In all cases, very good agreement was obtained, showing that the DPL model can be used in adsorption process modeling for accurately predicting not only ideal and nonideal mixed-gas adsorption equilibria (Langmuir 2011, 27, 4700), but also unary and even binary isosteric heats of adsorption.

  13. Evaluation of Temperature Elevation During Root Canal Treatment with Dual Wavelength Laser: 2780 nm Er,Cr:YSGG and 940 nm Diode.

    Science.gov (United States)

    Al-Karadaghi, Tamara Sardar; Gutknecht, Norbert; Jawad, Hussein A; Vanweersch, Leon; Franzen, Rene

    2015-09-01

    The purpose of this study was to evaluate the effects of dual wavelength (2780 nm Er,Cr:YSGG and 940 nm diode) laser with radial firing tip (RFT) on the external root surface and sub-surfaces, in terms of temperature changes during laser-assisted root canal treatment. A significant factor that may limit the use of lasers in endodontics is the possible thermal injury to tooth supporting structures. A total of 50 sound single-rooted extracted teeth were divided randomly into two groups (n = 25). Group A, irradiated with Er,Cr:YSGG laser at 1.06 W, 50 Hz, and 50 μs was a control group, and group B was irradiated with dual wavelength of Er,Cr:YSGG laser with the same settings as group A and a diode laser of 0.51 W at 4 ms and 10 ms pulse duration. K-type thermocouples were used to record temperature changes at the cervical, middle, and apical root thirds, on root surfaces and sub-surfaces, arising from delivery of laser energy through RFT. Temperature elevation in group B was significantly higher in the middle and apical thirds of the prepared samples than in group A (p surface region corresponding to a 1.48 mm dentin thickness, whereas a mean temperature increase of 7.72°C was recorded corresponding to dentin thickness of 0.95 mm. Within the studied parameters, the dual wavelength laser did not result in adverse thermal changes on the external root surface in vitro.

  14. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    Science.gov (United States)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  15. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  16. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    Science.gov (United States)

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  17. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  18. Process, Voltage and Temperature Compensation Technique for Cascode Modulated PAs

    DEFF Research Database (Denmark)

    Sira, Daniel; Larsen, Torben

    2013-01-01

    transconductance amplifier. The predistorted varying envelope signal is applied to the cascode gate of the PA. It is shown that the proposed PVT compensation technique significantly reduces the PVT spread of the PA linearity indicators and improves the PA linearity. Simulations were performed in a 0.13 μm CMOS......This paper presents a process, voltage and temperature (PVT) compensation method for a cascode modulated polar power amplifier (PA). It is shown that it is possible to create a baseband replica circuit of the PA that has the same AM-AM nonlinearity as the PA itself. The replica circuit......, that represents a transistor level model (empirical model) of the cascode modulated PA, is utilized in a PA analog predistorter. The analog predistorter linearizes and compensates for PVT variation of the cascode modulated PA. The empirical model is placed in the negative feedback of an operational...

  19. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  20. Self-Enhancement on a Self-Categorization Leash: Evidence for a Dual-Process Model of First-and Third-Person Perceptions

    Science.gov (United States)

    Zhang, Jinguang

    2010-01-01

    Research suggests that first- and third-person perceptions are driven by the motive to self-enhance and cognitive processes involving the perception of social norms. This article proposes and tests a dual-process model that predicts an interaction between cognition and motivation. Consistent with the model, Experiment 1 (N = 112) showed that…

  1. Walkable dual emissions

    National Research Council Canada - National Science Library

    Xu, Hai-Bing; Jiao, Peng-Chong; Kang, Bin; Deng, Jian-Guo; Zhang, Yan

    2013-01-01

    Walkable dual emissions, in which the emission bands of the walker reversibly cross or leave those of the stationary ones depending on temperature and concentration, have been demonstrated in cyclic...

  2. Sustained energy intake in lactating Swiss mice: a dual modulation process.

    Science.gov (United States)

    Wen, Jing; Tan, Song; Qiao, Qing-Gang; Fan, Wei-Jia; Huang, Yi-Xin; Cao, Jing; Liu, Jin-Song; Wang, Zuo-Xin; Zhao, Zhi-Jun

    2017-06-15

    Limits to sustained energy intake (SusEI) during lactation are important because they provide an upper boundary below which females must trade off competing physiological activities. To date, SusEI is thought to be limited either by the capacity of the mammary glands to produce milk (the peripheral limitation hypothesis) or by a female's ability to dissipate body heat (the heat dissipation hypothesis). In the present study, we examined the effects of litter size and ambient temperature on a set of physiological, behavioral and morphological indicators of SusEI and reproductive performance in lactating Swiss mice. Our results indicate that energy input, energy output and mammary gland mass increased with litter size, whereas pup body mass and survival rate decreased. The body temperature increased significantly, while food intake (18 g day(-1) at 21°C versus 10 g day(-1) at 30°C), thermal conductance (lower by 20-27% at 30°C than 21°C), litter mass and milk energy output decreased significantly in the females raising a large litter size at 30°C compared with those at 21°C. Furthermore, an interaction between ambient temperature and litter size affected females' energy budget, imposing strong constraints on SusEI. Together, our data suggest that the limitation may be caused by both mammary glands and heat dissipation, i.e. peripheral limitation is dominant at room temperature, but heat dissipation is more significant at warm temperatures. Further, the level of the heat dissipation limits may be temperature dependent, shifting down with increasing temperature. © 2017. Published by The Company of Biologists Ltd.

  3. TEMPERATURE INFLUENCE ON THE AGARICUS BISPORUS MUSHROOMS DEHYDRATION PROCESS

    Directory of Open Access Journals (Sweden)

    LILIANA I. MIHALCEA

    2016-12-01

    Full Text Available Edible mushrooms are foods with high nutritional value, delicious and therapeutic products. The main objective of this research was to investigate the influence of different temperatures of the dehydration process on the microstructure and color of Agaricus bisporus mushrooms. Tray drying conditions were: constant air velocity, 50, 60 and 70 °C suited to relative humidity (RH values of 12.17, 4.8 and 2.26 % respectively. Mathematical modeling of drying process, effective moisture diffusivity and activation energy calculations were presented. The effective moisture diffusivity was between (1.09665 – 2.11723·10-10 m2∙s-1 for white and (0.99522 – 1.69885·10-10 m2∙s-1 for brown mushrooms. The activation energy values indicate a higher energy input for the white mushrooms drying. SEM micrographs revealed the overall integrity of the tissue and some hyphae from the stipes of brown and white mushroom appeared intact and similar. At 70 °C, the presence of these crystals is more emphasis due to calcium.

  4. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  5. Big-five personality, social worldviews, and ideological attitudes: further tests of a dual process cognitive-motivational model.

    Science.gov (United States)

    Sibley, Chris G; Duckitt, John

    2009-10-01

    In this study, we extended the Dual Process Model of Ideology and Prejudice by incorporating the Five-Factor Model of Personality (N = 924). Disagreeable people tended to view the social world as competitive, which in turn predicted heightened motivations for group-based dominance and superiority (Social Dominance Orientation or SDO), whereas people low in Openness to Experience and high in Conscientiousness directly expressed heightened security-cohesion motivations (Right-Wing Authoritarianism or RWA). Other personality dimensions were weakly associated with RWA, and these effects were mediated by dangerous worldview. Multiple distinct aspects of personality predict SDO and RWA both directly and indirectly through worldviews, but we found little evidence for the possibility that personality alters the extent to which worldviews (once formed) predict SDO and RWA.

  6. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    Institute of Scientific and Technical Information of China (English)

    陈洲; 佟秋男; 张丛丛; 胡湛

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are per-formed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Com-pared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible.

  7. Modulation of the excited state intramolecular electron transfer reaction and dual fluorescence of crystal violet lactone in room temperature ionic liquids.

    Science.gov (United States)

    Santhosh, Kotni; Samanta, Anunay

    2010-07-22

    The influence of polarity, viscosity, and hydrogen bond donating ability of the medium on the fluorescence behavior of crystal violet lactone (CVL), which undergoes excited state electron transfer reaction and exhibits dual fluorescence from two different electronic states, termed as CT(A) and CT(B), has been studied in six different room temperature ionic liquids (ILs) using steady state and time-resolved emission techniques. It is shown that the excited state CT(A) --> CT(B) transformation and dual fluorescence of CVL can be controlled by appropriate choice of the ILs. While dual fluorescence of CVL is clearly observed in pyrrolidinium IL, the molecule exhibits a single fluorescence band in ammonium IL. While the second emission from the CT(B) state can barely be seen in 1,3-dialkylimidazolium ILs, dual fluorescence is quite prominent in 1-butyl-2,3-dimethylimidazolium IL, [bmMim][Tf(2)N]. These contrasting results have been explained taking into account the hydrogen bonding interactions of the 1,3-dialkylimidazolium ions (mediated through the C(2)-hydrogen) with CVL and the viscosity of the ILs. The excited state CT(A) --> CT(B) reaction kinetics has been studied in IL by monitoring the time-evolution of the CT(B) emission in [bmMim][Tf(2)N]. The solvation dynamics in this IL has been studied by following the dynamic fluorescence Stokes shift of C153, which is used as a probe molecule. A comparison of the excited state reaction time and solvation time suggests that the rate of the CT(A) --> CT(B) reaction in moderately viscous ILs is primarily dictated by the rate of solvation. Very little or negligible excitation wavelength dependence of the emission behavior of CVL can be observed in these ILs.

  8. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    Science.gov (United States)

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  9. Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.

    Science.gov (United States)

    Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos

    2015-11-15

    A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation.

  10. Dual psychological processes underlying public stigma and the implications for reducing stigma

    Directory of Open Access Journals (Sweden)

    John B. Pryor

    2008-01-01

    Full Text Available People with serious illness or disability are often burdened with social stigma that promotes a cycle of poverty via unemployment, inadequate housing and threats to mental health. Stigma may be conceptualized in terms of self-stigma (e.g, shame and lowered self-esteem or public stigma (e.g, the general public's prejudice towards the stigmatized. This article examines two psychological processes that underlie public stigma: associative processes and rule-based processes. Associative processes are quick and relatively automatic whereas rule-based processes take longer to manifest themselves and involve deliberate thinking. Associative and rule-based thinking require different assessment instruments, follow a different time course and lead to different effects (e.g, stigma-by-association vs attributional processing that results in blame. Of greatest importance is the fact that each process may require a different stigma-prevention strategy.

  11. Dual psychological processes underlying public stigma and the implications for reducing stigma.

    Science.gov (United States)

    Reeder, Glenn D; Pryor, John B

    2008-01-01

    People with serious illness or disability are often burdened with social stigma that promotes a cycle of poverty via unemployment, inadequate housing and threats to mental health. Stigma may be conceptualized in terms of self-stigma (e.g., shame and lowered self-esteem) or public stigma (e.g., the general public's prejudice towards the stigmatized). This article examines two psychological processes that underlie public stigma: associative processes and rule-based processes. Associative processes are quick and relatively automatic whereas rule-based processes take longer to manifest themselves and involve deliberate thinking. Associative and rule-based thinking require different assessment instruments, follow a different time course and lead to different effects (e.g., stigma-by-association vs attributional processing that results in blame). Of greatest importance is the fact that each process may require a different stigma-prevention strategy.

  12. Dual Psychological Processes Underlying Public Stigma and the Implications for Reducing Stigma

    OpenAIRE

    Pryor, John B.; Glenn D Reeder

    2008-01-01

    People with serious illness or disability are often burdened with social stigma that promotes a cycle of poverty via unemployment, inadequate housing and threats to mental health. Stigma may be conceptualized in terms of self-stigma (e.g., shame and lowered self-esteem) or public stigma (e.g., the general public's prejudice towards the stigmatized). This article examines two psychological processes that underlie public stigma: associative processes and rule-based processes. Associative proces...

  13. Low temperature processing of dielectric perovskites for energy storage

    Science.gov (United States)

    Singh, N. B.; Schreib, Ben; Devilbiss, Michael; Loiacono, Julian; Arnold, Bradley; Choa, Fow-Sen; Mandal, K. D.

    2016-05-01

    Since the report of high dielectric value was published for the calcium copper titanate of the stoichiometry CaCu3Ti4O12 (CCTO), several of its analogs such as Yittrium copper titanate Y2/3Cu3Ti4O12 (YCTO), Pr2/3Cu3Ti4O12 (PCTO) and several other compounds have been studied extensively. Most of these materials have demonstrated very high dielectric constants. However, the roadblock is their low resistivity. To overcome this problem, several approaches have been considered, including doping and substitution. In order to solve this problem, we have synthesized the stoichiometric composition and used low temperature processing to grow grains of La2/3Cu3Ti4O12 (LCTO) stoichiometric compound. LCTO with excess copper oxide was also prepared to determine its effect on the morphology and dielectric constant of the stoichiometric LCTO compound. In spite of the low melting point of copper oxide, we observed that excess copper oxide did not show any faster grain growth. Also, the dielectric constant of LCTO was lower than CCTO and unlike CCTO, LCTO showed significant changes as the function of frequency. The measured resistivity was slightly higher than CCTO.

  14. Transient combustion process of an IDI diesel engine with dual-throat jet at cold-starting

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Zhu, X.; He, X.; Peng, L.

    1996-09-01

    The dual-throat jet technique has been successfully used to improve cold-starting of the swirl-type IDI diesel engines. It has been proven that, with the aid of the second throat connecting the swirl chamber and the main combustion chamber, the cold-starting process was more stable, quieter and cleaner. An intensive fundamental experimental investigation of the transient process of the ignition and combustion at cold-starting has-been conducted on a swirl-chamber IDI diesel engine with the help of high-speed photography. Based on the results of this investigation, the following conclusions have been made: (1) there exist three types of heat release rate pattern at the cold-starting, different patterns will result in different engine behavior; (2) the secondary throat has two effects on the engine starting characteristics: (a) improvement of the ignition conditions in the main chamber by directly delivering pilot fuel; (b) improvement of the fuel/air mixing process by intensifying turbulence in the swirl chamber, which depends on the geometrical shape and orientation of the throat; (3) the counter stream of air against the fuel spray accelerates dispersion and atomization of the fuel spray in the swirl chamber. It plays the primary role in assisting the cold starting of the engine.

  15. Dual-task and electrophysiological markers of executive cognitive processing in older adult gait and fall-risk.

    Science.gov (United States)

    Walshe, Elizabeth A; Patterson, Matthew R; Commins, Seán; Roche, Richard A P

    2015-01-01

    The role of cognition is becoming increasingly central to our understanding of the complexity of walking gait. In particular, higher-level executive functions are suggested to play a key role in gait and fall-risk, but the specific underlying neurocognitive processes remain unclear. Here, we report two experiments which investigated the cognitive and neural processes underlying older adult gait and falls. Experiment 1 employed a dual-task (DT) paradigm in young and older adults, to assess the relative effects of higher-level executive function tasks (n-Back, Serial Subtraction and visuo-spatial Clock task) in comparison to non-executive distracter tasks (motor response task and alphabet recitation) on gait. All DTs elicited changes in gait for both young and older adults, relative to baseline walking. Significantly greater DT costs were observed for the executive tasks in the older adult group. Experiment 2 compared normal walking gait, seated cognitive performances and concurrent event-related brain potentials (ERPs) in healthy young and older adults, to older adult fallers. No significant differences in cognitive performances were found between fallers and non-fallers. However, an initial late-positivity, considered a potential early P3a, was evident on the Stroop task for older non-fallers, which was notably absent in older fallers. We argue that executive control functions play a prominent role in walking and gait, but the use of neurocognitive processes as a predictor of fall-risk needs further investigation.

  16. A new look at emotional intelligence: a dual-process framework.

    Science.gov (United States)

    Fiori, Marina

    2009-02-01

    In this article, the author provides a framework to guide research in emotional intelligence. Studies conducted up to the present bear on a conception of emotional intelligence as pertaining to the domain of consciousness and investigate the construct with a correlational approach. As an alternative, the author explores processes underlying emotional intelligence, introducing the distinction between conscious and automatic processing as a potential source of variability in emotionally intelligent behavior. Empirical literature is reviewed to support the central hypothesis that individual differences in emotional intelligence may be best understood by considering the way individuals automatically process emotional stimuli. Providing directions for research, the author encourages the integration of experimental investigation of processes underlying emotional intelligence with correlational analysis of individual differences and fosters the exploration of the automaticity component of emotional intelligence.

  17. Neural Correlates of Confidence during Item Recognition and Source Memory Retrieval: Evidence for Both Dual-Process and Strength Memory Theories

    Science.gov (United States)

    Hayes, Scott M.; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto

    2011-01-01

    Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength…

  18. The Effects of Argument Quality and Involvement Type on Attitude Formation and Attitude Change: A Test of Dual-Process and Social Judgment Predictions

    Science.gov (United States)

    Park, Hee Sun; Levine, Timothy R.; Kingsley Westerman, Catherine Y.; Orfgen, Tierney; Foregger, Sarah

    2007-01-01

    Involvement has long been theoretically specified as a crucial factor determining the persuasive impact of messages. In social judgment theory, ego-involvement makes people more resistant to persuasion, whereas in dual-process models, high-involvement people are susceptible to persuasion when argument quality is high. It is argued that these…

  19. Massive Violent Death and Contested National Mourning in Post-Authoritarian Chile and Argentina : A Sociocultural Application of the Dual Process Model

    NARCIS (Netherlands)

    Robben, Antonius C G M

    2014-01-01

    This article uses the dual process model (DPM) in an analysis of the national mourning of tens of thousands of disappeared in Chile and Argentina by adapting the model from the individual to the collective level where society as a whole is bereaved. Perpetrators are also involved in the national

  20. FEM Analyses for T-H-M-M Coupling Processes in Dual-Porosity Rock Mass under Stress Corrosion and Pressure Solution

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2012-01-01

    Full Text Available The models of stress corrosion and pressure solution established by Yasuhara et al. were introduced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-porosity medium developed by the authors. Aiming at a hypothetical model for geological disposal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two computation conditions were designed. Then the corresponding two-dimensional numerical simulation for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow velocities, nuclide concentrations and stresses in the rock mass were investigated. The results show: the aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore tend towards stability; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the fracture aperture and porosity are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide concentrations in pore and fracture in this case are higher than those in case 2.

  1. Calibration process for CTD (Conductivity, Temperature and Depth)

    OpenAIRE

    Garcia Benadí, Albert; Molino Minero, Erik; Manuel Lázaro, Antonio; Río Fernandez, Joaquín del

    2011-01-01

    Detailed herein is the procedure to perform the calibration of a marine observation instrument, in this case a CTD, within the parameters of temperature, pressure and conductivity. It includes a calibration demonstration of the temperature and the pressure parameters. Peer Reviewed

  2. Modified low temperature Czochralski growth of xylenol orange doped benzopheone single crystal for fabricating dual band patch antenna

    Science.gov (United States)

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2016-09-01

    Organic non-linear optical pure and xylenol orange (XO) doped benzophenone (BP) single crystals have been grown by a modified Czochralski technique. A low cost CZ system was designed and fabricated that is suitable for the growth of single crystals of low melting point organic materials. Structural analysis was performed by powder and single crystal XRD. LC-HRMS spectra reveal that the dye molecules are present in the doped crystal. The linear optical characterization was carried out by UV-vis spectroscopy. In the case of the XO doped BP crystal, two absorption peaks were found at 504 nm and 620 nm. The enhancement of photoluminescence intensity of blue emission was observed in the dye doped crystal. Dielectric studies reveal that the XO doped BP has shown improved a dielectric constant with low dielectric loss. A dual band compact circular patch antenna was simulated and fabricated using the XO doped crystal. Resonant frequencies of the dual bands at 4.80 GHz and 9.22 GHz were achieved by introducing a defect ground state in the circular patch antenna. The piezoelectric coefficient (d33) value was increased from 1 to 4 pC/N by XO dye doping, which opens up the possibilities of simultaneous transducer applications.

  3. Dual Rubrics and the Process of Writing: Assessment and Best Practices in a Developmental English Course

    Science.gov (United States)

    Pireh, Diane Flanegan

    2014-01-01

    This article presents strategies for using two types of essay-writing rubrics in a developmental English class of students transitioning into college-level writing. One checklist rubric is student-facing, designed to serve as a guide for students throughout the writing process and as a self-assessment tool. The other checklist rubric is…

  4. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair

    NARCIS (Netherlands)

    N. Hermans (Nicolaas); C. Laffeber; M. Cristovao (Michele); Artola-Borán, M. (Mariela); Mardenborough, Y. (Yannicka); P. Ikpa (Pauline); Jaddoe, A. (Aruna); H.H.K. Winterwerp (Herrie); C. Wyman (Claire); J. Jiricny (Josef); R. Kanaar (Roland); P. Friedhoff (Peter); J.H.G. Lebbink (Joyce)

    2016-01-01

    textabstractDNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of th

  5. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  6. Qualification of Bonding Process of Temperature Sensors to Extreme Temperature Deep Space Missions

    Science.gov (United States)

    Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard; Sunada, Eric T.

    2011-01-01

    A process has been explored based on the state-of-the-art technology to bond the platinum resistance thermometer (PRT) on to potential aerospace material such as a flat aluminum surface and a flexible copper tube to simulate coaxial cable for the flight applications. Primarily, PRTs were inserted into a metal plated copper braid to avoid stresses on the sensor while attaching the sensor with braid to the base material for long duration deep space missions. Appropriate pretreatment has been implemented in this study to enhance the adhesion of the PRTs to the base material. NuSil product has been chosen in this research to attach PRT to the base materials. The resistance (approx.1.1 k(Omega)) of PRTs has been electrically monitored continuously during the qualification thermal cycling testing from -150 C to +120 C and -100 C to -35 C. The test hardware has been thermal cycled three times the mission life per JPL design principles for JUNO project. No PRT failures were observed during and after the PRT thermal cycling qualification test for extreme temperature environments. However, there were some failures associated with staking of the PRT pig tails as a result of thermal cycling qualification test.

  7. A Low Temperature Analysis of the Boundary Driven Kawasaki Process

    Science.gov (United States)

    Maes, Christian; O'Kelly de Galway, Winny

    2013-12-01

    Low temperature analysis of nonequilibrium systems requires finding the states with the longest lifetime and that are most accessible from other states. We determine these dominant states for a one-dimensional diffusive lattice gas subject to exclusion and with nearest neighbor interaction. They do not correspond to lowest energy configurations even though the particle current tends to zero as the temperature reaches zero. That is because the dynamical activity that sets the effective time scale, also goes to zero with temperature. The result is a non-trivial asymptotic phase diagram, which crucially depends on the interaction coupling and the relative chemical potentials of the reservoirs.

  8. Deep Sub-micro mol{\\cdot }mol^{-1} Water-Vapor Measurement by Dual-Ball SAW Sensors for Temperature Compensation

    Science.gov (United States)

    Takeda, N.; Oizumi, T.; Tsuji, T.; Akao, S.; Takayanagi, K.; Nakaso, N.; Yamanaka, K.

    2015-12-01

    A collimated surface acoustic wave (SAW) circles around the equator of a sphere hundreds of times. Because of the long distance travel of the collimated SAW, a small change in the SAW propagation caused by the environment of the sphere can be accumulated as a measurable range in amplitude and/or in delay time. So, a spherical SAW device enables highly sensitive water-vapor measurements. In this paper, deep sub \\upmu mol{\\cdot }mol^{-1} water-vapor detection by 1 mm diameter quartz crystal ball SAW sensors is described. To measure such a low water-vapor concentration in real time, it is necessary to compensate the temperature dependence of the ball SAW sensor, which is about 20 ppm{\\cdot }°C^{-1} in delay time change. A dual-frequency burst analog detector was developed for the temperature compensation in real time. By using a harmonic SAW sensor, which was excited by 80 MHz and 240 MHz at the same time, it was confirmed that the delay time drift for a temperature range of 21.0°C ± 1.0°C became less than 0.05 ppm in delay time change. By using dual-ball SAW sensors (which included a 150 MHz sensor with a water-vapor sensitive layer and a 240 MHz sensor as a reference), water-vapor concentrations from 0.1 \\upmu mol{\\cdot }mol^{-1} to 5 \\upmu mol{\\cdot }mol^{-1} were successfully measured. It appears that the delay time change is proportional to the square root of the water-vapor concentration. The detection limit determined by the electrical noise of the system was estimated at 0.01 \\upmu mol{\\cdot }mol^{-1}.

  9. Dual-polarization phase shift processing with the Python ARM Radar Toolkit

    Science.gov (United States)

    Collis, S. M.; Lang, T. J.; Mühlbauer, K.; Helmus, J.; North, K.

    2016-12-01

    Weather radars that measure backscatter returns at two orthogonal polarizations can give unique insight into storm macro and microphysics. Phase shift between the two polarizations caused by anisotropy in the liquid water path can be used as a constraint in rainfall rate and drop size distribution retrievals, and has the added benefit of being robust to attenuation and radar calibration. The measurement is complicated, however, by the impact of phase shift on backscatter in the presence of large drops and when the pulse volume is not filled uniformly by scatterers (known as partial beam filling). This has led to a signal processing challenge of separating the underlying desired signal from the transient signal, a challenge that has attracted many diverse solutions. To this end, the Python-ARM Radar Toolkit (Py-ART) [1] becomes increasingly important. By providing an open architecture for implementation of retrieval techniques, Py-ART has attracted three very different approaches to the phase processing problem: a fully variational technique, a finite impulse response filter technique [2], and a technique based on a linear programming [3]. These either exist within the toolkit or in another open source package that uses the Py-ART architecture. This presentation will provide an overview of differential phase and specific differential phase observed at C- and S-band frequencies, the signal processing behind the three aforementioned techniques, and some examples of their application. The goal of this presentation is to highlight the importance of open source architectures such as Py-ART for geophysical retrievals. [1] Helmus, J.J. & Collis, S.M., (2016). The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. JORS. 4(1), p.e25. DOI: http://doi.org/10.5334/jors.119[2] Timothy J. Lang, David A. Ahijevych, Stephen W. Nesbitt, Richard E. Carbone, Steven A. Rutledge, and Robert Cifelli, 2007: Radar

  10. Dual mechanisms in the perceptual processing of click train temporal regularity.

    Science.gov (United States)

    Phillips, Dennis P; Dingle, Rachel N; Hall, Susan E; Jang, Moragh

    2012-07-01

    Two experiments measured human sensitivity to temporal jitter in 25-click trains with inter-click intervals (ICIs) between 5 and 100 ms. In a naturalistic experiment using wideband clicks, jitter thresholds were a nonmonotonic function of ICI, peaking for ICIs near 40-60 ms. In a subsequent experiment, clicks were high-passed and presented against a low-frequency noise masker. Jitter threshold vs ICI functions lost the positive slope over short ICIs but retained the negative slope at long ICIs. The same behavior was seen in click rate discrimination tasks. Different processes mediate regularity analysis for click trains with ICIs above and below 40-60 ms.

  11. High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions

    Science.gov (United States)

    Pilehva, F.; Zarei-Hanzaki, A.; Moemeni, S.; Khalesian, A. R.

    2016-01-01

    The present study aimed to characterizing the microstructure evolution of a Ti-6Al-7Nb biomedical type titanium alloy during hot working through hot compression tests. The hot deformation cycles were conducted under the strain rate of 0.0025, 0.025, and 0.25 s-1 in the temperature range of 850-1150 °C where both dual-phase (α + β) and single-phase (β) regions could be accessible. The flow stress behavior of the material for the entire deformation regime was interpreted via microstructural observations. The results indicated that in the single-phase β region (1050-1150 °C), the dynamically recrystallized (DRX) grains were formed at the deformed and elongated beta grain boundaries as a necklace-like structure. The variations in the dynamically recrystallized grain size were determined to follow the Zener-Hollomon relationship where DRX grain size was decreased by reducing the temperature and increasing the strain rate. The alloy deformation characteristics in α + β region were somewhat different. During deformation in the upper α + β temperature range (e.g., 1000 °C), the β phase would accommodate most of the deformation, while α regions remained undeformed. In the lower α + β temperature range (e.g., 850-950 °C), the kinking/bending of α lamellae as well as the subsequent globularization of α layers were postulated to be responsible for the observed flow softening behavior.

  12. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    Science.gov (United States)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  13. Antiparallel Aspects of Airborne Dual-antenna InSAR Data Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Li Fang-fang

    2015-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a powerful technique for precise topographic mapping. However, owing to the side-looking SAR imaging geometry, geometry distortions appear in mountainous scenarios. Because of phase discontinuities or the absence of a valid phase, it is difficult to recover accurate DEM in such areas with single-aspect InSAR data. Fusion of two or more different aspects of InSAR data can deal with this problem in practice. Experiments using two antiparallel aspects of airborne InSAR data are carried out based on this idea. To decrease the processing error in single-aspect data and fuse them seamlessly, a MOtion COmpensation (MOCO method using iterative DEM is used to reduce the MOCO error. Besides, phase-unwrapping methods based on terrain characteristics are proposed to avoid phase-unwrapping error owing to phase discontinuities in areas of shadow and layover. Experimental results verify the effectiveness of the processing methods.

  14. Dual processing of sulfated steroids in the olfactory system of an anuran amphibian

    Directory of Open Access Journals (Sweden)

    Alfredo eSansone

    2015-09-01

    Full Text Available Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studies have shown that in anurans their molecular separation is still underway. Sulfated steroids function as migratory pheromones in lamprey and have recently been identified as natural vomeronasal stimuli in rodents. Here we identified sulfated steroids as the first known class of vomeronasal stimuli in the amphibian Xenopus laevis. We show that sulfated steroids are detected and concurrently processed by the two distinct olfactory subsystems of larval Xenopus laevis, the main olfactory system and the vomeronasal system. Our data revealed a similar but partially different processing of steroid-induced responses in the two systems. Differences of detection thresholds suggest that the two information channels are not just redundant, but rather signal different information. Furthermore, we found that larval and adult animals excrete multiple sulfated compounds with physical properties consistent with sulfated steroids. Breeding tadpole and frog water including these compounds activated a large subset of sensory neurons

  15. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  16. A comparative study of diesel ignited methane and propane dual fuel low temperature combustion in a single cylinder research engine

    Science.gov (United States)

    Raihan, Mostafa Shameem

    The objective of this thesis is to investigate and compare the performance and emissions characteristics of diesel-ignited methane and diesel-ignited propane dual fuel LTC in a single cylinder research engine (SCRE) at a constant engine load of 5.1 bar net indicated mean effective pressure (IMEP) and at a constant engine speed of 1500 RPM. Percentage of energy substitution of propane or methane (0 - 90 percent), diesel injection timing (SOI: 355 CAD -- 280 CAD), rail pressure (200 bar -- 1300 bar) and boost pressure (1.1 bar -- 1.8 bar) were varied to quantify their impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. Advancing SOI to 310 CAD and beyond yielded simultaneous ISNOx and smoke emissions. A rail pressure of 500 bar was the optimal one for both fueling combinations while increasing boost pressure over 1.2 bar had a very little effect on ISNOx and smoke emissions.

  17. Stress Relaxation of Chemically Treated Wood during Processes of Temperature Elevation and Decline

    Institute of Scientific and Technical Information of China (English)

    Xie Man-hua; Zhao Guang-jie

    2005-01-01

    In order to clarify the effect of drying on structural changes of DMSO swell treated and DEA-SO2-DMSO decrystallization treated Chinese fir (Cunninghamia lanceolate) wood, the stress relaxation of treated oven-dry specimens during the processes of temperature elevation and reduction and that of treated wet specimens at constant temperature were determined. A stress decrease process and a stress increase process were observed in all stress ratio curves of wood during the processes of decreasing temperature. Untreated wood, during the process of temperature reduction under higher initial temperature conditions and during the process of temperature elevation, has a larger stress decrease than treated woods. In a wet state this trend is reversed. It indicated that the drying set made treated woods have a smaller increase in fluidity of wood constituents with increasing temperature. Some bonding between decrystallization reagents and wood molecules may occur.

  18. When Challenging Art Gets Liked: Evidences for a Dual Preference Formation Process for Fluent and Non-Fluent Portraits.

    Science.gov (United States)

    Belke, Benno; Leder, Helmut; Carbon, Claus-Christian

    2015-01-01

    line with a dual-process view of human preference formation with art. Theoretical implications and boundary conditions are discussed.

  19. Boundary coupled dual-equation numerical simulation on mass transfer in the Process of laser cladding

    Institute of Scientific and Technical Information of China (English)

    Yanlu Huang; Yongqiang Yang; Guoqiang Wei; Wenqing Shi; Yibin Li

    2008-01-01

    The coupled numerical simulation on fluid flow, heat transfer, and mass transfer in the process of laser cladding is undertaken on the basis of the continuum model.In the simulation of mass transfer in the laser molten pool, the concentration distribution in the regions on different sides of the interface between cladding layer and substrate is calculated separately and coupled at the co-boundary.The non-equilibrium solute partition coefficient is obtained from equilibrium solute partition coefficient according to the Sobolev model.By using the developed software which is based on the commercial software PHOENICS 1.4, the distribution of Fe in laser molten pool in an experiment of cladding Stellite 6 on 12CrMoV is calculated.The obtained results well coincide with the experimental ones.

  20. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  1. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design

    Science.gov (United States)

    Tasan, C. C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M.; Tsuzaki, K.; Raabe, D.

    2015-07-01

    Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on (a) microstructure evolution during processing, (b) experimental characterization of micromechanical behavior, and (c) the simulation of mechanical behavior, to highlight the critical unresolved issues and to guide future research efforts.

  2. Torque coordinating robust control of shifting process for dry dual clutch transmission equipped in a hybrid car

    Science.gov (United States)

    Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.

    2015-09-01

    For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.

  3. Category-boundary effects and speeded sorting with a harmonic musical-interval continuum: evidence for dual processing.

    Science.gov (United States)

    Zatorre, R J

    1983-10-01

    In the first experiment, a continuum of 10 harmonic musical intervals was constructed from a minor to a major third. Four pairs of stimuli with constant physical distances were presented to seven musicians in a two-interval forced-choice discrimination task. Either silence, an interfering tone, or a noise burst was interposed between the two stimuli in a pair. Unbiased discriminability was found to be consistently higher for pairs straddling the boundary between two categories than for the endpoint pairs. The interfering tone lowered overall discrimination but left the shape of the function unchanged, whereas the noise burst had no effect. Experiment 2 used a similar paradigm, but the continuum consisted of the single tone that had cued the minor-major distinction for intervals. Discrimination of this series did not show consistent changes as a function of continuum position. In Experiment 3, triads that varied in either interval or overall pitch were presented to musicians for sorting according to one dimension or another. The result was that there were much longer latencies to sort according to interval when pitch varied irrelevantly than vice versa. These results demonstrate that there are changes in discriminability associated with learned categories and suggest that there may be two hierarchically organized stages. A dual-processing model is discussed in which the listener has available both auditory and categorical information.

  4. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    Science.gov (United States)

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed.

  5. Dual Targeting of a Processing Peptidase into Both Endosymbiotic Organelles Mediated by a Transport Signal of Unusual Architecture

    Institute of Scientific and Technical Information of China (English)

    Bianca Baudisch; Ralf Bernd Kl(o)sgen

    2012-01-01

    As a result of the endosymbiotic gene transfer,the majority of proteins of mitochondria and chloroplasts are encoded in the nucleus and synthesized in the cytosol as precursor proteins carrying N-terminal transport signals for the 're-import' into the respective target organelle.Most of these transport signals are monospecific,although some of them have dual targeting properties,that is,they are recognized both by mitochondria and by chloroplasts as target organelles.We have identified alpha-MPP2,one of the two isoforms of the substrate binding subunit of mitochondrial processing peptidase ofArabidopsis thaliana,as a novel member of this class of nuclear-encoded organelle proteins.As demonstrated by in organello transport experiments with isolated organelles and by in vivo localization studies employing fluorescent chimeric reporter proteins,the N-terminal region of the alpha-MPP2 precursor comprises transport signals for the import into mitochondria as well as into chloroplasts.Both signals are found within the N-terminal 79 residues of the precursor protein,where they occupy partly separated and partly overlapping regions.Deletion mapping combined with in organello and in vivo protein transport studies demonstrate an unusual architecture of this transport signal,suggesting a composition of three functionally separated domains.

  6. Using dual-process theory and analogical transfer to explain facilitation on a hypothetico-deductive reasoning task.

    Science.gov (United States)

    Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A

    2007-07-01

    Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.

  7. SAGA GIS based processing of spatial high resolution temperature data

    Energy Technology Data Exchange (ETDEWEB)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen [Hamburg Univ. (Germany). Inst. of Geography; Zaksek, Klemen [Hamburg Univ. (Germany). Inst. of Geophysics

    2013-07-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  8. Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes.

    Science.gov (United States)

    Sattayasamitsathit, Sirilak; Gu, Yonge; Kaufmann, Kevin; Minteer, Shelley; Polsky, Ronen; Wang, Joseph

    2013-09-07

    Tailor-made highly ordered macro/mesoporous hierarchical metal architectures have been created by combining sphere lithography, membrane template electrodeposition and alloy-etching processes. The new double-template preparation route involves the electrodeposition of Au/Ag alloy within the interstitial (void) spaces of polystyrene (PS) microspheres which are closely packed within the micropores of a polycarbonate membrane (PC), followed by dealloying of the Ag component and dissolution of the microsphere and membrane templates. The net results of combining such sphere lithography and silver etching is the creation of highly regular three-dimensional macro/mesoporous gold architecture with well-controlled sizes and shapes. The morphology and porosity of the new hierarchical porous structures can be tailored by controlling the preparation conditions, such as the composition of the metal mixture plating solution, the size of the microspheres template, or the dealloying time. Such tunable macro/mesoporous hierarchical structures offer control of the electrochemical reactivity and of the fuel mass transport, as illustrated for the enhanced oxygen reduction reaction (ORR) and hydrogen-peroxide detection. The new double templated electrodeposition method provides an attractive route for preparing highly controllable multiscale porous materials and diverse morphologies based on different materials and hence holds considerable promise for designing electrocatalytic or bioelectrocatalytic surfaces for a variety sensing and energy applications.

  9. Stochastic parametrization of multiscale processes using a dual-grid approach.

    Science.gov (United States)

    Shutts, Glenn; Allen, Thomas; Berner, Judith

    2008-07-28

    Some speculative proposals are made for extending current stochastic sub-gridscale parametrization methods using the techniques adopted from the field of computer graphics and flow visualization. The idea is to emulate sub-filter-scale physical process organization and time evolution on a fine grid and couple the implied coarse-grained tendencies with a forecast model. A two-way interaction is envisaged so that fine-grid physics (e.g. deep convective clouds) responds to forecast model fields. The fine-grid model may be as simple as a two-dimensional cellular automaton or as computationally demanding as a cloud-resolving model similar to the coupling strategy envisaged in 'super-parametrization'. Computer codes used in computer games and visualization software illustrate the potential for cheap but realistic simulation where emphasis is placed on algorithmic stability and visual realism rather than pointwise accuracy in a predictive sense. In an ensemble prediction context, a computationally cheap technique would be essential and some possibilities are outlined. An idealized proof-of-concept simulation is described, which highlights technical problems such as the nature of the coupling.

  10. Dual processing and discourse space: Exploring fifth grade students' language, reasoning, and understanding through writing

    Science.gov (United States)

    Yoon, Sae Yeol

    analysis of writing and talking. The results showed (1) students' low level of engagement in evaluation impacted their reasoning and use of sources for making meanings, as well as their understanding of the topic. Compared to the results of a previous study, students' complexity of reasoning was relatively less developed, and similarly students' use of reflective sources was generally observed relatively less often. (2) The teacher and students in this study engaged in limited public negotiation, which focused more on articulating than on evaluating ideas. The limited public negotiation that was represented by the dialogical patterns in this study cannot support the development of understanding through writing or the practice of the roles of constructor and critiquer, which play a core function in the comprehension of scientific practice. This study has several implications for teacher education and research. Teacher education needs to be centered more on how to encourage students' engagement in the process of evaluation, since this plays an important function not only in the development of understanding, but also in providing opportunities to perform the roles of both constructor and critiquer. Teachers can use writing as an argumentative activity to encourage or foster students' engagement in the process of evaluation or critique. Additionally, this study provides insight into the importance of the learning environment in which the teacher and students create and develop; this learning environment needs to provide not only opportunities but also demands for students to engage in both constructing and critiquing ideas.

  11. RESEARCH ON INFLUENCE OF TEMPERATURE ON A PRECISION FORGING PROCESS OF BLADE WITH A TENON

    Institute of Scientific and Technical Information of China (English)

    Y.L. Liu; H. Yang; T. Gao; M. Zhan; W. Cai

    2005-01-01

    The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstructure of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalent stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors. The results obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.

  12. Processing and Fabrication of High Temperature Oxide Superconductors

    Science.gov (United States)

    1992-11-30

    OH3 COCH 3 101 - - - -- - - - - 0 100 200 300 400 500 600 700 800 900 1000 TEMPERATURE (00) RAM-6585-32 Figure 16. Mass spectrometer signals during TPR...560 Critical currents were determined from magnetization measurements (M vs. H) at 5K in a 0.5 Tesla field. These magnetically derived data have shown

  13. Low temperature failure of bulk nanostructured titanium processed by ECAP

    NARCIS (Netherlands)

    Miskuf, J.; Csach, K.; Jurikova, A.; Ocelik, V.; De Hosson, J. Th. M.; Bengus, V. Z.; Tabachnikova, E. D.; Podolskiy, A. V.; Stolyarov, V. V.; Valiev, R. Z.

    2009-01-01

    Low temperature yield stress and the failure nanostructured titanium of commercial purity produced by severe plastic deformation were analysed. The mechanical properties for specimens with average grain size 15 mu m, 0.3 mu m and 0.1 mu m were studied under uniaxial compression with strain rate 4 x

  14. Data acquisition and processing platform in the real-time distance measurement system with dual-comb lasers

    Science.gov (United States)

    Ni, Kai; Wang, Lanlan; Zhou, Qian; Li, Xinghui; Dong, Hao; Wang, Xiaohao

    2016-11-01

    The real-time distance measurement system with dual femtosecond comb lasers combines time-of-flight and interferometric measurement. It has advantages of wide-range, high-accuracy and fast speed at the rate about 10000 pts/s. Such a distance measurement system needs dedicated higher performance of the data acquisition and processing hardware platform to support. This paper introduces the dedicated platform of the developed absolute distance measurement system. This platform is divided into three parts according to their respective functions. First part is the data acquisition module, which function is mainly to realize the A/D conversion. In this part we designed a sampling clock adjustment module to assist the A/D conversion module to sample accurately. The sampling clock adjustment module accept a 250MHz maximum reference clock input, which from the same femtosecond laser source as the optical measurement system, then generate an output clock for the A/D converter that can be delayed up to 20ns with a resolution of 714ps. This data acquisition module can convert the analog laser pulse signal to digital signal with a 14 bits resolution and a 250 MSPS maximum sample rate. Second is the data processing and storage module consists of FPGA and DDR3 modules. The FPGA module calculates the test distance by the 16 bits digital sampling signal from the front data acquisition module. The DDR3 module implements sampling data caching. Finally part is the data transmission and peripheral interfaces module based on three DB9 and USB2.0. We can easily debug the platform in the PC and implement communication with upper machine. We tested our system used dedicate test bench in real-time. The scope of the measurement system range is 0 to 3 meters and the measurement deviation is less than 10um.

  15. 蓝宝石晶体的双面研磨加工%Dual-lapping process for sapphire crystal

    Institute of Scientific and Technical Information of China (English)

    文东辉; 洪滔; 张克华; 鲁聪达

    2009-01-01

    In order to achieve high efficiency and low damaged layers during a sapphire crystal lapping process,an experimental research on the rougness,lapping uniformity and sub-surface damaged layer were studied in this paper.The sapphire with (0001) orientation was lapped by 280 mesh boron carbide abrasive grits.The effects of lapping time on the material removal rates and surface roughness were investigated,and the processing remainders by the dual-lapping were determined in accordance with the surface states of the sapphire.Then micro-surface uniformity of the sapphire was also presented by using WYKO laser equipment.Finally,a nano-indentation test was carried out to measure the depth of damaged layer according to the hardness or modulus variances.Experimental results show that the sapphire crystal can offer the R,in 0.523 μm,R,<6.0 μm,the depth of heavy damaged layer of 460 nm,and the depth of sub-surface damaged layer no more than 1 μm,after it is lapped by the abrasive with 280 mesh boron carbide grits in 120 min.%为了实现对蓝宝石晶体的高效低损伤研磨加工,对蓝宝石晶体的双面研磨加工表面粗糙度、研磨均匀性和亚表面损伤层的深度进行实验研究.采用280min的双面研磨加工后可以获得Ra为0.523 μm,Rt<6.0 μm的表面;其深度损伤层约为460 nm,亚表面损伤层<1 μm.

  16. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Huixian [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Shi, Zhenqi [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Qiao, Ping [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Department of Pharmacology, Norman Bethune Medical College, Jilin University, Changchun, Jilin 130021 (China); Li, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); McCoy, Erin M. [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Mao, Ping [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China); Xu, Hui [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Feng, Xu [Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Wang, Shunqing, E-mail: shqwang_cn@yahoo.com [Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180 (China)

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  17. Single Temperature Liquefaction process at different operating pHs to improve ethanol production from Indian rice and corn feedstock.

    Science.gov (United States)

    Gohel, V; Ranganathan, K; Duan, G

    2016-10-13

    Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT(-1) rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT(-1) corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.

  18. Dual Effort to Correlate the Electron Field Emission Performance of Carbon Nanotubes with Synthesis As Well As Annealing Temperature: Theoretical Support of the Experimental Finding.

    Science.gov (United States)

    Maity, Supratim; Banerjee, Diptonil; Das, Nirmalya Sankar; Chattopadhyay, Kalyan Kumar

    2016-05-01

    Here a dual approach has been adopted to study the effect of both synthesis as well as annealing temperature on the electron field emission property of differently synthesized carbon nanotubes (CNTs) that include solid state chemical reaction as well as chemical vapour deposition (CVD). Experimental findings were supported by theoretical simulation. All the samples were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy, Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD as well as TEM study confirms the amorphous nature (aCNTs) of the samples for both the synthesis techniques which is attributed to lower synthesis temperature. Prominent morphological differences of these two types of aCNTs are clearly observed from both FESEM and TEM images. It is found that electron field emission characteristics of aCNTs synthesized by CVD shows better field emission properties as compared to aCNTs synthesized by solid state reaction. Finite element based simulation shows that temperature has prominent effect on morphology, screening effect or degree of graphitization that leads to improved field emission characteristics for the CVD synthesized aCNTs.

  19. Phenomenon of dual- and single-retention behaviors of solutes and its validation by computational simulation in linear programmed temperature gas chromatography.

    Science.gov (United States)

    Wu, Liejun; Duan, Xiaojuan; Liu, Chuanyu; Zhang, Guangxiang; Li, Qing X

    2016-07-01

    The current theory of programmed temperature gas chromatography considers that solutes are focused by the stationary phase at the column head completely and does not explicitly recognize the different effects of initial temperature (To ) and heating rate (rT ) on the retention time or temperature of a homologue series. In the present study, n-alkanes, 1-alkenes, 1-alkyl alcohols, alkyl benzenes, and fatty acid methyl esters standards were used as model chemicals and were separated on two nonpolar columns, one moderately polar column and one polar column. Effects of To and rT on the retention of nonstationary phase focusing solutes can be explicitly described with isothermal and cubic equation models, respectively. When the solutes were in the stationary phase focusing status, the single-retention behavior of solutes was observed. It is simple, dependent upon rT only and can be well described by the cubic equation model that was visualized through four sequential slope analyses. These observed dual- and single-retention behaviors of solutes were validated by various experimental data, physical properties, and computational simulation.

  20. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  1. Temperature fields in machining processes and heat transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics

    2002-07-01

    This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)

  2. Temperature-dependent potential in cluster-decay process

    Science.gov (United States)

    Gharaei, R.; Zanganeh, V.

    2016-08-01

    Role of the thermal effects of the parent nucleus in the Coulomb barrier and the half-life of 28 cluster-decays is systematically analyzed within the framework of the proximity formalism, namely proximity potential 2010. The WKB approximation is used to determine the penetration probability of the emitted cluster. It is shown that the height and width of the Coulomb barrier in the temperature-dependent proximity potential are less than its temperature-independent version. Moreover, this investigation reveals that the calculated values of half-life for selected cluster-decays are in better agreement with the experimental data when the mentioned effects are imposed on the proximity approach. A discussion is also presented about the predictions of the present thermal approach for cluster-decay half-lives of the super-heavy-elements.

  3. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  4. Process assessment of small scale low temperature methanol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hendriyana [Chemical Engineering Department, Faculty of Engineering, Jenderal Achmad Yani Univerity (Indonesia); Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia); Susanto, Herri, E-mail: herri@che.itb.ac.id; Subagjo [Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung (Indonesia)

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy

  5. SOME COLLISION PROCESSES IN PLASMAS WITH HIGHER TEMPERATURE AND DENSITY

    Institute of Scientific and Technical Information of China (English)

    KazuoTakayanagi

    1990-01-01

    Some collision processes important in hot and dense plasmas are discussed.Recent calculation of secondary electron velocity distribution in ionizing collision between an electron and a multiply-charged ion is reported.

  6. In defense of the personal/impersonal distinction in moral psychology research: Cross-cultural validation of the dual process model of moral judgment

    Directory of Open Access Journals (Sweden)

    Adam B. Moore

    2011-04-01

    Full Text Available The dual process model of moral judgment (DPM; Greene et al., 2004 argues that such judgments are influenced by both emotion-laden intuition and controlled reasoning. These influences are associated with distinct neural circuitries and different response tendencies. After reanalyzing data from an earlier study, McGuire et al. (2009 questioned the level of support for the dual process model and asserted that the distinction between emotion evoking moral dilemmas (personal dilemmas and those that do not trigger such intuitions (impersonal dilemmas is spurious. Using similar reanalysis methods on data reported by Moore, Clark, and Kane (2008, we show that the personal/impersonal distinction is reliable. Furthermore, new data show that this distinction is fundamental to moral judgment across widely different cultures (U.S. and China and supports claims made by the DPM.

  7. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. 双口RAM在图像处理系统中的应用研究%Application Research on Dual-port RAM in Image Processing System

    Institute of Scientific and Technical Information of China (English)

    王培利

    2014-01-01

    基于图像处理系统实时性和大数据量冲突的问题,提出了在图像处理系统中使用双口RAM的方法。介绍了双口RAM的功能和特点,以IDT70V09芯片为例给出了图像处理系统中应用双口RAM的系统架构设计、硬件接口设计、系统软件设计以及FPGA和DSP对双口RAM操作软件的详细设计,并针对双口RAM的端口争用问题与解决方法进行了详细讨论,对系统的印制板设计和电路调试提出了建议。最后对图像处理系统进了功能测试,证明了采用双口RAM设计的系统的稳定性和可行性。%According to the problem between real-time image processing and mass data, dual-port random ac-cess memory (RAM) used in image processing system is presented. The functions and characteristics of dual-port RAM are introduced. Taking IDT70V09 chip as an example, system structure, hardware interface, system software design of dual-port RAM used in image processing system and the detailed design of dual-port RAM operation soft-ware of field-programmable gate array (FPGA) and data signal processor (DSP) are given. And the port contention problem of dual-port RAM and the solutions are discussed in detail. The suggestions about printed circuit board de-sign and circuit debugging of the system are proposed. Finally, function test of the image processing system is per-formed to prove the stability and feasibility of the system adopting dual-port RAM design.

  10. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    Science.gov (United States)

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  11. Effect of drying temperature on lycopene content of processed tomatoes

    OpenAIRE

    Peter Czako; Ľubomír Mendel; Martina Fikselová; Andrea Mendelová

    2013-01-01

    Recently it has been increasing interest worldwide in the production of dehydrated tomato products, which are used in food industry and in pharmacy. An important indicator of the quality of products, beside the microbiological stability is health safety and lycopene content. The aim of this work was to evaluate the effect of drying temperature on changes of the content of lycopene in selected varieties of tomato. Drying was performed at 45 °C, 70 °C and 90 °C. Varieties of Darina F1, Denár, K...

  12. Inert Anode Life in Low Temperature Reduction Process

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, Donald R.

    2005-06-30

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  13. Dual-processing altruism

    Directory of Open Access Journals (Sweden)

    Suna Pirita Kinnunen

    2013-04-01

    Full Text Available Altruism refers to an other-benefiting behaviour that is costly but bears no direct profit to oneself. At least three different forms can be distinguished: Help giving, altruistic punishment, and moral courage. We investigated the differential impact of two thinking modes, intuitive (System 1 and rational (System 2, on these three altruistic behaviours. Situational (state-related thinking style was manipulated via experimental instructions, and generally preferred thinking style (trait-related was assessed via questionnaires. We found that of the subjectively preferred thinking styles (trait, faith in intuition (System 1 promoted sharing and altruistic punishment, whereas need for cognition (System 2 promoted volunteering in a situation that required moral courage. By contrast, we did not find a significant effect of situational thinking style (state on any of the altruistic behaviours, although manipulation checks were positive. Results elucidate the affective-motivational underpinnings of different types of altruistic behaviours.

  14. Temperature distribution in port wine stain following pulsed irradiation by a dual-wavelength Nd:YAG laser

    Science.gov (United States)

    Majaron, Boris; Choi, Bernard; Nelson, J. S.

    2003-06-01

    In therapy of port wine stain (PWS) birthmarks using pulsed green or yellow lasers, non-specific absorption by epidermal melanin reduces the amount of incident radiation that reaches the target PWS blood vessels. The related epidermal heating can induce blistering, dyspigmentation, or scarring, which limits the applicable radiant exposure, thus adversely affecting the efficacy of treatment in many patients. Our objective was to assess temperature depth profiles induced in PWS skin by a novel Nd:YAG laser emitting simultaneously at 1064 and 532 nm. The results should help determine safe radiant exposures for use in future clinical trials. The underlying hypothesis is that the added 1064 nm radiation may lead to a higher temperature increase in PWS relative to the epidermis, in comparison with a customary KTP/Nd:YAG laser system for vascular treatments (emitting at 532 nm only). The laser induced temperature profiles were determined in vivo using pulsed photothermal radiometry. A PWS test site was irradiated with a sub-therapeutic laser pulse and the transient change of the infrared radiant emission was recorded by a fast infrared camera. The laser-induced temperature profiles were reconstructed by solving the thermal-radiative inverse problem using an iterative minimization algorithm.

  15. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex.

    Science.gov (United States)

    Lempereur, Morine; Limousin, Jean-Marc; Guibal, Frédéric; Ourcival, Jean-Marc; Rambal, Serge; Ruffault, Julien; Mouillot, Florent

    2017-01-01

    A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40-year tree ring record and a 30-year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (-10 days) due to winter warming and earlier growth cessation (-26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving-window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate-growth correlations matches the start of the recent atmospheric warming pause also known as the 'climate hiatus'. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. © 2016 John

  16. Industrial heat pumps for high temperature process applications

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær

    Industrial processes often consume large quantities of heat, while of-ten dissipating large quantities of waste heat to the ambient. The main energy source for industrial heat supply is fossil fuels, either oil or nat-ural gas. Thus, the heat consumption of industrial processes often entail large...... is determined. This is know as an exergoeconomic analysis. Further, a life cycle assessment is performed and combined with the exergy analysis to associate environmental impact to all streams of exergy and thereby determine the environmental impact of exergy destruction. This is known as an exergoenvironmental...

  17. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  18. Thermophilic anaerobic wastewater treatment : temperature aspects and process stability

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.

    Experiments were conducted to study the suitability of two types of seed

  19. The influence factors of the compound heat-exchanging temperature difference of dual-source compound heat-exchanger%双热源复合换热器复合换热温差影响因素分析

    Institute of Scientific and Technical Information of China (English)

    张超; 董家昀; 赵晓丹; 周光辉

    2012-01-01

    空气-水双热源复合换热器是太阳能-空气双热源复合热泵系统的核心部件,空气-水双热源复合换热器的有效复合换热温差对空气-水双热源复合换热器的换热性能以及太阳能-空气双热源复合热泵的系统性能具有重要影响.建立了空气-水双热源复合换热器和太阳能-空气双热源复合热泵系统的数学模型,利用数学模拟的方法研究了空气-水双热源复合换热器结构参数,即内外管径、翅片间距对有效复合换热温差的影响.模拟结果表明:空气-水双热源复合换热器的有效复合换热温差随内管管径的减小、外管管径的增大以及翅片间距的减小而增大.%The air - water dual - source compound heat - exchanger is the key component of the solar - air dual - source compound heat pump system. The heat - exchanging performance of the air - water dual - source compound heat - exchanger and the system performance of the solar - air dual - source compound heat pump system largely depend on the effective compound heat - exchanging temperature difference of the air - water dual - source compound heat - exchanger. The mathematic models of the air - water dual - source compound heat - exchanger and the solar ?air dual - source compound heat pump system were established, and the mathematic simulation was used to study the effect of the structure parameters of air - water dual - source compound heat - exchanger such as the tube diameter and the fin space on the effective compound heat - exchanging temperature difference. The simulated results show that the effective compound heat - exchanging temperature difference of the air - water dual - source compound heat - exchanger increases while the inner - tube diameter and the fin space decrease, and the outer - tube diameter increases.

  20. Dual dependence of cryobiogical properties of Sf21 cell membrane on the temperature and the concentration of the cryoprotectant.

    Directory of Open Access Journals (Sweden)

    Jianye Wang

    Full Text Available The Sf21 cell line is extensively used for virus research and producing heterologous recombinant proteins. To develop optimal strategies for minimizing cell injury due to intracellular ice formation and excessive volume shrinkage during cryopreservation, the fundamental transport properties including the osmotic inactive volume (Vb , the hydraulic conductivity (Lp , and the glycerol permeability (Ps of Sf21 cell membrane at 25, 15, 5 and -2°C were characterized using a micro-perfusion chamber. The effects of temperature on the hydraulic conductivity and the glycerol permeability of Sf21 cell membrane, reflected by the activation energies, were quantitatively investigated. It was found that the hydraulic conductivity decreases along with the increase of the final CPA concentration at a given temperature, and quantitative analysis indicates that the hydraulic conductivity has a significant linear attenuation along with the increase of the concentration of glycerol. Therefore, we incorporate the concentration dependence of the hydraulic conductivity into the classic Arrhenius relationship by replacing the constant reference value of the hydraulic conductivity at the reference temperature with a function that is linearly dependent on the CPA concentration. Consequently, the prediction of the Arrhenius relationship is improved, and the novel Arrhenius relationship could be very important to the development of optimal strategies for cell cryopreservation.

  1. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  2. THE TEMPERATURE AND TURBULENCE CHARACTERISTICS IN RESS PROCESS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntroductionSupercritical fluid has high diffusivity like gas,strong solubility like liquid, low viscosity and surfacetension, and strong penetrability. Therefore, it hasspecial advantages in eXtraction, separation, reaction,coating and ultrafine panicle preparation etc. Solutecan be quickly separated from solvent, which is agreen process of chemical engineering.In the Rapid Expansion of Supercritical fluidSolution (RESS), an ultra-high supersaturating ratio inthe solution occurs instantaneously, forming ul...

  3. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  4. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  5. Microwave sensor design for noncontact process monitoring at elevated temperature

    Science.gov (United States)

    Yadam, Yugandhara Rao; Arunachalam, Kavitha

    2016-02-01

    In this work we present a microwave sensor for noncontact monitoring of liquid level at high temperatures. The sensor is a high gain, directional conical lensed horn antenna with narrow beam width (BW) designed for operation over 10 GHz - 15 GHz. Sensor design and optimization was carried out using 3D finite element method based electromagnetic (EM) simulation software HFSS®. A rectangular to circular waveguide feed was designed to convert TE10 to TE11 mode for wave propagation in the conical horn. Swept frequency simulations were carried out to optimize antenna flare angle and length to achieve better than -10 dB return loss (S11), standing wave ratio (SWR) less than 2.0, 20° half power BW (HPBW) and 15 dB gain over 10 GHz - 15 GHz. The sensor was fabricated using Aluminum and was characterized in an anechoic test box using a vector network analyzer (E5071C, Agilent Technologies, USA). Experimental results of noncontact level detection are presented for boiling water in a metal canister.

  6. Using Canopy Temperature to Infer Hydrologic Processes in Floodplain Forests

    Science.gov (United States)

    Lemon, M. G.; Allen, S. T.; Keim, R.; Edwards, B. L.; King, S. L.

    2015-12-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten the hydrological architecture of floodplain forests globally. The relative contributions of different sources of water (e.g., precipitation, surface flooding, and groundwater) to soil moisture on floodplains is poorly constrained, so identification of areas of water stress within a floodplain can provide valuable information about floodplain hydrology. Canopy temperature is a useful indicator of moisture stress and has long been used in agricultural and natural landscapes. Accordingly, thermal infrared (TIR) remote sensing data (spatial resolution of 1 km) from NASA's MODIS sensor was used to examine patterns of spatiotemporal variation in water stress in two floodplain forests over 12 growing seasons. On the upper Sabine River floodplain, Texas, increasing rainfall-derived soil moisture corresponded with increased heterogeneity of LST but there was weak association between river stage and heterogeneity. On the lower White River floodplain, Arkansas, distinct differences in LST between two reaches were observed during low flow years, while little relationship was observed between LST spatial variability and rainfall-derived soil moisture on either reach. The differences in hydrological control on these floodplain ecosystems have important ramifications for varying resilience to climate change and water resource management.

  7. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  8. Interaction processes between vacancies and dislocations in molybdenum in the temperature range around 0.3 of the melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Lambri, O.A. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avenida Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario, Member of the CONICET' s Research Staff (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Bozzano, P.B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avenida General Paz 1499, 1650 San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Pais Vasco (Spain); Celauro, C.A. [Reactor Nuclear RA-4, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Riobamba y Berruti, 2000 Rosario (Argentina)

    2008-10-15

    Mechanical spectroscopy, electrical resistivity and transmission electron microscopy studies have been performed on pre-strained neutron irradiated single crystalline molybdenum in order to check the interaction processes between vacancies and dislocations in the temperature range between room temperature and 1273 K. The anelastic relaxation in molybdenum which appears between 800 K and 1273 K has been separated in two different physical mechanisms depending on the temperature of appearance of the relaxation peak. The physical mechanism which controls the damping peak appearing at around 800 K was related with the dragging of jogs by the dislocation under movement assisted by vacancy diffusion. The damping peak which appears at higher temperatures of about 1000 K was more consistent with the formation and diffusion of vacancies assisted by the dislocation movement.

  9. Determination of optimum processing temperature for transformation of glyceryl monostearate.

    Science.gov (United States)

    Yajima, Toshio; Itai, Shigeru; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2002-11-01

    The purpose of this study was to clarify the mechanism of transformation from alpha-form to beta-form via beta'-form of glyceryl monostearate (GM) and to determine the optimum conditions of heat-treatment for physically stabilizing GM in a pharmaceutical formulation. Thermal analysis repeated twice using a differential scanning calorimeter (DSC) were performed on mixtures of two crystal forms. In the first run (enthalpy of melting: DeltaH1), two endothermic peaks of alpha-form and beta-form were observed. However, in the second run (enthalpy of melting: DeltaH2), only the endothermic peak of the alpha-form was observed. From a strong correlation observed between the beta-form content in the mixture of alpha-form and beta-form and the enthalpy change, (DeltaH1-DeltaH2)/DeltaH2, beta-form content was expressed as a function of the enthalpy change. Using this relation, the stable beta-form content during the heat-treatment could be determined, and the maximum beta-form content was obtained when the heat-treatment was carried out at 50 degrees C. An inflection point existed in the time course of transformation of alpha-form to beta-form. It was assumed that almost all of alpha-form transformed to beta'-form at this point, and that subsequently only transformation from beta'-form to beta-form occurred. Based on this aspect, the transformation rate equations were derived as consecutive reaction. Experimental data coincided well with the theoretical curve. In conclusion, GM was transformed in the consecutive reaction, and 50 degrees C was the optimum heat-treatment temperature for transforming GM from the alpha-form to the stable beta-form.

  10. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    Science.gov (United States)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2016-07-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was curves of temperature-time presented nonlinearity. The rate of temperature rising in central zone of sheet rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  11. High-temperature processing of oxide superconductors and superconducting oxide-silver oxide composite

    Science.gov (United States)

    Wu, M. K.; Loo, B. H.; Peters, P. N.; Huang, C. Y.

    1988-01-01

    High temperature processing was found to partially convert the green 211 phase oxide to 123 phase. High Tc superconductivity was observed in Bi-Sr-Cu-O and Y-Sr-Cu-O systems prepared using the same heat treatment process. High temperature processing presents an alternative synthetic route in the search for new high Tc superconductors. An unusual magnetic suspension with enhancement in critical current density was observed in the 123 and AgO composite.

  12. Low temperature stabilization process for production of carbon fiber having structural order

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie; Tenhaeff, Wyatt Evan; Menchhofer, Paul A.; Paulauskas, Felix Leonard

    2017-08-15

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presence of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.

  13. Temperature dependency of the Ga/In distribution in Cu(In,Ga)Se2 absorbers in high temperature processes

    Science.gov (United States)

    Mueller, B. J.; Demes, T.; Lill, P. C.; Haug, V.; Hergert, F.; Zweigart, S.; Herr, U.

    2016-05-01

    The current article reports about the influence of temperature and glass substrate on Ga/In interdiffusion and chalcopyrite phase formation in the stacked elemental layer process. According to the Shockley-Queisser limit the optimum for single junction devices is near 1.4 eV, which is strongly coupled on the Ga/(Ga+In) ratio of Cu(In,Ga)Se2 thin film solar cells. To increase the Ga content in the active region of the Cu(In,Ga)Se2 a 70:30 CuGa alloy target is used. An increase of the selenization temperature leads to a more homogeneous Ga/In distribution and a less pronounced Ga agglomeration at the back contact. The Ga/In interdiffusion rates for different selenization temperatures and substrates were estimated with the model of a two layer system. At the highest selenization temperature used an absorber band gap of 1.12 eV was realized, which is similar to typical values of absorbers produced during the co-evaporation process. The Na diffusion into the Cu(In,Ga)Se2 is weakly temperature dependent but strongly influenced by the choice of the glass substrate composition.

  14. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-01

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  15. Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    K.H.Chang; G.C.Jang; C.H.Lee; S.H.Lee

    2008-01-01

    In the squeeze casting process, loaded high pressure (over approximately 100 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermo- physical and mechanical properties of the steel mold.

  16. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  17. Sintering process and critical current density of low activation Mg11B2 superconductors from low temperature to high temperature

    Science.gov (United States)

    Cheng, Fang; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, Md; Somer, M.

    2016-08-01

    As the "low activation" superconductor, Mg11B2 has a potential application in superconducting coils for fusion reactor. In present work, the sintering process and critical current density of low activation Mg11B2 superconductors were systemically studied from low temperature to high temperature. It was found that the Jc and Hirr values of Mg11B2 bulks in present work are both obviously higher than that of those samples prepared in previous studies. Furthermore, the low-temperature sintered samples exhibit better Jc performance at high fields than the high-temperature sintered samples, due to strong grain boundaries pinning. On the other hand, the high-temperature sintered samples have higher Jc at low fields compared to low-temperature sintered samples, mainly owing to their better crystallinity and grain connectivity. The highest Jc value (2.20 ×105 A cm-2 at 20 K, self-field) is obtained in the Mg11B2 sample sintered at 850 °C for 45 min.

  18. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, Carlos; Ruiz de Larramendi, I.;

    2013-01-01

    -priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination...... of temperatures (800-1000°C). Scanning Electron Microscopy (SEM) studies revealed porous electrode microstructures, even when sintered at a temperature of just 800°C. The competitive performance of the electrodes sintered at low temperatures, combined with the low raw material cost, make these electrodes...

  19. Gravimetric Vegetation Water Content Estimation for Corn Using L-Band Bi-Angular, Dual-Polarized Brightness Temperatures and Leaf Area Index

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-08-01

    Full Text Available In this study, an algorithm to retrieve the gravimetric vegetation water content (GVWC, % of corn was developed. First, the method for obtaining the optical depth from L-band (1.4 GHz bi-angular, dual-polarized brightness temperatures (TB for short vegetation was investigated. Then, the quantitative relationship between the corn optical depth, corn GVWC and corn leaf area index (LAI was constructed. Finally, using the Polarimetric L-band Microwave Radiometer (PLMR airborne data in the 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER project, the Global Land Surface Satellite (GLASS LAI product, the height and areal density of the corn stalks, the corn GVWC was estimated (corn GLASS-GVWC. Both the in situ measured corn GVWC and the corn GVWC retrieved based on the in situ measured corn LAI (corn LAINET-GVWC were used to validate the accuracy of the corn GLASS-GVWC. The results show that the GVWC retrieval method proposed in this study is feasible for monitoring the corn GVWC. However, the accuracy of the retrieval results is highly sensitive to the accuracy of the LAI input parameters.

  20. Application of hydrogen injection and oxidation to low temperature solution-processed oxide semiconductors

    Directory of Open Access Journals (Sweden)

    Masashi Miyakawa

    2016-08-01

    Full Text Available Solution-processed oxide semiconductors are promising candidates for the low cost, large scale fabrication of oxide thin-film transistors (TFTs. In this work, a method using hydrogen injection and oxidation (HIO that allows the low temperature solution processing of oxide semiconductors was demonstrated. We found that this method significantly decreases the concentration of residual species while improving the film densification. Additionally, enhanced TFT performance was confirmed following the use of processing temperatures as low as 300 °C. The proposed process is potentially applicable to the fabrication of a wide variety of solution-processed oxide semiconductors.

  1. Application of hydrogen injection and oxidation to low temperature solution-processed oxide semiconductors

    Science.gov (United States)

    Miyakawa, Masashi; Nakata, Mitsuru; Tsuji, Hiroshi; Fujisaki, Yoshihide; Yamamoto, Toshihiro

    2016-08-01

    Solution-processed oxide semiconductors are promising candidates for the low cost, large scale fabrication of oxide thin-film transistors (TFTs). In this work, a method using hydrogen injection and oxidation (HIO) that allows the low temperature solution processing of oxide semiconductors was demonstrated. We found that this method significantly decreases the concentration of residual species while improving the film densification. Additionally, enhanced TFT performance was confirmed following the use of processing temperatures as low as 300 °C. The proposed process is potentially applicable to the fabrication of a wide variety of solution-processed oxide semiconductors.

  2. Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities.

    Science.gov (United States)

    Liu, Nancy T; Nou, Xiangwu; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2014-02-03

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, foodborne bacterial pathogens, which many are poor biofilm formers, could potentially take advantage of this protective mechanism by interacting with other strong biofilm producers. The objective of this study was to determine the influence of bacteria native to fresh produce processing environments on the incorporation of Escherichia coli O157:H7 in biofilms. Bacteria strains representing 13 Gram-negative species isolated from two fresh produce processing facilities in a previous study were tested for forming dual-species biofilms with E. coli O157:H7. Strong biofilm producing strains of Burkholderia caryophylli and Ralstonia insidiosa exhibited 180% and 63% increase in biofilm biomass, and significant thickening of the biofilms (B. caryophylli not tested), when co-cultured with E. coli O157:H7. E. coli O157:H7 populations increased by approximately 1 log in dual-species biofilms formed with B. caryophylli or R. insidiosa. While only a subset of environmental isolates with strong biofilm formation abilities increased the presence of E. coli O157:H7 in biofilms, all tested E. coli O157:H7 exhibited higher incorporation in dual-species biofilms with R. insidiosa. These observations support the notion that E. coli O157:H7 and specific strong biofilm producing bacteria interact synergistically in biofilm formation, and suggest a route for increased survival potential of E. coli O157:H7 in fresh produce processing environments.

  3. Studies on the low temperature infrared heat processing of soybeans and maize

    NARCIS (Netherlands)

    Kouzeh-Kanani, M.

    1985-01-01

    A modified process for the infrared heat processing of oilseeds and cereal grains at relatively low temperatures is put forward. The process which involves an additional holding step and potentials for saving energy was investigated on a pilot plant on the basis of which a design is proposed for ind

  4. Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, D.S.; Williams, J.J.

    1977-04-01

    An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others.

  5. Temperature response of a number of plastic dosimeters for radiation processing

    Science.gov (United States)

    Sohrabpour, M.; Kazemi, A. A.; Mousavi, H.; Solati, K.

    1993-10-01

    Various plastic dosemeters are employed for dosimetry control of radiation processing within gamma and electron irradiation facilities. The temperature response of a dosimeter is important when the dose to such a dosimeter is accumulated under varying irradiation temperatures. Such measurements would be significant for proper assessment of the dose for better process control, as well as, performance evaluation of dosimetry systems. In this work we have developed a high current peltier junction temperature controller system for our Gammacell-220. This system has been designed to regulate the operating temperature of the irradiation chamber in the range of 0 to 80 C this system has been applied to measure the temperature response of the red perspex, a local clear PMMA, Gammex, Gammachrome, and Gafchromic dosimeters. The curves of relative performance or variation of the induced optical densities of the above dosemeters versus the irradiation temperature at fixed dose values are obtained.

  6. 肉类低温保藏技术%Low Temperature Processing for Meat products

    Institute of Scientific and Technical Information of China (English)

    王盼盼

    2009-01-01

    With the development of science and technology the research on low temperature has become more and more important. Its application has become wider and wider. Low temperature meat products have the advantage of damaging least to organizational structure, stored long time, good effect and so on. It's considered to be the best methods for meat products preservation. This paper reviews the principle, method and new technology of the low temperature processing.

  7. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications.

  8. Silicon-carbide-based extreme environment temperature sensor using wavelength-tuned signal processing.

    Science.gov (United States)

    Riza, Nabeel A; Sheikh, Mumtaz

    2008-05-15

    A wavelength-tuned signal-processing approach is proposed for enabling direct unambiguous temperature measurement in a free-space targeted single-crystal silicon carbide (SiC) temperature sensor. The approach simultaneously exploits the 6H SiC fundamental Sellmeier equation-based wavelength-sensitive refractive index change in combination with the classic temperature-dependent refractive index change and the material thermal-expansion path-length change to encode SiC chip temperature with wavelength. Presently, the technique is useful for fast coarse temperature measurement as demonstrated from room temperature to 1000 degrees C using a 10-peak count wavelength-tuned measurement with a 0.31 nm total wavelength change. This coarse technique can be combined with the previously presented two-wavelength signal-processing temperature measurement approach to simultaneously deliver a wide temperature range and a high-resolution temperature sensor. Applications for the sensor range from power plants to materials processing facilities.

  9. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    OpenAIRE

    2008-01-01

    The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  10. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  11. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2017-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  12. Optimal temperature profiles for minimum residual stress in the cure process of polymer composites

    CSIR Research Space (South Africa)

    Gopal, AK

    2000-01-01

    Full Text Available Manufacturing of polymer composites using a curing process requires the specification of the temperature as a function of time, i.e., the temperature profile. It is of utmost importance that the selected profile satisfies a number of criteria which...

  13. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  14. Optimum temperature policy for sorption enhanced steam methane reforming process for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Retnamma, Rajasree [National Laboratory of energy and Geology (LNEG), Lisbon (PT). Energy Systems Modeling and Optimization Unit (UMOSE); Ravi Kumar, V.; Kulkarni, B.D. [National Chemical Laboratory, Pune (India). Chemical Engineering and Process Development

    2010-07-01

    Sorption enhanced steam methane reforming (SE-SMR) process offers high potential for producing H{sub 2} in fuel cell applications compared to conventional catalytic steam methane reforming (SMR) process. The reactor temperature can significantly affect the performance of the SE-SMR reaction and simultaneous adsorption behavior of CO{sub 2}. Determination of an optimal temperature policy in SE-SMR reactor is therefore an important optimization issue. Multi-stage operation is a possible way to implement optimum temperature policies. In the present work, simulation study has been carried out for multi-stage operation using a mathematical model incorporating basic mechanisms operating in a fixed bed reactor with nonlinear reaction kinetic features of an SE-SMR process. Three cases were considered for implementing the multi-stage concept and the results show that increase in temperature based on a policy leads to considerable improvement in the process performance. (orig.)

  15. The Improved Low Temperature Digestion (ILTD) Process: An Economic and Environmentally Sustainable Way of Processing Gibbsitic Bauxites

    Science.gov (United States)

    Bánvölgyi, György; Siklósi, Péter, dr

    A short description of the Improved Low Temperature Digestion (ILTD) Process and its experimental background. Presentation of its process flow block diagram and process parameters. In the ILTD Process the bauxite is charged so that the dissolved alumina be fairly close to the equilibrium solubility for gibbsite so that dissolution of gibbsite consume the reactive OH ions in a short reaction time and a significant part of kaolinite remain un-attacked. The bauxite residue (red mud) is separated just after the digestion. The pregnant liquor is submitted to a pressure post-desilication in order to maintain a low dissolved silica content and to make Bayer sodalite for further use. A Case Study elaborated for processing Trombetas bauxite (Brazil) gives a comparison of the ILTD Process with both the Conventional Low Temperature digestion Bayer process and the so-called Sumitomo New Bayer Process. A profit increase of USD 15-50 per ton of alumina is arrived for the ILTD Process compared with the Conventional Process, the most likely range is USD 30-40. Utilisation potential of the bauxite residue (red mud) and that of the new by-product: Bayer-sodalite (desilication product) is shortly discussed. Bayer sodalite can be converted to zeolite at a low cost.

  16. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    Science.gov (United States)

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Application of Dual-process Model in Clinical Thinking%双系统模型在临床思维中的应用

    Institute of Scientific and Technical Information of China (English)

    孙红梅

    2012-01-01

    Clinical reasoning plays a major role in the ability of doctors to make diagnoses and decisions. The implications of dual-process models developed by cognitive psychologists solved contradictory studies on clinical reasoning. This paper explored the clinical reasoning process comprehensively through dual-process theory, which formulized the relationship of the heuristic system or analysis system and clinical reasoning, and associated diagnostic errors with the two kinds of reasoning, particularly highlighted the importance of physicians' intuition.%临床推理在医生的诊断和决策中起着关键性的作用,认知心理学领域的双系统模型在临床推理中的应用解决了以往研究中诊断过程的矛盾.本文通过双系统模型全面探讨了临床推理中的加工过程,即阐述了启发式系统和分析系统与临床推理、诊断误差的关系,尤其侧重于直觉系统在临床推理中的作用.

  18. Using dual temperature difference two source energy balance model and MODIS data to estimate surface energy fluxes at regional scales in northern latitudes

    Science.gov (United States)

    Guzinski, R.; Anderson, M.; Kustas, W.; Nieto, H.; Sandholt, I.

    2012-04-01

    A Two Source Energy Balance (TSEB) thermal-based modeling scheme has previously been used to successfully estimate surface latent and sensible heat fluxes at regional to continental scales with the help of satellite surface radiometric temperature observations. The Dual Temperature Difference (DTD) model introduced a simple methodology to address the sensitivity of the thermal-based energy balance models to the absolute measurement of land surface temperature (LST), which when derived with the help of satellites can have errors of several degrees. The original DTD model formulation required an early morning LST observation (1 hour after local sunrise) when fluxes were minimal followed by another LST observations later in the morning or afternoon and so was limited in use to data provided by geostationary satellites having high temporal resolution. This, however, made it unsuitable for areas at higher latitudes, such as northern Eurasia and northern North America. In this poster we present a number of modifications to the DTD model which allows it to exploit the day and night LST observations by the MODIS sensor aboard the Terra and Aqua polar orbiting satellites. Firstly, we look at whether taking the first LST observation around the time of Aqua's night overpass, when fluxes are small but not insignificant, would greatly affect the accuracy of the model. Secondly, we consider the issues directly related to using the MODIS sensor to measure the LST. This includes different view zenith angles of the day and night LST observations, the two observations possibly coming from the two different satellites and the accuracy of the instrument itself. We also evaluate two approaches for estimating αPT, the Priestley-Taylor parameter used in the TSEB modeling scheme to estimate heat fluxes of the vegetation canopy, to improve the performance of the model in coniferous and deciduous forests. The first approach estimates αPT based on tree height, while the second uses

  19. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process

    DEFF Research Database (Denmark)

    Jensen, Henrik; Brummerstedt Iversen, Steen; Joensen, Karsten Dan

    2006-01-01

    A novel method for producing crystalline nanosized metal oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process has been developed. The process is a modified sol-gel process taking place at temperatures as low as 95 ºC with supercritical CO2 as solvent and polypropylene as seeding....... The crystallinity can be controlled by changing the heating rate of the initial formation of the nanoparticles and the morphology can be altered by changing the process time....

  20. Numerical prediction of temperature distribution in thermoset composites during laser curing process

    Institute of Scientific and Technical Information of China (English)

    吴存真; 孙志坚; 徐剑锋; 秦悦慧

    2002-01-01

    The temperature distribution in the advanced thermoset composite during the laser curing process was predicted with the use of the two-dimensional thermo-chemical model presented in this paper which also gives the governing equations based on the thermal history of the curing process. The finite-difference method was used to get the temperature distribution. This paper also deals with the effect of some factors (such as the winding velocity, the tape thickness and the laser heat source) on the temperature distribution.

  1. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  2. Low-temperature optical processing of semiconductor devices using photon effects

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Cudzinovic, M.; Symko, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  3. The Optimum Mesophilic Temperature of Batch Process Biogas Production from Animal-based Wastes

    Directory of Open Access Journals (Sweden)

    Osita Obineche Obiukwu

    2014-10-01

    Full Text Available The optimum mesophilic temperature of biogas production from blends The optimum temperature of biogas production from blends of animal-based wastes was determined under controlled heat supply to the digester in a batch digestion process. Cow Dung (CD and Poultry Droppings (PD were blended in the ratio of CD: PD: 1:3. The digester was operated at average ambient temperature of 30°C as baseline. Biogas production from the waste blends was monitored under the temperatures of 32 to 45°C. Results obtained indicate maximum cumulative gas yield was observed at the temperature of 40°C. The 40°C temperature gave the highest biogas yield of 2685 mL followed by the 35°C temperature with the cumulative yield of 2535 mL. The ambient temperature of 30°C had the least cumulative biogas yield of 185 mL. These results indicate that increased and steady biogas production can be achieved under the optimum mesophilic temperature of 40°C when these animal-based wastes are digested in batch digestion process.

  4. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance

    Science.gov (United States)

    Lee, Jong Seok; Via, Laura E.; Barry, Clifton E.; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  5. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    Directory of Open Access Journals (Sweden)

    Sandy S Roh

    Full Text Available Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB melting temperature (Tm assay and a Dual labeled probe (DLP Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100% samples with rpoB RRDR mutations and 3/3 (100% samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94% gyrA mutants and 12/22 (55% rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition.

  6. Animal Thermoregulation and the Operative Environmental (Equivalent) Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Process.

    Science.gov (United States)

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Thermoregulation is defined as the ability of an organism to modify its body temperature. This…

  7. Graphics processing unit aided highly stable real-time spectral-domain optical coherence tomography at 1375 nm based on dual-coupled-line subtraction

    Science.gov (United States)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2013-04-01

    We have proposed and demonstrated a highly stable spectral-domain optical coherence tomography (SD-OCT) system based on dual-coupled-line subtraction. The proposed system achieved an ultrahigh axial resolution of 5 μm by combining four kinds of spectrally shifted superluminescent diodes at 1375 nm. Using the dual-coupled-line subtraction method, we made the system insensitive to fluctuations of the optical intensity that can possibly arise in various clinical and experimental conditions. The imaging stability was verified by perturbing the intensity by bending an optical fiber, our system being the only one to reduce the noise among the conventional systems. Also, the proposed method required less computational complexity than conventional mean- and median-line subtraction. The real-time SD-OCT scheme was implemented by graphics processing unit aided signal processing. This is the first reported reduction method for A-line-wise fixed-pattern noise in a single-shot image without estimating the DC component.

  8. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 113 (formerly 2007N-0026) Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers; Correction AGENCY... (76 FR 11892). The final rule amended FDA's regulations for thermally processed low-acid...

  9. Ultra-Fast Boriding in High-Temperature Materials Processing Industries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    This factsheet describes a research project whose main objective is to further develop, optimize, scale-up, and commercialize an ultra-fast boriding (also referred to as “boronizing”) process that can provide much higher energy efficiency, productivity, and near-zero emissions in many of the high-temperature materials processing industries.

  10. A general route toward complete room temperature processing of printed and high performance oxide electronics.

    Science.gov (United States)

    Baby, Tessy T; Garlapati, Suresh K; Dehm, Simone; Häming, Marc; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-03-24

    Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.

  11. Effect of raw material source, processing systems, and processing temperatures on amino acid digestibility of meat and bone meals.

    Science.gov (United States)

    Wang, X; Parsons, C M

    1998-06-01

    Experiments were conducted to evaluate amino acid digestibility of 32 commercial meat and bone meals (MBM) varying in raw material source and produced in seven different commercial cooking systems and at two processing temperatures (low vs high) that differed by 15 to 20 C. Raw material sources included all beef, all pork, mixed species, and high bone MBM. True digestibilities of amino acids were determined using the precision-fed cecectomized rooster assay. Protein efficiency ratio (PER) of six MBM varying greatly in amino acid digestibility was determined with chicks fed 10% CP diets containing a MBM as the sole source of dietary protein. The 32 MBM samples averaged 53.2% CP, 2.73% Lys, 0.6% Cys, and 0.75% Met on a DM basis. True digestibility averaged 82% for Lys, 87% for Met, and 47% for Cys. True digestibilities of amino acids varied substantially among processing systems and temperatures, particularly for Lys and Cys. For example, Lys and Cys digestibility ranged from 68 to 92% and from 20 to 71%, respectively, among different MBM. The higher processing temperature generally yielded lower amino acid digestibility than did the low processing temperature. A smaller, less consistent, effect was observed for raw material source. The PER values of the six selected MBM varied from 0.97 to 2.68 and were highly correlated with amino acid digestibility. These results indicated that very high amino acid digestibility MBM can be produced in commercial rendering systems. However, differences in processing systems and temperatures can cause substantial variability in amino acid digestibilities.

  12. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  13. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    Science.gov (United States)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2016-12-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  14. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    Energy Technology Data Exchange (ETDEWEB)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy); Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto [UTTTRI RIF – C.R. ENEA Trisaia, SS Jonica 106, km 419.5, 75026 Rotondella (Italy); Galvagno, Sergio [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy)

    2013-03-15

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  15. Measuring temperature-dependent activation energy in thermally activated processes: a 2D Arrhenius plot method.

    Science.gov (United States)

    Li, Jian V; Johnston, Steven W; Yan, Yanfa; Levi, Dean H

    2010-03-01

    Thermally activated processes are characterized by two key quantities, activation energy (E(a)) and pre-exponential factor (nu(0)), which may be temperature dependent. The accurate measurement of E(a), nu(0), and their temperature dependence is critical for understanding the thermal activation mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods cannot unambiguously measure E(a), nu(0), and their temperature dependence due to the mathematical impossibility of resolving two unknown 1D arrays from one 1D experimental data array. Here, we propose a 2D Arrhenius plot method to solve this fundamental problem. Our approach measures E(a) at any temperature from matching the first and second moments of the data calculated with respect to temperature and rate in the 2D temperature-rate plane, and therefore is able to unambiguously solve E(a), nu(0), and their temperature dependence. The case study of deep level emission in a Cu(In,Ga)Se(2) solar cell using the 2D Arrhenius plot method reveals clear temperature dependent behavior of E(a) and nu(0), which has not been observable by its 1D predecessors.

  16. Effect of CVD Process Temperature on Activation Energy and Structural Growth of MWCNTs

    Science.gov (United States)

    Shukrullah, S.; Mohamed, N. M.; Shaharun, M. S.; Saheed, M. S. M.; Irshad, M. I.

    2016-03-01

    This study investigated the effect of process temperature and activation energy on chemical vapor deposition growth of multi-walled carbon nanotubes (MWCNTs). A vertically fluidized bed reactor was used to grow MWCNTs by catalytic decomposition of ethylene over Fe2O3/Al2O3 at the cost of very low activation energy of 19.516 kJ/mole. FESEM, TEM, and Raman spectroscopy were used to characterize the growth parameters of MWCNTs in the temperature range of 873.15 K to 1273.15 K (600 °C to 1000 °C). SAED patterns were taken to investigate the crystallinity of the grown structures. The experimental results revealed that MWCNTs grown at the optimum process temperature of 1073.15 K (800 °C) exhibited hexagonal crystal structures, narrow diameter distribution and shorter inter-layer spacing. However, the inner and outer walls of most of MWCNTs grown at the temperatures above and below the optimum were non-uniform and defective. The higher process temperatures promoted the agglomeration of the catalyst particles and decomposition of the carbon precursor, which in return increased the tube diameter, surface defects and amorphous carbon content in the product. The intensity ratio plots also predicted low crystallinity in MWCNTs grown at unoptimized process temperatures. The highest I G/ I D ratio of 1.43 was determined at 1073.15 K (800 °C), which reflects high pct yield, purity and crystalline growth of MWCNTs.

  17. Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A.; Van Doorn, J. [ECN Biomass, Petten (Netherlands)

    2000-07-01

    A bench-scale circulating fluidized bed (CFB) gasifier with a capacity of max. 500 kWh{sub th} has been used to study the effect of fuel size and process temperature. A higher process temperature (range tested: 750 to 910C) results in more air needed to maintain the desired temperature, a lower heating value of the product gas, a higher carbon conversion and a net increase of cold gas efficiency of the gasifier. A higher process temperature also results in less heavy tars. However, light tars (measured using the solid phase adsorbent (SPA) method) do show an odd behaviour. Some individual components within the group of light tars even increase in concentration when process temperature is raised. The main reason probably is that heavy tars decompose to these relatively stable light tar components. The particle size of the fuel does influence some product gas parameters considerably. The presence of small particles seems to increase the (heavy) tar concentration and decrease the conversion of fuel-nitrogen to ammonia. Small particles can also be responsible for large temperature gradients along the axis of the riser of a CFB-gasifier. This effect can be avoided by either mixing the fuel with larger particles or feed the small particles at the bottom of the reactor. 5 refs.

  18. Study on process and characterization of high-temperature resistance polyimide composite

    Science.gov (United States)

    Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang; Cui, Chao; Guo, Hong-Jun

    2016-05-01

    A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred. The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ˜305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (Pi) during the imidization. The second-stage pressure (P2) and the temperature for applying the P2 (T2) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.

  19. Study on process and characterization of high-temperature resistance polyimide composite

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang; Cui, Chao; Guo, Hong-Jun [Aerospace Research Institute of Materials & Processing Technology (No.1 Nan Da Hong Men Road, Fengtai District, Beijing, 100076, P.R., China) (China)

    2016-05-18

    A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred. The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.

  20. Microchip systems for imaging liquid and high temperature processes in TEM & SEM

    DEFF Research Database (Denmark)

    Jensen, Eric; Canepa, Silvia; Møller-Nilsen, Rolf Erling Robberstad

    2014-01-01

    measurementson high temperature fuel cell systems. For imaging processes in liquids, our SEM system enables imaging on-chip microelectrodes andusing standard built-in reference electrodes [2]. To get higher resolution in TEM, we have createda monolithic chip system with suspended microfabricated channels [3......]. Both systems will allowhigh resolution imaging of heterogeneous electrochemical processes such as those in batteries.Based on the suspended microfluidic channels, we are also developing microchips that enableultrafast freezing of processes in liquids....

  1. Patented Techniques for Acrylamide Mitigation in High-Temperature Processed Foods

    DEFF Research Database (Denmark)

    Mariotti, Salome; Pedreschi, Franco; Antonio Carrasco, José

    2011-01-01

    route for acrylamide for-mation between reducing sugars (glucose and fructose), sucrose, and the amino acid asparagine, and, consequently, a variety of technologies have been developed to reduce acrylamide concentration in thermally processed foods based ei-ther on: (i) Changing process parameters (e...... for acrylamide reduction in foods processed at high temperatures are mentioned and briefly analyzed in order to develop new mitigation techniques for acrylamide in different food matrixes....

  2. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.

    Science.gov (United States)

    Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF.

  3. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    Science.gov (United States)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  4. A concept for non-invasive temperature measurement during injection moulding processes

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Spekowius, Marcel, E-mail: spekowius@ikv.rwth-aachen.de; Wipperfürth, Jens; Schöngart, Maximilian, E-mail: schoengart@ikv.rwth-aachen.de [Institute of Plastics Processing (IKV), RWTH Aachen University Pontstr. 49, 52062 Aachen (Germany)

    2016-03-09

    Current models of the injection moulding process insufficiently consider the thermal interactions between melt, solidified material and the mould. A detailed description requires a deep understanding of the underlying processes and a precise observation of the temperature. Because todays measurement concepts do not allow a non-invasive analysis it is necessary to find new measurement techniques for temperature measurements during the manufacturing process. In this work we present the idea of a set up for a tomographic ultrasound measurement of the temperature field inside a plastics melt. The goal is to identify a concept that can be installed on a specialized mould for the injection moulding process. The challenges are discussed and the design of a prototype is shown. Special attention is given to the spatial arrangement of the sensors. Besides the design of a measurement set up a reconstruction strategy for the ultrasound signals is required. We present an approach in which an image processing algorithm can be used to calculate a temperature distribution from the ultrasound scans. We discuss a reconstruction strategy in which the ultrasound signals are converted into a spartial temperature distribution by using pvT curves that are obtained by dilatometer measurements.

  5. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  6. Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite-martensite dual-phase steel

    Institute of Scientific and Technical Information of China (English)

    Pei Li; Jun Li; Qing-ge Meng; Wen-bin Hu; Chun-fu Kuang

    2015-01-01

    Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vol%were produced by intercritical an-nealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP micro-structures using the differential Crussard–Jaoul technique demonstrate two stages of work hardening for all samples.

  7. IR camera temperature resolution enhancing using computer processing of IR image

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2016-05-01

    As it is well-known, application of the IR camera for the security problems is very promising way. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possility of viewing the temperature trace on a human body skin, caused by temperature changing inside the human body due to water drinking. We use new approach, based on usung a correlation function, for computer processing of IR images. Its application results in a temperature resolution enhancing of cameras. We analyze IR images of a person, which drinks water. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by shirt. We try to see a human body temperature changing in physical experiments under consideration. Shown phenomena are very important for the detection of forbidden objects, cancelled under clothes or inside the human body, by using non-destructive control without using X-rays.

  8. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  9. Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; GAO Jia-cheng; WANG Yong; CHANG Xin

    2008-01-01

    Low-temperature sintering(LTS) experiments of UO2 pellets and their results were reported. Moreover, a routine process of LTS for UO2 pellets was primarily established. Being sintered at 1 400 ℃ for 3 h in a partially-oxidative atmosphere, the relative density of the pellet can be up to around 94%. Pellets with such a high density are of benefit for following-up reduction-sintering processes. Orthogonal test indicates that the importance of factors affecting the density decreases in the sequence of partial-oxidative sintering temperature and time, reduction-sintering time and temperature, and sintering atmosphere. It is found that it is helpful to introducing a small amount of water vapor into the sintering atmosphere during the latter stage. It is believed that it is the key factor to raise the O/U ratio of original powder in order to improve the properties of the low-temperature sintered pellets.

  10. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  11. Mathematical modelling and analysis of the mushroom drying process at the optimal temperature

    Directory of Open Access Journals (Sweden)

    O. Kubaychuk

    2016-02-01

    Full Text Available To preserve food is used drying method. It was found experimentally that drying mushroom caps and legs should be conducted at temperatures close to 52,5°C and 55,5°C, accordingly. In this case, we can get the product of the highest quality. Statistically, we proved that the drying processes of mushroom caps are different for fixed levels of temperature (from 40° C to 80° C, by step 10° C. At the same time, at higher temperatures, the nature of the process changes abruptly. Based on the experimental data, the polynomial regression model was built. This model can used for estimating and forecasting a specific evaporation heat at the optimal temperature.

  12. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  13. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2005-01-21

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions.

  14. A Temperature-Profile Method for Estimating Flow Processes inGeologic Heat Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens T.

    2004-12-06

    Above-boiling temperature conditions, as encountered, forexample, in geothermal reservoirs and in geologic repositories for thestorage of heat-producing nuclear wastes, may give rise to stronglyaltered liquid and gas flow processes in porous subsurface environments.The magnitude of such flow perturbation is extremely hard to measure inthe field. We therefore propose a simple temperature-profile method thatuses high-resolution temperature data for deriving such information. Theenergy that is transmitted with the vapor and water flow creates a nearlyisothermal zone maintained at about the boiling temperature, referred toas a heat pipe. Characteristic features of measured temperature profiles,such as the differences in the gradients inside and outside of the heatpipe regions, are used to derive the approximate magnitude of the liquidand gas fluxes in the subsurface, for both steady-state and transientconditions.

  15. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    Science.gov (United States)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  16. A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance

    Directory of Open Access Journals (Sweden)

    Ronald Lesley Plaut

    2007-12-01

    Full Text Available Wrought austenitic stainless steels are widely used in high temperature applications. This short review discusses initially the processing of this class of steels, with emphasis on solidification and hot working behavior. Following, a brief summary is made on the precipitation behavior and the numerous phases that may appear in their microstructures. Creep and oxidation resistance are, then, briefly discussed, and finalizing their performance is compared with other high temperature metallic materials.

  17. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Mareen; Weiss, Jakob; Selo, Nadja; Notohamiprodjo, Mike; Bamberg, Fabian; Nikolaou, Konstantin; Othman, Ahmed E. [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Flohr, Thomas [Siemens Healthcare GmbH, Erlangen (Germany)

    2016-11-15

    The aim of this study was to evaluate the effect of advanced monoenergetic post-processing (MEI+) on the visualisation of spinal growth in contrast-enhanced dual-energy CT (DE-CT). Twenty-six oncologic patients (age, 61 ± 17 years) with spinal tumorous growth were included. Patients underwent contrast-enhanced dual-energy CT on a third-generation dual-source CT scanner. Image acquisition was in dual-energy mode (100/Sn150kV), and scans were initiated 90 s after contrast agent administration. Virtual monoenergetic images (MEI+) were reconstructed at four different kiloelectron volts (keV) levels (40, 60, 80, 100) and compared to the standard blended portal venous computed tomography (CT{sub pv}). Image quality was assessed qualitatively (conspicuity, delineation, sharpness, noise, confidence; two independent readers; 5-point Likert scale; 5 = excellent) and quantitatively by calculating signal-to-noise (SNR) and contrast-to-noise-ratios (CNR). For a subgroup of 10 patients with MR imaging within 4 months of the DE-CT, we compared the monoenergetic images to the MRIs qualitatively. Highest contrast of spinal growth was observed in MEI+ at 40 keV, with significant differences to CT{sub pv} and all other keV reconstructions (60, 80, 100; p < 0.01). Highest conspicuity, delineation and sharpness were observed in MEI+ at 40 keV, with significant differences to CT{sub pv} (p < 0.001). Similarly, MEI+ at 40 keV yielded highest diagnostic confidence (4.6 ± 0.6), also with significant differences to CT{sub pv} (3.45 ± 0.9, p < 0.001) and to high keV reconstructions (80, 100; p ≤ 0.001). Similarly, CNR calculations revealed highest scores for MEI+ at 40 keV followed by 60 keV and CT{sub pv}, with significant differences to high keV MEI+ reconstructions. Qualitative analysis scores peaked for MR images followed by the MEI+ 40-keV reconstructions. MEI+ at low keV levels can significantly improve image quality and delineation of spinal growth in patients with portal

  18. EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement

    Science.gov (United States)

    Pearce, J. V.; Edler, F.; Elliott, C. J.; Rosso, L.; Sutton, G.; Andreu, A.; Machin, G.

    2017-08-01

    A new European project called EMPRESS, funded by the EURAMET program `European Metrology Program for Innovation and Research,' is described. The 3 year project, which started in the summer of 2015, is intended to substantially augment the efficiency of high-value manufacturing processes by improving temperature measurement techniques at the point of use. The project consortium has 18 partners and 5 external collaborators, from the metrology sector, high-value manufacturing, sensor manufacturing, and academia. Accurate control of temperature is key to ensuring process efficiency and product consistency and is often not achieved to the level required for modern processes. Enhanced efficiency of processes may take several forms including reduced product rejection/waste; improved energy efficiency; increased intervals between sensor recalibration/maintenance; and increased sensor reliability, i.e., reduced amount of operator intervention. Traceability of temperature measurements to the International Temperature Scale of 1990 (ITS-90) is a critical factor in establishing low measurement uncertainty and reproducible, consistent process control. Introducing such traceability in situ (i.e., within the industrial process) is a theme running through this project.

  19. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.

    Science.gov (United States)

    Dasgupta, Subho; Kruk, Robert; Mechau, Norman; Hahn, Horst

    2011-12-27

    Printed electronics (PE) represents any electronic devices, components or circuits that can be processed using modern-day printing techniques. Field-effect transistors (FETs) and logics are being printed with intended applications requiring simple circuitry on large, flexible (e.g., polymer) substrates for low-cost and disposable electronics. Although organic materials have commonly been chosen for their easy printability and low temperature processability, high quality inorganic oxide-semiconductors are also being considered recently. The intrinsic mobility of the inorganic semiconductors are always by far superior than the organic ones; however, the commonly expressed reservations against the inorganic-based printed electronics are due to major issues, such as high processing temperatures and their incompatibility with solution-processing. Here we show a possibility to circumvent these difficulties and demonstrate a room-temperature processed and inkjet printed inorganic-oxide FET where the transistor channel is composed of an interconnected nanoparticle network and a solid polymer electrolyte serves as the dielectric. Even an extremely conservative estimation of the field-effect mobility of such a device yields a value of 0.8 cm(2)/(V s), which is still exceptionally large for a room temperature processed and printed transistor from inorganic materials.

  20. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  1. Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available Pancreas disease (PD and sleeping disease (SD are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV, an unusual member of the Togaviridae (genus Alphavirus. SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ~17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2 was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production.

  2. High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting process

    Science.gov (United States)

    Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.

    2017-03-01

    In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.

  3. High-temperature fermentation. How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Banat, Babiker M.A.; Hoshida, Hisashi; Nonklang, Sanom; Akada, Rinji [Yamaguchi Univ. Graduate School of Medicine, Ube (Japan). Dept. of Applied Molecular Bioscience; Ano, Akihiko [Iwata Chemical Co. Ltd. (Japan)

    2010-01-15

    The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5 C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies. (orig.)

  4. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes

    Science.gov (United States)

    Buis, Arjan

    2016-01-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626

  5. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    Science.gov (United States)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (water contents (water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  6. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42–47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility. PMID:28139694

  7. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42-47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility.

  8. Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process

    Institute of Scientific and Technical Information of China (English)

    程方杰; 赵海微; 王颖; 肖兵; 姚俊峰

    2014-01-01

    The evolution of the surface oxide film along the depth direction of typical aluminum alloy under medium-temperature brazing was investigated by means of X-ray photoelectron spectroscopy (XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the en-richment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloy-ing elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during medium-temperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.

  9. Effect of the Kapitza temperature jump on thermal processes in nanofluids

    Directory of Open Access Journals (Sweden)

    Novopashin Sergey

    2016-01-01

    Full Text Available Two analytical solutions describing thermal processes in a nanofluid based on spherical nanoparticles taking into account the Kapitza temperature jump on a particle-fluid boundary were found. In the first solution the thermal conductivity of nanofluids was found with the help of Maxwell approach. The second solution describes stationary heat exchange between a spherical particle and fluid in two different conditions. A dimensionless criterion characterizing the effect of the Kapitza temperature jump on thermal processes in nanofluids has been obtained in both solutions.

  10. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  11. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  12. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Science.gov (United States)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  13. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  14. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions.

    Science.gov (United States)

    Schulze, M; Henning, H; Rüdiger, K; Wallner, U; Waberski, D

    2013-12-01

    Freshly collected boar spermatozoa are sensitive to a fast reduction in temperature because of lipid phase transition and phase separation processes. Temperature management during semen processing may determine the quality of stored samples. The aim of this study was to evaluate the influence of isothermic and hypothermic semen processing protocols on boar sperm quality under laboratory and field conditions. In the laboratory study, ejaculates (n = 12) were first diluted (1:1) with Beltsville Thawing Solution (BTS) at 32 °C, then processed either with isothermic (32 °C) or hypothermic (21 °C) BTS, stored at 17 °C, and assessed on days 1, 3, and 6. Temperature curves showed that 150 minutes after the first dilution, semen doses of both groups reached the same temperature. Two-step hypothermic processing resulted in lower sperm motility on days 1 and 6 (P sperm on days 3 and 6 (P boar semen compared with isothermic dilution and that the type of semen extender affects the outcomes.

  15. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes.

    Science.gov (United States)

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1-4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.

  16. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong

    2015-01-01

    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  17. Temperature Excursion Analysis of DIL5520 Dual Induction Logging Tool%DIL5520双感应测井仪温漂及测井问题分析

    Institute of Scientific and Technical Information of China (English)

    陈草棠; 吕超英; 徐忠清

    2011-01-01

    DIL5520双感应测井仪在测井时存在温漂问题,即在高电阻率井段测井曲线重复性不好.对DIL5520双感应测井仪的基值温漂指标进行分析,认为常规感应仪器遇高电阻率地层重复性不好是仪器本身指标无法满足要求,DIL5520双感应测井仪器可通过改变加温工艺提高其稳定性.提出了解决温漂问题的方法,如改变加温工艺流程,增加100℃记录点;在各温度点恒温30min;在仪器加温前,将线圈系用硅油充分浸泡;进行软件温度补偿等.DIL5520双感应测井仪在中高电阻率地层存在测井值偏低或偏高及有时出现跳尖和重复性不好的问题,可通过在井下布置多个发射和接收线圈改善感应测井的探测性能.为保证仪器的重复性,在感应测井时要按规定安装扶正器;对于井径较大的井段,只有通过校正图版校正.%The logging curve repeatability of DIL5520 dual induction logging tool is unsatisfactory in high resistivity formation because of the temperature excursion in logging. Conventional induction logging tool with bad repeatability is due to its configuration, but for DIL5520 dual induction logging tool, we can improve its stability by changing warming processes. Proposed is 4 ways to improve its repeatability:① increase 100 "C reporting spot; ② keep each temperature for 30 min; ③ fully soap the coil array in silicone oil before warming the tool, and do software temperature compensation, etc. To solve the problems such as abnormal log values and unsatisfactory curve repeatability in middle and high resistivity formation logging with the DIL5520 tool, the ideal solution is to put several emission and receiving coils downhole to improve its detection performance. For induction logging, we should assemble centralizer according to regulation to ensure logging curve repeatability. As for wells with bigger borehole diameter, the calibration chart is needed to guarantee the log data correction.

  18. Effect of temperature and active biogas process on passive separation of digested manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Angelidaki, Irini

    2008-01-01

    separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum...... solids separation was noticed 24 h after settling in column incubated at 55 degrees C, with active biogas process. Microbiological analyses revealed that proportion of Archaea and Bacteria, absent in the autoclaved material, varied with incubation temperature, time and sampling depth. Short rod shaped...

  19. Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition

    Directory of Open Access Journals (Sweden)

    S. Ogorodnikov

    2002-10-01

    Full Text Available The aim of this article is to demonstrate the practical value of radioscopic differentiation of materials in the 1–10 MeV energy range to the work of customs services. The proposed method for achieving singling out and identifying four basic groups of materials according to an atomic number is complex. Atomic numbers are identified using high- and low-energy profiles obtained through the irradiation of materials on an alternate pulse-by-pulse basis. This is done using a bremsstrahlung beam with 8   MeV/4   MeV dual boundary energies and by using scintillating crystals coupled with silicon photodiodes as detecting elements. An image segmentation technique is then used to discern the distribution of an atomic number on any given image. The color visualization of integral absorption and a material’s atomic composition is carried out according to the intensity hue saturation (IHS colorization scheme. The experiments were carried out on a full-scale prototype of an 8 MeV customs inspection system developed by the Efremov Research Institute.

  20. An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-06-01

    Full Text Available This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF radio-frequency identification (RFID transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C.

  1. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.

    Science.gov (United States)

    Zhang, Yan; Chang, Sam K C

    2016-03-01

    Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%.

  2. Estimation of Wellbore and Formation Temperatures during the Drilling Process under Lost Circulation Conditions

    Directory of Open Access Journals (Sweden)

    Mou Yang

    2013-01-01

    Full Text Available Significant change of wellbore and surrounding formation temperatures during the whole drilling process for oil and gas resources often leads by annulus fluid fluxes into formation and may pose a threat to operational security of drilling and completion process. Based on energy exchange mechanisms of wellbore and formation systems during circulation and shut-in stages under lost circulation conditions, a set of partial differential equations were developed to account for the transient heat exchange process between wellbore and formation. A finite difference method was used to solve the transient heat transfer models, which enables the wellbore and formation temperature profiles to be accurately predicted. Moreover, heat exchange generated by heat convection due to circulation losses to the rock surrounding a well was also considered in the mathematical model. The results indicated that the lost circulation zone and the casing programme had significant effects on the temperature distributions of wellbore and formation. The disturbance distance of formation temperature was influenced by circulation and shut-in stages. A comparative perfection theoretical basis for temperature distribution of wellbore-formation system in a deep well drilling was developed in presence of lost circulation.

  3. Infusion Processing of Phenylethynyl Terminated Imides by High Temperature RTM and VARTM

    Science.gov (United States)

    Ghose, Sayata; Lewis, Todd M.; Cano, Roberto J.; Watson, Kent A.; Isayev, Avraam I.

    2011-01-01

    Fabrication of composite structures using infusion processes such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting both technologies for the fabrication of high temperature (HT) resistant composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using these high temperature out-of-autoclave processes. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using both RTM and VARTM. For aerospace applications, a void fraction of less than 2% is desired. Traditionally, RTM has had the advantage over VARTM for generating composites with low void content. However, the process is limited in terms of size. Work at NASA LaRC has incorporated modifications to the thermal cycle used in laminate fabrication that have reduced the void content significantly (typically 1-3%) using the current HT-VARTM process. For composite fabrication by both RTM and VARTM, the resins were infused into three carbon fiber preforms (T650-35-3k 5HS, IM7-6k 5HS, and IM7-6k Uniweave) at 316 C and 260 C respectively and cured up to 371 C. The details of the RTM processing carried out at the University of Akron are discussed in this work along with a brief description of the HT-VARTM processing carried out at NASA-LaRC. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties (short beam shear, SBS) of the panels fabricated by both infusion processes were determined at room temperature as well as at various elevated temperatures. The results of this work are presented herein.

  4. FEA ANALYSIS OF FRICTIONAL HEATING PROCESS (MAX. TEMPERATURE VS. ROTATIONAL SPEED)

    OpenAIRE

    Mr. Sachchidanand J Nimankar *, Prof. Sachin K. Dahake

    2016-01-01

    Friction stir welding process is a promising welding technology from its existence as it is easy to use, low energy costs, being ecology friendly process and with no requirement of any type of filler material. This study of FSW gives analysis of the maximum temperature generated during operation. This is done by making three dimensional non-linear model. This model helps in trend for the relationship between translational velocity of tool, rotation speed of the tool, and the maximum temperatu...

  5. Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials

    Science.gov (United States)

    2008-04-15

    Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials Final Performance Report Contract Number...sintered commercially-available powders. Each project is summarized below: Synthesis : Zirconium diboride and a zirconium diboride/tantalum diboride...mixture were synthesized by solution-based processing. Zirconium n-propoxide was refluxed with 2,4-pentanedione to form zirconium diketonate . This compound

  6. Dual-donor (Zn(i) and V(O)) mediated ferromagnetism in copper-doped ZnO micron-scale polycrystalline films: a thermally driven defect modulation process.

    Science.gov (United States)

    Hu, Liang; Huang, Jun; He, Haiping; Zhu, Liping; Liu, Shijiang; Jin, Yizheng; Sun, Luwei; Ye, Zhizhen

    2013-05-07

    The paper reports robust ferromagnetic Cu-doped ZnO micron-scale polycrystalline films via spin-coating using high-quality doped nanocrystals. A reliable magnetic response is observed in the 900 °C vacuum annealed film without any ferromagnetic contribution from other sources. Post-annealing treatment in terms of atmosphere and temperature can control the proportion of oxygen vacancies (V(O)) and zinc interstitials (Zn(i)) defects and further help to precisely regulate defect-related ferromagnetic behavior. Complex charge transfer processes derived from dual-donor (Zn(i) and V(O)) to Cu acceptor are revealed by photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra. Based on the above, specific charge transfer (CT)-type Stoner splitting and indirect double-exchange mechanisms are proposed to understand the ferromagnetic origin. The improvable FM performance and annealing-specific modulation further indicate that a thermal driven process can delicately tailor the magnetic property of the transition metal ion-doped ZnO system.

  7. Better and Worse: A Dual-Process Model of the Relationship between Core Self-evaluation and Work-Family Conflict.

    Science.gov (United States)

    Yu, Kun

    2016-01-01

    Based on both resource allocation theory (Becker, 1965; Bergeron, 2007) and role theory (Katz and Kahn, 1978), the current study aims to uncover the relationship between core self-evaluation (CSE) and three dimensions of work interference with family (WIF). A dual-process model was proposed, in which both work stress and career resilience mediate the CSE-WIF relationship. The mediation model was tested with a sample of employees from various organizations (N = 561). The results first showed that CSE was negatively related to time-based and strain-based WIF and positively related to behavior-based WIF via the mediation of work stress. Moreover, CSE was positively associated with behavior-based and strain-based WIF via the mediation of career resilience, suggesting that CSE may also have its "dark-side."

  8. From Disparity to Harmonisation of Construction Industry Payment Legislation in Australia: A Proposal for a Dual Process of Adjudication based upon Size of Progress Payment Claim

    Directory of Open Access Journals (Sweden)

    Jeremy Coggins

    2011-06-01

    Full Text Available Since the introduction of the Building and Construction Industry Security of Payment Act into New South Wales in 1999, construction industry payment legislation has progressively been enacted on a jurisdiction-by-jurisdiction basis throughout Australia. Of the eight Australian Acts, two distinct legislative models can be discerned – what have been termed the ‘East Coast’ and ‘West Coast’ models. This article compares the two models with respect to their payment systems and adjudication schemes, procedural justice afforded, incursion upon freedom of contract, uptake rates and efficiency. From this comparison, the strengths and weaknesses of the two models are identified. Finally, a dual process of adjudication based on progress payment claim size is proposed for a harmonised model, developed from previous proposals put forward by other authors, which aims to combine the strengths of the two existing models.

  9. Effects of adding chicken manure to cattle manure on aerobic compost process parameters at low temperature

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaofeng; XU Fenghua; HE Huixia; WAN Shuming

    2007-01-01

    The research was aimed at studying the effect of adding certain proportion chicken manure to cattle manure on compost below 0 ℃ with aerobic compost method, which was suitable for northern cold climate. The results indicated that the mixed compost completed 3 days earlier than the single compost, the temperature of the mixed compost rose to 50.7 ℃ at the 1st day,and achieved its highest temperature 74.4 ℃ at the 3rd day. The temperature of the single compost rose to 40.0 ℃ at the 1st day,rose to 55.6 ℃ at the 3rd day, and achieved its highest temperature 70.1 ℃ at the 5th day. Adding chicken manure had no impact on the variety trend of the process parameters such as moisture content,pH and C/N ratio, but increased the variety range of these parameters.

  10. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    Science.gov (United States)

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-04-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  11. Neural Network Approach to Predict Melt Temperature in Injection Molding Processes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict, the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes.

  12. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  13. Vibration-insensitive temperature sensing system based on fluorescence decay and using a digital processing approach

    Science.gov (United States)

    Dong, H.; Zhao, W.; Sun, T.; Grattan, K. T. V.; Al-Shamma'a, A. I.; Wei, C.; Mulrooney, J.; Clifford, J.; Fitzpatrick, C.; Lewis, E.; Degner, M.; Ewald, H.; Lochmann, S. I.; Bramann, G.; Merlone Borla, E.; Faraldi, P.; Pidria, M.

    2006-07-01

    A fluorescence-based temperature sensor system using a digital signal processing approach has been developed and evaluated in operation on a working automotive engine. The signal processing approach, using the least-squares method, makes the system relatively insensitive to intensity variations in the probe and thus provides more precise measurements when compared to a previous system designed using analogue phase-locked detection. Experiments carried out to determine the emission temperatures of a running car engine have demonstrated the effectiveness of the sensor system in monitoring exhaust temperatures up to 250 °C, and potentially higher. This paper was presented at the 13th International Conference on Sensors and Their Applications, held in Chatham, Kent, on 6-7 September 2005.

  14. TiO2 film properties as a function of processing temperature, volume 3

    Science.gov (United States)

    Fitzgibbons, E. T.; Sladek, K. J.; Hartwig, W. H.

    1972-01-01

    Thin film TiO2 was produced at 150 C by chemical vapor deposition using hydrolysis of tetraisopropyl titanate. Films were amorphous as grown, but annealing in air caused crystallization, with anatase formed beginning at 350 C and rutile at 700 C. Density and index of refraction increased substantially with increasing anneal temperature, while etch susceptibility in HF and H2SO4 decreased. Comparison with literature data showed two groups of processes. One group yields films having properties that gradually approach those of rutile with increasing process temperature. The other group gives rutile directly at moderate temperatures. Deposition of amorphous film followed by etching and annealing is suggested as a means for pattern definition.

  15. Influence of process parameters on deep drawing of AA6111 aluminum alloy at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    马闻宇; 王宝雨; 傅垒; 周靖; 黄鸣东

    2015-01-01

    To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely, punch velocity, blank holder force (BHF), friction coefficient and initial forming temperature of blank on drawing characteristics (i.e. minimum thickness and thickness deviation) was investigated with the help of design of experiments (DOE), analysis of variance (ANOVA) and analysis of mean (ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35%followed by BHF of 24.88%, friction coefficient of 15.77%and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.

  16. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature

    Institute of Scientific and Technical Information of China (English)

    QIU Ting-sheng; NIE Guang-hua; WANG Jun-feng; CUI Li-feng

    2007-01-01

    Kinetic process of oxidative leaching of chalcopyrite in chloride acid hydroxide medium under oxygen pressure and low temperature was investigated. The effect on leaching rate of chalcopyrite caused by these factors such as ore granularity, vitriol concentration, sodium chloride concentration, oxygen pressure and temperature was discussed. The results show that the leaching rate of chalcopyrite increases with decreasing the ore granularity. At the early stage of oxidative reaction, the copper leaching rate increases with increasing the oxygen pressure and dosage of vitriol concentration, while oxygen pressure affects leaching less at the later stage. At low temperature, the earlier oxidative leaching process of chalcopyrite is controlled by chemical reactions while the later one by diffusion. The chalcopyrite oxidative leaching rate has close relation with ion concentration in the leaching solution. The higher ion concentration is propitious for chalcopyrite leaching.

  17. Estimation of evaporative fractions by the use of vegetation and soil component temperature determined by means of dual-looking remote sensing

    NARCIS (Netherlands)

    Rauwerda, J.; Roerink, G.J.; Su, Z.

    2002-01-01

    Knowledge of evaporation on local scale is a prerequisite for the prediction of drought. The Surface Energy Balance System (SEBS) provides the means to do this. Input data of SEBS are satellite data and a limited set of ground measurements. By using the dual-looking viewing capabilities of the ATSR

  18. On-focal-plane superconducting signal processing for low- and intermediate-temperature operation

    Science.gov (United States)

    Smetana, Daryl L.; Carson, John C.

    1991-11-01

    The marriage of superconducting electronics with Z-plane FPA readout structures offer the potential for high speed, low power parallel digital processing on-focal plane. This paper reports on some early research into this marriage of two technologies conducted by Irvine Sensors Corporation (ISC) and TRW. Progress is reviewed for both low and high temperature superconducting technologies.

  19. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, A.A.I.; Kovalgin, A.Y.; Wolters, R.A.M.; Holleman, J.; Schmitz, J.

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the subs

  20. Dielectric relaxation processes in smoky quartz crystals at very low temperatures

    NARCIS (Netherlands)

    Vos, W.J. de; Volger, J.

    1967-01-01

    The relaxation time governing the dielectric loss of smoky quartz crystals appears to level off as a function of temperature below 12°K, approaching a value of about 1 msec. The relaxational behaviour of the colour centres is discussed in terms of tunneling processes.

  1. Dielectric relaxation processes in smoky quartz crystals at very low temperatures

    NARCIS (Netherlands)

    Vos, W.J. de; Volger, J.

    1967-01-01

    The relaxation time governing the dielectric loss of smoky quartz crystals appears to level off as a function of temperature below 12°K, approaching a value of about 1 msec. The relaxational behaviour of the colour centres is discussed in terms of tunneling processes.

  2. The Effect of Dewaxing and Burnout Temperature in Block Mold Process for Copper Alloy Casting

    Directory of Open Access Journals (Sweden)

    S.Z. Mohd Nor

    2015-10-01

    Full Text Available The main objective of this research is to investigate the effect of dewaxing and burnout temperature on the quality of copper alloy casting produced by a low cost block mold that has been developed. In the molding process, two types of silica sand which contains 97.9% silica (SiO2 and 97.2% silica have been used as a refractory material with POP served as a binder. Several mold formulations contained 15-40% plaster of paris (POP, 60-85% silica sand and 35% water had been developed and each formulation had been tested in the process of copper alloy casting. In the dewaxing process, the temperature of 170oC was found appropriate to be used as an initial mold heating temperature and complete wax burnout was effectively achieved with the temperature of 750oC for 5 hours. The insufficient burnout process has produced a defect casting with carbon residue, appeared as a black stain on the surface of the casting. Meanwhile, rapid initial heating had prevented the wax from flowing out smoothly thus, eroded the surface of the mold cavities. This has resulted in deteriorated cavity surface, hence a rough surface of the casting.

  3. Root border cell development is a temperature-insensitive and Al-sensitive process in barley.

    Science.gov (United States)

    Pan, Jian-Wei; Ye, Dan; Wang, Li-Ling; Hua, Jing; Zhao, Gu-Feng; Pan, Wei-Huai; Han, Ning; Zhu, Mu-Yuan

    2004-06-01

    In vivo and in vitro experiments showed that border cell (BC) survival was dependent on root tip mucigel in barley (Hordeum vulgare L. cv. Hang 981). In aeroponic culture, BC development was an induced process in barley, whereas in hydroponic culture, it was a kinetic equilibrium process during which 300-400 BCs were released into water daily. The response of root elongation to temperatures (10-35 degrees C) was very sensitive but temperature changes had no great effect on barley BC development. At 35 degrees C, the root elongation ceased whereas BC production still continued, indicating that the two processes might be regulated independently under high temperature (35 degrees C) stress. Fifty microM Al could inhibit significantly BC development by inhibiting pectin methylesterase activity in the root cap of cv. 2000-2 (Al-sensitive) and cv. Humai 16 (Al-tolerant), but 20 microM Al could not block BC development in cv. Humai 16. BCs and their mucigel of barley had a limited role in the protection of Al-induced inhibition of root elongation, but played a significant role in the prevention of Al from diffusing into the meristems of the root tip and the root cap. Together, these results suggested that BC development was a temperature-insensitive but Al-sensitive process, and that BCs and their mucigel played an important role in the protection of root tip and root cap meristems from Al toxicity.

  4. Sulfate reducing processes at extreme salinity and temperature. extending its application window

    NARCIS (Netherlands)

    Vallero, M.V.G.

    2003-01-01

    The characteristics of various sulfate-rich wastewaters, such as temperature, pH and salinity, are determined by the (industrial) process from which they originate, and can be far from the physiological optima of the sulfur cycle microorganisms. The main goal of the research described in this thesis

  5. RF transconductor linearization technique robust to process, voltage and temperature variations

    NARCIS (Netherlands)

    Kundur Subramaniyan, Harish; Klumperink, Eric A.M.; Nauta, Bram; Venkatesh, Srinivasan; Kiaei, Ali

    2014-01-01

    A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degen

  6. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  7. Dual phase steel for line pipe applications

    Energy Technology Data Exchange (ETDEWEB)

    Merwin, M.J. [United States Steel Corp., Research and Technology Centre, Monroeville, PA (United States)

    2005-07-01

    This paper presents the results of a laboratory study of 2 samples of commercially produced line pipe from the same melting grade. The chemistries of the steel samples were presented. The study was conducted in response to requests by the American Petroleum Institute (API) for line pipe steel with a yield-strength-to-tensile-strength ratio (Y/T) of 0.85 or less, for use in offshore installations. The United States Steel Corporation initiated this program to achieve lower Y/T for line pipe grades while maintaining robust processing capability and mechanical properties. Heat treated seamless tubular products are typically processed in a manner that can be readily modified to produce dual phase microstructures by applying intercritical soaking before quenching. The steel line pipe industry is interested in dual phase steel for use in reel barge pipe laying operations because the the yield strength of dual phase steel is lower than tensile strength. In this study, the compositions of commercially produced material already in use for the line pipe market were studied. The developed dual phase microstructures were found to be stable over a range of intercritical temperatures. Tempering temperature and small chemistry differences were found to have the greatest influence on properties. The toughness performance was found to be excellent in samples tempered at temperatures greater than 550 degrees C, a regime which produced materials with strength suitable for use in API X60 line pipe. An incomprehensible difference in tensile strength between steels of similar chemistry was also noted. Welding performance was examined through the simulation of 3 regions of the heat-affected zone. The heat-affected zone properties were not influenced by either intercritical or tempering temperature. The only significant factor was the peak temperature that was achieved in the thermal cycle. The hardness of the heat-affected zone increased continuously with increasing peak temperature

  8. Low-temperature baroplastic processing of graphene-based polymer composites by pressure-induced flow

    Science.gov (United States)

    Tang, Wei; He, Cheng-en; Wang, Yuanzhen; Yang, Yingkui; Pong Tsui, Chi

    2014-08-01

    Two-stage emulsion polymerization was employed to synthesize nanoparticles consisting of a low glass transition temperature core of poly(n-butyl acrylate) (PBA) and a glassy poly(methyl methylacrylate) (PMMA) shell. Incorporation of graphene oxide (GO) into the PBA-PMMA latex produced GO/PBA-PMMA composites after demulsification and graphene/PBA-PMMA composites after chemical reduction of GO. The as-prepared powdery materials were processed into thin films by compression molding at room temperature as the result of a pressure-induced mixing mechanism of microphase-separated baroplastics. The presence of oxygen-containing groups for GO sheets contributed to better dispersion and stronger interface with the matrix, thereby showing greater reinforcement efficiency toward polymers compared to graphene sheets. In addition, both Young's modulus and yield strength for all materials increased with applied pressure and processing time due to better flowability, processability and cohesion at higher pressure and longer time. Low-temperature processing under pressure is of significance for energy conservation, recyclability and environmental protection during plastic processing.

  9. Low strength wastewater treatment under low temperature conditions by a novel sulfur redox action process.

    Science.gov (United States)

    Yamaguchi, T; Bungo, Y; Takahashi, M; Sumino, H; Nagano, A; Araki, N; Imai, T; Yamazaki, S; Harada, H

    2006-01-01

    The objective of this research is to make a novel wastewater treatment process activated by a sulfur-redox cycle action of microbes in low temperature conditions. This action is carried out by sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB). The process was comprised of a UASB reactor as pre-treatment and an aerobic downflow hanging sponge (DHS) reactor as post-treatment. As the results of reactor operation, the whole process achieved that over 90% of CODcr removal efficiency, less than 30 mgCODcr/L (less than 15 mgBOD/L) of final effluent, at 12 h of HRT and at 8 degrees C of UASB reactor temperature. Acetobacterium sp. was detected as the predominant species by PCR-DGGE method targeting 16SrDNA with band excision and sequence analysis. In the UASB reactor, various species of sulfate-reducing bacterium, Desulfobulbus sp., Desulfovibrio sp., and Desulfomicrobium sp., were found by cloning analysis. In the DHS reactor, Tetracoccus sp. presented as dominant. The proposed sulfur-redox action process was considered as an applicable process for low strength wastewater treatment in low temperature conditions.

  10. The logarithmic relaxation process and the critical temperature of liquids in nano-confined states

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Mole, Richard A.; Yu, Dehong; Chathoth, Suresh M.

    2016-09-01

    The logarithmic relaxation process is the slowest of all relaxation processes and is exhibited by only a few molecular liquids and proteins. Bulk salol, which is a glass-forming liquid, is known to exhibit logarithmic decay of intermediate scattering function for the β-relaxation process. In this article, we report the influence of nanoscale confinements on the logarithmic relaxation process and changes in the microscopic glass-transition temperature of salol in the carbon and silica nanopores. The generalized vibrational density-of-states of the confined salol indicates that the interaction of salol with ordered nanoporous carbon is hydrophilic in nature whereas the interaction with silica surfaces is more hydrophobic. The mode-coupling theory critical temperature derived from the QENS data shows that the dynamic transition occurs at much lower temperature in the carbon pores than in silica pores. The results of this study indicate that, under nano-confinements, liquids that display logarithmic β-relaxation phenomenon undergo a unique glass transition process.

  11. Processing of Transparent Rare Earth Doped Zirconia for High Temperature Light Emission Applications

    Science.gov (United States)

    Hardin, Corey Lee

    The high fracture toughness of stabilized zirconia makes it one of the most widely applicable high temperature structural materials. However, it is not typicality considered for optical applications since the microstructure achieved by traditional processing makes it opaque. The aim of this dissertation is to develop processing methods for the introducing new functionalities of light transparency and light emission (photoluminescence) and to understand the nanostructure-property relationships that make these functionalities possible. A processing study of rare-earth (RE) doped Zirconium Oxide (ZrO2, zirconia) via Current Activated Pressure Assisted Densification (CAPAD) is presented. The role of processing temperature and dopant concentration on the crystal structure, microstructure and properties of the RE: ZrO2 is studied. Microstructural shows sub-100 nm grain size and homogeneous dopant distribution. X-ray diffraction and Raman analysis show that with increased dopant concentration the material changes from monoclinic to tetragonal. Structural analysis shows the material shows high hardness and toughness values 30% greater than similarly processed yttria-stabilized zirconia. Despite birefringence in the tetragonal phase, optical characterization is presented showing the samples are both highly transparent and photo-luminescent. Special attention is paid to analyzing structural and photoluminescence development during densification, as well as the role of oxygen vacancies on the optical properties of the densified material. This material is shown to be a promising candidate for a number of applications including luminescence thermometry and high temperature light emission.

  12. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    Science.gov (United States)

    Schmidt, Marvin; Schütze, Andreas; Seelecke, Stefan

    2016-06-01

    This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  13. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    Directory of Open Access Journals (Sweden)

    Marvin Schmidt

    2016-06-01

    Full Text Available This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  14. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  15. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    Science.gov (United States)

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  16. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Belén Carro

    2012-10-01

    Full Text Available This paper presents a system based on an Artificial Neural Network (ANN for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN. A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  17. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    Science.gov (United States)

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  18. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite

    Directory of Open Access Journals (Sweden)

    Giovanni Parolari

    2016-04-01

    Full Text Available Dry cured hams were investigated for their ability to develop red color even at low temperature (3–4 °C and in the absence of added nitrites; results were compared with those obtained from nitrite-free hams made at conventional warm maturing temperatures. Colorimetric parameters (L*, a*, b*, and hue and concentration of the main pigments Zn protoporphyrin IX (ZnPP and heme were measured at three stages of preparation (six, nine, and 12 months, showing that red color was successfully formed at low temperatures, though at a slower rate and less intensively than under warm conditions. Major differences in the pattern of color development were found with the two processing temperatures. While the typical features of an enzyme-dependent mechanism, with a progressive drop in enzyme activity paralleling the synthesis of Zn protoporphyrin IX, were observed at warm temperatures, the same did not occur in cold-made hams, where the enzyme activity was almost unchanged throughout the process. These results, along with data from a descriptive sensory analysis, are supportive of a non-enzymatic mechanism leading to ZnPP (hence the red color under cold conditions, with an estimated three-month delay compared with nitrite-free hams manufactured in a warm maturing regimen.

  19. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    Science.gov (United States)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  20. Large format voltage tunable dual-band QWIP FPAs

    Science.gov (United States)

    Arslan, Y.; Eker, S. U.; Kaldirim, M.; Besikci, C.

    2009-11-01

    Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor. If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs-InGaAs and LWIR AlGaAs-GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK ( f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.

  1. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    Science.gov (United States)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2

  2. Reduction of cyanogenic glycosides by extrusion - influence of temperature and moisture content of the processed material

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Тhe paper presents results of the investigation of the influence of extrusion temperature and moisture content of treated material on the reduction of cyanogenic glycosides (CGs in linseed-based co-extrudate. CGs are the major limitation of the effective usage of linseed in animal nutrition. Hence, some technological process must be applied for detoxification of linseed before its application as a nutrient. Extrusion process has demonstrated several advantages in reducing the present CGs, since it combines the influences of heating, shearing, high pressure, mixing, etc. According to obtained results, the increase in both temperature and moisture content of the starting mixture decreased the content of CGs in the processed material. HCN content, as a measurement of GCs presence, ranged from 25.42 mg/kg, recorded at the moisture content of 11.5%, to 126 mg/kg, detected at the lowest moisture content of 7%. It seems that moisture content and temperature had the impact on HCN content of equal importance. However, the influence of extrusion parameters other than temperature and moisture content could not be neglected. Therefore, the impact of individual factors has to be tested together. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  3. METHODS OF COMPARATIVE APPRAISAL OF TITANIUM ALLOYS ABILITY TO THERMAL STRENGTHENING AS A RESULT OF HIGH-TEMPERATURE THERMOMECHANICAL PROCESSING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2011-01-01

    Full Text Available The methods, enabing to produce the comparative appraisal of the titanium alloy ability to harden as a result of high-temperature thermal-mechanical processing depending on temperature and rate of deformation at forging, is developed.

  4. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    Science.gov (United States)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  5. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  6. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    Science.gov (United States)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  7. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications

    Science.gov (United States)

    Tyborski, T.; Merschjann, C.; Orthmann, S.; Yang, F.; Lux-Steiner, M.-Ch; Schedel-Niedrig, Th

    2013-10-01

    Based on the arrangement of two-dimensional ‘melon’, we construct a unit cell for polymeric carbon nitride (PCN) synthesized via thermal polycondensation, whose theoretical diffraction powder pattern includes all major features measured in x-ray diffraction. With the help of this unit cell, we describe the process-temperature-induced crystallographic changes in PCN that occur within a temperature interval between 510 and 610 °C. We also discuss further potential modifications of the unit cell for PCN. It is found that both triazine- and heptazine-based g-C3N4 can only account for minor phases within the investigated synthesis products.

  8. The chemistry of tributyl phosphate at elevated temperatures in the Plutonium Finishing Plant Process Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.; Cooper, T.D.

    1994-06-01

    Potentially violent chemical reactions of the tributyl phosphate solvent used by the Plutonium Finishing Plant at the Hanford Site were investigated. There is a small probability that a significant quantity of this solvent could be accidental transferred to heated process vessels and react there with nitric acid or plutonium nitrate also present in the solvent extraction process. The results of laboratory studies of the reactions show that exothermic oxidation of tributyl phosphate by either nitric acid or actinide nitrates is slow at temperatures expected in the heated vessels. Less than four percent of the tributyl phosphate will be oxidized in these vented vessels at temperatures between 125{degrees}C and 250{degrees}C because the oxidant will be lost from the vessels by vaporization or decomposition before the tributyl phosphate can be extensively oxidized. The net amounts of heat generated by oxidation with concentrated nitric acid and with thorium nitrate (a stand-in for plutonium nitrate) were determined to be about -150 and -220 joules per gram of tributyl phosphate initially present, respectively. This is not enough heat to cause violent reactions in the vessels. Pyrolysis of the tributyl phosphate occurred in these mixtures at temperatures of 110{degrees}C to 270{degrees}C and produced mainly 1-butene gas, water, and pyrophosphoric acid. Butene gas generation is slow at expected process vessel temperatures, but the rate is faster at higher temperatures. At 252{degrees}C the rate of butene gas generated was 0.33 g butene/min/g of tributyl phosphate present. The measured heat absorbed by the pyrolysis reaction was 228 J/g of tributyl phosphate initially present (or 14.5 kcal/mole of tributyl phosphate). Release of flammable butene gas into process areas where it could ignite appears to be the most serious safety consideration for the Plutonium Finishing Plant.

  9. Response mode, compatibility, and dual-processes in the evaluation of simple gambles: An eye-tracking investigation

    Directory of Open Access Journals (Sweden)

    Paul Slovic

    2012-07-01

    Full Text Available We employed simple gambles to investigate information processing in relation to the compatibility effect. Subjects should be more likely to engage in a deliberative thinking strategy when completing a pricing task rather than a rating task. We used eye-tracking methodology to measure information acquisition and processing in order to test the above hypothesis as well as to show that losses and alternatives with uncertain outcomes are more likely than gains and alternatives with sure outcomes to be processed through a deliberative thinking process. Results showed that pupil dilations, fixation duration and number of fixations increased when subjects evaluated the gambles with a pricing task. Additionally, the number of fixations increased as the gamble outcome became increasingly negative and when the outcome was uncertain (vs. sure. Fixations were also predictive of subjects' final evaluations of the gambles. We discuss our results in light of the cognitive processes underlying different response modes in economic preferences.

  10. Absorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Dual Correlated Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad Saber Fallah Nezhad

    2012-03-01

    Full Text Available For a manufacturing organization to compete effectively in the global marketplace, cutting costs and improving overall efficiency is essential.  A single-stage production system with two independent quality characteristics and different costs associated with each quality characteristic that falls below a lower specification limit (scrap or above an upper specification limit (rework is presented in this paper. The amount of reworks and scraps are assumed to be depending on the process parameters such as process mean and standard deviation thus the expected total profit is significantly dependent on the process parameters. This paper develops a Markovian decision making model for determining the process means. Sensitivity analyzes is performed to validate, and a numerical example is given to illustrate the proposed model. The results showed that the optimal process means extremely effects on the quality characteristics’ parameters.

  11. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    Science.gov (United States)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  12. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  13. The Dual Language Program Planner: A Guide for Designing and Implementing Dual Language Programs.

    Science.gov (United States)

    Howard, Elizabeth R.; Olague, Natalie; Rogers, David

    This guide offers a framework to facilitate the planning process for dual language programs, assuming at least a basic working knowledge of the central characteristics and essential features of dual language models. It provides an overview of the various models that serve linguistically diverse student populations, defining the term dual language…

  14. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors.

    Science.gov (United States)

    Han, Seung-Yeol; Herman, Gregory S; Chang, Chih-hung

    2011-04-13

    Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.

  15. Surface Modification of Commercially Pure Titanium by Plasma Nitrocarburizing at Different Temperatures and Duration Process

    Directory of Open Access Journals (Sweden)

    Agung Setyo Darmawan

    2013-02-01

    Full Text Available One of potential metals to be used in biomechanical applications is the commercially pure (cp titanium. This material requires a process to improve the mechanical properties of the surface, because it is relatively soft. The purpose of this study is to determine the effect of plasma nitro carburizing process to cp titanium surface hardness. In this study, cp titanium plasma nitro carburizing process is conducted at different temperatures, i.e., at 350°C for 3, 4, and 5 h, and at 450°C for 2, 3, and 4 h, respectively. Hardness tests are then performed on each specimen. The depth of penetration in the hardness test is also recorded; the microstructure captures are also taken using an optical microscope. The results show that the longer processing time, the higher the hardness value. In higher temperature, the hardness values correspond to the increasing temperature. In terms of the depth direction, there is a reduction in hardness value compared to the raw material.

  16. A CMOS high resolution, process/temperature variation tolerant RSSI for WIA-PA transceiver

    Science.gov (United States)

    Tao, Yang; Yu, Jiang; Jie, Li; Jiangfei, Guo; Hua, Chen; Jingyu, Han; Guiliang, Guo; Yuepeng, Yan

    2015-08-01

    This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The active area of the RSSI is 0.24 mm2. Measurement results show that the proposed RSSI has a dynamic range more than 70 dB and the linearity error is within ±0.5 dB for an input power from -70 to 0 dBm (dBm to 50 Ω), the corresponding output voltage is from 0.81 to 1.657 V and the RSSI slope is 12.1 mV/dB while consuming all of 2 mA from a 1.8 V power supply. Furthermore, by the help of the integrated compensation circuit, the proposed RSSI shows the temperature error within ±1.5 dB from -40 to 85 °C, and process variation error within ±0.25 dB, which exhibits good temperature-independence and excellent robustness against process variation characteristics. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  17. Post-processing GCM daily rainfall and temperature forecasts for applications in water management and agriculture

    Science.gov (United States)

    Schepen, Andrew; Wang, Qj; Everingham, Yvette; Zhao, Tongtiegang

    2017-04-01

    Ensemble time series forecasts of rainfall and temperature up to six months ahead are sought for applications in water management and agricultural production. Raw GCM forecasts are generally not suitable for direct use in hydrological models or agricultural production simulators and must be post-processed first, to ensure they are reliable, as skilful as possible, and have realistic temporal patterns. In this study, we test two post-processing approaches to produce daily forecasts for cropping regions and water supply catchments in Australia. In the first approach, we apply the calibration, bridging and merging (CBaM) method to produce statistically reliable monthly forecasts based on GCM outputs of rainfall, temperature and sea surface temperatures. We then disaggregate the monthly forecasts to obtain realistic daily time series forecasts that can be used as inputs to crop and hydrological models. In the second approach, we develop a method for directly post-processing daily GCM forecasts using a Bayesian joint probability (BJP) model. We demonstrate and evaluate the two approaches through a case study for the Tully sugar region in north-eastern Australia. The daily post-processed forecasts will benefit applications in streamflow forecasting and crop yield forecasting.

  18. Defects interaction processes in deformed high purity polycrystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A., E-mail: olambri@fceia.unr.edu.ar [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); Bonifacich, F.G. [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); Bozzano, P.B. [Laboratorio de Microscopía Electrónica, Unidad de Actividad Materiales, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica e Instituto Sábato – Universidad Nacional de San Martín, Avda. Gral. Paz 1499, (1650) San Martín (Argentina); Zelada, G.I. [Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario – CONICET, Avda. Pellegrini 250, (2000) Rosario (Argentina); and others

    2014-10-15

    Mechanical spectroscopy (damping and elastic modulus as a function of temperature) and transmission electron microscopy studies have been performed in high purity polycrystalline molybdenum plastically deformed to different values of tensile and torsion strain. Mechanical spectroscopy measurements were performed from room temperature up to 1285 K. A relaxation peak in polycrystalline molybdenum related to the movement of dislocations into lower energy configurations near grain boundaries has been discovered to appear around 1170 K. The activation energy of the peak is 4.2 eV ± 0.5 eV. This relaxation phenomenon involves the interaction between vacancies and mobile dislocations near the grain boundaries. It should be highlighted that this relaxation process is controlled by the arrangement of vacancies and dislocations which occur at temperature below 1070 K.

  19. Temperature of hydrogen radio frequency plasma under dechlorination process of polychlorinated biphenyls

    Science.gov (United States)

    Inada, Y.; Abe, K.; Kumada, A.; Hidaka, K.; Amano, K.; Itoh, K.; Oono, T.

    2014-10-01

    It has been reported that RF (radio frequency) hydrogen plasmas promote the dechlorination process of PCBs (polychlorinated biphenyls) under irradiation of MW (microwave). A relative emission intensity spectroscope system was used for single-shot imaging of two-dimensional temperature distributions of RF hydrogen plasmas generated in chemical solutions with several mixing ratios of isopropyl alcohol (IPA) and insulation oil under MW irradiation. Our experimental results showed that the plasma generation frequencies for the oil-contaminating solutions were higher than that for the pure IPA solution. In addition, the plasma temperature in the compound liquids including both oil and IPA was higher than that in the pure IPA and oil solutions. A combination of the plasma temperature measurements and plasma composition analysis indicated that the hydrogen radicals generated in a chemical solution containing the equal volumes of IPA and oil were almost the same amounts of H and H+, while those produced in the other solutions were mainly H.

  20. 基于FPAA与序贯双卡尔曼滤波信息融合的PCR温控%Multipoint temperature information fusion using sequential dual Kalman filter for temperature control system of portable RT-PCR instrument

    Institute of Scientific and Technical Information of China (English)

    陈旭海; 杜民

    2012-01-01

    Traditional PCR instrument detects the temperature of reagent with contact measurement, which has several limitations such as thermal hysteresis, reagent contamination and point-measurement. Thus an infra red thermometer is applied to contactlessly measure the temperature of reagent. But infra red thermometer has the defect of relatively high measurement noise. Therefore, we propose a sequential dual Kalman filter (Seq-DKF) algorithm that uses an iterated extended Kalman fdter (IEKF) and a linear Kalman filter (KF) to remove the measurement noise from infra red thermometer signals in real-time. In this algorithm, IEKF and KF are executed sequentially. The former filter rapidly identifies the parameter of heat exchange model with a small number of observations. The latter one filters the temperature signal based on the identified model. After specifying the heat exchange model and the Seq-DKF , we apply the algorithm to the PCR instrument for testing. Finally, the other three filters are employed for comparison to demonstrate the effectiveness of the Seq-DKF algorithm.%传统PCR(polymerase chain reaction)仪对样品反应池壁温度进行接触式测量与温控,存在测量迟滞大、无法直接控制试剂温度的缺点.研制的电化学实时定量PCR温控系统采用红外温度传感器、热源温度传感器以及环境温度传感器分别测量试剂表面热辐射、热源与反应池壁温度与环境温度,并提出序贯双卡尔曼滤波估计算法对三点温度数据进行信息融合从而估计出试剂表面温度真实值.该算法中迭代卡尔曼滤波器(iterated extended Kalman filter,IEKF)与线性卡尔曼滤波器(Kalman filter,KF)顺序运行,结合了IEKF非线性估计收敛快与KF实时性高的优点,克服了红外测温噪声大,易受环境、被测物热辐射率等因素影响的缺点.试剂温度的估计值作为反馈输入到基于FPAA(field programmable analog array)的可动态配置PID控制器中构成闭环