WorldWideScience

Sample records for dual grating direct

  1. Optical design and performance of a dual-grating, direct-reading spectrograph for spectrochemical analyses

    International Nuclear Information System (INIS)

    Steinhaus, D.W.; Kline, J.V.; Bieniewski, T.M.; Dow, G.S.; Apel, C.T.

    1979-01-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph

  2. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    Science.gov (United States)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  3. Top down viewing of the inductively coupled plasma using a dual grating, direct reading spectrograph and an all mirror optical system

    International Nuclear Information System (INIS)

    Apel, C.T.; Duchane, D.V.; Palmer, B.A.

    1980-01-01

    Using an all-mirror optical system, an inductively coupled plasma is viewed top down and the light is directed to a dual grating, direct reading spectrograph. Top down viewing of the plasma, with masking of the image of the argon plasma torus at the spectrograph entrance slit, significantly reduces background signal from the source and permits the use of the depth of field of the optical system to achieve compromise conditions for viewing the plasma. Light from the plasma source is introduced to the optical system by means of a mirror situated directly over the plasma. The system is exhausted in such a way that cool air flowing past the mirror forms a thermal barrier between the mirror and the plasma. Elements such as copper and lead have atomic and ionic lines which tend to exhibit self absorption when viewed top down through the cooler ground state atoms in the plume of the plasma. One of the approaches to this problem is to shear off the plume of the plasma with a jet of air directed across the tip of the plasma. A second approach is to make use of the dual grating, direct reading spectrograph and real-time computer system which easily permits the setting of alternate lines for each element so that self absorption and matrix effects are minimized. The design of the dual-grating, direct-reading spectrograph allows for the mounting of more than 200 13-mm-dia photomultiplier tubes along the focal curves. In an effort to demonstrate the use of fiber optics as a viable technique for the closer placement of exit slits, a red sensitive photomultiplier tube was coupled with a 30-cm fiber-optic ribbon to detect light from the Li 670.784 nm line on the focal curve. It was successful and had the added advantages of absorbing second-order ultraviolet light

  4. Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings

    Science.gov (United States)

    Gao, H.; Zheng, Z. Y.; Hao, H. Y.; Dong, A. G.; Fan, Z. J.; Liu, D. H.

    2014-03-01

    The mechanism of optical unidirectional (OUD) transmission in parallel subwavelength dual-metal gratings was investigated. It was found that this kind of OUD phenomenon originates from the coupling of the surface plasmon polaritons (SPPs) between the front grating and a layer of metal film which replaces the rear grating. The higher the intensity of the coupled SPPs at the entrances of the rear grating, the higher the transmittance can be achieved. Basing on this property, an effective OUD example was achieved by exploring the intensity difference at the entrances of the rear gratings between the two incidences of opposite directions. In this kind of OUD, the positive transmittance can exceed 80 % and the difference between the transmittances of the two opposite directions can be as large as 63 %. The detailed design process was also presented.

  5. Dual-function beam splitter of a subwavelength fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  6. Grating-assisted surface acoustic wave directional couplers

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1991-07-01

    Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.

  7. Measurement of a discontinuous object based on a dual-frequency grating

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; Cai Xin-Hua; Yao Chun-Mei

    2009-01-01

    The dual-frequency grating measurement theory is proposed in order to carry out the measurement of a discontinuous object. Firstly, the reason why frequency spectra are produced by low frequency gratings and high frequency gratings in the field of frequency is analysed, and the relationship between the wrapped-phase and the unwrappingphase is discussed. Secondly, a method to combine the advantages of the two kinds of gratings is proposed: one stripe is produced in the mutation part of the object measured by a suitable low frequency grating designed by MATLAB, then the phase produced by the low frequency grating need not be unfolded. The integer series of stripes is produced by a high frequency grating designed by MATLAB based on the frequency ratio of the two kinds of gratings and the high frequency wrapped-phase, and the high frequency unwrapping-phase is then obtained. In order to verify the correctness of the theoretical analysis, a steep discontinuous object of 600×600 pixels and 10.00 mm in height is simulated and a discontinuous object of ladder shape which is 32.00 mm in height is used in experiment. Both the simulation and the experiment can restore the discontinuous object height accurately by using the dual-frequency grating measurement theory.

  8. Color multiplexing using directional holographic gratings and linear polarization

    International Nuclear Information System (INIS)

    Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F

    2011-01-01

    We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.

  9. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  10. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  11. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  12. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  13. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  14. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  15. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  16. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Science.gov (United States)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  17. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.

    Science.gov (United States)

    Wen, Fung Jacky; Chung, Po Sheun

    2011-07-01

    In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.

  18. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan

    2015-09-15

    We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3  dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

  19. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  20. Figure ground segregation modulates perceived direction of ambiguous moving gratings and plaids.

    Science.gov (United States)

    Tommasi, L; Vallortigara, G

    1999-02-01

    A translating oriented grating viewed through a circular aperture with an occluding area in the middle appeared to move alternately in an oblique or in a vertical direction depending on the foreground/background assignment on the central occluding area. The effect occurred even when the central area was simply removed from the display, thus giving rise to a 'subjective' occluder. Parametric studies revealed that the probability of seeing oblique or vertical motion was affected by the size of the central area but not by its contrast relationships with the grating. Similar phenomena of ambiguous motion direction were observed using changes in colour along a translating grating that produced neon colour spreading effects, or using oriented edge discontinuities that collapsed into subjective plaids composed of two one-dimensional gratings. These results are discussed with respect to the hypothesis that surface segmentation mechanisms play a crucial part in the interpretation of motion signals.

  1. Direct Writing of Fiber Bragg Grating in Microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, G. E.

    2012-01-01

    We report point-by-point laser direct writing of a 1520-nm fiber Bragg grating in a microstructured polymer optical fiber (mPOF). The mPOF is specially designed such that the microstructure does not obstruct the writing beam when properly aligned. A fourth-order grating is inscribed in the m......POF with only a 2.5-s writing time....

  2. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  3. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    Science.gov (United States)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  4. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  5. Development of a micromechanical pitch-tunable grating with reflective/transmissive dual working modes

    International Nuclear Information System (INIS)

    Yu, Yi-Ting; Yuan, Wei-Zheng; Li, Tai-Ping; Yan, Bin

    2010-01-01

    In this paper, a micromechanical pitch-tunable grating with the capability of working in both reflective and transmissive modes is developed by using the silicon-on-glass (SOG) process. At a voltage of 65 V, the grating period is measured to increase by 4.62%. A simple optical experiment is performed to demonstrate how the proposed grating works in both modes. Then, experiments to measure the change of the diffraction angle versus driving voltage in both reflective and transmissive modes are designed and carried out utilizing an area-arrayed charge-coupled device (CCD), and the results are in good agreement with the theoretical calculation. Discussions on the structural configuration and diffraction efficiency of the proposed grating are presented. The grating presented provides better flexibility in the design and development of application systems.

  6. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  7. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  8. Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing

    Science.gov (United States)

    Lu, Si; Yan, Yingbai; Jin, Guofan; Wong, W. H.; Pun, E. Y. B.

    2004-06-01

    A four-channel 400-GHz spacing flat focal field arrayed waveguide grating (AWG) demultiplexer is designed based on polymeric optical waveguide. The waveguide core-layer material is a newly developed negative tone epoxy Novolak resin (ENR) polymer with ultravoilet (UV) cured resin Norland optical adhesive 61 (NOA61) as the cladding layer. The device is fabricated using electron-beam direct writing, which has less processing steps than the reported polymeric AWGs. The experimental result is presented.

  9. Use of first-order diffraction wavelengths corresponding to dual-grating periodicities in a single fibre Bragg grating for simultaneous temperature and strain measurement

    International Nuclear Information System (INIS)

    Yam, Sui P; Brodzeli, Zourab; Rollinson, Claire M; Baxter, Greg W; Collins, Stephen F; Wade, Scott A

    2009-01-01

    A fibre Bragg grating (FBG) sensor, fabricated using a phase mask with 536 nm uniform pitch, for simultaneous temperature and strain measurement is presented. Two peaks/dips occur, at 785 and 1552 nm, due to reflection/transmission at the Bragg wavelength and at twice the Bragg wavelength, and arising primarily from FBG periodicities associated with half the phase mask periodicity and the phase mask periodicity, respectively. This grating was simple to fabricate and by having greater reflectivity at 785 nm, compared with 1552 nm, it is better suited for long-distance operation compared with similar schemes where the greater fibre attenuation at 785 nm is a significant limitation

  10. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent

    2017-09-01

    Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20  dB). A measured coupling efficiency of -2.7  dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

  11. Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements

    Science.gov (United States)

    Zhang, Lisong; Qiao, Xueguang; Liu, Qinpeng; Shao, Min; Jiang, Youhua; Huang, Dong

    2018-03-01

    A directional bending sensor based on thin-core fiber Bragg grating is proposed and demonstrated experimentally. It is inscribed by off-center technique and exposed by 193 nm ArF excimer laser through a phase mask. A series of cladding modes are excited and their intensities are enhanced to about 10 dB. The formation mechanism of those cladding modes is discussed and analyzed. The intensities of these cladding mode resonances is detected for bending and direction with maximum sensitivity 1.93 dB/m1 at 0° to - 1 . 95 dB/m1 at 180°under the curvature varied from 0 m-1to 2.5 m-1. The sensitivity of surrounding temperature is 11.3pm/°C ranging from 25 °C to 60 °C. This all-fiber structure has a great advantage for fiber orientation identification sensor with more convenient manufacture and needless de-localize FBGs.

  12. Direct social perception and dual process theories of mindreading.

    Science.gov (United States)

    Herschbach, Mitchell

    2015-11-01

    The direct social perception (DSP) thesis claims that we can directly perceive some mental states of other people. The direct perception of mental states has been formulated phenomenologically and psychologically, and typically restricted to the mental state types of intentions and emotions. I will compare DSP to another account of mindreading: dual process accounts that posit a fast, automatic "Type 1" form of mindreading and a slow, effortful "Type 2" form. I will here analyze whether dual process accounts' Type 1 mindreading serves as a rival to DSP or whether some Type 1 mindreading can be perceptual. I will focus on Apperly and Butterfill's dual process account of mindreading epistemic states such as perception, knowledge, and belief. This account posits a minimal form of Type 1 mindreading of belief-like states called registrations. I will argue that general dual process theories fit well with a modular view of perception that is considered a kind of Type 1 process. I will show that this modular view of perception challenges and has significant advantages over DSP's phenomenological and psychological theses. Finally, I will argue that if such a modular view of perception is accepted, there is significant reason for thinking Type 1 mindreading of belief-like states is perceptual in nature. This would mean extending the scope of DSP to at least one type of epistemic state. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Pd grating obtained by direct micromolding for use in high resolution ...

    Indian Academy of Sciences (India)

    contact printing (Kane et al 1999), have been most commonly used to fabricate low cost diffraction gratings. Multiple beam interference (Konkola et al 2003) and electron beam lithography (Bhuvana and Kulkarni 2008) though have capability of ...

  14. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    Science.gov (United States)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  15. Directional dual-tree rational-dilation complex wavelet transform.

    Science.gov (United States)

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2014-01-01

    Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.

  16. A directly cooled grating substrate for ALS [Advanced Light Source] undulator beam lines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    Design analyses using finite element methods are presented for thermal distortion of water-cooled diffraction grating substrates for a potential application at the LBL Advanced Light Source, demonstrating that refinements in cooling channel configuration and heat flux distribution can significantly reduce optical surface distortion with high heat loads. Using an existing grating substrate design, sensitivity of tangential slope errors due to thermal distortion is evaluated for a variety of thermal boundary conditions, including coolant flow rate and heat transfer film coefficients, surface illumination area and heat distribution profile, and location of the convection cooling surfaces adjacent to the heated region. 1 ref., 5 figs., 2 tabs

  17. The effect of dual-hemisphere transcranial direct current stimulation over the parietal operculum on tactile orientation discrimination

    DEFF Research Database (Denmark)

    Fujimoto, Shuhei; Tanaka, Satoshi; Laakso, Ilkka

    2017-01-01

    The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over...... bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual......-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s...

  18. Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

    International Nuclear Information System (INIS)

    Vishnubhatla, K C; Kumar, R Sai Santosh; Rao, D Narayana; Rao, S Venugopal; Osellame, R; Ramponi, R; Bhaktha, S N B; Mattarelli, M; Montagna, M; Turrell, S; Chiappini, A; Chiasera, A; Ferrari, M; Righini, G C

    2009-01-01

    The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ∼10 -3 . The high quantum efficiency (∼80%) and a best PL of ∼0.9 dB cm -1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

  19. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre

    International Nuclear Information System (INIS)

    Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian

    2008-01-01

    A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output

  20. 37 GHz Direct-Modulation Bandwidth of Multi-Section InGaAsP/InP DBR-Laser with weakly coupled active grating section

    DEFF Research Database (Denmark)

    Kaiser, W.; Bach, L.; Reithmaier, J. P.

    2003-01-01

    37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....

  1. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement.

    Science.gov (United States)

    Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai

    2018-04-11

    A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  2. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement

    Directory of Open Access Journals (Sweden)

    Yang Ouyang

    2018-04-01

    Full Text Available A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG fabricated by electric arc discharge (EAD is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m−1 and −51.5 pm/m−1, respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  3. Direct Evidence for a Dual Process Model of Deductive Inference

    Science.gov (United States)

    Markovits, Henry; Brunet, Marie-Laurence; Thompson, Valerie; Brisson, Janie

    2013-01-01

    In 2 experiments, we tested a strong version of a dual process theory of conditional inference (cf. Verschueren et al., 2005a, 2005b) that assumes that most reasoners have 2 strategies available, the choice of which is determined by situational variables, cognitive capacity, and metacognitive control. The statistical strategy evaluates inferences…

  4. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  5. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    Science.gov (United States)

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-06

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of 80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

  6. Long term carrier envelope phase stabilization of a grating based high power femtosecond laser using the direct locking method

    International Nuclear Information System (INIS)

    Lee, Jae Hwan; Lee, Youg Soo; Park, Juyun; Nam, Chang Hee; Yu, Tae Jun

    2008-01-01

    The carrier envelope phase (CEP)stabilization of femtosecond laser pulses has been intensively investigated for ultrafast science as well as for frequency metrology. In the case of few cycle pulses stabilization and control of the CEP is an important issue, since the electric field profile changes with CEP variation. We have developed the direct locking method to stabilize the CEP for the investigation of attosecond physics. The direct locking method uses the beating signal itself, measured using an f to 2f interferometer, as an error signal to a feedback loop. The direct locking method quenches the beating signal so that the CEP variation between successive pulses become zero and every pulses from the oscillator ts identical. Due to the direct use of the beating signal, the signal processing is simple and complex equipment, used in the case of the phase locked loop (PLL)method operating in the frequency domain, are not required. For long term stability, we have proposed and implemented a double feedback technique, and achieved CEP stabilization of the oscillator for 24 hours, as shown in Fig. 1. This long term CEP stabilization was achieved without realignment of any optical components. The CEP stabilization for a whole day is a clear demonstration of the robustness of the direct locking method. The amplification of CEP stabilized laser pulses induces additional CEP variation. Even though the CEP of an oscillator is stabilized, the CEP drift is generated again during amplification due to external perturbations, such as pumping power fluctuation and beam pointing fluctuation. To measure the CEP drift of the amplified pulses, a spectral interferometer (SI)was employed. The CEP drift obtained from SI was used as the error signal of another feedback loop installed in the amplifier chain. To compensate for the large CEP drift induced during amplification, the grating separation of the pulse compressor was adjusted. Figure 2 shows the result of CEP stabilization of

  7. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  8. Thermal and Structural Analysis of FIMS Grating

    Directory of Open Access Journals (Sweden)

    K.-I. Seon

    2001-06-01

    Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.

  9. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  10. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  11. Theoretical and Experimental Analysis of Long-Period Fiber Gratings Made Directly Into Er-Doped Active Fibers

    Czech Academy of Sciences Publication Activity Database

    Krčmařík, David; Slavík, Radan; Kulishov, M.; Karásek, Miroslav

    2009-01-01

    Roč. 27, č. 13 (2009), s. 2335-2342 ISSN 0733-8724 R&D Projects: GA ČR(CZ) GA102/07/0999; GA AV ČR KJB200670601 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical communications * optical fibre * fibre gratings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.185, year: 2009

  12. Design of the Dual Offset Active Caster Wheel for Holonomic Omni-Directional Mobile Robots

    Directory of Open Access Journals (Sweden)

    Woojin Chung

    2010-12-01

    Full Text Available It is shown how a holonomic and omni-directional mobile robot is designed towards indoor public services. Dual offset steerable wheels with orthogonal velocity components are proposed. The proposed wheel provides precise positioning and reliable navigation performance as well as durability. A fabricated prototype is introduced, then, an experiment is carried out.

  13. Intra-cavity decomposition of a dual-directional laser beam

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-01-01

    Full Text Available A method of decomposing a dual-directional laser beam into a forward propagating field and a backward propagating field for an apertured plano-concave cavity is presented. An intra-cavity aperture is a simple method of laser beam shaping as higher...

  14. Effects of Dual Transcranial Direct Current Stimulation for Aphasia in Chronic Stroke Patients

    OpenAIRE

    Lee, Seung Yeol; Cheon, Hee-Jung; Yoon, Kyoung Jae; Chang, Won Hyuk; Kim, Yun-Hee

    2013-01-01

    Objective To investigate any additional effect of dual transcranial direct current stimulation (tDCS) compared with single tDCS in chronic stroke patients with aphasia. Methods Eleven chronic stroke patients (aged 52.6?13.4 years, nine men) with aphasia were enrolled. Single anodal tDCS was applied over the left inferior frontal gyrus (IFG) and a cathodal electrode was placed over the left buccinator muscle. Dual tDCS was applied as follows: 1) anodal tDCS over the left IFG and cathodal tDCS ...

  15. Bragg gratings: Optical microchip sensors

    Science.gov (United States)

    Watts, Sam

    2010-07-01

    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  16. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    Science.gov (United States)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles.

  17. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  18. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  19. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  20. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  1. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  2. A decision-directed network for dual-polarization crosstalk cancellation

    Science.gov (United States)

    Weber, W. J., III

    1979-01-01

    Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.

  3. Towards Small-Sized Long Tail Business with the Dual-Directed Recommendation System

    Science.gov (United States)

    Takahashi, Masakazu; Yamada, Takashi; Tsuda, Kazuhiko; Terano, Takao

    This paper describes a novel architecture to promote retail businesses using information recommendation systems. The main features of the architecture are 1) Dual-directed Recommendation system, 2) Portal site for three kinds of users: Producers, Retailers, and Consumers, which are considered to be Prosumers, and 3) Agent-based implementation. We have developed a web-based system DAIKOC (Dynamic Advisor for Information and Knowledge Oriented Communities) with the above architecture. In this paper, we focus on the recommendation functions to extract the items that will achieve the large sales in the future from the ID (IDentification)-POS (Point-Of-Sales) data.

  4. Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography

    International Nuclear Information System (INIS)

    Gruber, Michael; Uffmann, Martin; Weber, Michael; Balassy, Csilla; Schaefer-Prokop, Cornelia; Prokop, Mathias

    2006-01-01

    The image quality of dual-reading computed radiography and dose-reduced direct radiography of the chest was compared in a clinical setting. The study group consisted of 50 patients that underwent three posteroanterior chest radiographs within minutes, one image obtained with a dual read-out computed radiography system (CR; Fuji 5501) at regular dose and two images with a flat panel direct detector unit (DR; Diagnost, Philips). The DR images were obtained with the same and with 50% of the dose used for the CR images. Images were evaluated in a blinded side-by-side comparison. Eight radiologists ranked the visually perceivable difference in image quality using a three-point scale. Then, three radiologists scored the visibility of anatomic landmarks in low and high attenuation areas and image noise. Statistical analysis was based on Friedman tests and Wilcoxon rank sum tests at a significance level of P<0.05. DR was judged superior to CR for the delineation of structures in high attenuation areas of the mediastinum even when obtained with 50% less dose (P<0.001). The visibility of most pulmonary structures was judged equivalent with both techniques, regardless of acquisition dose and speed level. Scores for image noise were lower for DR compared with CR, with the exception of DR obtained at a reduced dose. Thus, in this clinical preference study, DR was equivalent or even superior to the most modern dual read-out CR, even when obtained with 50% dose. A further dose reduction does not appear to be feasible for DR without significant loss of image quality. (orig.)

  5. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    Science.gov (United States)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  6. Nonlinear Least Square Based on Control Direction by Dual Method and Its Application

    Directory of Open Access Journals (Sweden)

    Zhengqing Fu

    2016-01-01

    Full Text Available A direction controlled nonlinear least square (NLS estimation algorithm using the primal-dual method is proposed. The least square model is transformed into the primal-dual model; then direction of iteration can be controlled by duality. The iterative algorithm is designed. The Hilbert morbid matrix is processed by the new model and the least square estimate and ridge estimate. The main research method is to combine qualitative analysis and quantitative analysis. The deviation between estimated values and the true value and the estimated residuals fluctuation of different methods are used for qualitative analysis. The root mean square error (RMSE is used for quantitative analysis. The results of experiment show that the model has the smallest residual error and the minimum root mean square error. The new estimate model has effectiveness and high precision. The genuine data of Jining area in unwrapping experiments are used and the comparison with other classical unwrapping algorithms is made, so better results in precision aspects can be achieved through the proposed algorithm.

  7. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  8. Directional synthetic aperture flow imaging using a dual stage beamformer approach

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2011-01-01

    . The new method has been studied using the Field II simulations and experimental flow rig measurements. A linear array transducer with 7 MHz center frequency is used, and 64 elements are active to transmit and receive signals. The data is processed in two stages. The first stage has a fixed focus point......A new method for directional synthetic aperture flow imaging using a dual stage beamformer approach is presented. The velocity estimation is angle independent and the amount of calculations is reduced compared to full synthetic aperture, but still maintains all the advantages at the same time....... In the second stage, focal points are considered as virtual sources and data is beamformed along the flow direction. Then the velocities are estimated by finding the spatial shift between two signals. In the experimental measurements the angle between the transmit beam and flow vessel was 70 and a laminar flow...

  9. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.

    2016-01-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing...

  10. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  11. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.

    Science.gov (United States)

    Massaro, M; Amorati, R; Cavallaro, G; Guernelli, S; Lazzara, G; Milioto, S; Noto, R; Poma, P; Riela, S

    2016-04-01

    Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Experimental data confirmed the presence of curcumin on HNT external surface. Moreover, we investigated the kinetics of curcumin release by UV-vis spectroscopy, which highlighted that HNT-Cur prodrug possesses dual stimuli-responsive ability upon exposure to GSH-rich or acidic environment. In vitro antiproliferative and antioxidant properties of HNT-Cur prodrug were studied with the aim to explore their potential applications in pharmaceutics. This work puts forward an efficient strategy to prepare halloysite based nanocarriers with controlled drug delivery capacity through direct chemical grafting with stimuli-responsive linkage. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  13. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  14. Microstructure and mechanical property of dual-directional-extruded Mg alloy AZ31

    International Nuclear Information System (INIS)

    Lu Liwei; Liu Tianmo; Jiang Shan; Pan Fushen; Liu Qing; Wang Zhongchang

    2010-01-01

    We report microstructure evolution and mechanical property of Mg alloy AZ31 processed by a new deformation technique, dual-directional extrusion (DDE). Using optical microscopy, scanning electron microscopy, and electron back scatter diffraction technique, we attribute the significant refinement of original coarse grains in the DDE-processed alloy to the occurrence of dynamic recrystallization. Moreover, we find that low temperature is crucial for yielding fine grain, which consequently results in high micro-hardness and yield stress, large fracture strain, and enhanced elongation. The improved mechanical properties are comparable or even superior to those of the alloy subjected to other deformation techniques, rendering the DDE a promising way for further tailoring properties of Mg-based alloys.

  15. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  16. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Science.gov (United States)

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

  17. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  18. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  19. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  20. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design

    DEFF Research Database (Denmark)

    Bach, L.; Kaiser, W.; Reithmaier, J.P.

    2003-01-01

    Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.......Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device....

  2. Speed and the coherence of superimposed chromatic gratings.

    Science.gov (United States)

    Bosten, J M; Smith, L; Mollon, J D

    2016-05-01

    On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Transcranial Direct Current Stimulation to Enhance Dual-Task Gait Training in Parkinson's Disease: A Pilot RCT.

    Science.gov (United States)

    Schabrun, Siobhan M; Lamont, Robyn M; Brauer, Sandra G

    2016-01-01

    To investigate the feasibility and safety of a combined anodal transcranial direct current stimulation (tDCS) and dual task gait training intervention in people with Parkinson's Disease (PD) and to provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot, randomized, double-blind, sham-controlled parallel group trial with 12 week follow-up. A university physiotherapy department. Sixteen participants diagnosed with PD received nine dual task gait training sessions over 3 weeks. Participants were randomized to receive either active or sham tDCS applied for the first 20 minutes of each session. The primary outcome was gait speed while undertaking concurrent cognitive tasks (word lists, counting, conversation). Secondary measures included step length, cadence, Timed Up and Go, bradykinesia and motor speed. Gait speed, step length and cadence improved in both groups, under all dual task conditions. This effect was maintained at follow-up. There was no difference between the active and sham tDCS groups. Time taken to perform the TUGwords also improved, with no difference between groups. The active tDCS group did however increase their correct cognitive response rate during the TUGwords and TUGcount. Bradykinesia improved after training in both groups. Three weeks of dual task gait training resulted in improved gait under dual task conditions, and bradykinesia, immediately following training and at 12 weeks follow-up. The only parameter enhanced by tDCS was the number of correct responses while performing the dual task TUG. tDCS applied to M1 may not be an effective adjunct to dual task gait training in PD. Australia-New Zealand Clinical Trials Registry ACTRN12613001093774.

  4. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  5. Dual-focus Magnification, High-Definition Endoscopy Improves Pathology Detection in Direct-to-Test Diagnostic Upper Gastrointestinal Endoscopy.

    Science.gov (United States)

    Bond, Ashley; Burkitt, Michael D; Cox, Trevor; Smart, Howard L; Probert, Chris; Haslam, Neil; Sarkar, Sanchoy

    2017-03-01

    In the UK, the majority of diagnostic upper gastrointestinal (UGI) endoscopies are a result of direct-to-test referral from the primary care physician. The diagnostic yield of these tests is relatively low, and the burden high on endoscopy services. Dual-focus magnification, high-definition endoscopy is expected to improve detection and classification of UGI mucosal lesions and also help minimize biopsies by allowing better targeting. This is a retrospective study of patients attending for direct-to-test UGI endoscopy from January 2015 to June 2015. The primary outcome of interest was the identification of significant pathology. Detection of significant pathology was modelled using logistic regression. 500 procedures were included. The mean age of patients was 61.5 (±15.6) years; 60.8% of patients were female. Ninety-four gastroscopies were performed using dual-focus magnification high-definition endoscopy. Increasing age, male gender, type of endoscope, and type of operator were all identified as significant factors influencing the odds of detecting significant mucosal pathology. Use of dual-focus magnification, high-definition endoscopy was associated with an odds ratio of 1.87 (95%CI 1.11-3.12) favouring the detection of significant pathology. Subsequent analysis suggested that the increased detection of pathology during dual-focus magnification, high-definition endoscopy also influenced patient follow-up and led to a 3.0 fold (p=0.04) increase in the proportion of patients entered into an UGI endoscopic surveillance program. Dual-focus magnification, high-definition endoscopy improved the diagnostic yield for significant mucosal pathology in patients referred for direct-to-test endoscopy. If this finding is recapitulated elsewhere it will have substantial impact on the provision of UGI endoscopic services.

  6. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  7. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  8. Talbot Carpet Simulation for X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngju; Oh, Ohsung; Jeong, Hanseong; Kim, Jeongho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jongyul; Moon, Myungkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, Talbot carpet simulator has been developed to visualize the X-ray grating interference patterns in grating interferometer. We have simulated X-ray interference for a variety of simulations and demonstrated a few examples in this summary. Grating interferometer produces interference of X-ray called Talbot pattern with gratings manufactured in micro scale. Talbot pattern is self-images of phase grating which develops interference as beam splitter that is one of gratings consisted of interferometer. As the other gratings, there are source grating makes coherence and analyze grating is used to analyze interference onto detector. Talbot carpet has been studied as the beam behavior which is distinguished with common X-ray imaging systems. It is helpful to understand grating interferometer and possible to expect beams' oscillation for designing theoretically. We confirm pattern has periodicity produced by interference after pi and pi/2 phase grating and changes in the perpendicular direction to entrance face according to phase objects.

  9. An elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to

  10. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  11. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  12. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  13. Testing the dual-route model of perceived gaze direction: Linear combination of eye and head cues.

    Science.gov (United States)

    Otsuka, Yumiko; Mareschal, Isabelle; Clifford, Colin W G

    2016-06-01

    We have recently proposed a dual-route model of the effect of head orientation on perceived gaze direction (Otsuka, Mareschal, Calder, & Clifford, 2014; Otsuka, Mareschal, & Clifford, 2015), which computes perceived gaze direction as a linear combination of eye orientation and head orientation. By parametrically manipulating eye orientation and head orientation, we tested the adequacy of a linear model to account for the effect of horizontal head orientation on perceived direction of gaze. Here, participants adjusted an on-screen pointer toward the perceived gaze direction in two image conditions: Normal condition and Wollaston condition. Images in the Normal condition included a change in the visible part of the eye along with the change in head orientation, while images in the Wollaston condition were manipulated to have identical eye regions across head orientations. Multiple regression analysis with explanatory variables of eye orientation and head orientation revealed that linear models account for most of the variance both in the Normal condition and in the Wollaston condition. Further, we found no evidence that the model with a nonlinear term explains significantly more variance. Thus, the current study supports the dual-route model that computes the perceived gaze direction as a linear combination of eye orientation and head orientation.

  14. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  15. Laser-assisted preparation and photoelectric properties of grating-structured Pt/FTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nai-fei, E-mail: rnf_ujs@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing, E-mail: lij_huang@126.com [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Bao-jia [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-09-30

    Highlights: • Pt layers were deposited by DC magnetron sputtering on commercial FTO glasses. • Pt/FTO films were irradiated by laser for inducing gratings and annealing. • An ideal grating-structured Pt/FTO film was obtained using a fluence of 1.05 J/cm{sup 2}. • The grating-structured Pt/FTO film exhibited excellent photoelectric properties. • Laser-assisted treatment is effective for improving performance of FTO-based films. - Abstract: In order to improve the transparency and conductivity of commercial fluorine-doped tin oxide (FTO) glass, platinum (Pt) layers were deposited on the FTO film by direct current (DC) magnetron sputtering, followed by being irradiating with a 532 nm nanosecond pulsed laser for the dual purpose of inducing grating structures and annealing. Introducing a Pt layer decreased the average transmittance (400–800 nm) and the sheet resistance of the initial FTO film from 80.2% and 8.4 Ω/sq to 68.6% and 7.9 Ω/sq, respectively. The ideal grating-structured Pt/FTO film was obtained by laser irradiation with a fluence of 1.05 J/cm{sup 2}, and X-ray diffraction (XRD) analysis confirmed that this film underwent optimal annealing. As a result, it exhibited an average transmittance (400–800 nm) of 84.1% and a sheet resistance of 6.8 Ω/sq. These results indicated that laser-assisted treatment combined with introduction of metal layer can effectively improve photoelectric properties of FTO single-layer films.

  16. Republic of Croatia's Experiences in the Implementation of the EU Directive About Dual-Use Items

    International Nuclear Information System (INIS)

    Vidas, Z.; Orehovec, Z.; Superina, V.

    2007-01-01

    The Republic of Croatia is undergoing a process of adjusting its own legislation to the legislation of EU. It is one of the most important obligations of the EU-Croatia Stabilization and Association Agreement. It is also a basic prerequisite for the practical realization of the modern, unique and integral Export and Import Control system of the Sensitive Items. At the same time, it is a very important step towards better understanding of real and great danger of the weapons of mass destruction (WMD) proliferation and their possible usage in terrorism. That means that Republic of Croatia will act along with EU in the complex activities to prevent and minimize the WMD proliferation, to participate in antiterrorism activities, and to maintain regional and global security. In the year 2004, along the lines of the EU Legislation, the Croatian Parliament adopted the basic legal act - Act on export of Dual-use Items and its accompanying rules and regulations. The existing act on dual-purpose items in Croatia is mostly in harmony with the 2000 and 2003 EU Decrees which regulate te regime of the dual-purpose items export control. Nevertheless, the EU legislation experiences constant amendments in the field. And the Croatian Government is committed to following the improvements of te system and adjusting its own. However, during this process, a series of vague wordings and inconsistencies were noticed in the WMD nonproliferation policy and in the legislation to control the export of high technology products which could be abused for the WMD development. In addition, there is neither regulation on import control system nor control on the export of knowledge through scientific and professional cooperation. The purpose of this article is to professionally elaborate the value wordings and inconsistencies. It can be done on the basis of Croatia's experiences in the export and import control system of the dual-purpose items and knowledge and experience acquired through the

  17. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  18. Phasor analysis of binary diffraction gratings with different fill factors

    International Nuclear Information System (INIS)

    MartInez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors

  19. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)

    2007-09-11

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  20. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  1. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  2. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  3. Dual-Bioinspired Design for Constructing Membranes with Superhydrophobicity for Direct Contact Membrane Distillation.

    Science.gov (United States)

    Zhu, Zhigao; Liu, Yuanren; Hou, Haoqing; Shi, Wenxin; Qu, Fangshu; Cui, Fuyi; Wang, Wei

    2018-03-06

    Water flux and durability are the two critical parameters that are closely associated with the practical application of membrane distillation (MD). Herein, we report a facile approach to fabricate superhydrophobic polyimide nanofibrous membranes (PI NFMs) with hierarchical structures, interconnected pores, and high porosity, which was derived from the electrospinning, dual-bioinspired design, and fluorination processes. Bioinspired adhesive based on polydopamine /polyethylenimine (PDA/PEI) composite was first linked onto membrane substrates and then assembled lotus leaf hierarchical structure by binding the negatively charged silica nanoparticles (SiO 2 NPs) via electrostatic attraction. The resultant superhydrophobic PI NFMs exhibit a water contact angle of 152°, robust hot water resistance of 85 °C, and high water entry pressure of 42 kPa. Moreover, the membrane with omniphobicity presents high water flux over 31 L m -2 h -1 and high salts rejection of ∼100% as well as robust durability for treating high salinity wastewater containing typical low surface tension and dissolved contaminants (Δ T = 40 °C). Significantly, the novel dual-bioinspired method can be used as a universal tool to modify various materials with hierarchical structures, which is expected to provide more effective alternative membranes for MD and even for other selective wetting separation fields.

  4. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  5. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  6. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    Research Center (MIC) at the Technical University of Denmark. The Bragg gratings were fabricated at COM using UV irradiation of the planar waveguides using the phase mask method. The induction of a frozen-in DC electric field into the samples was performed by thermal poling of the Bragg gratings...... layers, it becam possible to investigate the symmetry properties of the third-order nonlinearities. Contrary to the expectations for an amorphous material, the measurements indicated an almost polarization independent third-order nonlinearity - the most probable explanation being electrostriction......The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology...

  7. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  9. A Scale Elasticity Measure for Directional Distance Function and its Dual

    OpenAIRE

    Valentin Zelenyuk

    2011-01-01

    In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elasticity measure based on the directional distance function with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional ...

  10. Grateful Med: getting started.

    Science.gov (United States)

    Shearer, B; McCann, L; Crump, W J

    1990-01-01

    When a local medical library is not available, it is often necessary for physicians to discover alternate ways to receive medical information. Rural physicians, particularly, can make use of a computer program called Grateful Med that provides access to the same literature available to physicians in large cities. This program permits the user to perform database searches on the National Library of Medicine database (MEDLINE), corresponding to the primary index to medical literature, Index Medicus. In this article, we give the procedure for procuring a National Library of Medicine password and for making efficient use of the Grateful Med program.

  11. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    Science.gov (United States)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  12. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  13. Direct Torque Control with Full Order Stator Flux Observer for Dual-Three Phase Induction Motor Drives

    Science.gov (United States)

    Farina, Francesco; Bojoi, Radu; Tenconi, Alberto; Profumo, Francesco

    A Direct Torque Control (DTC) strategy for dual-three phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees with isolated neutral points. The proposed control strategy is based on Proportional Integral (PI) regulators implemented in the stator flux synchronous reference frame. To improve the flux estimation, an Adaptive Stator Flux Observer (ASFO) has been used. Doing so, besides a better flux estimation in contrast to open-loop flux estimators, it is possible to use the observed currents to compensate the inverter non-linear behavior (such as dead-time effects), improving the drive performance at low speed. This is particularly important for low voltage/high current applications, as the drive considered in this paper. The advantages of the discussed control strategy are: constant inverter switching frequency, good transient and steady-state performance and less distorted machine currents in contrast to DTC schemes with variable switching frequency. Experimental results are presented for a 10kW dual three-phase induction motor drive prototype.

  14. Bragg grating rogue wave

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)

    2015-06-12

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

  15. Silicon graphene Bragg gratings.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  16. A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation

    OpenAIRE

    Valentin Zelenyuk

    2012-01-01

    In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...

  17. A study on direct determination of uranium in ore by analyzing γ-ray spectrum with dual linear regression

    International Nuclear Information System (INIS)

    Liu Chunkui

    1996-01-01

    The method introduced is based on different energy of γ-ray emitted from radionuclide in the uranium-radium decay series in ore. The pulse counting rates of two spectra bands, i.e. N 1 (55∼193 keV) and N 2 (260∼1500 keV), are measured by portable type HYX-3 400-channel γ-ray spectrometer. On the other side, the uranium content (Q U ) is obtained by chemical analysis of channel sampling. Then the regression coefficients (b 0 , b 1 ,b 2 ) can be determined through dual linear regression by using Q U and N 1 , N 2 . The direct determination of uranium can be made with the regression equation Q U = b 0 + b 1 N 1 + b 2 N 2

  18. Towards a Novel Class of Multitarget-Directed Ligands: Dual P2X7–NMDA Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Olga Karoutzou

    2018-01-01

    Full Text Available Multi-target-directed ligands (MTDLs offer new hope for the treatment of multifactorial complex diseases such as Alzheimer’s Disease (AD. Herein, we present compounds aimed at targeting the NMDA and the P2X7 receptors, which embody a different approach to AD therapy. On one hand, we are seeking to delay neurodegeneration targeting the glutamatergic NMDA receptors; on the other hand, we also aim to reduce neuroinflammation, targeting P2X7 receptors. Although the NMDA receptor is a widely recognized therapeutic target in treating AD, the P2X7 receptor remains largely unexplored for this purpose; therefore, the dual inhibitor presented herein—which is open to further optimization—represents the first member of a new class of MTDLs.

  19. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  20. Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry.

    Science.gov (United States)

    Causse, Jean; Thomas, Olivier; Jung, Aude-Valérie; Thomas, Marie-Florence

    2017-01-01

    UV spectrophotometry is largely used for water and wastewater quality monitoring. The measurement/estimation of specific and aggregate parameters such as nitrate and dissolved organic carbon (DOC) is possible with UV spectra exploitation, from 2 to multi wavelengths calibration. However, if nitrate determination from UV absorbance is known, major optical interferences linked to the presence of suspended solids, colloids or dissolved organic matter limit the relevance of UV measurement for DOC assessment. A new method based on UV spectrophotometric measurement of raw samples (without filtration) coupling a dual pathlength for spectra acquisition and the second derivative exploitation of the signal is proposed in this work. The determination of nitrate concentration is carried out from the second derivative of the absorbance at 226 nm corresponding at the inflexion point of nitrate signal decrease. A short optical pathlength can be used considering the strong absorption of nitrate ion around 210 nm. For DOC concentration determination the second derivative absorbance at 295 nm is proposed after nitrate correction. Organic matter absorbing slightly in the 270-330 nm window, a long optical pathlength must be selected in order to increase the sensitivity. The method was tested on several hundred of samples from small rivers of two agricultural watersheds located in Brittany, France, taken during dry and wet periods. The comparison between the proposed method and the standardised procedures for nitrate and DOC measurement gave a good adjustment for both parameters for ranges of 2-100 mg/L NO3 and 1-30 mg/L DOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    Science.gov (United States)

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  2. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  3. A Lever Coupling Mechanism in Dual-Mass Micro-Gyroscopes for Improving the Shock Resistance along the Driving Direction

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-04-01

    Full Text Available This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope’s modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity.

  4. Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection

    Science.gov (United States)

    Badmos, Abdulyezir A.; Sun, Qizhen; Sun, Zhongyuan; Zhang, Junxi; Yan, Zhijun; Lutsyk, Petro; Rozhin, Alex; Zhang, Lin

    2017-02-01

    Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80-μm-cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ˜4298.20 nm/RIU and 4.6696 nm/% were obtained, respectively. Glucose detection probe was attained by surface functionalization of the dual-peak LPFG via covalent binding with aminopropyl triethoxysilane used as a binding site. Optical micrographs confirmed the presence of enzyme. The surface-functionalized dual-peak LPFG was tested with D-(+)-glucose solution of different concentrations. While the peak 2 at the longer wavelength was suitable only to measure lower glucose concentration (0.1 to 1.6 mg/ml) recording a high sensitivity of 12.21±0.19 nm/(mg/ml), the peak 1 at the shorter wavelength was able to measure a wider range of glucose concentrations (0.1 to 3.2 mg/ml) exhibiting a maximum resonance wavelength shift of 7.12±0.12 nm/mg/ml. The enzyme-functionalized dual-peak LPFG has the advantage of direct inscription of highly sensitive grating structures in thin-cladding fibre without etching, and most significantly, its sensitivity improvement of approximately one order of magnitude higher than previously reported LPFG and excessively tilted fibre grating (Ex-TFG) for glucose detection.

  5. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  6. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  7. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  8. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.

    Science.gov (United States)

    Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue

    2015-08-01

    Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.

  9. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  10. An imaging grating diffractometer for traceable calibration of grating pitch in the range 20 μm to 350 nm

    International Nuclear Information System (INIS)

    Brasil, D A; Alves, J A P; Pekelsky, J R

    2015-01-01

    This work describes the development of a grating diffratometer to provide traceable calibration of grating pitch in range 20 μm to 350 nm. The approach is based on the Littrow configuration in which a laser beam is directed onto the grating which is mounted on a rotary table and can be turned so that each selected diffraction order is retro-reflected in the laser incidence direction. A beamsplitter and a lens direct the reflected diffraction order to form a small image spot on a CCD camera and the spot centering is used to adjust to rotation angle, thereby giving the diffraction angle. Knowing the diffraction angle for several orders and the wavelength of the laser, the average grating pitch can be determined to an uncertainty the order of 14 pm. (paper)

  11. Dual Cage High Power Induction Motor with Direct Start-up. Design and FEM Analysis

    Directory of Open Access Journals (Sweden)

    LIVADARU, L.

    2013-05-01

    Full Text Available This paper presents an investigation on the design of high-power induction motor with special constraints. Direct online start-up and pull-up torque of rather high value represent two of the imposed requirements. Three different structures are analyzed, which involve deep bars, magnetic wedges and double cage respectively. The proposed solution advances a new rotor structure with two different rotor cages. The first cage acts mainly during start-up and is made of iron with both electric and magnetic properties. The second one is made of copper and represents the main rotor winding. It has a particular cross-section of the bars in order to carry into effect the required constraints both during start-up and steady-state. The proposed models are finally evaluated by means of finite element method analysis.

  12. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    Science.gov (United States)

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  13. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  14. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1sizes from 20size that provided optimal, or maximum, reflectance for each compound. Our conclusions bring confirmation and clarity to photometric sciences.

  15. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  16. Time-domain Brillouin scattering assisted by diffraction gratings

    Science.gov (United States)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  17. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  18. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    Science.gov (United States)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  19. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems.

    Science.gov (United States)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-03-09

    For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C 12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C 12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C 12 oxygenates can be achieved under mild conditions. In the second bed, the C 12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO 2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  1. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  2. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    International Nuclear Information System (INIS)

    Deng Yang; Liu Yuan; Gao Dingshan

    2011-01-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  3. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    Science.gov (United States)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  4. Prediction of major pollutants emission in direct injection dual-fuel diesel and natural-gas engines

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Kashani, B.O.

    2000-01-01

    The dual-fuel diesel engine is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the dual-fuel diesel engine needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons and Carbon Monoxide (CO) emission, because the concentration of these pollutants are higher than that of the baseline diesel engine. Furthermore, the combustion process in a typical dual-fuel diesel engine tends to be complex, showing combination of the problems encountered both in diesel and spark ignition engines. In this work, a computer code has been modified for simulation of dual-fuel diesel engine combustion process. This model simulates dual-fuel diesel engine combustion by using a Multi-Zone Combustion Model for diesel pilot jet combustion and a conventional spark ignition combustion model for modelling of combustion of premixed gas/air charge. Also, in this model, there are four submodels for prediction of major emission pollutants such as: Unburnt Hydrocarbons, No, Co and soot which are emitted from dual-fuel diesel engine. For prediction of formation and oxidation rates of pollutants, relevant s conventional kinetically-controlled mechanisms and mass balances are used. the model has been verified by experimental data obtained from a heavy-duty truck and bus diesel engines. The comparison shows that, there exist good agreements between the experimental and predicted results from the dual-fuel diesel engine

  5. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  6. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  7. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    Science.gov (United States)

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  8. Dual waveband compact catadioptric imaging spectrometer

    Science.gov (United States)

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  9. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  10. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  11. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  12. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  13. Mechanical Stresses Induced by Compression in Castings of the Load-carrying Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.

    2016-06-01

    Full Text Available The main aim of this study was to examine the compression-induced state of stress arising in castings of the guide grates during operation in pusher-type furnaces for heat treatment. The effect of grate compression is caused by its forced movement in the furnace. The introduction of flexible segments to the grate structure changes in a significant way the stress distribution, mainly by decreasing its value, and consequently considerably extends the lifetime of the grates. The stress distribution was examined in the grates with flexible segments arranged crosswise (normal to the direction of the grate compression and lengthwise (following the direction of force. A regression equation was derived to describe the relationship between the stress level in a row of ribs in the grate and the number of flexible segments of a lengthwise orientation placed in this row. It was found that, regardless of the distribution of the flexible segments in a row, the stress values were similar in all the ribs included in this row, and in a given row of the ribs/flexible segments a similar state of stress prevailed, irrespective of the position of this row in the whole structure of the grate and of the number of the ribs/flexible segments introduced therein. Parts of the grate responsible for the stress transfer were indicated and also parts which play the role of an element bonding the structure.

  14. Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods

    DEFF Research Database (Denmark)

    Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei

    2016-01-01

    We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...

  15. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    Science.gov (United States)

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  16. Bidirectional Control of Reversal in a Dual Action Task by Direct and Indirect Pathway Activation in the Dorsolateral Striatum in Mice

    Directory of Open Access Journals (Sweden)

    Muriel Laurent

    2017-12-01

    Full Text Available The striatum is a key brain structure involved in the processing of cognitive flexibility, which results from the balance between the flexibility demanded for novel learning of motor actions and the inflexibility required to preserve previously learned actions. In particular, the dorsolateral portion of the striatum (DLS is engaged in the learning of action sequence. This process is temporally driven by fine adjustments in the function of the two main neuronal populations of the striatum, known as the direct pathway medium spiny neurons (dMSNs and indirect pathway medium spiny neurons (iMSNs. Here, using optogenetics, behavioral, and electrophysiological tools, we addressed the relative role of both neuronal populations in the acquisition of a reversal dual action sequence in the DLS. While the channelrhodopsin-induced activation of dMSNs and iMSNs of the DLS did not induce changes in the learning rate of the sequence, the specific activation of the dMSNs of the DLS facilitated the acquisition of a reversal dual action sequence; the activation of iMSNs induced a significant deficit in the acquisition of the same task. Taken together our results indicate an antagonistic relationship between dMSNs and iMSNs on the acquisition of a reversal dual action sequence.

  17. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  18. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  19. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  20. GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections

    Directory of Open Access Journals (Sweden)

    Rafael A. Penchel

    2018-01-01

    Full Text Available This work discusses an alternative geometrical optics (GO technique to synthesize omnidirectional dual-reflector antennas with uniform aperture phase distribution together with an arbitrary main-beam direction for the antenna radiation pattern. Sub- and main reflectors are bodies of revolution generated by shaped curves defined by local conic sections consecutively concatenated. The shaping formulation is derived for configurations like ADC (axis-displaced Cassegrain and ADE (axis-displaced ellipse omnidirectional antennas. As case studies, two configurations fed by a TEM coaxial horn are designed and analyzed by a hybrid technique based on mode matching and method of moments in order to validate the GO shaping procedure.

  1. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  2. Exploiting a Transmission Grating Spectrometer

    International Nuclear Information System (INIS)

    Bell, Ronald E.

    2004-01-01

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics

  3. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  4. Recording polarization gratings with a standing spiral wave

    Science.gov (United States)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  5. Recording polarization gratings with a standing spiral wave

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Suite 1, Wright-Patterson Air Force Base, Ohio 45433 (United States); Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V., E-mail: nelson@beamco.com [BEAM Engineering for Advanced Measurements Company, 809 South Orlando Avenue, Suite I, Winter Park, Florida 32789 (United States)

    2013-11-11

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  6. Recording polarization gratings with a standing spiral wave

    International Nuclear Information System (INIS)

    Vernon, Jonathan P.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tabiryan, Nelson V.

    2013-01-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques

  7. Diffraction from relief gratings on a biomimetic elastomer cast

    International Nuclear Information System (INIS)

    Guerrero, Raphael A.; Aranas, Erika B.

    2010-01-01

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  8. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  9. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  10. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  11. Grating-Coupled Waveguide Cloaking

    International Nuclear Information System (INIS)

    Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect

  12. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  13. Multiplexing of adjacent vortex modes with the forked grating coupler

    Science.gov (United States)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.

    2017-08-01

    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  14. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  15. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  16. A general theory of interference fringes in x-ray phase grating imaging

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-01-01

    Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers

  17. A general theory of interference fringes in x-ray phase grating imaging.

    Science.gov (United States)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  18. Fabrication of tunable diffraction grating by imprint lithography with photoresist mold

    Science.gov (United States)

    Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya

    2018-05-01

    We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.

  19. The grating as an accelerating structure

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1991-02-01

    This report considers the use of a diffraction grating as an accelerating structure for charged particle beams. We examine the functional dependence of the electromagnetic fields above the surface of a grating. Calculations are made of the strength of the accelerating modes for structures with π and 2π phase advance per period and for incident waves polarized with either the E or H vector along the grooves of the grating. We consider examples of using gratings in a laser linac and in a grating lens. We also briefly examine previous results published about this subject. 36 refs

  20. Transformation of a car diesel engine with direct injection and common rail into a dual fuel engine; Trasformazione di un motore automobilistico diesel ad iniezione diretta dotato di common rail in un motore dual fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Risi, A.; Laforgia, D. [Lecce Univ. (Italy). Dipt. di Scienza dei Materiali

    1999-08-01

    The reduced polluting emissions make natural gas a quite interesting alternative fuel for automotive applications. Therefore a car diesel engine has been transformed into a dual fuel engine with pilot injection via the common rail injection system used to ignite the methane-air charge. Standard injection pumps show a certain instability at low flow rates and high engine speed. On the opposite the new common rail system allows to ignite the fuel in all conditions with an amount of gas oil less than 8% of the entire energy required by the engine was enough to ignite the fuel. Furthermore, a power increase has been obtained, with an overall efficiency equal to or even higher than a conventional engine. The article deals with a series of test carried out on 1929 cm{sup 3} direct injection turbo-charged engine and presents the preliminary results. [Italian] La riduzione delle emissioni inquinanti rende il metano un combustibile alternativo piuttosto interessante per applicazioni automobilistiche. Per quasta ragione e' stata realizzata la trasformazione di un motore automobilitico diesel ad iniezione diretta in un motore dual fuel con iniezione pilota prodotta da un sistema common rail. L'adozione del sistema common rail consente l'accensione in ogni condizione con una quantita' di combustibile inferiore all'8% dell'intera energia richiesta alla potenza nominale del motore risolvendo i problemi di instabilita' che una pompa normale presenta a basse portate e ad alta velocita'. In alcuni casi e' stato sufficiente il 3% dell'energia totale richiesta dal motore per accendere la carica. Inoltre si e' ottenuto un aumento della potenza con un'efficienza globale analoga a qualla del motore tradizionale o addirittura migliore. Si riportano i risultati di una campagna di prove condotta su un motore sovralimentato ad iniezione diretta (1929 cm{sup 3}).

  1. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  2. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang; Huang, Ronghua

    2015-01-01

    Highlights: • A 5D PDF table was used to model the dual-fuel turbulence–chemistry interactions. • The cooling effect of ethanol direct injection (EDI) was examined. • The higher flame speed of ethanol in EDI + GPI increased the thermal efficiency. • The partially premixed combustion in EDI + GPI reduced the combustion temperature. • Ethanol’s low evaporation rate in low temperature led to incomplete combustion. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k−ε turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence–chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in EDI + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of

  3. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  4. Point-by-point written fiber-Bragg gratings and their application in complex grating designs.

    Science.gov (United States)

    Marshall, Graham D; Williams, Robert J; Jovanovic, Nemanja; Steel, M J; Withford, Michael J

    2010-09-13

    The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating's refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

  5. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Chien [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250, Wuxing St., Taipei 11031, Taiwan (China); Tu, Yi-Ming; Hou, Chung-Che [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Wah Hong industrial Co. Ltd., 6 Lixing St., Guantian Dist., Tainan City 72046,Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 10607, Taiwan (China); Yang, Kuang-Hsuan, E-mail: khy@mail.vnu.edu.tw [Department of Food and Beverage Management, Vanung University, 1, Van Nung Rd., Shuei-Wei Li, Chung-Li City 32061, Taiwan (China)

    2015-03-31

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H{sub 2}O{sub 2}) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H{sub 2}O{sub 2} in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H{sub 2}O{sub 2} in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10{sup −9} mol cm{sup −2}) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM{sup −1} cm{sup −2}) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H{sub 2}O{sub 2} and glucose, thus owning high selectivity and reliability.

  6. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    International Nuclear Information System (INIS)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-01-01

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H 2 O 2 ) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H 2 O 2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H 2 O 2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10 −9 mol cm −2 ) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM −1 cm −2 ) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H 2 O 2 and glucose, thus owning high selectivity and reliability

  7. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    Science.gov (United States)

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  8. Refractive index and viscosity: dual sensing with plastic fibre gratings

    Science.gov (United States)

    Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério

    2014-05-01

    A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.

  9. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  10. Microfiber Bragg grating hydrogen sensor base on co-sputtered Pd/Ni composite film

    Science.gov (United States)

    Wang, Gaopeng; Yang, Minghong; Dai, Jixiang; Cheng, Cheng; Yuan, Yinqian

    2015-07-01

    A novel hydrogen sensor based on Pd/Ni co-sputtered coating on micro fiber Bragg grating (MFBG) is proposed and experimentally demonstrated. The microfiber is stretched uniformly and the Bragg grating is directly inscribed on the microfiber without hydrogen loading using 193 nm ArF excimer laser and a phase mask. Palladium and nickel coatings are co-sputtered on the micro fiber Bragg grating for hydrogen sensing. The MFBG hydrogen sensors are characterized concerning their response to the hydrogen, ambient temperature and ambient refractive index, respectively. The performance of the proposed MFBG hydrogen sensor is obviously enhanced, especially when compared to standard FBG hydrogen sensors.

  11. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    DEFF Research Database (Denmark)

    Pereira, L.; Pospori, A.; Antunes, Paulo

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal...... for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly during the grating inscription process by placing a narrow blocking aperture in the center of the UV beam. The produced high...

  12. Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings

    Science.gov (United States)

    Szalai, A.; Szekeres, G.; Balázs, J.; Somogyi, A.; Csete, Maria

    2013-09-01

    Theoretical investigation of rotated grating coupling phenomenon was performed on a multilayer comprising 416-nmperiodic shallow rectangular polymer grating on bimetal film made of gold and silver layers. During the multilayer illumination by 532 nm wavelength p-polarized light the polar and azimuthal angles were varied. In presence of 0-35 nm, 0-50 nm and 15-50 nm thick polymer-layers at the valleys and hills splitting was observed on the dual-angle dependent reflectance in two regions: (i) close to 0° azimuthal angle corresponding to incidence plane parallel to the periodic pattern (P-orientation); and (ii) around ~33.5°/29°/30° azimuthal angle (C-orientation), in agreement with our previous experimental studies. The near-field study revealed that in P-orientation the E-field is enhanced at the glass side with p/2 periodicity at the first minimum appearing at 49°/50°/52° polar angles, and comprises maxima below both the valleys and hills; while E-field enhancement is observable both at the glass and polymer side with p-periodicity at the second minimum developing at 55°/63/64° tilting, comprising maxima intermittently below the valleys or above the hills. In Corientation coupled plasmonic modes are observable, involving modes propagating along the valleys at the secondary maxima appearing at ~35°/32°/32° azimuthal and ~49°/51°/56° polar angles, while modes confined along the polymer hills are observable at the primary minima, which are coupled most strongly at the ~31.5°/25°/28° azimuthal and ~55°/63°/66° polar angles. The secondary peak observable in C-orientation is proposed for biosensing applications, since the supported modes are confined along the valleys, where biomolecules prefer to attach.

  13. Magnetomechanically induced long period fiber gratings

    International Nuclear Information System (INIS)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-01-01

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs

  14. High-quality phase-shifted Bragg grating sensor inscribed with only one laser pulse in a polymer optical fiber

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Pereira, L.

    2017-01-01

    We present the first phase-shifted polymer optical fiber Bragg grating sensor inscribed with only one KrF laser pulse. The phase shift defect was created directly during the grating inscription process by placing a very narrow blocking aperture, in the center of the UV beam. One laser pulse...

  15. Direct costs and cost-effectiveness of dual-source computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease.

    Science.gov (United States)

    Dorenkamp, Marc; Bonaventura, Klaus; Sohns, Christian; Becker, Christoph R; Leber, Alexander W

    2012-03-01

    The study aims to determine the direct costs and comparative cost-effectiveness of latest-generation dual-source computed tomography (DSCT) and invasive coronary angiography for diagnosing coronary artery disease (CAD) in patients suspected of having this disease. The study was based on a previously elaborated cohort with an intermediate pretest likelihood for CAD and on complementary clinical data. Cost calculations were based on a detailed analysis of direct costs, and generally accepted accounting principles were applied. Based on Bayes' theorem, a mathematical model was used to compare the cost-effectiveness of both diagnostic approaches. Total costs included direct costs, induced costs and costs of complications. Effectiveness was defined as the ability of a diagnostic test to accurately identify a patient with CAD. Direct costs amounted to €98.60 for DSCT and to €317.75 for invasive coronary angiography. Analysis of model calculations indicated that cost-effectiveness grew hyperbolically with increasing prevalence of CAD. Given the prevalence of CAD in the study cohort (24%), DSCT was found to be more cost-effective than invasive coronary angiography (€970 vs €1354 for one patient correctly diagnosed as having CAD). At a disease prevalence of 49%, DSCT and invasive angiography were equally effective with costs of €633. Above a threshold value of disease prevalence of 55%, proceeding directly to invasive coronary angiography was more cost-effective than DSCT. With proper patient selection and consideration of disease prevalence, DSCT coronary angiography is cost-effective for diagnosing CAD in patients with an intermediate pretest likelihood for it. However, the range of eligible patients may be smaller than previously reported.

  16. Varied line-space gratings and applications

    International Nuclear Information System (INIS)

    McKinney, W.R.

    1991-01-01

    This paper presents a straightforward analytical and numerical method for the design of a specific type of varied line-space grating system. The mathematical development will assume plane or nearly-plane spherical gratings which are illuminated by convergent light, which covers many interesting cases for synchrotron radiation. The gratings discussed will have straight grooves whose spacing varies across the principal plane of the grating. Focal relationships and formulae for the optical grating-pole-to-exist-slit distance and grating radius previously presented by other authors will be derived with a symbolic algebra system. It is intended to provide the optical designer with the tools necessary to design such a system properly. Finally, some possible advantages and disadvantages for application to synchrotron to synchrotron radiation beamlines will be discussed

  17. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  18. EUV properties of two diffraction gratings

    International Nuclear Information System (INIS)

    Cotton, D.; Chakrabarti, S.; Edelstein, J.; Pranke, J.; Christensen, A.B.

    1988-01-01

    The efficiency and scattering characteristics of a mechanically ruled grating (MRG) and a holographically ruled grating (HRG) are presented. One of these gratings will be employed in the Extreme Ultraviolet Spectrometer, an instrument of the Remote Atmospheric and Ionospheric Detector System to be flown aboard a TIROS satellite in 1991. The HRG showed much less Lyman alpha scattering, while the MRG had the better efficiency over most of the spectral range covered. 8 refs

  19. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  20. Fibre gratings for high temperature sensor applications

    Science.gov (United States)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  1. Unidirectional transmission realized by two nonparallel gratings made of isotropic media.

    Science.gov (United States)

    Ye, Wei-Min; Yuan, Xiao-Dong; Zeng, Chun

    2011-08-01

    We realize a unidirectional transmission by cascading two nonparallel gratings (NPGs) made of isotropic, lossless, and linear media. For a pair of orthogonal linear polarizations, one of the gratings is designed as a polarizer, which is a reflector for one polarization and a transmitter for the other; another grating is designed as a polarization converter, which converts most of one polarized incident wave into another polarized transmitted wave. It is demonstrated by numerical calculation that more than 85% of the incident light energy can be transmitted with less than 1% transmission in the opposite direction for linearly polarized light at normal incidence, and the relative bandwidth of the unidirectional transmission is nearly 9%. The maximum transmission contrast ratio between the two directions is 62 dB. Unlike one-way diffraction grating, the transmitted light of the NPGs is collinear with the incident light, but their polarizations are orthogonal. © 2011 Optical Society of America

  2. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    Science.gov (United States)

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

  3. A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process

    International Nuclear Information System (INIS)

    Lin, Ta-Wei; Liao, Yunn-Shiuan; Chen, Chi-Feng; Yang, Jauh-Jung

    2008-01-01

    A dual-directional light-control film with a high-sag and high-asymmetric-shape long gapless hexagonal microlens array fabricated by an ultra-violent (UV) imprinting process is presented. Such a lens array is designed by ray-tracing simulation and fabricated by a micro-replication process including gray-scale lithography, electroplating process and UV curing. The shape of the designed lens array is similar to that of a near half-cylindrical lens array with a periodical ripple. The measurement results of a prototype show that the incident lights using a collimated LED with the FWHM of dispersion angle, 12°, are diversified differently in short and long axes. The numerical and experimental results show that the FWHMs of the view angle for angular brightness in long and short axis directions through the long hexagonal lens are about 34.3° and 18.1° and 31° and 13°, respectively. Compared with the simulation result, the errors in long and short axes are about 5% and 16%, respectively. Obviously, the asymmetric gapless microlens array can realize the aim of the controlled asymmetric angular brightness. Such a light-control film can be used as a power saving screen compared with convention diffusing film for the application of a rear projection display

  4. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  5. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  6. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    OpenAIRE

    Mitschang, Arik W.; Huenemoerder, David P.; Nichols, Joy S.

    2009-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to ...

  7. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    OpenAIRE

    Pereira, L.; Pospori, A.; Antunes, Paulo; Domingues, Maria Fatima; Marques, S.; Bang, Ole; Webb, David J.; Marques, Carlos A.F.

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly duri...

  8. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  9. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  10. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes

    Science.gov (United States)

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-01

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  11. Temperature-referenced high-sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber Bragg gratings

    OpenAIRE

    Zhou, Kaiming; Chen, Xianfeng F.; Zhang, Lin; Bennion, Ian

    2004-01-01

    Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offe...

  12. Biosensing with optical fiber gratings

    Science.gov (United States)

    Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra

    2017-06-01

    Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  13. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  14. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    Starting from the three-dimensional version of a standard photorefractive model (STPM), we obtain a reduced compact Set of equations for an electric field based on the assumption of a quasi-steady-state fast recombination. The equations are suitable for evaluation of a current induced by running...... gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...

  15. A MEMS torsion magnetic sensor with reflective blazed grating integration

    International Nuclear Information System (INIS)

    Long, Liang; Zhong, Shaolong

    2016-01-01

    A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μ T −1 and 5.7 pm μ T −1 , respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application. (paper)

  16. 21 CFR 133.146 - Grated cheeses.

    Science.gov (United States)

    2010-04-01

    ... Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared by..., and skim milk cheese for manufacturing may not be used. All cheese ingredients used are either made... ___ cheese”, the name of the cheese filling the blank. (ii) If only parmesan and romano cheeses are used and...

  17. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  18. A MANUALLY OPERATED CASSAVA GRATING MACHINE

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... substantial losses arising from the inability of the person to hold small pieces of cassava roots for grating. Happily, there now exist various. Versions of mechanical graters which are driven by electric motors or small internal combustion engines. In fact, it may be said that cassava grating has been effectively.

  19. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  20. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative.

    Science.gov (United States)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-03-31

    A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel-Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5×10(-9) mol cm(-2)) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM(-1) cm(-2)) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability. Copyright © 2015. Published by Elsevier B.V.

  1. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  2. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    Science.gov (United States)

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  3. Transient Response and Steady-State Analysis of the Anode of Direct Methanol Fuel Cells Based on Dual-Site Kinetics

    Directory of Open Access Journals (Sweden)

    Lei Xing

    2011-01-01

    Full Text Available An intrinsic time-dependent one-dimensional (1D model and a macro two-dimensional (2D model for the anode of the direct methanol fuel cell (DMFC are presented. The two models are based on the dual-site mechanism, which includes the coverage of intermediate species of methanol, OH, and CO (θM, θOH,Ru, and θCO,Pt on the surface of Pt and Ru. The intrinsic 1D model focused on the analysis of the effects of operating temperature, methanol concentration, and overpotential on the transient response. The macro 2D model emphasises the dimensionless distributions of methanol concentration, overpotential and current density in the catalyst layer which were affected by physical parameters such as thickness, specific area, and operating conditions such as temperature, bulk methanol concentration, and overpotential. The models were developed and solved in the PDEs module of COMSOL Multiphysics, giving good agreement with experimental data. The dimensionless distributions of methanol concentration, overpotential, and current density and the efficiency factor were calculated quantitatively. The models can be used to give accurate simulations for the polarisations of methanol fuel cell.

  4. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  5. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  6. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  7. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  8. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  9. Nanoscale freestanding gratings for ultraviolet blocking filters

    Energy Technology Data Exchange (ETDEWEB)

    van Beek, J.T.; Fleming, R.C.; Hindle, P.S.; Prentiss, J.D.; Schattenburg, M.L. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ritzau, S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01

    Ultraviolet (UV) blocking filters are needed for atomic flux imaging in environments where high levels of ultraviolet radiation are present. Freestanding gratings are a promising candidate for UV filtering. They have a high aspect ratio ({approximately}13), narrow ({approximately}40 nm) slots, and effectively block UV radiation. The grating fabrication process makes use of several etching, electroplating, and lithographic steps and includes an optional step to plug pinholes induced by particles during processing. Gratings were successfully manufactured and tested. Measured UV transmissions of {approximately}10{sup {minus}5} and particle transmissions of {approximately}10{percent} are in agreement with theoretical predictions. {copyright} {ital 1998 American Vacuum Society.}

  10. Sensitive visual test for concave diffraction gratings.

    Science.gov (United States)

    Bruner, E. C., Jr.

    1972-01-01

    A simple visual test for the evaluation of concave diffraction gratings is described. It is twice as sensitive as the Foucault knife edge test, from which it is derived, and has the advantage that the images are straight and free of astigmatism. It is particularly useful for grating with high ruling frequency where the above image faults limit the utility of the Foucault test. The test can be interpreted quantitatively and can detect zonal grating space errors of as little as 0.1 A.

  11. Thermal annealing of tilted fiber Bragg gratings

    Science.gov (United States)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  12. Geometrical optics modeling of the grating-slit test.

    Science.gov (United States)

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  13. Experimental observation of acoustic sub-harmonic diffraction by a grating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu [Laboratory for Ultrasonic Nondestructive Evaluation “LUNE,” Georgia Tech Lorraine, Georgia Tech-CNRS UMI2958, Georgia Institute of Technology, 2, rue Marconi, Metz 57070 (France)

    2014-06-28

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expands our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.

  14. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  15. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  16. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  17. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  18. Uniquely identifiable tamper-evident device using coupling between subwavelength gratings

    Science.gov (United States)

    Fievre, Ange Marie Patricia

    Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 microm to allow discernible higher transmission orders, and a HWHM of 28 microm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moire fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was

  19. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.

    2008-01-01

    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  20. Adaptable Diffraction Gratings With Wavefront Transformation

    Science.gov (United States)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  1. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.; Melezhik, Petr N.; Sirenko, Kostyantyn; Granet, Gerard

    2012-01-01

    is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state

  2. Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin.

    Science.gov (United States)

    Song, Wenting; Cun, Dongmei; Quan, Peng; Liu, Nannan; Chen, Yang; Cui, Hongxia; Xiang, Rongwu; Fang, Liang

    2015-04-01

    To achieve the synchronous skin permeation of indapamide (IND) and bisoprolol (BSP) in their compound patch, the techniques of ion-pair complexation and chemical enhancers were combined to dual-directionally regulate drug permeating amounts. Ion-pair complexes of BSP and various organic acids were formed by the technique of ion-pair complexation. Among the complexes formed, bisoprolol tartrate (BSP.T) down-regulated the permeating amount of BSP to the same extent as that of IND. Then, to simultaneously up-regulate the amounts of the two drugs, an enhancer combination of 15.8% Span80 (SP), 6.0% Azone (AZ) and 2.2% N-methyl pyrrolidone (NMP) was obtained by central composite design and exhibited an outstanding and simultaneous enhancement on IND and BSP with enhancing ratio (ER) of 4.52 and 3.49, respectively. The effect of the dual-directional regulation was evaluated by in vitro permeation experiments and in vivo pharmacokinetic studies. For IND and BSP, their observed permeation profiles were comparable and their MAT (mean absorption time) showed no significant difference, which both demonstrated these two drugs achieved the synchronous skin permeation in their compound patch by the dual-directional regulation strategy of combining the technique of ion-pair complexation with chemical enhancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fibre Bragg grating for flood embankment monitoring

    Science.gov (United States)

    Markowski, Konrad; Nevar, Stanislau; Dworzanski, Adam; Hackiewicz, Krzysztof; Jedrzejewski, Kazimierz

    2014-11-01

    In this article we present the preliminary studies for the flood embankment monitoring system based on the fibre Bragg gratings. The idea of the system is presented. The Bragg resonance shift is transformed to the change of the power detected by the standard InGaAs photodiode. The discrimination of the received power was executed by another fibre Bragg grating with different parameters. The project of the fully functional system is presented as well.

  4. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  5. Dynamic optical coupled system employing Dammann gratings

    Science.gov (United States)

    Di, Caihui; Zhou, Changhe; Ru, Huayi

    2004-10-01

    With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.

  6. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity

    Science.gov (United States)

    Ahmed, Tanvir; Atai, Javid

    2017-09-01

    The existence and stability of quiescent Bragg grating solitons are systematically investigated in a dual-core fiber, where one of the cores is uniform and has Kerr nonlinearity while the other one is linear and incorporates a Bragg grating with dispersive reflectivity. Three spectral gaps are identified in the system, in which both lower and upper band gaps overlap with one branch of the continuous spectrum; therefore, these are not genuine band gaps. However, the central band gap is a genuine band gap. Soliton solutions are found in the lower and upper gaps only. It is found that in certain parameter ranges, the solitons develop side lobes. To analyze the side lobes, we have derived exact analytical expressions for the tails of solitons that are in excellent agreement with the numerical solutions. We have analyzed the stability of solitons in the system by means of systematic numerical simulations. We have found vast stable regions in the upper and lower gaps. The effect and interplay of dispersive reflectivity, the group velocity difference, and the grating-induced coupling on the stability of solitons are investigated. A key finding is that a stronger grating-induced coupling coefficient counteracts the stabilization effect of dispersive reflectivity.

  7. Theory of the special Smith-Purcell radiation from a rectangular grating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; He, Zhigang, E-mail: hezhg@ustc.edu.cn; Jia, Qika [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 (China); Li, Weiwei [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, RM (Italy)

    2015-12-15

    The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic.

  8. Theory of the special Smith-Purcell radiation from a rectangular grating

    International Nuclear Information System (INIS)

    Liu, Weihao; He, Zhigang; Jia, Qika; Li, Weiwei

    2015-01-01

    The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic

  9. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  10. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating

    Science.gov (United States)

    Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-08-01

    In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.

  11. Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency

    NARCIS (Netherlands)

    van Rijn, Rick R.; Boot, Annemieke; Wittenberg, Rianne; van der Sluis, Inge M.; van den Heuvel-Eibrink, Marry M.; Lequin, Maarten H.; de MuinckKeizer-Schrama, Sabine M. P. F.; van Kuijk, Cornelis

    2006-01-01

    BACKGROUND: In recent years interest in bone densitometry in children has increased. OBJECTIVE: To evaluate the clinical application of digital X-ray radiogrammetry (DXR) and compare the results with those of dual-energy X-ray absorptiometry (DXA). MATERIALS AND METHODS: A total of 41 children with

  12. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  13. Simple design of slanted grating with simplified modal method.

    Science.gov (United States)

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  14. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  15. Iridescence in Meat Caused by Surface Gratings

    Directory of Open Access Journals (Sweden)

    Ali Kemal Yetisen

    2013-11-01

    Full Text Available The photonic structure of cut muscle tissues reveals that the well-ordered gratings diffract light, producing iridescent colours. Cut fibrils protruding from the muscle surface create a two-dimensional periodic array, which diffract light at specific wavelengths upon illumination. However, this photonic effect misleads consumers in a negative way to relate the optical phenomenon with the quality of the product. Here we discuss the fundamentals of this optical phenomenon and demonstrate a methodology for quantitatively measuring iridescence caused by diffraction gratings of muscle tissue surface of pork (Sus scrofa domesticus using reflection spectrophotometry. Iridescence was discussed theoretically as a light phenomenon and spectral measurements were taken from the gratings and monitored in real time during controlled drying. The findings show that the intensity of diffraction diminishes as the surface grating was dried with an air flow at 50 °C for 2 min while the diffracted light wavelength was at 585 ± 9 nm. Our findings indicate that the diffraction may be caused by a blazed surface grating. The implications of the study include providing guidelines to minimise the iridescence by altering the surface microstructure, and in consequence, removing the optical effect.

  16. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  17. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  18. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    Science.gov (United States)

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  19. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  20. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  1. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [Electromagnetism and Telecommunications Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Gusarov, Andrei [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Faustov, Alexey [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Electromagnetisme and Telecommunication Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Areias, Lou [Mechanics of Materials and Constructions Department of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, (Belgium); European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol, (Belgium)

    2015-07-01

    We present the preliminary results obtained with bare fiber Bragg grating-based sensors embedded into half-scale Belgian Supercontainer concept. Being temperature and strain sensitive, some sensors were placed into aluminum tubes to monitor only temperature and results were compared with thermocouples data. The utility of using bare fiber Bragg gratings, knowing that these ones are very fragile, is to have a direct contact between the high alkaline environment of the concrete and silica fibers and to determine its impact over a very long time. (authors)

  2. Synthesis of 1D Bragg gratings by a layer-aggregation method.

    Science.gov (United States)

    Capmany, José; Muriel, Miguel A; Sales, Salvador

    2007-08-15

    We present what we believe to be a novel method for the synthesis of complex 1D (fiber and waveguide) Bragg gratings, which is based on an impedance reconstruction layer aggregation technique. The main advantage brought by the method is the possibility of synthesizing structures containing defects or discontinuities of the size of the local period, a feature that is not possible with prior reported methods. In addition, this enhanced spatial resolution allows the synthesis of very strong fiber Bragg grating devices providing convergent solutions. The method directly renders the refractive index profile n(z) as it does not rely on the coupled-mode theory.

  3. Strain and displacement controls by fibre bragg grating and digital image correlation

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Schmidt, Jacob Wittrup

    2014-01-01

    the test based on measurements performed directly on the test specimen. In this paper, fibre Bragg grating (FBG) and Digital Image Correlation (DIC) are used to control a test. The FBG sensors offer the possibility of measuring strains inside the specimen, while the DIC system measures strains...

  4. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  5. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.

    2012-08-01

    Modern scatterometry problems arising in the lithography production of periodic gratings are in the focus of the work. The performance capabilities of a novel theoretical and numerical modeling oriented to these problems are considered. The approach is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state and transient processes of the resonant scattering of electromagnetic waves by the infinite and compact periodic structures. © 2012 IEEE.

  6. A study of AFM-based scratch process on polycarbonate surface and grating application

    International Nuclear Information System (INIS)

    Choi, Chul Hyun; Lee, Dong Jin; Sung, Jun-Ho; Lee, Min Woo; Lee, Seung-Gol; Park, Se-Geun; Lee, El-Hang; O, Beom-Hoan

    2010-01-01

    We report on the possibility of applying atomic force microscope (AFM) lithography to draw micro/nano-structures on the surface of a polycarbonate (PC) substrate. We also fabricated a grating structure on the PC surface using the scratch method. An AFM silicon tip coated with a diamond layer was utilized as a cutting tool to scratch the surface of the sample. In order to obtain pattern depth deeper than the control method of interaction force, we used a scanner movement method which the sample scanner moves along the Z-axis. A grating of 100 μm x 150 μm was fabricated by the step and repeat method wherein the sample stage is moved in the direction of the XY-axis. The period and the depth of the grating are 500 and 50 nm, respectively. Light of 632.8 nm wavelength was diffracted on the surface of the PC substrate.

  7. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  8. Mueller matrix ellipsometric detection of profile asymmetry in nanoimprinted grating structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Chuanwei; Jiang, Hao [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Shiyuan, E-mail: shyliu@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-21

    Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the optical model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.

  9. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  10. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  11. Multicore optical fiber grating array fabrication for medical sensing applications

    Science.gov (United States)

    Westbrook, Paul S.; Feder, K. S.; Kremp, T.; Taunay, T. F.; Monberg, E.; Puc, G.; Ortiz, R.

    2015-03-01

    In this work we report on a fiber grating fabrication platform suitable for parallel fabrication of Bragg grating arrays over arbitrary lengths of multicore optical fiber. Our system exploits UV transparent coatings and has precision fiber translation that allows for quasi-continuous grating fabrication. Our system is capable of both uniform and chirped fiber grating array spectra that can meet the demands of medical sensors including high speed, accuracy, robustness and small form factor.

  12. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  13. Design of cross-sensitive temperature and strain sensor based on sampled fiber grating

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohang

    2017-02-01

    Full Text Available In this paper,a cross-sensitive temperature and strain sensor based on sampled fiber grating is designed.Its temperature measurement range is -50-200℃,and the strain measurement rangeis 0-2 000 με.The characteristics of the sensor are obtained using simulation method.Utilizing SPSS software,we found the dual-parameter matrix equations of measurement of temperature and strain,and calibrated the four sensing coefficients of the matrix equations.

  14. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    Semwal, Girish; Rastogi, Vipul

    2014-01-01

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  15. Experimental study of broadband unidirectional splitting in photonic crystal gratings with broken structural symmetry

    Science.gov (United States)

    Colak, Evrim; Serebryannikov, Andriy E.; Ozgur Cakmak, A.; Ozbay, Ekmel

    2013-04-01

    It is experimentally demonstrated that the combination of diode and splitter functions can be realized in one broadband reciprocal device. The suggested performance is based on the dielectric photonic crystal grating whose structural symmetry is broken owing to non-deep corrugations placed at one of the two interfaces. The study has been performed at a normally incident beam-type illumination obtained from a microwave horn antenna. The two unidirectionally transmitted, deflected beams can show large magnitude and high contrast, while the angular distance between their maxima is 90° and larger. The dual-band unidirectional splitting is possible when using TM and TE polarizations.

  16. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  17. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  18. Deep-etched sinusoidal polarizing beam splitter grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  19. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    Science.gov (United States)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  20. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  1. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...

  2. Cylinder and metal grating polarization beam splitter

    Science.gov (United States)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  3. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  4. Disorder effects in subwavelength grating metamaterial waveguides

    Czech Academy of Sciences Publication Activity Database

    Ortega-Moñux, A.; Čtyroký, Jiří; Cheben, P.; Schmid, J. H.; Wang, S.; Molina-Fernández, I.; Halíř, R.

    2017-01-01

    Roč. 25, č. 11 (2017), s. 12222-12236 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA16-00329S Institutional support: RVO:67985882 Keywords : Subwavelength grating * Integrated photonics * Diffraction effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.307, year: 2016

  5. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  6. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  7. Development of a segmented grating mount system for FIREX-1

    International Nuclear Information System (INIS)

    Ezaki, Y; Tabata, M; Kihara, M; Horiuchi, Y; Endo, M; Jitsuno, T

    2008-01-01

    A mount system for segmented meter-sized gratings has been developed, which has a high precision grating support mechanism and drive mechanism to minimize both deformation of the optical surfaces and misalignments in setting a segmented grating for obtaining sufficient performance of the pulse compressor. From analytical calculations, deformation of the grating surface is less than 1/20 lambda RMS and the estimated drive resolution for piston and tilt drive of the segmented grating is 1/20 lambda, which are both compliant with the requirements for the rear-end subsystem of FIREX-1

  8. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  9. Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dual-hemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke Patients: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Takashi Takebayashi

    2017-10-01

    Full Text Available In this study, we investigated the effects of dual-hemisphere transcranial direct current stimulation (dual-tDCS of both the affected (anodal tDCS and non-affected (cathodal tDCS primary motor cortex, combined with peripheral neuromuscular electrical stimulation (PNMES, on the effectiveness of constraint-induced movement therapy (CIMT as a neurorehabilitation intervention in chronic stroke. We conducted a randomized controlled trial of feasibility, with a single blind assessor, with patients recruited from three outpatient clinics. Twenty chronic stroke patients were randomly allocated to the control group, receiving conventional CIMT, or the intervention group receiving dual-tDCS combined with PNMES before CIMT. Patients in the treatment group first underwent a 20-min period of dual-tDCS, followed immediately by PNMES, and subsequent CIMT for 2 h. Patients in the control group only received CIMT (with no pretreatment stimulation. All patients underwent two CIMT sessions, one in the morning and one in the afternoon, each lasting 2 h, for a total of 4 h of CIMT per day. Upper extremity function was assessed using the Fugl-Meyer Assessment (primary outcome, as well as the amount of use (AOU and quality of movement (QOM scores, obtained via the Motor Activity Log (secondary outcome. Nineteen patients completed the study, with one patient withdrawing after allocation. Compared to the control group, the treatment improvement in upper extremity function and AOU was significantly greater in the treatment than control group (change in upper extremity score, 9.20 ± 4.64 versus 4.56 ± 2.60, respectively, P < 0.01, η2 = 0.43; change in AOU score, 1.10 ± 0.65 versus 0.62 ± 0.85, respectively, P = 0.02, η2 = 0.52. There was no significant effect of the intervention on the QOM between the intervention and control groups (change in QOM score, 1.00 ± 0.62 versus 0.71 ± 0.72, respectively, P = 0.07, η2

  10. Three-axis force sensor with fiber Bragg grating.

    Science.gov (United States)

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  11. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  12. The differential method for grating efficiencies implemented in mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, V.; McKinney, W. [Lawrence Berkeley Lab., CA (United States); Palmer, C. [Milton Co., Rochester, NY (United States). Roy Analytical Products Div.

    1993-08-01

    In order to facilitate the accurate calculation of diffraction grating efficiencies in the soft x-ray region, we have implemented the differential method of Neviere and Vincent in Mathematica [1]. This simplifies the programming to maximize the transparency of the theory for the user. We alleviate some of the overhead burden of the Mathematica program by coding the time-consuming numerical integration in C subprograms. We recall the differential method directly from Maxwell`s equations. The pseudo-periodicity of the grating profile and the electromagnetic fields allows us to use their Fourier series expansions to formulate an infinite set of coupled differential equations. A finite subset of the equations are then numerically integrated using the Numerov method for the transverse electric (TE) case and a fourth-order Runge-Kutta algorithm for the transverse magnetic (TM) case. We have tested our program by comparisons with the scalar theory and with published theoretical results for the blazed, sinusoidal and square wave profiles. The Reciprocity Theorem has also been used as a means to verify the method. We have found it to be verified for several cases to within the computational accuracy of the method.

  13. Dual Entwining Structures and Dual Entwined Modules

    OpenAIRE

    Abuhlail, Jawad Y.

    2003-01-01

    In this note we introduce and investigate the concepts of dual entwining structures and dual entwined modules. This generalizes the concepts of dual Doi-Koppinen structures and dual Doi-Koppinen modules introduced (in the infinite case over rings) by the author is his dissertation.

  14. A low-cost and temperature-insensitive fibre Bragg grating sensor for monitoring localized strain concentrations

    International Nuclear Information System (INIS)

    Davis, C E; Thompson, A; Li, H C H; Dethlefsen, A F; Stoddart, P R

    2009-01-01

    A simple, self-diagnostic strain sensor is described, based on a strongly reflective optical fibre Bragg grating illuminated by a broadband source. The total reflected power from these gratings is shown to be a function of the strain gradient experienced by the grating. This is because a change in pitch within a section of the grating results in the emergence of reflected energy in other spectral regions, without any significant reduction in the peak intensity at the Bragg wavelength. Thus, the presence of a localized strain can be inferred directly from an intensity measurement without the need for an optical filter or other more complex interrogation schemes. For spectrally flat light sources, the measurement is relatively insensitive to environmental temperature changes. The sensing mechanism can also be considered 'self-diagnostic' as a signal is returned by the grating even under zero load unless the sensor has failed. Modelling results are presented to determine the minimum grating strength required to achieve this effect, while the technique has been experimentally verified by measuring the strain transfer on a loaded scarf repair joint at room and elevated temperatures. The scarf repair was loaded to failure and a reduction in strain transfer was observed as the failure grew along the bondline, in accordance with finite element modelling results

  15. [Dual pathology].

    Science.gov (United States)

    Rougier, A

    2008-05-01

    Dual pathology is defined as the association of two potentially epileptogenic lesions, hippocampal (sclerosis, neuronal loss) and extrahippocampal (temporal or extratemporal). Epileptic activity may be generated by either lesion and the relative importance of every lesion's epileptogenicity conditions the surgical strategy adopted. Most frequently associated with hippocampal sclerosis are cortical dysplasias. The common physiopathology of the two lesions is not clearly established. Extrahippocampal lesions may be undetectable on MRI (microdysgenesis, for example) and ictal discharge patterns may vary among dual pathology patients. The surgical strategy depends on the location of the extrahippocampal lesion and its relative role in seizure generation; however, reported surgical results suggest that simultaneous resection of mesial temporal structures along with the extrahippocampal lesion should be performed.

  16. High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design

    Science.gov (United States)

    2016-12-16

    construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph

  17. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  18. Note: Strain sensitivity comparison between fiber Bragg gratings inscribed on 125 and 80 micron cladding diameter fibers, case study on the solidification monitoring of a photo-curable resin

    Energy Technology Data Exchange (ETDEWEB)

    Maccioni, E. [Dipartimento di Fisica, Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare (INFN) sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Morganti, M. [Istituto Nazionale di Fisica Nucleare (INFN) sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Accademia Militare di Livorno, Viale Italia 72, 57100 Livorno (Italy); Brandi, F., E-mail: fernando.brandi@ino.it [Nanophysics Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56124 Pisa (Italy)

    2015-02-15

    The influence of fiber Bragg grating diameter when measuring strain is investigated and quantified. Two fiber Bragg gratings with bare cladding diameter of 125 μm and 80 μm are produced by excimer laser irradiation through a phase mask, and are used to simultaneously monitor the Bragg wavelength shift due to the strain produced by the solidification of a photo-curable resin during light exposure. It is found that the ratio of the measured strains in the two fiber Bragg gratings is close to the inverse ratio of the fiber’s cladding diameter. These results represent a direct simultaneous comparison between 125 μm and 80 μm diameter fiber Bragg grating strain sensors, and demonstrate the feasibility of strain measurements in photo-curable resins using bare 80 μm cladding diameter fiber Bragg gratings with an increased sensitivity and spatial resolution compared with standard 125 μm diameter fiber Bragg gratings.

  19. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  20. Theory of Fiber Optical Bragg Grating: Revisited

    Science.gov (United States)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  1. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  2. Varied line-space gratings: past, present and future

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1985-08-01

    A classically ruled diffraction grating consists of grooves which are equidistant, straight and parallel. Conversely, the so-called ''holographic'' grating (formed by the interfering waves of coherent visible light), although severely constrained by the recording wavelength and recording geometry, has grooves which are typically neither equidistant, straight nor parallel. In contrast, a varied line-space (VLS) grating, in common nomenclature, is a design in which the groove positions are relatively unconstrained yet possess sufficient symmetry to permit mechanical ruling. Such seemingly exotic gratings are no longer only a theoretical curiosity, but have been ruled and used in a wide variety of applications. These include: (1) aberration-corrected normal incidence concave gratings for Seya-Namioka monochromators and optical de-multiplexers, (2) flat-field grazing incidence concave gratings for plasma diagnostics, (3) aberration-corrected grazing incidence plane gratings for space-borne spectrometers, (4) focusing grazing incidence plane grating for synchrotron radiation monochromators, and (5) wavefront generators for visible interferometry of optical surfaces (particularly aspheres). Future prospects of VLS gratings as dispersing elements, wavefront correctors and beamsplitters appear promising. The author discusses the history of VLS gratings, their present applications, and their potential in the future. 61 refs., 24 figs

  3. Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rijn, Rick R. van; Wittenberg, Rianne [Academic Medical Centre Amsterdam, Department of Radiology, Amsterdam Zuid-Oost (Netherlands); Boot, Annemieke; Sluis, Inge M. van der; MuinckKeizer-Schrama, Sabine M.P.F. de [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Endocrinology, Rotterdam (Netherlands); Heuvel-Eibrink, Marry M. van den [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Haematology/Oncology, Rotterdam (Netherlands); Lequin, Maarten H. [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Radiology, Rotterdam (Netherlands); Kuijk, Cornelis Van [University Medical Centre ' Radboud' , Department of Radiology, Nijmegen (Netherlands)

    2006-03-15

    In recent years interest in bone densitometry in children has increased. To evaluate the clinical application of digital X-ray radiogrammetry (DXR) and compare the results with those of dual-energy X-ray absorptiometry (DXA). A total of 41 children with acute lymphoblastic leukaemia (ALL) and 26 children with growth hormone deficiency (GHD) were included in this longitudinal study. Radiographs of the left hand were obtained and used for DXR. DXA of the total body and of the lumbar spine was performed. In both study populations significant correlations between DXR and DXA were found, and, with the exception of the correlation between DXR bone mineral density (DXR-BMD) and bone mineral apparent density in the GHD population, all correlations had a P-value of <0.001. During treatment a change in DXR-BMD was found in children with GHD. Our study showed that DXR in a paediatric population shows a strong correlation with DXA of the lumbar spine and total body and that it is able to detect a change in BMD during treatment. (orig.)

  4. Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency

    International Nuclear Information System (INIS)

    Rijn, Rick R. van; Wittenberg, Rianne; Boot, Annemieke; Sluis, Inge M. van der; MuinckKeizer-Schrama, Sabine M.P.F. de; Heuvel-Eibrink, Marry M. van den; Lequin, Maarten H.; Kuijk, Cornelis Van

    2006-01-01

    In recent years interest in bone densitometry in children has increased. To evaluate the clinical application of digital X-ray radiogrammetry (DXR) and compare the results with those of dual-energy X-ray absorptiometry (DXA). A total of 41 children with acute lymphoblastic leukaemia (ALL) and 26 children with growth hormone deficiency (GHD) were included in this longitudinal study. Radiographs of the left hand were obtained and used for DXR. DXA of the total body and of the lumbar spine was performed. In both study populations significant correlations between DXR and DXA were found, and, with the exception of the correlation between DXR bone mineral density (DXR-BMD) and bone mineral apparent density in the GHD population, all correlations had a P-value of <0.001. During treatment a change in DXR-BMD was found in children with GHD. Our study showed that DXR in a paediatric population shows a strong correlation with DXA of the lumbar spine and total body and that it is able to detect a change in BMD during treatment. (orig.)

  5. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters.

    Science.gov (United States)

    Xiao, Feng; Chen, Gang S; Hulsey, J Leroy

    2017-10-20

    In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG) tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  6. Enhanced sensitivity fibre Bragg grating (FBG) load sensor

    International Nuclear Information System (INIS)

    Correia, Ricardo; Chehura, Edmon; Li, Jin; James, Stephen W; Tatam, Ralph P

    2010-01-01

    The characterization of a load sensor based on the transverse loading of a subsection of a fibre Bragg grating (FBG) embedded within a cube of epoxy resin is presented. When the epoxy resin cube is loaded transverse to the axis of the fibre, its deformation transduces the load to a strain along the axis of the optical fibre, which changes the period of the embedded section of the FBG. This creates a spectral dropout within the bandwidth of the FBG, with an absolute wavelength that is linearly dependent on the applied load. This technique enhances the sensitivity of the FBG to transverse loading by a factor of 15, to 2.9 × 10 −2 ± 0.01 nm N −1 , when compared to the direct transverse loading of a bare fibre, and also protects the fibre from mechanical damage at the loading point

  7. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2017-10-01

    Full Text Available In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

  8. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    Science.gov (United States)

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  9. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  10. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min; Zhao, Fuli [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275 (China); Cheng, Ya; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai, 201800 (China)

    2013-02-15

    Nowadays, plasmonics aiming at manipulating light beyond the diffraction limit has aroused great interest on account of the promise of nanoscale optical devices. Generally, the ability to break diffraction barrier is achieved via controlling surface plasmons (SPs) on artificial structures as products of human ingenuity. Here, nevertheless, it is demonstrated that in short-pulse laser ablation ultrafast active plasmonic structures spontaneously generate by virtue of plasmonic effects rather than human will. First, with the experimental results on ZnO, Si, and GaAs, explicit evidence is provided for the grating-splitting phenomenon that acts as a direct route for the formation of laser-induced deep-subwavelength gratings. The splitting mechanism can break through the diffraction limit and push laser-induced structures towards the nanoscale. Then, through comprehensive numerical studies based on the viewpoint of plasmonics, it can be confirmed that the grating-splitting phenomenon originates in the conversion of SP modes from the resonant to the nonresonant mode and further to the inphase or antiphase asymmetric mode. In short, plasmonic effects play an important role in ultrafast laser-induced grating splitting towards the nanoscale, which will provide new insights into the mechanisms of ultrafast laser-induced nanostructures. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale

    International Nuclear Information System (INIS)

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    Nowadays, plasmonics aiming at manipulating light beyond the diffraction limit has aroused great interest on account of the promise of nanoscale optical devices. Generally, the ability to break diffraction barrier is achieved via controlling surface plasmons (SPs) on artificial structures as products of human ingenuity. Here, nevertheless, it is demonstrated that in short-pulse laser ablation ultrafast active plasmonic structures spontaneously generate by virtue of plasmonic effects rather than human will. First, with the experimental results on ZnO, Si, and GaAs, explicit evidence is provided for the grating-splitting phenomenon that acts as a direct route for the formation of laser-induced deep-subwavelength gratings. The splitting mechanism can break through the diffraction limit and push laser-induced structures towards the nanoscale. Then, through comprehensive numerical studies based on the viewpoint of plasmonics, it can be confirmed that the grating-splitting phenomenon originates in the conversion of SP modes from the resonant to the nonresonant mode and further to the inphase or antiphase asymmetric mode. In short, plasmonic effects play an important role in ultrafast laser-induced grating splitting towards the nanoscale, which will provide new insights into the mechanisms of ultrafast laser-induced nanostructures. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Research on robot navigation vision sensor based on grating projection stereo vision

    Science.gov (United States)

    Zhang, Xiaoling; Luo, Yinsheng; Lin, Yuchi; Zhu, Lei

    2016-10-01

    A novel visual navigation method based on grating projection stereo vision for mobile robot in dark environment is proposed. This method is combining with grating projection profilometry of plane structured light and stereo vision technology. It can be employed to realize obstacle detection, SLAM (Simultaneous Localization and Mapping) and vision odometry for mobile robot navigation in dark environment without the image match in stereo vision technology and without phase unwrapping in the grating projection profilometry. First, we research the new vision sensor theoretical, and build geometric and mathematical model of the grating projection stereo vision system. Second, the computational method of 3D coordinates of space obstacle in the robot's visual field is studied, and then the obstacles in the field is located accurately. The result of simulation experiment and analysis shows that this research is useful to break the current autonomous navigation problem of mobile robot in dark environment, and to provide the theoretical basis and exploration direction for further study on navigation of space exploring robot in the dark and without GPS environment.

  13. An X-ray grazing incidence phase multilayer grating

    CERN Document Server

    Chernov, V A; Mytnichenko, S V

    2001-01-01

    An X-ray grazing incidence phase multilayer grating, representing a thin grating placed on a multilayer mirror, is proposed. A high efficiency of grating diffraction can be obtained by the possibility of changing the phase shift of the wave diffracted from the multilayer under the Bragg and total external reflection conditions. A grazing incidence phase multilayer grating consisting of Pt grating stripes on a Ni/C multilayer and optimized for the hard X-ray range was fabricated. Its diffraction properties were studied at photon energies of 7 and 8 keV. The obtained maximum value of the diffraction efficiency of the +1 grating order was 9% at 7 keV and 6.5% at 8 keV. The data obtained are in a rather good accordance with the theory.

  14. Towards freeform curved blazed gratings using diamond machining

    Science.gov (United States)

    Bourgenot, C.; Robertson, D. J.; Stelter, D.; Eikenberry, S.

    2016-07-01

    Concave blazed gratings greatly simplify the architecture of spectrographs by reducing the number of optical components. The production of these gratings using diamond-machining offers practically no limits in the design of the grating substrate shape, with the possibility of making large sag freeform surfaces unlike the alternative and traditional method of holography and ion etching. In this paper, we report on the technological challenges and progress in the making of these curved blazed gratings using an ultra-high precision 5 axes Moore-Nanotech machine. We describe their implementation in an integral field unit prototype called IGIS (Integrated Grating Imaging Spectrograph) where freeform curved gratings are used as pupil mirrors. The goal is to develop the technologies for the production of the next generation of low-cost, compact, high performance integral field unit spectrometers.

  15. Apodized grating coupler using fully-etched nanostructures

    International Nuclear Information System (INIS)

    Wu Hua; Li Chong; Guo Xia; Li Zhi-Yong

    2016-01-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. (paper)

  16. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  17. Dual High-Resolution α-Glucosidase and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and Major Constituents Directly from the Crude Extract of Pueraria lobata

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Qinglei, Sun

    2015-01-01

    The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms...... from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC...... chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3′-methoxydaidzein 8-C-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside and 6″-O-malonyl-3′-methoxydaidzin, as well as an unstable compound...

  18. Dual Diagnosis - Multiple Languages

    Science.gov (United States)

    ... National Library of Medicine Comorbidity or dual diagnosis - Opioid addiction, part 9 - English PDF Comorbidity or dual diagnosis - Opioid addiction, part 9 - español (Spanish) PDF Comorbidity or dual ...

  19. The cross waveguide grating: proposal, theory and applications.

    Science.gov (United States)

    Muñoz, Pascual; Pastor, Daniel; Capmany, José

    2005-04-18

    In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

  20. Observation of narrowband intrinsic spectra of Brillouin dynamic gratings.

    Science.gov (United States)

    Song, Kwang Yong; Yoon, Hyuk Jin

    2010-09-01

    We experimentally demonstrate that the reflection spectrum of a Brillouin dynamic grating in a polarization-maintaining fiber can be much narrower than the intrinsic linewidth of the stimulated Brillouin scattering, matching well with the theory of a fiber Bragg grating in terms of the linewidth and the reflectivity. A 3 dB bandwidth as narrow as 10.5 MHz is observed with the Brillouin dynamic grating generated in a 9 m uniform fiber.

  1. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    National Research Council Canada - National Science Library

    Hsiao, Vincent K; Waldeisen, John R; Lloyd, Pamela F; Bunning, Timothy J; Huang, Tony J

    2007-01-01

    .... The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a functionalized pre-polymer syrup that facilitates the immobilization of biomolecules...

  2. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  3. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  4. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  5. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  6. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  7. Some properties of dual and approximate dual of fusion frames

    OpenAIRE

    Arefijamaal, Ali Akbar; Neyshaburi, Fahimeh Arabyani

    2016-01-01

    In this paper we extend the notion of approximate dual to fusion frames and present some approaches to obtain dual and approximate alternate dual fusion frames. Also, we study the stability of dual and approximate alternate dual fusion frames.

  8. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    Science.gov (United States)

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  9. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    Science.gov (United States)

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  10. High-accuracy measurement and compensation of grating line-density error in a tiled-grating compressor

    Science.gov (United States)

    Zhao, Dan; Wang, Xiao; Mu, Jie; Li, Zhilin; Zuo, Yanlei; Zhou, Song; Zhou, Kainan; Zeng, Xiaoming; Su, Jingqin; Zhu, Qihua

    2017-02-01

    The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.

  11. Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.

    Science.gov (United States)

    Sun, Zhe; Zheng, Desheng; Baldelli, Steven

    2017-02-21

    A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.

  12. Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors.

    Science.gov (United States)

    Wang, Rui; Li, Tao; Shao, Xiumei; Li, Xue; Huang, Xiaqi; Shao, Jinhai; Chen, Yifang; Gong, Haimei

    2015-07-08

    There are currently growing needs for polarimetric imaging in infrared wavelengths for broad applications in bioscience, communications and agriculture, etc. Subwavelength metallic gratings are capable of separating transverse magnetic (TM) mode from transverse electric (TE) mode to form polarized light, offering a reliable approach for the detection in polarization way. This work aims to design and fabricate subwavelength gold gratings as polarizers for InP-based InGaAs sensors in 1.0-1.6 μm. The polarization capability of gold gratings on InP substrate with pitches in the range of 200-1200 nm (fixed duty cycle of 0.5) has been systematically studied by both theoretical modeling with a finite-difference time-domain (FDTD) simulator and spectral measurements. Gratings with 200 nm lines/space in 100-nm-thick gold have been fabricated by electron beam lithography (EBL). It was found that subwavelength gold gratings directly integrated on InP cannot be applied as good polarizers, because of the existence of SPP modes in the detection wavelengths. An effective solution has been found by sandwiching the Au/InP bilayer using a 200 nm SiO2 layer, leading to significant improvement in both TM transmission and extinction ratio. At 1.35 μm, the improvement factors are 8 and 10, respectively. Therefore, it is concluded that the Au/SiO2/InP trilayer should be a promising candidate of near-infrared polarizers for the InP-based InGaAs sensors.

  13. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  14. Dual-beam CRT

    International Nuclear Information System (INIS)

    1975-01-01

    A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described. The electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a large-diameter tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent to the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion

  15. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  16. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon; Chung, Suk-Ho; Yoo, Chun Sang

    2017-01-01

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  17. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau

    2017-06-10

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  18. Stereo chromatic contrast sensitivity model to blue-yellow gratings.

    Science.gov (United States)

    Yang, Jiachen; Lin, Yancong; Liu, Yun

    2016-03-07

    As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.

  19. Caregiver talk to young Spanish-English bilinguals: Comparing direct observation and parent-report measures of dual-language exposure

    Science.gov (United States)

    Marchman, Virginia A.; Martínez, Lucía Z.; Hurtado, Nereyda; Grüter, Theres; Fernald, Anne

    2016-01-01

    In research on language development by bilingual children, the early language environment is commonly characterized in terms of the relative amount of exposure a child gets to each language based on parent report. Little is known about how absolute measures of child-directed speech in two languages relate to language growth. In this study of 3-year-old Spanish-English bilinguals (n = 18), traditional parent-report estimates of exposure were compared to measures of the number of Spanish and English words children heard during naturalistic audio recordings. While the two estimates were moderately correlated, observed numbers of child-directed words were more consistently predictive of children's processing speed and standardized test performance, even when controlling for reported proportion of exposure. These findings highlight the importance of caregiver engagement in bilingual children's language outcomes in both of the languages they are learning. PMID:27197746

  20. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  1. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  2. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    International Nuclear Information System (INIS)

    Arif, Khalid Mahmood

    2016-01-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.

  3. Photoanisotropic polarization gratings beyond the small recording angle regime

    NARCIS (Netherlands)

    Xu, M.; De Boer, D.K.G.; Van Heesch, C.M.; Wachters, A.J.H.; Urbach, H.P.

    2010-01-01

    Polarization gratings can be realized by polarization holographic recording in photoanisotropic materials. In this paper, we study two types of polarization gratings. One is recorded with two orthogonally circularly (OC) polarized beams and the other one with two orthogonally linearly (OL) polarized

  4. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  5. Smith-Purcell radiation from concave dotted gratings

    Science.gov (United States)

    Sergeeva, D. Yu.; Tishchenko, A. A.; Aryshev, A. S.; Strikhanov, M. N.

    2018-02-01

    We present the first-principles theory of Smith-Purcell effect from the concave dotted grating consisting of bent chains of separated micro- or nanoparticles. The numerical analysis demonstrates that the obtained spectral-angular distributions change significantly depending on the structure of the grating.

  6. Talbot effect of the defective grating in deep Fresnel region

    Science.gov (United States)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  7. Analysis of the optical parameters of phase holographic gratings

    Directory of Open Access Journals (Sweden)

    Є.О. Тихонов

    2008-03-01

    Full Text Available  Suitability of 2- wave approximation of the coupled waves theory tor description of holographic phase gratings recorded on photopolymer compound ФПК-488 is proved. Using the basic formulas of the theory, main grating optical parameters - a depth of modulation and finished thickness are not measured immediately are determined.

  8. Slit and phase grating diffraction with a double crystal diffractometer

    International Nuclear Information System (INIS)

    Treimer, Wolfgang; Hilger, Andre; Strobl, Markus

    2006-01-01

    The lateral coherence properties of a neutron beam (λ=0.5248nm) in a double crystal diffractometer (DCD) were studied by means of single slit diffraction and by diffraction by different perfect Silicon phase gratings. Perfect agreements were found for the lateral coherence length measured with the slit and for the one determined by Silicon phase gratings, however, some peculiarities are still present

  9. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  10. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    Science.gov (United States)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  11. Study on talbot pattern for grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)

    2015-04-15

    One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

  12. A Single-Element Plane Grating Monochromator

    Directory of Open Access Journals (Sweden)

    Michael C. Hettrick

    2016-01-01

    Full Text Available Concerted rotations of a self-focused varied line-space diffraction grating about its groove axis and surface normal define a new geometric class of monochromator. Defocusing is canceled, while the scanned wavelength is reinforced at fixed conjugate distances and horizontal deviation angle. This enables high spectral resolution over a wide band, and is of particular advantage at grazing reflection angles. A new, rigorous light-path formulation employs non-paraxial reference points to isolate the lateral ray aberrations, with those of power-sum ≤ 3 explicitly expanded for a plane grating. Each of these 14 Fermat equations agrees precisely with the value extracted from numerical raytrace simulations. An example soft X-ray design (6° deviation angle and 2 × 4 mrad aperture attains a resolving power > 25 , 000 over a three octave scan range. The proposed rotation scheme is not limited to plane surfaces or monochromators, providing a new degree of freedom in optical design.

  13. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.

    Science.gov (United States)

    Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M

    1995-03-15

    We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.

  14. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  15. Polarization sensitivity testing of off-plane reflection gratings

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  16. Unified design of sinusoidal-groove fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lu, Peng

    2010-10-20

    A general design rule of deep-etched subwavelength sinusoidal-groove fused-silica grating as a highly efficient polarization-independent or polarization-selective device is studied based on the simplified modal method, which shows that the device structure depends little on the incident wavelength, but mainly on the ratio of groove depth to incident wavelength and the ratio of wavelength to grating period. These two ratios could be used as the design guidelines for wavelength-independent structure from deep ultraviolet to far infrared. The optimized grating profile with a different function as a polarizing beam splitter, a polarization-independent two-port beam splitter, or a polarization-independent grating with high efficiency of -1st order is obtained at a wavelength of 1064 nm, and verified by using the rigorous coupled-wave analysis. The performance of the sinusoidal grating is better than a conventional rectangular one, which could be useful for practical applications.

  17. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  18. Optimization of planar metallic nonrefracting transmission-grating profiles for M/sup th/-order intensity maximization in the soft x-ray range

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.L.; Lindau, I.

    1982-01-01

    In this paper, we derive the thickness profiles of metallic transmission-grating bars which maximize either the power throughput into the m/sup th/ diffracted order or the ratio of the m/sup th/-order diffracted power to the total output power (in the soft x-ray range). The derivation is performed for both general and symmetric bar shapes and for the two physically important cases of continuous gratings and gratings with integral bars. The solutions derived are shown to be valid for cases where the optical constants are generalized to be functions of position in a direction perpendicular to the grating bars. Examples of some optimum profiles for gold in the soft x-ray range are computed on the basis of the presented analysis and tabulated for convenient reference. 18 references

  19. Research of physical and mechanical properties of electric steel, providing for the grate bars of the roasting and sintering machines improved operational stability

    Directory of Open Access Journals (Sweden)

    Олександр Давидович Учитель

    2016-07-01

    Full Text Available The grate bars of the conveyor roasting and sintering machines work in severe, aggressive dust and gaseous medium, under cyclic modes «heating-cooling», as well as under the load of iron ore agglomerates what results in bending stress in the body of the grate bar. Consequently, electric steel grate bar must be resistant to chemical and erosion processes, high cyclically changing temperature and have high mechanical properties. The paper discusses the conditions of the grate bars of conveyor roasting and sintering machines wear, depending on the adopted loading schemes. The materials to be processed can be loaded directly from the hopper (direct download or through the use of a feeder (drum-type feeder, roller, etc.. A simplified method to predict the grate bars surface wear on the strength of a number of assumptions has been developed: normal reaction of the pallet surface to the impact of the batch is assumed constant, equal to the maximum of its value when the pallet is in horizontal position; a layer of the batch moves as a rigid body; surface batch layer sliding velocity as related to the pallet surface is taken medium during the relative motion of the layer and equal to the linear velocity of the pallets; the side faces of the grate bars wear is related to related to the surface wear by linear dependence. The dependence of the wear on the friction forces and the steel wear resistance coefficient has been found out

  20. The influence of grating shape formation fluctuation on DFB laser diode threshold condition

    Science.gov (United States)

    Bao, Shiwei; Song, Qinghai; Xie, Chunmei

    2018-03-01

    Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ , and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.

  1. Integrated optical electric field sensor based on a Bragg grating in lithium niobate

    Science.gov (United States)

    Runde, D.; Brunken, S.; Rüter, C. E.; Kip, D.

    2007-01-01

    We demonstrate a new sensor concept for the measurement of oscillating electric fields that is based on Bragg gratings in LiNbO3:Ti channel waveguides. This miniaturized sensor that works in a retroreflective scheme does not require metallic electrodes and can be directly immersed in an oscillating electric field. The electric field induces a shift of the Bragg wavelength of the reflection grating that is due to the electro-optic effect. The operating point of the sensor is chosen by adjusting the laser wavelength to the slope of the spectral reflectivity function of the grating. In this way the magnitude of an external electric field is measured precisely as the amplitude of modulated reflected light intensity by using a lock-in amplifier. The sensor principle is demonstrated by detecting low-frequency electric fields ranging from 50 V/cm to 5 kV/cm without any conducting parts of the sensor head. Furthermore, the ability of the sensor to determine the three-dimensional orientation of an external electric field by a single rotation along the waveguide direction is demonstrated.

  2. Development of a contact probe incorporating a Bragg grating strain sensor for nano coordinate measuring machines

    International Nuclear Information System (INIS)

    Ji, H; Hsu, H-Y; Kong, L X; Wedding, A B

    2009-01-01

    This paper presents a novel optical fibre based micro contact probe system with high sensitivity and repeatability. In this optical fibre probe with a fused spherical tip, a fibre Bragg grating has been utilized as a strain sensor in the probe stem. When the probe tip contacts the surface of the part, a strain will be induced along the probe stem and will produce a Bragg wavelength shift. The contact signal can be issued once the wavelength shift signal is produced and demodulated. With the fibre grating sensor element integrated into the probe directly, the probe system shows a high sensitivity. In this work, the strain distributions along the probe stem with the probe under axial and lateral load are analysed. A simulation of the strain distribution was performed using the finite element package ANSYS 11. Performance tests using a piezoelectric transducer stage with a displacement resolution of 1.5 nm yielded a measurement resolution of 60 nm under axial loading

  3. Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Giovanna Palermo

    2017-01-01

    Full Text Available This work investigates the heat delivered by a mono-layer 1D grating of gold nanoparticles (GNPs created by photo-reduction through two-photon direct laser writing (2P-DLW in a poly-vinyl alcohol (PVA matrix doped with HAuCl4, under resonant laser radiation. We drop cast a film of a PVA + HAuCl4 mixture onto a glass substrate, in which we create gratings of 1 mm2 made by stripes of GNPs characterized by high polydispersivity. We demonstrate that, by controlling the pitch of the GNP stripes, we obtain different values of the photo-induced temperature variations. In the framework of thermo-plasmonics, the experimental investigation of the heat generation from a monolayer of gold nanoparticles represents a key element as a starting point to design thermo-smart platforms for sensing, solar energy harvesting and thermo-catalysis.

  4. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue.

    Science.gov (United States)

    Kim, Dong-Hyeon; Jeong, Dana; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Seo, Kun-Ho

    2017-11-01

    Kefir consumption inhibits the development of obesity and non-alcoholic fatty liver disease (NALFD) in mice fed 60% high-fat diet (HFD). To identify the key contributor of this effect, we isolated lactic acid bacteria (LAB) from kefir and examined their anti-obesity properties from in vitro screening and in vivo validation. Thirteen kefir LAB isolates were subjected to survivability test using artificial gastrointestinal environment and cholesterol-reducing assay. Lactobacillus kefiri DH5 showed 100% survivability in gastrointestinal environments and reduced 51.6% of cholesterol; thus, this strain was selected for in vivo experiment. Compared to the HFD-saline group, the HFD-DH5 group showed significantly lower body weight (34.68 versus 31.10 g; p kefiri DH5 administration significantly modulated gut microbiota of HFD-fed mice. The hepatic steatosis was significantly milder (Lesion score, 2.1 versus 1.2; p kefiri DH5 upregulated PPAR-α, FABP4, and CPT1 expression in the epididymal adipose tissues (2.29-, 1.77-, and 2.05-fold change, respectively), suggesting a reduction in adiposity by stimulating fatty acid oxidation. L. kefiri DH5 exerts anti-obesity effects by direct reduction of cholesterol in the lumen and upregulation of PPAR-α gene in adipose tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A dual-reservoir remote loading water target system for 18F and 13N production with direct in-target liquid level sensing

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-01-01

    This report describes our universal water target loading system that serves both [ 18 F] and [ 13 N] production targets, and a radionuclide delivery system that is specific for [ 18 F] fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with [ 18 O] enriched water for [ 18 F] fluoride production from the 18 O(p,n) 18 F reaction and natural abundance water for [ 13 N] nitrate/nitrite production from the 16 O(p,α) 13 N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of [ 18 F] fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water

  6. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    Science.gov (United States)

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  7. Plane grating monochromators for synchrotron radiation

    International Nuclear Information System (INIS)

    Howells, M.R.

    1979-01-01

    The general background and theoretical basis of plane grating monochromators (PGM's) is reviewed and the particular case of grazing incidence PGM's suitable for use with synchrotron radiation is considered in detail. The theory of reflection filtering is described and the problem of the finite source distance is shown to be of special importance with high brightness storage rings. The design philosophy of previous instruments is discussed and a new scheme proposed, aimed at dealing with the problem of the finite source distance. This scheme, involving a parabolic collimating mirror fabricated by diamond turning, is considered in the context of Wolter-type telescopes and microscopes. Some practical details concerning an instrument presently under construction using the new design are presented

  8. Gratings in passive and active optical waveguides

    DEFF Research Database (Denmark)

    Berendt, Martin Ole

    1999-01-01

    will not only couple to the backward propagating fundamental mode, but also to cladding modes. Cladding modes are strongly bound, but slightly leaky, higher-order modes in the core-cladding-air index structure. If the waveguide is not surrounded by air, but by a recoating the cladding modes become highly...... attenuated. In either case the cladding mode coupling gives loss on the short wavelength side of the reflection band. The cladding mode coupling loss is a major problem for the utilization of fiber Bragg gratings in wavelength division multiplexed (WDM) system. In this project, a numerical model for cladding...... mode coupling has been developed. The model can predict the spectral location and size of coupling, for various fiber designs. By the aid of this modeling tool, a fiber has been optimized to give low cladding-mode losses. The optimized fiber has been produced and the predicted reduction of cladding...

  9. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    Surface plasmon polaritons (SPPs) are collective electron oscillations, confined at metal-dielectric interfaces. Coupling incident photons to SPPs may lead to spectrally broad field enhancement and confinement below the diffraction limit [1]. This phenomenon facilitates various applications......, including highly sensitive refractive index sensing [2], and plasmonic dipole mirrors for cold atoms [3]. Key to a successful application is a strong photon-to-SPP coupling. To this end, prism-based coupling is classically used, but this method contradicts compact device applications. An alternative...... the proposed plasmonic transmission gratings via near-field optical scanning microscopy (NSOM) and goniometric far field measurements. We support the evidence of our analyses with numerical calculations, carried out via rigorous coupled wave analysis (RCWA) and finite-difference in time-domain (FDTD...

  10. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  11. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  12. Radiative properties tailoring of grating by comb-drive microactuator

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Liu, L.J.; Hsu, P.-F.

    2014-01-01

    Micro-scale grating structures are widely researched in recent years. Although micro-scale fabrication technology is highly advanced today, with grating aspect ratio greater than 25:1 being achievable some fabrication requirements, such as fine groove processing, are still challenging. Comb-drive microactuator is proposed in this paper to be utilized on simple binary grating structures for tailoring or modulating spectral radiation properties by active adjustment. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of proposed structures and to investigate the impacts brought by the geometry and displacement of comb-drive microactuator. The results show that the utilization of comb-drive microactuator on grating improves the absorptance of simple binary grating while avoiding the difficulty fine groove processing. Spectral radiation property tailoring after gratings are fabricated becomes possible with the comb-drive microactuator structure. - Highlights: • A microscale grating structure with comb-driven microactuator is proposed. • The movement of microactuator changes peak absorptance resonance wavelength. • Geometric and displacement effects of comb finger on absorptance are investigated. • Both RCWA and LC circuit models are developed to predict the resonance wavelength. • Resonance frequency equations of LC circuits allow quick design analysis

  13. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  14. Holographic diffraction gratings as laser radiation protection filters

    International Nuclear Information System (INIS)

    Pantelic, D.; Pantelic, G.

    2006-01-01

    Holographic volume diffraction gratings are used as attenuation filters, due to their selective spectral transmission. They can be tailored to reflect or transmit narrow spectral ranges by adjusting spatial frequency of Bragg grating in carefully chosen photosensitive materials, like silver-halide emulsion or di-chromated gelatin layers. If properly recorded and chemically processed, resulting gratings can significantly attenuate light at wavelengths corresponding to various laser spectral lines. Thus, they can be used as filters in laser protection goggles. We analyze the characteristics of Bragg gratings necessary to obtain high attenuation coefficients. Also, their angular selectivity is taken into account and corresponding experimental conditions are investigated. Although di-chromated gelatin seems to be almost ideal material, due to its almost 100% diffraction efficiency, environmental stability is poor (degradation under humid environment), thus making its practical usage difficult. Thus, we have analyzed alternative materials like di-chromated pullulan, which is stable under normal environmental conditions (without drop in diffraction efficiency after prolonged exposure to humidity). Pullulan is polymer (polysaccharide) of biologic origin produced by certain bacteria. If doped with chromium ions it becomes photosensitive, enabling recording of diffraction gratings with spatial frequency of more than 3000 lines/mm. Material is chemically processed by mixture of isopropyl alcohol and water. Both thick and thin layers can be produced by gravity settling. Spectral properties of resulting gratings are analyzed, showing that they can significantly attenuate laser light of particular wavelength, depending of grating period and its slant angle. (authors)

  15. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  16. [Diffraction gratings used in x-ray spectroscopy]: Final report

    International Nuclear Information System (INIS)

    Smith, H.I.

    1988-01-01

    This subcontract was initiated in order to facilitate the development at MIT of technologies for fabricating the very fine diffraction grating required in x-ray spectroscopy at Lawrence Livermore Laboratory (LLL). These gratings are generally gold transmission gratings with spatial periods of 200 nm or less. The major focus of our efforts was to develop a means of fabricating gratings of 100 nm period. We explored two approaches: e-beam fabrication of x-ray lithography masks, and achromatic holographic lithography. This work was pursued by Erik Anderson as a major component of his Ph.D. thesis. Erik was successful in both the e-beam and holographic approaches. However, the e-beam method proved to be highly impractical: exposure times of about 115 days would be required to cover an area of 1 cm 2 . The achromatic holography, on the other hand, should be capable of exposing areas well in excess of 1 cm 2 in times under 1 hour. Moreover, 100 nm-period gratings produced by achromatic holography are coherent over their entire area whereas gratings produced by e-beam lithography are coherent only over areas /approximately/100 μm. The remainder of this report consists of portions excerpted from Erik Anderson's thesis. These contain all the details of our work on 100 nm period gratings. 26 refs., 17 figs

  17. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  18. Design of compressors for FEL pulses using deformable gratings

    Science.gov (United States)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  19. Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control.

    Science.gov (United States)

    Chung, K M; Dong, L; Lu, C; Tam, H Y

    2011-06-20

    We proposed and demonstrated a novel practical fiber Bragg grating (FBG) fabrication setup constructed with high performance linear stages, piezoelectric translation (PZT) stages, and a highly stable continuous wave laser. The FBG fabrication system enables writing of long FBGs by a continuous translate-and-write process and allows implementation of arbitrary chirp and apodization. A key innovation is that the local Bragg wavelength is controlled by a simple movement of the phase mask by a PZT in the direction perpendicular to its surface. The focus position of the two writing beams is not changed during the Bragg wavelength change, an intrinsic feature of the design, ensuring simplicity, robustness and stability. Apodization can be achieved by vibrating the phase mask in the direction parallel to its surface by a PZT. Phase steps can also be inserted in FBGs at any desired locations by stepping the same PZT. A long uniform FBG and a linearly chirped FBG are written to demonstrate the performance of the setup.

  20. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  1. Ultra-compact silicon nitride grating coupler for microscopy systems

    OpenAIRE

    Zhu, Yunpeng; Wang, Jie; Xie, Weiqiang; Tian, Bin; Li, Yanlu; Brainis, Edouard; Jiao, Yuqing; Van Thourhout, Dries

    2017-01-01

    Grating couplers have been widely used for coupling light between photonic chips and optical fibers. For various quantum-optics and bio-optics experiments, on the other hand, there is a need to achieve good light coupling between photonic chips and microscopy systems. Here, we propose an ultra-compact silicon nitride (SiN) grating coupler optimized for coupling light from a waveguide to a microscopy system. The grating coupler is about 4 by 2 mu m(2) in size and a 116 nm 1 dB bandwidth can be...

  2. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  3. Aplanatic grazing incidence diffraction grating: a new optical element

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1986-01-01

    We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution. The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of --200 A

  4. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry

    Science.gov (United States)

    Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2018-05-01

    Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.

  5. Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.

    Science.gov (United States)

    Trimborn, Barbara; Meyer, Pascal; Kunka, Danays; Zuber, Marcus; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Baumbach, Tilo; Koenig, Thomas

    2016-01-21

    X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.

  6. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  7. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure

    Science.gov (United States)

    Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey

    2018-05-01

    In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.

  8. Experimental testing of post-tensioned concrete girders instrumented with optical fibre gratings

    Science.gov (United States)

    Matthys, S.; Taerwe, L.

    2005-05-01

    The integration of optical fibre strain sensors in concrete structures in order to measure deformations has proven to be successful in several applications. Examples of monitored structures by the Magnel Laboratory for Concrete Research are a concrete girder bridge over the Ring Canal by Ghent, a Quay wall at the Ring Canal and a trough girder containing a railway track of a bridge [1,2]. Based on a joint research project the feasibility of integrating Bragg grating sensors in concrete in order to statically and dynamically monitor 17.6 m long prestressed concrete girders has been investigated. During the project 3 post-tensioned concrete girders were tested, submitting them to static and dynamic loading conditions and monitoring the structural behavior with several types of measuring devices, including accelerometers, Bragg gratings, Fabry-Perot gratings, deformeters, crack microscopes, etc. The obtained test results demonstrate the feasibility of optical strain sensors for both static and dynamic measurements. Though it was demonstrated, in the case of dynamic monitoring, that optical strain measurements can be used to directly measure the modal strains, the project also demonstrated that for prestressed concrete the variation in dynamic parameters was insufficient for adequate dynamic monitoring and related damage diagnostics.

  9. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.

    2009-09-11

    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  10. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  11. Dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2003-01-01

    A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions...... are considered and the relation with the dual Youla parameter given. Some applications of the dual Youla parameterisation are considered in connection with the design of controllers and model/performance validation....

  12. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  13. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  14. Grating geophone signal processing based on wavelet transform

    Science.gov (United States)

    Li, Shuqing; Zhang, Huan; Tao, Zhifei

    2008-12-01

    Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.

  15. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  16. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  17. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  18. Distributed Bragg grating frequency control in metallic nano lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Hill, M.T.

    2010-01-01

    We show that Bragg gratings can be readily incorporated into metallic nano-lasers which exploit waveguides with semiconductor cores, via modulation of the waveguide width. This provides a simple way to implement laser wavelength control.

  19. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  20. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  1. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  2. Fabrication of the polarization independent spectral beam combining grating

    Science.gov (United States)

    Liu, Quan; Jin, Yunxia; Wu, Jianhong; Guo, Peiliang

    2016-03-01

    Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions to achieve high-power high-brightness fiber laser output. The spectral beam combining (SBC) is a promising method to achieve high average power output without influencing the beam quality. A polarization independent spectral beam combining grating is one of the key elements in the SBC. In this paper the diffraction efficiency of the grating is investigated by rigorous coupled-wave analysis (RCWA). The theoretical -1st order diffraction efficiency of the grating is more than 95% from 1010nm to 1080nm for both TE and TM polarizations. The fabrication tolerance is analyzed. The polarization independent spectral beam combining grating with the period of 1.04μm has been fabricated by holographic lithography - ion beam etching, which are within the fabrication tolerance.

  3. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    Directory of Open Access Journals (Sweden)

    J. W. He

    2017-07-01

    Full Text Available We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD. The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  4. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  5. Recording multiple holographic gratings in silver-doped ...

    Indian Academy of Sciences (India)

    doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using He–Ne laser (632.8 nm). The role of recording geometry on the dynamic ...

  6. Dual affine isoperimetric inequalities

    Directory of Open Access Journals (Sweden)

    Bin Xiong

    2006-01-01

    Full Text Available We establish some inequalities for the dual -centroid bodies which are the dual forms of the results by Lutwak, Yang, and Zhang. Further, we establish a Brunn-Minkowski-type inequality for the polar of dual -centroid bodies.

  7. The effect of aberrated recording beams on reflecting Bragg gratings

    Science.gov (United States)

    SeGall, Marc; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid B.

    2013-03-01

    The effect of aberrations present in the recording beams of a holographic setup is discussed regarding the period and spectral response of a reflecting volume Bragg grating. Imperfect recording beams result in spatially varying resonant wavelengths and the side lobes of the spectrum are washed out. Asymmetrical spectra, spectral broadening, and a reduction in peak diffraction efficiency may also be present, though these effects are less significant for gratings with wider spectral widths. Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications including spectral beam combining1,2, mode locking3,4, longitudinal and transverse mode selection in lasers5,6, and sensing7,8. For applications requiring narrow spectral selectivity9, or large apertures10, these gratings must have a uniform period throughout the length of the recording medium, which may be on the order of millimeters. However, when using typical recording techniques such as two-beam interference for large aperture gratings and phase-mask recording of fiber gratings, aberrations from the optical elements in the system result in an imperfect grating structure11-13. In this paper we consider the effects of aberrations on large aperture gratings recorded in thick media using the two-beam interference technique. Previous works in analyzing the effects of aberrations have considered the effects of aberrations in a single recording plane where the beams perfectly overlap. Such an approach is valid for thin media (on the order of tens of microns), but for thick recording media (on the order of several millimeters) there will be a significant shift in the positions of the beams relative to each other as they traverse the recording medium. Therefore, the fringe pattern produced will not be constant throughout the grating if one or both beams have a non-uniform wavefront. Such non-uniform gratings may have a wider spectral width, a shifted resonant wavelength, or other problems. It is

  8. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    Science.gov (United States)

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Experimental and numerical studies of rotating drum grate furnace

    Directory of Open Access Journals (Sweden)

    Basista Grzegorz

    2017-01-01

    Full Text Available Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.

  10. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  11. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  12. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  13. The potential of diffraction grating for spatial applications

    Science.gov (United States)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  14. Dynamic theory of neutron diffraction from a moving grating

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru [Moscow State University (Russian Federation); Frank, A. I.; Kulin, G. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  15. A phase mask fiber grating and sensing applications

    Directory of Open Access Journals (Sweden)

    Preecha P. Yupapin

    2003-09-01

    Full Text Available This paper presents an investigation of a fabricated fiber grating device characteristics and its applications, using a phase mask writing technique. The use of a most common UV phase laser (KrF eximer laser, with high intensity light source was focussed to the phase mask for writing on a fiber optic sample. The device (i.e. grating characteristic especially, in sensing application, was investigated. The possibility of using such device for temperature and strain sensors is discussed.

  16. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were compa...... mixing in the furnace is a key issue leading to these problems. q 2003 Elsevier Ltd. All rights reserved....

  17. Angle-specific transparent conducting electrodes with metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Rivolta, N. X. A., E-mail: nicolas.rivolta@umons.ac.be; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, Avenue Maistriau 19, B-7000 Mons (Belgium)

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  18. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  19. Holographic grating relaxation technique for soft matter science

    Energy Technology Data Exchange (ETDEWEB)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.

  20. Apodized grating coupler using fully-etched nanostructures

    Science.gov (United States)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  1. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-11-01

    Full Text Available This paper presents the feasibility of utilizing fiber Bragg grating (FBG and long-period fiber grating (LPFG sensors for nondestructive evaluation (NDE of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC and bias stability (BS were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG sensor and a thermocouple were found in the range of −0.7499 °C/ to −1.3548 °C/. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG sensors were within the range of 0.01 °C/h with a 15–18 h time cluster to 0.09 °C/h with a 3–4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid

  2. Multipoint sensor based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  3. Fiber Bragg grating based arterial localization device

    Science.gov (United States)

    Ho, Siu Chun Michael; Li, Weijie; Razavi, Mehdi; Song, Gangbing

    2017-06-01

    A critical first step to many surgical procedures is locating and gaining access to a patients vascular system. Vascular access allows the deployment of other surgical instruments and also the monitoring of many physiological parameters. Current methods to locate blood vessels are predominantly based on the landmark technique coupled with ultrasound, fluoroscopy, or Doppler. However, even with experience and technological assistance, locating the required blood vessel is not always an easy task, especially with patients that present atypical anatomy or suffer from conditions such as weak pulsation or obesity that make vascular localization difficult. With recent advances in fiber optic sensors, there is an opportunity to develop a new tool that can make vascular localization safer and easier. In this work, the authors present a new fiber Bragg grating (FBG) based vascular access device that specializes in arterial localization. The device estimates the location towards a local artery based on the bending of a needle inserted near the tissue surrounding the artery. Experimental results obtained from an artificial circulatory loop and a mock artery show the device works best for lower angles of needle insertion and can provide an approximately 40° range of estimation towards the location of a pulsating source (e.g. an artery).

  4. Thermal management and performance evaluation of a dual bi-directional, soft-switched IGBT-based inverter for the 1st autonomous microgrid power system in Taiwan under various operating conditions

    Science.gov (United States)

    Chang, Tien-Chan; Fuh, Yiin-Kuen; Lu, Hong-Yi; Tu, Sheng-Xun

    2016-06-01

    The thermal management of the inverter system is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is excruciably detrimental to the service life of electronics, especially for the switching devices such as insulated gate bipolar transistor (IGBT). In this study, a newly developed dual bi-directional IGBT-based inverter in conjunction with autonomous microgrid system is investigated with particular focus on the thermal management and performance evaluation under various operation conditions. Locally enhanced heat transfer approach such as oblique orientation and heat dissipating materials are experimentally investigated. The studied inverter system is initially packaged by a galvanized steel plate (size 62 × 48 × 18 cm) and the switching power is set in the range of 0.5-3 kW. The module is operated at the switching and pulse frequencies of 60 Hz and 20 kHz, respectively. The adoption of heat dissipating material in either paste or film form had experimentally shown to possess the flexibility tailoring heat transfer performance locally. Experimental studies of heat dissipating film with various hotspot scenarios showed that the temperature difference can be appreciably reduced as much as 13.1 and 15.4 °C, respectively with facilitation of one- and two-layers of heat dissipating film. From the measurement results, the measured peak temperature is highly dominated by the thickness of heat dissipating film, showing the dominance of thickness-dependent thermal resistance and resultant heat accumulation phenomena.

  5. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  6. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  7. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    Science.gov (United States)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  8. Fibre Bragg grating encapted with no-core fibre sensors for SRI and temperature monitoring

    Directory of Open Access Journals (Sweden)

    S. Daud

    2018-06-01

    Full Text Available In this work, a Fibre Bragg grating (FBG encapted with no-core fibre (NCF as surrounding refractive index (SRI and temperature sensors are practically demonstrated. A FBG with 1550 nm wavelength was attached with 5 cm length of no-core fibre (NCF is used as SRI and temperature sensing probe. The change of temperature and SRI induced the wavelength shift in FBG. The wavelength shift in FBG reacts directly proportional to the temperature with a sensitivity of while the sensitivity of NCF was measured as 13.13 pm °C−1. Keywords: FBG, No-core fibre (NCF, Temperature, Sensor

  9. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    Science.gov (United States)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  10. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  11. Novel CFT duals for extreme black holes

    International Nuclear Information System (INIS)

    Chen Bin; Zhang Jiaju

    2012-01-01

    In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman-AdS-dS, as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries. Furthermore, we propose new CFT duals for 4D Kerr-Newman-AdS-dS and higher dimensional Kerr-AdS-dS black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. In the presence of two sets of U(1) symmetry, the novel CFT duals are generated by the modular group SL(2,Z), and for n sets of U(1) symmetry there are general CFT duals generated by T-duality group SL(n,Z).

  12. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  13. Measurement system for diffraction efficiency of convex gratings

    Science.gov (United States)

    Liu, Peng; Chen, Xin-hua; Zhou, Jian-kang; Zhao, Zhi-cheng; Liu, Quan; Luo, Chao; Wang, Xiao-feng; Tang, Min-xue; Shen, Wei-min

    2017-08-01

    A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm, the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of 400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones, which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing repeatability are 2.5%, 0.085% and 3.5% , respectively.

  14. Grating-based tomography applications in biomedical engineering

    Science.gov (United States)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  15. Two-dimensional grating guided-mode resonance tunable filter.

    Science.gov (United States)

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  16. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    Science.gov (United States)

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  18. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...

  19. Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar

    mechanisms in polymer fibres using a CO2 laser. One is etching and the other one is perturbation of the microstructured region. After inscription of LPGs, the concept of a biocompatible distributed medical endoscope is presented, where an all-plastic LPG based device is produced. A transducer pod is made...... of applications and pushing the limits. The first part of the work focuses on the fabrication of FBGs in polymer optical fibres. FBGs are a periodic perturbation of the refractive index of the optical fibre core which act as a wavelength specific reflector. The fibres used are made of Polymethyl methacrylate....... In this system a high power CO2 laser is used for the inscription. An LPG is also a periodic perturbation of the guided core mode in fibre, but unlike FBG which reflects the core mode, the LPG couples the core mode to a cladding mode outside the core. We have shown that the LPG grating can be formed through two...

  20. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  1. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  2. Model based control of grate combustion; Modellbaserad roststyrning

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian

    2006-12-15

    An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate

  3. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  4. Launching focused surface plasmon in circular metallic grating

    International Nuclear Information System (INIS)

    Kumar, Pawan; Tripathi, V. K.; Kumar, Ashok; Shao, X.

    2015-01-01

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. It increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering

  5. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  6. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  7. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  8. Security System Responsive to Optical Fiber Having Bragg Grating

    Science.gov (United States)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  9. Time-dependent Bragg diffraction by multilayer gratings

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2016-01-01

    Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi–Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry. (paper)

  10. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  11. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  12. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half......, Technical University of Denmark. During fabrication the planar waveguides were annealed in an oxygen rich atmosphere. This reduces the photosensitivity to a negligible level and Bragg gratings cannot be written within reasonable time unless the waveguides are sensitized by deuterium loading. Samples were...

  13. Miniaturized NIR scanning grating spectrometer for use in mobile phones

    Science.gov (United States)

    Knobbe, Jens; Pügner, Tino; Grüger, Heinrich

    2016-05-01

    An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.

  14. VCSELs and silicon light sources exploiting SOI grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2012-01-01

    In this talk, novel vertical-cavity laser structure consisting of a dielectric Bragg reflector, a III-V active region, and a high-index-contrast grating made in the Si layer of a silicon-on-insulator (SOI) wafer will be presented. In the Si light source version of this laser structure, the SOI...... the Bragg reflector. Numerical simulations show that both the silicon light source and the VCSEL exploiting SOI grating mirrors have superior performances, compared to existing silicon light sources and long wavelength VCSELs. These devices are highly adequate for chip-level optical interconnects as well...

  15. Geometric effect on second harmonic generation from gold grating

    Science.gov (United States)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  16. Dual Enrollment Academy Programs

    Science.gov (United States)

    Gonzalez, Nicolas; Chavez, Guadalupe

    2009-01-01

    Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…

  17. A Dual Egalitarian Solution

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.; Tijs, S.H.

    2000-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989).We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its

  18. Dual Credit Report

    Science.gov (United States)

    Light, Noreen

    2016-01-01

    In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…

  19. Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings

    International Nuclear Information System (INIS)

    Wang, Weijie; Fu, Ceji; Tan, Wenchang

    2014-01-01

    Spectral and directional control of thermal emission holds substantial importance in applications where heat transfer is predominantly by thermal radiation. In this work, we investigate the spectral and directional properties of thermal emission from a novel structure, which is constituted with a photonic crystal (PC) sandwiched by SiC gratings. Numerical results based on the RCWA algorithm reveal that greatly enhanced emissivity can be achieved in a broad frequency band and in a wide range of angle of emission. This promising emission feature is found to be caused by excitation of surface phonon polaritons (SPhPs), PC mode, magnetic polaritons (MPs) and Fabry–Pérot resonance from high order diffracted waves, as well as the coupling between different resonant modes. We show that the broad enhanced emissivity band can be manipulated by adjusting the dimensional parameters of the structure properly. -- Highlights: ► We propose a novel structure made of a photonic crystal sandwiched by SiC gratings. ► High emissivity can be achieved in a broad spectral band and angle range. ► We explain the result by excitation of multiple excited modes and their coupling

  20. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  1. An {Mathematical expression} iteration bound primal-dual cone affine scaling algorithm for linear programmingiteration bound primal-dual cone affine scaling algorithm for linear programming

    NARCIS (Netherlands)

    J.F. Sturm; J. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993;

  2. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bache, Morten

    2011-01-01

    We report on a detailed study of the inscription and characterization of fiber Bragg gratings (FBGs) in commercial step index polymer optical fibers (POFs). Through the growth dynamics of the gratings, we identify the effect of UV-induced heating during the grating inscription. We found that FBGs...

  3. Highly efficient blazed grating with multilayer coating for tender X-ray energies

    NARCIS (Netherlands)

    Senf, F.; Bijkerk, Frederik; Eggenstein, F.; Gwalt, G.; Huang, Qiushi; van de Kruijs, Robbert Wilhelmus Elisabeth; Kutz, O.; Lemke, S.; Louis, Eric; Mertin, M.; Packe, I.; Rudolph, I.; Schafers, F.; Siewert, F.; Sokolov, A.; Sturm, Jacobus Marinus; Waberski, C.; Wang, Z.; Wolf, J.; Zeschke, T.; Erko, A.

    2016-01-01

    For photon energies of 1 – 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer

  4. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    Science.gov (United States)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  5. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    Science.gov (United States)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  6. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  7. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.

    Science.gov (United States)

    Han, Young-Geun; Lee, Sang

    2005-11-14

    A new technique to control the chromatic dispersion of a uniform fiber Bragg grating based on the symmetrical bending is proposed and experimentally demonstrated. The specially designed two translation stages with gears and a sawtooth wheel can simultaneously induce the tension and compression strain corresponding to the bending direction. The tension and compression strain can effectively control the chirp ratio along the fiber grating attached on a flexible cantilever beam and consequently the dispersion value without the center wavelength shift. We successfully achieve the wide tuning range of chromatic dispersion without the center wavelength shift, which is less than 0.02 nm. We also reduce the group delay ripple as low as ~+/-5 ps. And we also demonstrate the application of the proposed tunable dispersion compensation technique to the tunable pulse repetition-rate multiplication and obtain high-quality pulses at repetition rates of 20 ~ 40 GHz.

  8. The dual of the Carroll-Field-Jackiw model

    International Nuclear Information System (INIS)

    Guimaraes, M.S.; Grigorio, L.; Wotzasek, C.

    2006-01-01

    In this work we apply different duality techniques, both the dual projection, based on the soldering formalism and the master action, in order to obtain and study the dual description of the Carroll- Field-Jackiw model [1], a theory with a Chern-Simons-like explicitly Lorentz and CPT violating term, including the interaction with external charges. This Maxwell-Chern-Simons-like model may be rewritten in terms of the interacting modes of a massless scalar model and a topologically massive model [2], that are mapped, through duality, into interacting massless Maxwell and massive self-dual modes [3]. It is also shown that these dual modes might be represented into an unified rank-two self-dual model that represents the direct dual of the vector Maxwell-Chern-Simons-like model

  9. Optical fiber pressure sensor based on fiber Bragg grating

    Science.gov (United States)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon

  10. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  11. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  12. Rational solitons in deep nonlinear optical Bragg grating

    NARCIS (Netherlands)

    Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.

    2006-01-01

    We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the

  13. Plasmonic Optical Fiber-Grating Immunosensing: A Review.

    Science.gov (United States)

    Guo, Tuan; González-Vila, Álvaro; Loyez, Médéric; Caucheteur, Christophe

    2017-11-26

    Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.

  14. Reflection-grating photorefractive self-pumped ring mirror

    Science.gov (United States)

    D'Iakov, V. A.; Korol'Kov, S. A.; Mamaev, A. V.; Shkunov, V. V.; Zozulia, A. A.

    1991-10-01

    A reflection-grating ring mirror using a photorefractive KNbO2 crystal with a response time of several milliseconds and a reflectivity of as much as 50 percent has been experimentally fabricated. A theoretical analysis of the geometry involved is made which provides only qualitative agreement with the experimental findings.

  15. First Results of ISO-SWS Grating Observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, Th.; de Graauw, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Jupiter has been recorded on April 12, 1996, between 2.75 and 14.5 mu m, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is 1500 and the sensitivity limit is better than 1 Jy. The corresponding S/N ratio is better

  16. A Manually Operated Cassava Grating Machine | Odigboh | Nigerian ...

    African Journals Online (AJOL)

    The design and development of a manually operated cassava grating machine prototype are presented. The prototype grater is shown to be easy to operate at 30 - 45 rpm to give a product whose quality is as good as that from motorized graters at a throughput of 125 - 185 kg/h. The prototype grater is a powerful alternative ...

  17. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  18. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  19. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane...

  20. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  1. Polarization control method for UV writing of advanced bragg gratings

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2002-01-01

    We report the application of the polarization control method for the UV writing of advanced fiber Bragg gratings (FBG). We demonstrate the strength of the new method for different apodization profiles, including the Sinc-profile and two designs for dispersion-free square filters. The method has...

  2. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  3. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  4. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  5. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  6. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  7. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...

  8. Design and development of long-period grating sensors for ...

    Indian Academy of Sciences (India)

    Raja Ramanna Centre for Advanced Technology, Indore 450 213. ∗ e-mail: ... Home built CO2 laser (Max power 20 Watt) is focused onto .... Claus R O 1997 Temperature-insensitive and strain insensitive long-period grating sensors for smart.

  9. Holographic construction of open structure, dispersion transmission gratings

    NARCIS (Netherlands)

    Dijkstra, J.H.; Lantwaard, L.J.

    1975-01-01

    A method of fabricating free-standing transmission gratings with line densities of the order of 1000 /nm is described. The technique involves a combination of two well-known procedures: application of photoresist and electroplating for the production of fine metal grids, and holographic

  10. Bragg gratings in air-silica structured fibers

    NARCIS (Netherlands)

    Groothoff, N.; Canning, J.; Buckley, E.; Lyttikainen, K.; Zagari, J.

    2003-01-01

    We report on grating writing in air-silica structured optical fibers with pure silica cores by use of two-photon absorption at 193 nm. A decrease in propagation loss with irradiation was observed. The characteristic growth curves were obtained. © 2003 Optical Society of America.

  11. Programmed Control of Optical Grating Scales for Visual Research.

    Science.gov (United States)

    1980-12-01

    A -AOO .9 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 14/2 PROGRAMMED CONTROL OF OPTI CAL GRATING SCALES FOR VISUAL RESEARC --ETC(fl...custom system for AMRL. The cost in memory parts alone was $40,000, a good indication that the market is not over-priced. Ca-? western Reserve

  12. High-sensitivity bend angle measurements using optical fiber gratings.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  13. All-silicon nanorod-based Dammann gratings.

    Science.gov (United States)

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  14. Plasmonic Optical Fiber-Grating Immunosensing: A Review

    Directory of Open Access Journals (Sweden)

    Tuan Guo

    2017-11-01

    Full Text Available Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP, the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.

  15. 21 CFR 133.147 - Grated American cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133.147 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized...

  16. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  17. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  18. Load Coefficients on Grates used for Wind Turbine Access Platforms

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.; Frigaard, Peter

    In this report is presented the results of tests carried out at Dept. of Civil Engineering, Aalborg University (AAU) on behalf of DONG Energy A/S and Vattenfall A/S, Denmark. The objective of the tests was to investigate the load coefficient on different platform grates and a solid plate for desi...

  19. Development of tilted fibre Bragg gratings using highly coherent 255 ...

    Indian Academy of Sciences (India)

    R&D C-1 Block, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India. ∗. Corresponding author. E-mail: oprakash@rrcat.gov.in. DOI: 10.1007/s12043-013-0672-7; ePublication: 6 February 2014. Abstract. This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 ...

  20. Holographic gratings for spectrographic applications: Study of aberrations

    Science.gov (United States)

    Bhatia, M. S.

    1975-01-01

    The design and fabrication of holographic gratings requires an understanding of Fermat's principle. This principle states that the path of a light ray from one point to another is that which requires the least time. The aberrant, optical path of an object point to an image was studied using Fermat principles.