WorldWideScience

Sample records for dual fuel compression

  1. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  2. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  3. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    OpenAIRE

    Gharehghani, A.; S. M. Mirsalim; S. A. Jazayeri

    2012-01-01

    Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as p...

  4. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  5. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing Nat

  6. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    Science.gov (United States)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  7. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    Science.gov (United States)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  8. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  9. Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2017-01-01

    Full Text Available Increasing demands for the reduction of exhaust emissions and the pursuit to re-duce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of liquid fuel injected directly into the cylinder acts as the ignition inhibitor of the gaseous fuel. Achieving the optimum combustion process in such an engine requires the application of advanced control algorithms which require mathematical modelling support. In response to the growing demand for new simulation tools, a 0-D model of a dual-fuel engine was proposed and validated. The validation was performed in a broad range of engine operating points, including various speeds and load condition, as well as different natural gas/diesel blend ratios. It was demonstrated that the average model calculation error within the entire cycle did not exceed 6.2%, and was comparable to the measurement results cycle to cycle variations. The maximum model calculation error in a single point of a cycle was 15% for one of the complex (multipoint injection cases. In other cases, it did not exceed 11%.

  10. Moteurs composites à allumage par compression et cycle de Rankine Dual Fuel Compression Ignition Engines Operating on the Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Daugas C.

    2006-11-01

    Full Text Available Sur les 60 % de l'énergie introduite dans un groupe électrogène et perdue sous forme de chaleur, une bonne partie peut être utilisée pour fabriquer à nouveau de l'électricité à partir d'une turbine à vapeur. Les moteurs dual fuel brûlant essentiellement du gaz naturel sont remarquablement placés pour une telle récupération, dont le rendement est meilleur aux charges partielles que celui des moteurs diesel classiques. Les différents types de fluides utilisés pour la récupération sont examinés : avantages des fluides organiques sur l'eau. Études d'une réalisation concrète. Fonctionnement aux charges partielles. Influence des différents paramètres pour obtenir le meilleur rapport prix/puissance. Of the 60% of input energy lost in the form of heat in a generating set, a sizeable part can be used to generate electricity again by means of a steam turbine. Dual fuel engines which mainly burn natural gas are outstandingly suitable for such a recovery process, the efficiency under partial loads being better than that of conventional diesel engines. The author considers the different types of fluids used for the recovery process superiority of organic fluids over water. Study of a concrete example. Operation with partial loads. Influence of the different parameters in the quest for the best cost-power ratio.

  11. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  12. Assessment of the effect of gaseous fuel delivery mode on thermal efficiency and fuel losses during the valve overlap period in a dual-fuel compression ignition engine

    Science.gov (United States)

    Skrzek, T.

    2016-09-01

    The paper describes the effect of dual fuelling of single cylinder AVL test CI engine with the use of two ways of gas delivery to the engine manifold. The engine was fuelled diesel oil and propane. For all the tests, gas consumption was maintained at the same level. In the first mode the gas was delivered by injector located under inlet valve. In the second method, there was used a mixer fitted to the intake manifold. The paper compares the results of thermal efficiency and emissions of propane in the exhaust for both fuelling modes. Research clearly show how important it is to synchronize the injector opening time of the intake stroke. This is especially important for supercharged engines in which there is a valve overlap.

  13. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  14. Dual-fuel, dual-throat engine preliminary analysis

    Science.gov (United States)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  15. Experimental Investigations on the Engine Performance and Characteristics of Compression Ignition (CI Engine Using Dual Bio – Fuel Methyl Ester As Alternate Fuel With Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    Inturi Vamsi,

    2015-05-01

    Full Text Available Petroleum products and resources are limited and their consumption is increasing very fast with globalization and high technology development since last decade. The emissions from the petroleum products polluting the environment considerably. Bio-fuels can be produced from diverse sources, which are subject to local geography, topology and climatology. Hence, every nation will have its own choice of a source. Duel bio-fuel represents an untapped resource of energy easily available in India. This study investigates the potential substitution of duel bio-fuel methyl ester blends for diesel as fuel for automobiles and other industrial purposes. This study is concerned with the analysis of the performance and emission characteristics of the duel bio-fuel methyl esters and comparing with petroleum diesel. The fuels used were neat methyl ester, diesel and different blends of the methyl ester with diesel. The tests were carried out on a 4.4 KW, single cylinder, direct injection, air-cooled diesel engine. The fuels used were neat duel bio-fuel methyl ester, diesel and different blends of the methyl ester with diesel. The experimental result shows that 20% of blend shows better performance with reduced pollution. This analysis shows that duel bio-fuel methyl ester and its blends are a potential substitute for diesel.

  16. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    Science.gov (United States)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  17. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    Directory of Open Access Journals (Sweden)

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  18. MECHANISM ON DISTRIBUTION OF PILOT FUEL SPRAY AND COMPRESSING IGNITION IN PREMIXED NATURAL GAS ENGINE IGNITED BY PILOT DIESEL

    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Yao Guangtao; Song Jinou; Wang Yinshan

    2005-01-01

    Numerical simulations of pilot fuel spray and compressing ignition for pre-mixed natural gas ignited by pilot diesel are described. By means of these modeling, the dual fuel and diesel fuel ignition mechanism of some phenomena investigated on an optional engine by technology of high-speed CCD is analyzed. It is demonstrated that the longer delay of ignition in dual fuel engine is not mainly caused by change of the mixture thermodynamics parameters. The analysis results illustrate that the ignition of pre-mixed natural gas ignited by pilot diesel taking place in dual fuel engine is a process of homogenous charge compression ignition.

  19. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  20. Dual-radial cell thermionic fuel element

    Science.gov (United States)

    Terrell, Charles W.

    A dual-radial cell thermionic fuel element (TFE) has been proposed and partially evaluated. The cell has the capacity to produce considerably more power per gram of fuel than does a single-cell TFE, with a total electrical power in a fast reactor system of several hundred kWs, conservatively operated.

  1. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-03-13

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  2. Dual-fuel, dual-mode rocket engine

    Science.gov (United States)

    Martin, James A. (Inventor)

    1989-01-01

    The invention relates to a dual fuel, dual mode rocket engine designed to improve the performance of earth-to-orbit vehicles. For any vehicle that operates from the earth's surface to earth orbit, it is advantageous to use two different fuels during its ascent. A high density impulse fuel, such as kerosene, is most efficient during the first half of the trajectory. A high specific impulse fuel, such as hydrogen, is most efficient during the second half of the trajectory. The invention allows both fuels to be used with a single rocket engine. It does so by adding a minimum number of state-of-the-art components to baseline single made rocket engines, and is therefore relatively easy to develop for near term applications. The novelty of this invention resides in the mixing of fuels before exhaust nozzle cooling. This allows all of the engine fuel to cool the exhaust nozzle, and allows the ratio of fuels used throughout the flight depend solely on performance requirements, not cooling requirements.

  3. Demonstration and evaluation of dual-fuel technology; Demonstration och utvaerdering av dual-fuel-tekniken

    Energy Technology Data Exchange (ETDEWEB)

    Staalhammar, Per; Erlandsson, Lennart; Willner, Kristina (AVL MTC Motortestcenter AB (Sweden)); Johannesson, Staffan (Ecoplan AB (Sweden))

    2011-06-15

    There is an increased interest for Dual Fuel (methane-Diesel) applications in Sweden since this technology is seen as one of the more interesting options for a fast and cost effective introduction of biomethane as fuel for HD engines. The Dual Fuel technology has been used for many years, mainly for stationary purpose (generators, pumps and ships) while the Spark Ignited (SI) 'Otto' technology has been used for trucks and busses. One obstacle for introducing Dual Fuel technology for busses and trucks is the EU legislation that don't allow for HD on road certification of Dual Fuel applications. Challenges with the Dual Fuel technology is to develop cost effective applications that is capable of reaching low emissions (especially CH{sub 4} and NO{sub x}) in combination with high Diesel replacement in the test cycles used for on road applications. AVL MTC Motortestcenter AB (hereinafter called AVL) has on commission by SGC (Swedish Gas technical Centre) carried out this project with the objectives to analyze the Dual Fuel (Diesel-methane) technology with focus on emissions, fuel consumption and technical challenges. One important part of this project was to carry out emission tests on selected Dual Fuel applications in Sweden and to compile experiences from existing Dual Fuel technology. This report also summarizes other commonly used technologies for methane engines and compares the Dual Fuel with conventional Diesel and Otto technologies. The major challenges with Dual Fuel applications for on road vehicles will be to develop robust and cost effective solutions that meet the emission legislations (with aged catalysts) and to increase the Diesel replacement to achieve reasonable reduction of green house gases (GHG). This is especially important when biomethane is available as fuel but not Bio-Diesel. It will probably be possible to reach EURO V emission limits with advanced Dual Fuel systems but none of the tested systems reached EURO V emission levels

  4. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Dual fuel vehicle incentive. 538.9 Section 538.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel vehicles...

  5. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  6. A Dual of the Compression-Expansion Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Henderson Johnny

    2007-01-01

    Full Text Available This paper presents a dual of the fixed point theorems of compression and expansion of functional type as well as the original Leggett-Williams fixed point theorem. The multi-valued situation is also discussed.

  7. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  8. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  9. 醇醚双燃料压燃发动机 HC排放研究%Research on HC Emission of Compression Ignition Engine Fueled with Methanol/DME Dual Fuel

    Institute of Scientific and Technical Information of China (English)

    闫妍; 张煜盛; 佘金平; 陈涌填; 谌祖迪

    2013-01-01

    以ZS195型直喷式柴油机为原型机,开展了进气道喷射醇醚混合燃料HCCI试验研究,并应用气相色谱和傅里叶红外技术对 HC排放物进行检测,详细分析了 HC排放的主要组成和变化规律。试验研究结果表明:双燃料HCCI试验的指示热效率受负荷和燃料比例影响明显,最高可达到49%,超过原柴油机10%;HC排放明显高于原柴油机,通过精密控制双燃料喷射比例和进气加温措施,能够有效降低 HC排放;二甲醚、甲醇和甲醛是 HC排放最主要的组成部分,其中甲醇在大负荷工况下排放比例会有所增大,甲醛排放受功率的影响较小,在接近爆震边界的时候会出现明显提升。%For ZS195 direct injection diesel engine ,the HCCI experiments of intake methanol/DME injection were carried out , the HC emission was measured with the gas chromatography and Fourier transform infrared technology ,and the main compo-nents and their change of HC pollutants were analyzed in detail .The results show that the indicated thermal efficiency of dual fuel is influenced by the load and mixing ratio .The highest indicated thermal efficiency is 10% higher than that of original en-gine and can reach 49% .HCCI method produces higher HC emission ,but precise control of dual fuel ratio and intake warming can reduce the HC emission effectively .DME (dimethyl ether) ,methanol and formaldehyde are the main composition of HC e-mission .The methanol proportion will increase in high load conditions and the formaldehyde emission which is slightly affected by the power will increase significantly near the knock boundary .

  10. Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mechanical Engineering Department, College of Engineering, UAE University, Jimmi, Al-Ain, P.O. Box 17555, Abu Dhabi (United Arab Emirates); Radwan, M.S.; Saleh, H.E. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, Helwan University, Cairo (Egypt)

    2008-06-15

    The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion. (author)

  11. Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.

    2017-01-01

    Natural gas - diesel, Reactivity Controlled Compression Ignition (RCCI) is currently one of the most promising combustion strategies for the next generation heavy-duty engines. A major issue to be addressed for this dual fuel concept to become practically applicable is its low combustion efficiency

  12. Dual pathology proximal median nerve compression of the forearm.

    LENUS (Irish Health Repository)

    Murphy, Siun M

    2013-12-01

    We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression.

  13. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel

    Institute of Scientific and Technical Information of China (English)

    Hongbo ZOU; Lijun WANG; Shenghua LIU; Yu LI

    2008-01-01

    An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the igni-tion delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20℃ to 40℃ and then to 60℃, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remark-ably by advancing the delivery timing of pilot diesel, espe-cially at light engine loads.

  14. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  15. Advancing the Limits of Dual Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Koenigsson, Fredrik

    2012-07-01

    There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NO{sub x} and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of

  16. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  17. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  18. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    Science.gov (United States)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  19. Dual-Fuel Truck Fleet: Start-Up Experience

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  20. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  1. Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost

    Science.gov (United States)

    Martin, J. A.

    1973-01-01

    An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.

  2. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  3. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  4. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Treatment of dual-fuel and alternative fuel... TRANSPORTATION TRANSFER AND TRADING OF FUEL ECONOMY CREDITS § 536.10 Treatment of dual-fuel and alternative fuel vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel...

  5. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  6. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed natural gas (CNG has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Engine conversion technology is well established and suitable conversion equipment is readily available. For spark ignition engines there are two options, a bi-fuel conversion and use a dedicated to CNG engine. For compression ignition engines converted to run on natural gas, there are two main options discussed, there are dual-fuel engines and normal ignition can be initiated. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the CNG engines research and development fueled using CNG are highlighted to keep the output power, torque and emissions of natural gas engines comparable to their gasoline or diesel counterparts. The high activities for future CNG engines research and development to meet future CNG engines is recorded in the paper.

  7. Conceptual Design of Structural Components of a Dual Cooled Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Kang-Hee; Kim, Jae-Yong; Yoon, Kyung-Ho

    2008-01-15

    A dual cooled fuel, featured by an internal as well as an external coolant flow passage of a fuel rod, was suggested to enable a large-scaled power-uprate of PWR plant and launched as one of the National Nuclear R and D Projects in 2007. It is necessary to make the dual cooled fuel be compatible with an OPR-1000 system to maximize the economy. Also, the structural components of the dual cooled fuel should be designed to realize their features. To this end, a conceptual design of a spacer grid, outer and center guide tubes, and top and bottom end pieces has been carried out in the project 'Development of Design Technology for Dual Cooled Fuel Structure'. For the spacer grids, it is suggested that springs and dimples are located at or near the cross points of the straps due to a considerably narrowed rod-to-rod gap. Candidate shapes of the grids were also developed and applied for domestic patents. For the outer and center guide tubes, a dual tube like a fuel rod was suggested to make the subchannel areas around the guide tubes be similar to those around the fuel rods of enlarged diameter. It was applied for the domestic patent as well. For the top and bottom end pieces, the shape and pattern have been changed from the conventional ones reflecting the fuel rods' changes. Technical issues and method of resolution for each components were listed up for a basic design works in the following years.

  8. 26 CFR 48.4041-7 - Dual use of taxable liquid fuel.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Dual use of taxable liquid fuel. 48.4041-7...) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-7 Dual use of taxable liquid fuel. Tax applies to all taxable liquid fuel sold for use or used as a fuel in the motor...

  9. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    Science.gov (United States)

    2007-10-01

    oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig...range of power outputs. In addition , instantaneous and on-load fuel switching from natural gas to propane and back was demonstrated without loss of...issues that required additional investigation included identifying the number and volume of propane tanks needed and a vaporization sys- tem to

  10. An experimental study on premixed charge compression ignition-direct ignition engine fueled with ethanol and gasohol

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2015-12-01

    Full Text Available This paper investigates the combustion, performance and emission characteristics of a partial Premixed Charge Compression Ignition-Direct Injection (PCCI-DI Engine with premixed fuels ethanol and gasohol (90% gasoline and 10% ethanol by volume along with direct injection of diesel fuel into the combustion chamber. The experiments were conducted in a four stroke, naturally aspirated, air cooled, constant speed diesel engine with 20% premixed fuels from no load to full load condition. The addition of premixed fuel enhances the air fuel mixture strength and for that the combustion duration is decreased in dual fuel operation. From this experiment it was observed the 70% and 67% reduction in smoke emission from premixed gasohol and ethanol fuel when compared to neat diesel operation. In addition to that, the oxides of nitrogen emissions were reduced to 30% and 24% for premixed gasohol and ethanol fuel. In particular, premixed gasohol reduces the smoke and oxides of nitrogen emissions more than the ethanol and also, significant increase in brake thermal efficiency was noted in 20% premixed gasohol and ethanol in dual fuel mode, when compared to neat diesel operation.

  11. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  12. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  13. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  14. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  15. Green Engines Development Using Compressed Natural Gas as an Alternative Fuel: A Review

    Directory of Open Access Journals (Sweden)

    Semin

    2009-01-01

    Full Text Available Problem statement: The Compressed Natural Gas (CNG is a gaseous form of natural gas, it have been recognized as one of the promising alternative fuel due to its substantial benefits compared to gasoline and diesel. Natural gas is produced from gas wells or tied in with crude oil production. Approach: Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed Natural Gas (CNG has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Results: The technology of engine conversion was well established and suitable conversion equipment is readily available. For petrol engines or spark ignition engines there are two options, a bi-fuel conversion and use a dedicated to CNG engine. The diesel engines converted or designed to run on natural gas, there were two main options discussed. There are dual-fuel engines and normal ignition can be initiated. Natural gas engines can be operated at lean burn and stoichiometric conditions with different combustion and emission characteristics. Conclusions: In this study, the low exhaust gas emissions of CNG engines research and development were highlighted. Stoichiometric natural gas engines were briefly reviewed. To keep the output power, torque and emissions of natural gas engines comparable to their gasoline or diesel counterparts. High activity for future green CNG engines research and development to meet future stringent emissions standards was recorded in the study.

  16. Application of jatropha oil and biogas in a dual fuel engine for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, E.

    2008-06-15

    a 10 kW load; thermal efficiency did not deteriorate up to 70% heat release fraction of methane. At 6 kW and 8 kW, thermal efficiency decreases with increasing heat release fraction from methane. The decrease is in the order of 5% to 10% of the initial efficiency. For dual fuel operation with pure methane thermal efficiency even decreased at a 10 kW load. Volumetric efficiency and air-excess ratio decreased under dual fuel operation as expected. The decrease did not result in a deficiency of oxygen. Enough oxygen was available to combust oil smoke-free. The amount of carbon dioxide in the biogas did not influence performance parameters; the smoke limit was not reached. The engine runs without problems up to a heat release fraction of 60% methane. Between 60% and 70% irregularities are observed. The irregularities are attributed to light end-gas knock. Therefore, it is advised against, to replace a larger part of the fuel by biogas. A different engine design (i.e. different compression ratio) might be able to operate without problems with more biogas in the fuel mixture. For a better understanding more research is required; heat release should be measured with an incylinder pressure measurement; this would give a better insight into changes in thermal efficiency and operation limits. It is possible to use a diesel engine to generate electricity with jatropha oil and biogas as fuels. The technologies used in the experimental set-up are low-tech and locally available; therefore it is considered an appropriate technology for the use in rural areas in developing countries.

  17. NASA's Dual-Fuel Airbreathing Hypersonic Vehicle Study

    Science.gov (United States)

    Hunt, James L.; Eiswirth, Edward A.

    1996-01-01

    A Mach 10 cruise vehicle provides a quick response, global reach capability with high survivability. For operations from CONUS, mission radii on the order of 8,000 nmi are sufficient. For missions which return to CONUS, a dual-fueled vehicle is superior, due to its capability to in-flight refuel. However, for one-way mission, an all-hydrogen vehicle is preferable because of its higher specific impulse.

  18. Fracture Failure Analysis of Fuel Pump Transmission Shaft of Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Chen Pei-hong

    2017-01-01

    Full Text Available NTS6ZLCz-129 dual-fuel turbocharged and intercooled engine durability test at 1000h, fuel pump shaft fractured. Fracture analysis, chemical analysis, microstructure examination and finite element stress analysis were carried out on the fractured shaft. The analysis result showed that the shaft fracture cause is forging fold. By improving the forging process, the forging fold was solved, and the durability test can be carried out smoothly.

  19. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  20. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  1. Knock characteristics of dual-fuel combustion in diesel engines using natural gas as primary fuel

    Indian Academy of Sciences (India)

    O M I Nwafor

    2002-06-01

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we have the ignition stage followed by the combustion stage. There are three types of knock: diesel knock, spark knock and knock due to secondary ignition delay of the primary fuel (erratic knock). Several factors have been noted to feature in defining knock characteristics of dual-fuel engines that include ignition delay, pilot quantity, engine load and speed, turbulence and gas flow rate.

  2. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    Science.gov (United States)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  3. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    Science.gov (United States)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  4. Application of dual-fuel propulsion to a single stage AMLS vehicle

    Science.gov (United States)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1993-01-01

    As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.

  5. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  6. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  7. Near-Optimal Operation of Dual-Fuel Launch Vehicles

    Science.gov (United States)

    Ardema, M. D.; Chou, H. C.; Bowles, J. V.

    1996-01-01

    A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.

  8. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  9. Effect of the use of natural gas–diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-04-01

    Full Text Available A compression ignition engine with a mechanical fuel system was converted into common rail fuel system by means of a self-developed electronic control unit. The engine was modified to be operated with mixtures of diesel and natural gas fuels in dual-fuel mode. Then, diesel fuel was injected into the cylinder while natural gas was injected into intake manifold with both injectors controlled with the electronic control unit. Energy content of the sprayed gas fuel was varied in the amounts of 0% (only diesel fuel, 15%, 40%, and 75% of total fuel’s energy content. All tests were carried out at constant engine speed of 1500 r/min at full load. In addition to the experiments, the engine was modeled with a one-dimensional commercial software. The experimental and numerical results were compared and found to be in reasonable agreement with each other. Both NOx and soot emissions were dropped with 15% and 40%, respectively, energy content rates in gas–fuel mixture compared to only diesel fuel. However, an increase was observed in carbon monoxide emissions with 15% natural gas fuel addition compared to only diesel fuel. Although smoke emission was reduced with natural gas fuel addition, there was a dramatic increase in NOx emissions with 75% natural gas fuel addition.

  10. Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

    1979-09-01

    A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

  11. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    Science.gov (United States)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  12. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    Science.gov (United States)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  13. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    Science.gov (United States)

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  14. Improvement performance and emissions in a diesel engine dual-fueled with natural gas; Tennen gas dual fuel diesel kikan no seino haishutsu gas tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Okamoto, T.; Kusaka, J.; Daisho, Y.; Kihara, R.; Saito, T. [Waseda University, Tokyo (Japan)

    1997-10-01

    This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual-fueled with natural gas. Dual fueling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Intake charge heating and uncooled EGR are very useful to improve emissions and thermal efficiency at low load. Such favorable effects are supported by NO kinetic simulations. 2 refs., 13 figs.

  15. Fire Resistant Fuel for Military Compression Ignition Engines

    Science.gov (United States)

    2013-12-04

    fuel (FRF) was a stable mixture of diesel fuel, 10 percent water, and an emulsifier . The Army FRF program ended in 1987 without fielding this fire...was developed. Chemically, this fire resistant fuel (FRF) was a stable mixture of diesel fuel, 10 percent water, and an emulsifier . The Army FRF...diesel fuel, 10% purified water containing less than 50ppm dissolved solids, 6% emulsifier , and 6% aromatic hydrocarbon concentrate to aid in the

  16. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  17. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, K. K. [Mississippi State Univ., MS (United States). Dept. of Mechanical Engineering; Krishnan, S. R. [Mississippi State Univ., MS (United States). Dept. of Mechanical Engineering; Qi, Y. [Caterpillar, Inc., Peoria, IL (United States)

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  18. Compressed Sensing-Based MRI Reconstruction Using Complex Double-Density Dual-Tree DWT

    Directory of Open Access Journals (Sweden)

    Zangen Zhu

    2013-01-01

    Full Text Available Undersampling k-space data is an efficient way to speed up the magnetic resonance imaging (MRI process. As a newly developed mathematical framework of signal sampling and recovery, compressed sensing (CS allows signal acquisition using fewer samples than what is specified by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in reducing data acquisition time in MRI. In traditional compressed sensing MRI methods, an image is reconstructed by enforcing its sparse representation with respect to a basis, usually wavelet transform or total variation. In this paper, we propose an improved compressed sensing-based reconstruction method using the complex double-density dual-tree discrete wavelet transform. Our experiments demonstrate that this method can reduce aliasing artifacts and achieve higher peak signal-to-noise ratio (PSNR and structural similarity (SSIM index.

  19. DoE Method for Operating Parameter Optimization of a Dual-Fuel BioEthanol/Diesel Light Duty Engine

    Directory of Open Access Journals (Sweden)

    Gabriele Di Blasio

    2015-01-01

    Full Text Available In recent years, alcoholic fuels have been considered as an alternative transportation biofuel even in compression ignition engines either as blended in diesel or as premixed fuel in the case of dual-fuel configuration. Within this framework, the authors investigated the possibility to improve the combustion efficiency when ethanol is used in a dual-fuel light duty diesel engine. In particular, the study was focused on reducing the HC and CO emissions at low load conditions, acting on the most influential engine calibration parameters. Since this kind of investigation would require a significant number of runs, the statistical design of experiment methodology was adopted to reduce significantly its number. As required by the DoE approach, a set of factors (injection parameters, etc. were selected. For each of them, two levels “high” and “low” were defined in a range of reasonable values. Combining the levels of all the factors, it was possible to evaluate the effects and the weight of each factor and of their combination on the outputs. The results identified the rail pressure, the pilot, and post-injection as the most influential emission parameters. Significant reductions of unburnt were found acting on those parameters without substantial penalties on the global engine performances.

  20. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  1. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  2. An experimental assessment on the influence of high octane fuels on biofuel based dual fuel engine performance, emission, and combustion

    Directory of Open Access Journals (Sweden)

    Masimalai Senthilkumar

    2017-01-01

    Full Text Available This paper presents an experimental study on the effect of different high octane fuels (such as eucalyptus oil, ethanol, and methanol on engine’s performance behaviour of a biofuel based dual fuel engine. A single cylinder Diesel engine was modified and tested under dual fuel mode of operation. Initially the engine was run using neat diesel, neat mahua oil as fuels. In the second phase, the engine was operated in dual fuel mode by using a specially designed variable jet carburettor to supply the high octane fuels. Engine trials were made at 100% and 40% loads (power outputs with varying amounts of high octane fuels up-to the maximum possible limit. The performance and emission characteristics of the engine were obtained and analysed. Results indicated significant improvement in brake thermal efficiency simultaneous reduction in smoke and NO emissions in dual fuel operation with all the inducted fuels. At 100% load the brake thermal efficiency increased from 25.6% to a maximum of 32.3, 30.5, and 28.4%, respectively, with eucalyptus oil, ethanol, and methanol as primary fuels. Smoke was reduced drastically from 78% with neat mahua oil a minimum of 41, 48, and 53%, respectively, with eucalyptus oil, ethanol, and methanol at the maximum efficiency point. The optimal energy share for the best engine behaviour was found to be 44.6, 27.3, and 23.2%, respectively, for eucalyptus oil, ethanol, and methanol at 100% load. Among the primary fuels tested, eucalyptus oil showed the maximum brake thermal efficiency, minimum smoke and NO emissions and maximum energy replacement for the optimal operation of the engine.

  3. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    National Research Council Canada - National Science Library

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    ... and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored...

  4. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  5. Optical image hiding based on dual-channel simultaneous phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Li, Jiaosheng; Zhong, Liyun; Zhang, Qinnan; Zhou, Yunfei; Xiong, Jiaxiang; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    We propose an optical image hiding method based on dual-channel simultaneous phase-shifting interferometry (DCSPSI) and compressive sensing (CS) in all-optical domain. In the DCSPSI architecture, a secret image is firstly embedded in the host image without destroying the original host's form, and a pair of interferograms with the phase shifts of π/2 is simultaneously generated by the polarization components and captured by two CCDs. Then, the holograms are further compressed sampling to the less data by CS. The proposed strategy will provide a useful solution for the real-time optical image security transmission and largely reducing data volume of interferogram. The experimental result demonstrates the validity and feasibility of the proposed method.

  6. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  7. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines

    OpenAIRE

    Semin; Rosli A. Bakar

    2008-01-01

    Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed natural gas (CNG) has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Engine conversion technology is well established and suitable conversion equipment is readily available. For spark ignition engines there are two op...

  8. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  9. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  10. Dual-Level Compressed Aggregation: Recovering Fields of Physical Quantities from Incomplete Sensory Data

    CERN Document Server

    Xiang, Liu; Deng, Chenwei; Vasilakos, Athanasios V; Lin, Weisi

    2011-01-01

    Although wireless sensor networks (WSNs) are powerful in monitoring physical events, the data collected from a WSN are almost always incomplete if the surveyed physical event spreads over a wide area. The reason for this incompleteness is twofold: i) insufficient network coverage and ii) data aggregation for energy saving. Whereas the existing recovery schemes only tackle the second aspect, we develop Dual-lEvel Compressed Aggregation (DECA) as a novel framework to address both aspects. Specifically, DECA allows a high fidelity recovery of a widespread event, under the situations that the WSN only sparsely covers the event area and that an in-network data aggregation is applied for traffic reduction. Exploiting both the low-rank nature of real-world events and the redundancy in sensory data, DECA combines matrix completion with a fine-tuned compressed sensing technique to conduct a dual-level reconstruction process. We demonstrate that DECA can recover a widespread event with less than 5% of the data, with re...

  11. Study of Knocking Effect in Compression Ignition Engine with Hydrogen as a Secondary Fuel

    Directory of Open Access Journals (Sweden)

    R. Sivabalakrishnan

    2014-01-01

    Full Text Available The aim of this project is detecting knock during combustion of biodiesel-hydrogen fuel and also the knock is suppressed by timed injection of diethyl ether (DEE with biodiesel-hydrogen fuel for different loads. Hydrogen fuel is an effective alternate fuel in making a pollution-free environment with higher efficiency. The usage of hydrogen in compression ignition engine leads to production of knocking or detonation because of its lower ignition energy, wider flammability range, and shorter quenching distance. Knocking combustion causes major engine damage, and also reduces the efficiency. The method uses the measurement and analysis of cylinder pressure signal for various loads. The pressure signal is to be converted into frequency domain that shows the accurate knocking combustion of fuel mixtures. The variation of pressure signal is gradually increased and smoothly reduced to minimum during normal combustion. The rapid rise of pressure signal has occurred during knocking combustion. The experimental setup was mainly available for evaluating the feasibility of normal combustion by comparing with the signals from both fuel mixtures in compression ignition engine. This method provides better results in predicting the knocking feature of biodiesel-hydrogen fuel and the usage of DEE provides complete combustion of fuels with higher performance, and lower emission.

  12. KAJIAN TEKNIS DAN EKONOMIS PENGGUNAAN DUAL FUEL SYSTEM (LPG-SOLAR PADA MESIN DIESEL KAPAL NELAYAN TRADISIONAL

    Directory of Open Access Journals (Sweden)

    Imam Pujo Mulyatno

    2013-06-01

    Full Text Available Pengembangan bahan bakar alternatif dalam rangka mengurangi ketergantungan terhadap bahan bakar minyak (BBM, telah menjadi agenda penting  pemerintah. Penggunaan LPG (Liquefied Petrolium Gas pada mesin diesel kapal nelayan tradisional didasarkan pada keberhasilan penggunaan LPG pada kendaraan-kendaraan darat. Penggunaan LPG pada mesin diesel dilakukan secara dual fuel. Penelitian dual fuel system pada mesin diesel kapal nelayan tradisional bertujuan untuk mengetahui pengaruh penggunaan bahan bakar dual fuel terhadap kinerja mesin dan sistem penggeraknya, meliputi konsumsi bahan bakar, daya, kecepatan kapal, serta efisiensi pada sistem penggerak kapal. Penelitian dilakukan dengan menggunakan DongFeng ZS-1100 dengan tiga putaran mesin yang berbeda yaitu 1000rpm, 1250 rpm dan 1500 rpm. Berdasarkan hasil penelitian ini, penggunaan LPG secara dual fuel mampu menggantikan konsumsi solar hingga 71% dari konsumsi solar seluruhnya selama satu jam. Komposisi LPG yang dihasilkan mencapai lebih dari 60%  dari total pemakaian bahan bakar saat dual fuel. Kecepatan dan jarak tempuh saat menggunakan solar seluruhnya mencapai 5% lebih tinggi dibandingkan dual fuel. Daya dan torsi saat menggunakan dual fuel mencapai 9,8 % lebih tinggi dibandingkan solar seluruhnya. Penggunaan dual fuel mampu mengurangi biaya operasional penangkapan ikan hingga 24,6%, namun dengan waktu tempuh 1,3% lebih lama dari solar seluruhnya. Efisiensi propulsi solar seluruhnya 6% lebih besar dibandingkan efisiensi propulsi dual fuel.

  13. Non-Petroleum-Based Fuels: Report on the Relationship Between Molecular Structure and Compression Ignition Fuels, Both Conventional and HCCI

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Clark, Wendy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2004-08-01

    The U.S. Department of Energy (DOE) is committed to increasing our nation’s energy security by decreasing our dependence on imported petroleum. The Fuels Technologies Subprogram within DOE’s Office of Freedom Car and Vehicle Technology (OFCVT) supports research that allows the United States to develop advanced fuels that enable efficient engines with low emissions. This document reports the completion of NREL FY 2004 Annual Operating Plan milestone 10.2: “Report on the relationship between molecular structure and compression ignition fuels, both conventional and HCCI.” This work is an incremental step toward the OFCVT Multi-Year Program Plan APBF/NPBF Milestone No. 3: “Establish fuel and lubricant constituents that are required for advanced combustion regime engines.”

  14. Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network

    Institute of Scientific and Technical Information of China (English)

    刘震涛; 费少梅

    2004-01-01

    Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resume, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.

  15. Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network.

    Science.gov (United States)

    Liu, Zhen-tao; Fei, Shao-mei

    2004-08-01

    Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFEmain performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx, emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.

  16. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  17. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    Science.gov (United States)

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.

  18. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  19. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  20. Compressive strength and the effect of duration after photo-activation among dual-cure bulk fill composite core materials.

    Science.gov (United States)

    Alkhudhairy, Fahad; Vohra, Fahim

    2016-01-01

    To assess compressive strength and effect of duration after photoactivation on the compressive strength of different dual cure bulk fill composites. Seventy-two disc shaped (4x10mm) specimens were prepared from three dual cure bulk fill materials, ZirconCore (ZC) (n=24), MulticCore Flow (MC) (n=24) and Luxacore Dual (LC) (n=24). Half of the specimens in each material were tested for failure loads after one hour [MC1 (n=12), LC1 (n=12) & ZC1 (n=12)] and the other half in 7 days [MC7 (n=12), LC7 (n=12), ZC7 (n=12)] from photo-polymerization using the universal testing machine at a cross-head speed of 0.5 cm/minutes. Compressive strength was calculated using the formula UCS=4f/πd(2). Compressive strengths among different groups were compared using analysis of variance (ANOVA) and Tukey's multiple comparisons test. Maximum and minimum compressive strengths were observed in ZC7 (344.14±19.22) and LC1 (202.80±15.52) groups. Specimens in LC1 [202.80 (15.52)] showed significantly lower compressive strength as compared to MC1 [287.06 (15.03)] (pstrengths compared to LC7 [324.56 (19.47)] and MC7 [315.26 (12.36)]. Compressive strengths among all three materials were significantly higher (pstrength compared to MC and LC. Increasing the post photo-activation duration (from one hour to 7 days) significantly improves the compressive strengths of dual cure bulk fill material.

  1. Understanding the Effects of Compression and Constraints on Water Uptake of Fuel-Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusoglu, Ahmet; Kienitz, Brian L.; Weber, Adam Z.

    2011-01-01

    Accurate characterization of polymer-electrolyte fuel cells (PEFCs) requires understanding the impact of mechanical and electrochemical loads on cell components. An essential aspect of this relationship is the effect of compression on the polymer membrane?s water-uptake behavior and transport properties. However, there is limited information on the impact of physical constraints on membrane properties. In this paper, we investigate both theoretically and experimentally how the water uptake of Nafion membrane changes under external compression loads. The swelling of a compressed membrane is modeled by modifying the swelling pressure in the polymer backbone which relies on the changes in the microscopic volume of the polymer. The model successfully predicts the water content of the compressed membrane measured through in-situ swelling-compression tests and neutron imaging. The results show that external mechanical loads could reduce the water content and conductivity of the membrane, especially at lower temperatures, higher humidities, and in liquid water. The modeling framework and experimental data provide valuable insight for the swelling and conductivity of constrained and compressed membranes, which are of interest in electrochemical devices such as batteries and fuel cells.

  2. Integrated modeling for optimized regional transportation with compressed natural gas fuel

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2016-03-01

    Full Text Available Transportation represents major energy consumption where fuel is considered as a primary energy source. Recent development in the vehicle technology revealed possible economical improvements when using natural gas as a fuel source instead of traditional gasoline. There are several fuel alternatives such as electricity, which showed potential for future long-term transportation. However, the move from current situation where gasoline vehicle is dominating shows high cost compared to compressed natural gas vehicle. This paper presents modeling and simulation methodology to optimize performance of transportation based on quantitative study of the risk-based performance of regional transportation. Emission estimation method is demonstrated and used to optimize transportation strategies based on life cycle costing. Different fuel supply scenarios are synthesized and evaluated, which showed strategic use of natural gas as a fuel supply.

  3. Development of Dual Fuel Single Cylinder Natural Gas Engine an Analysis and Experimental Investigation for Performance and Emission

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2009-01-01

    Full Text Available The present study reports the experimental investigations carried and upgradation of 395 cc air cooled engine to dual fuel (CNG/Gasoline application. The original 395 cc direct injection naturally aspirated, air cooled diesel engine was first converted to run on Gasoline by addition of electronic ignition system and reduction in compression ratio to suit both gasoline and CNG application. CFX software has been employed to calculate and improve the cooling capacity of engine with the use of CNG. Materials of major engine components were reviewed to suit CNG application. The engine was subsequently tuned with dual multi-mapped ignition timing for bi-fuel stoichiometric operation on engine dynamometer and then fitted on a 3-Wheeler vehicle. The vehicle was optimized on a chassis dynamometer to meet the proposed Bharat Stage-III norms. The engine has passed current BS-II emission norms with 48% margin in CO emission and 76% margin in NMHC (Non-Methane Hydrocarbons and Extensive trials were conducted on engine and vehicle to optimize with CNG kit and minimum loaded three way cat-con to finally to met proposed BS-III norms.

  4. Study of thermal and emission performance of small gasifier-dual-fuel engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, P.P.; Bhave, A.G.; Kapse, D.V.; Shashikantha (Indian Inst. of Tech., Bombay (India). Dept. of Mechanical Engineering)

    1989-01-01

    Performance of a downdraft, biomass gasifier-engine system is reported. Two types of diesel (direct injected and indirect injected) engines used in agricultural applications have been operated with the same gasifier system in the producer gas-cum-diesel, dual-fuel mode. The biomass used in these investigations is Subabool (Leucaena leucocephala). The systems have been evaluated with reference to their thermal, power and emission performance levels. Percentage diesel replacement at different loads has been evaluated as a parameter of interest. It was observed that the various performance facets of dual-fuel operation are considerably influenced by the engine design and operating parameters such as the design of the cooling-cleaning system, especially its volume, which is an important parameter determining the level of diesel replacement as well as the power capacity under dual-fuel mode. The low speed engine was found to be more sensitive to the volume of cooling-cleaning system. (author).

  5. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  6. EFFECT OF INJECTION PRESSURE ON PERFORMANCE AND EMISSIONS OF CNG DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    B.NAGESWARA RAO

    2014-07-01

    Full Text Available A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was inducted into the combustion chamber via intake manifold. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load at constant speed at different injector opening pressures for the pilot fuel (diesel. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the engine performance, in terms of brake thermal efficiency and emission levels. An experimental investigation was carried out to find out the effect of injection pressure on performance and emissions of a diesel engine operated with CNG inducted into the engine. Behavior of the dual fuel engine at 10%, 20%, 30%, 40% and 50% substitution of CNG with respect to diesel was examined and compared them at different injection pressures

  7. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  8. Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow

    Science.gov (United States)

    Wan, W. C.; Malamud, G.; Shimony, A.; Di Stefano, C. A.; Trantham, M. R.; Klein, S. R.; Shvarts, D.; Drake, R. P.; Kuranz, C. C.

    2017-05-01

    We report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortex merger rate and growth inhibition for supersonic shear flow.

  9. Fast Compressed Sensing MRI Based on Complex Double-Density Dual-Tree Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Shanshan Chen

    2017-01-01

    Full Text Available Compressed sensing (CS has been applied to accelerate magnetic resonance imaging (MRI for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT with fast iterative shrinkage/soft thresholding algorithm (FISTA to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR, larger signal-to-noise ratio (SNR, better structural similarity index (SSIM, and lower relative error.

  10. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2008-01-01

    The paper is investigated the application of compressed natural gas (CNG) as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine pe...

  11. Concept for a LNG Gas Handling System for a Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Michael Rachow

    2017-09-01

    Full Text Available Nowadays, ships are using LNG as main engine fuel because based on the facts that LNG has no sulphur content, and its combustion process, LNG produces low NOx content compared to heavy fuel oil and marine diesel oil. LNG is not only produces low gas emission, but may have economic advantages. In the engine laboratory of maritime studies department in Warnemunde, Germany, there is a diesel engine type MAN 6L23/30 A, where the mode operation of these engine would be changed to dual fuel engine mode operation. Therefore, in this thesis, the use dual fuel engine will be compared where it will utilize natural gas and marine diesel oil and select the required components for fuel gas supply system. By conducting the process calculation, engine MAN 6L23/30 A requires the capacity natural gas of 12.908  for 5 days at full load. A concept for LNG supply system would be arranged from storage tank until engine manifold. Germanischer Lloyd and Project Guide of dual fuel engine will be used as a guidelines to develop an optimal design and arrangement which comply with the regulation.

  12. Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging.

    Science.gov (United States)

    Wang, Lizhi; Xiong, Zhiwei; Shi, Guangming; Wu, Feng; Zeng, Wenjun

    2016-10-25

    Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity while maintaining the snapshot advantage. In this paper, we propose an adaptive nonlocal sparse representation (ANSR) model to boost the performance of dualcamera compressive hyperspectral imaging (DCCHI). Specifically, the CS reconstruction problem is formulated as a 3D cube based sparse representation to make full use of the nonlocal similarity in both the spatial and spectral domains. Our key observation is that, the panchromatic image, besides playing the role of direct measurement, can be further exploited to help the nonlocal similarity estimation. Therefore, we design a joint similarity metric by adaptively combining the internal similarity within the reconstructed hyperspectral image and the external similarity within the panchromatic image. In this way, the fidelity of CS reconstruction is greatly enhanced. Both simulation and hardware experimental results show significant improvement of the proposed method over the state-of-the-art.

  13. A compressible real gas eulerian model for LES of fuel sprays

    Science.gov (United States)

    Knudsen, Edward; Doran, Eric

    2015-11-01

    A compressible solver for eulerian multiphase spray simulations is presented. This large eddy simulation solver employs a Peng-Robinson (PR) equation of state to describe mixtures of two species such as liquid dodecane and gaseous nitrogen. Modeling challenges associated with the use of PR are discussed, as are the resource requirements associated with using a compressible formulation to describe liquids when full fuel injector applications are considered. The solver is analyzed using canonical cases and the Spray A experiment from the Engine Combustion Network.

  14. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    OpenAIRE

    Wenyi Liu; Linzhi Liu; Gang Xu; Feifei Liang; Yongping Yang; Weide Zhang; Ying Wu

    2014-01-01

    Compressed air energy storage (CAES) is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG) as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-f...

  15. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper is investigated the application of compressed natural gas (CNG as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine performance effect on the difference fuel. Output of the model simulation shown the effect of diesel engine fueled by CNG performance effect were simulated in any engine speeds parameters.

  16. Knock prediction for dual fuel engines by using a simplified combustion model

    Institute of Scientific and Technical Information of China (English)

    费少梅; 刘震涛; 严兆大

    2003-01-01

    The present work used a methane-air mixture chemical kinetics scheme consisting of 119 elementary reaction steps and 41 chemical species to develop a simplified combustion model for prediction of the knock in dual fuel engines. Calculated values by the model for natural gas operation showed good agreement with corresponding experimental values over a broad range of operating conditions.

  17. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Directory of Open Access Journals (Sweden)

    Bhabani Prasanna Pattanaik, Chandrakanta Nayak, Basanta Kumar Nanda

    2013-01-01

    Full Text Available In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  18. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Pattanaik, Bhabani; Nayak, Chandrakanta [Department of Mechanical Eng., Gandhi Institute for Technological Advancement, Madanpur, Bhubaneswar - 752054, Odisha (India); Kumar Nanda, Basanta [Department of Mechanical Eng., Maharaja Institute of Technology, Bhubaneswar, Odisha (India)

    2013-07-01

    In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  19. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  20. An evaluation of criteria for selecting vehicles fueled with diesel or compressed natural gas

    Directory of Open Access Journals (Sweden)

    Thomas Hesterberg

    2009-04-01

    Full Text Available We reviewed selection criteria for diesel and compressed natural gas (CNG fueled vehicles, comparing engine emissions, fire and safety, toxicity, economics, and operations. Diesel- and CNG-fueled vehicles with the latest emission-control technology, including engine-exhaust aftertreatment, have very similar emissions of regulated and unregulated compounds, particles through all size ranges, and greenhouse gases. Although toxicity data are limited, no significant toxicity differences of engine emissions were reported. Operating and maintenance costs are variable, with no consistent difference between diesel- and CNG-fueled vehicles. The main operating concern with CNG vehicles is that they are less fuel efficient. Higher infrastructure costs are involved with implementing a CNG-fueled vehicle fleet, giving diesel vehicles a distinct cost advantage over CNG vehicles. For a given budget, greater emissions reductions can thus be achieved with diesel+filter vehicles. Finally, diesel vehicles have a significant fire-and-safety advantage over CNG vehicles. In summary, infrastructure costs and fire-and-safety concerns are much greater for CNG-fueled vehicles. These considerations should be part of the decision-making process when selecting a fuel for a transportation system.

  1. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel.

    Science.gov (United States)

    Canakci, Mustafa

    2007-04-01

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine.

  2. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  3. IMPROVEMENT OF PERFORMANCE OF DUAL FUEL ENGINE OPERATED AT PART LOAD

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2010-12-01

    Full Text Available Rising petroleum prices, an increasing threat to the environment from exhaust emissions, global warming and the threat of supply instabilities has led to the choice of inedible Mahua oil (MO as one of the main alternative fuels to diesel oil in India. In the present work, MO was converted into biodiesel by transesterification using methanol and sodium hydroxide. The cost of Mahua oil biodiesel (MOB is higher than diesel. Hence liquefied petroleum gas (LPG, which is one of the cheapest gaseous fuels available in India, was fumigated along with the air to reduce the operating cost and to reduce emissions. The dual fuel engine resulted in lower efficiency and higher emissions at part load. Hence in the present work, the injection time was varied and the performance of the dual fuel engine was studied. From the engine tests, it is observed that an advanced injection time results in higher efficiency and lower emissions. Hence, advancing the injection timing is one of the ways of increasing the efficiency of LPG+MOB dual fuel engine operated at part load.

  4. DNBR Analysis of a Dual-Cooled Annular Fuel for the OPR1000 Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; In, W. K.; Oh, D. S.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    A dual-cooled annular fuel for a pressurized water reactor (PWR) has been introduced for a significant amount of reactor power uprate. The Korea Atomic Energy Research Institute (KAERI) has been performing a research to develop a dual-cooled annular fuel for the power uprate of 20% in an optimized PWR in Korea, OPR1000. Several thermal-hydraulic tasks exist for the application of the dual-cooled annular fuel to OPR1000. The primary task is the balance of the minimum DNBR (MDNBR) between the inner and outer channels since the coolant flows through the circular inner channel of annular fuel as well as the outer subchannels formed between the fuel rods. The MDNBR balance has been known to largely depend on the thermal conductance in the inner and outer gaps. Another task is to evaluate the operating condition that the inner coolant channel is partially blocked. This study calculated the MDNBR in the inner and outer channels depending on the thermal gap conductance, i.e., inner and outer gap width. The acceptable range of gap width is determined for the MDNBR not to exceed the DNBR limit during anticipated operational occurrences (AOOs) as well as normal operation. The limit for the flow blockage in the inner channel is also estimated based on the DNBR analysis

  5. Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter

    Science.gov (United States)

    Martin, J. A.

    1982-01-01

    Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.

  6. An Experimental Investigation of Performance and Emissions of LPG as Dual Fuel in Diesel Engine Generator

    Directory of Open Access Journals (Sweden)

    K. Mohan Kumar

    2014-11-01

    Full Text Available The usage of diesel engine generating set (Gen set increasing day by day where the places without connection to power grid or emergency power supply when the grid fails. Worldwide dual fuel engines are becoming popular because of high performance and low emissions. LPG with diesel is a proven technology in case of vehicles, but in diesel engine power plants it is far so. The proposed work is concentrated on higher load of Diesel Engine Generator with LPG as dual fuel by keeping environmental concern. A test is conducted on performance of engine along with emissions at different proportions of Diesel and LPG including 100% diesel. An experimental set up is made with simple modifications on existing genset to supply LPG as secondary fuel into Diesel.

  7. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  8. Effects of compression and expansion ramp fuel injector configuration on scramjet combustion and heat transfer

    Science.gov (United States)

    Stouffer, Scott D.; Baker, N. R.; Capriotti, D. P.; Northam, G. B.

    1993-01-01

    A scramjet combustor with four wall-ramp injectors containing Mach-1.7 fuel jets in the base of the ramps was investigated experimentally. During the test program, two swept ramp injector designs were evaluated. One swept-ramp model had 10-deg compression-ramps and the other had 10-deg expansion cavities between flush wall ramps. The scramjet combustor model was instrumented with pressure taps and heat-flux gages. The pressure measurements indicated that both injector configurations were effective in promoting mixing and combustion. Autoignition occurred for the compression-ramp injectors, and the fuel began to burn immediately downstream of the injectors. In tests of the expansion ramps, a pilot was required to ignite the fuel, and the fuel did not burn for a distance of at least two gaps downstream of the injectors. Once initiated, combustion was rapid in this configuration. Heat transfer measurements showed that the heat flux differed greatly both across the width of the combustor and along the length of the combustor.

  9. Fault Tree Analysis of Fire and Explosion Accidents for Dual Fuel (Diesel/Natural Gas) Ship Engine Rooms

    Institute of Scientific and Technical Information of China (English)

    Yifeng Guan; Jie Zhao; Tengfei Shiand Peipei Zhu

    2016-01-01

    In recent years, China’s increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship;in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  10. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    Science.gov (United States)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  11. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Directory of Open Access Journals (Sweden)

    N. Seshaiah

    2010-09-01

    Full Text Available Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene, and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  12. The feasibility of dual-energy CT in differentiation of vertebral compression fractures

    Science.gov (United States)

    Karaca, Leyla; Yuceler, Zeynep; Çakır, Murteza; Sade, Recep; Calıkoglu, Cagatay; Ogul, Hayri; Bayrakturan, U.Gulsum

    2016-01-01

    Objective: To prospectively evaluate the ability of dual-energy CT (DECT), compared with MRI, to identify vertebral compression fractures in acute trauma patients. Methods: This institutional review board-approved study included 23 consecutive patients with 32 vertebral fractures who underwent both DECT and MRI of the spine between February 2014 and September 2014. A total of 209 vertebrae were evaluated for the presence of abnormal bone marrow attenuation on DECT and signal on MRI by five experienced radiologists. The specificity, sensitivity, predictive values and intraobserver and interobserver agreements were calculated. Results: MRI revealed a total of 47 vertebrae (22.4% of all vertebrae) and DECT revealed 44 vertebrae (21.0% of all vertebrae) with oedema. Using MRI as the reference standard, DECT had sensitivity, specificity, positive-predictive value, negative-predictive value and accuracy of 89.3, 98.7, 95.4, 96.9 and 96.6%, respectively. With respect to establishing the presence of oedema, the interobserver agreement was almost perfect (k = 0.82), and the intraobserver agreement was substantial (k = 0.80). Conclusion: Compared with MRI, DECT can provide an accurate demonstration of acute vertebral fractures and can be used as an alternative imaging modality for the assessment of vertebral fractures in patients with contraindications for MRI. Advances in knowledge: Distinguishing of acute and chronic vertebral compression fracture is important for treatment choices. DECT is very fast compared with MRI and is an alternative imaging modality for the assessment of vertebral fractures in patients with contraindications for MRI. PMID:26537691

  13. Prediction models for performance and emissions of a dual fuel CI engine using ANFIS

    Indian Academy of Sciences (India)

    A Adarsh Rai; P Srinivasa Pai; B R Shrinivasa Rao

    2015-04-01

    Dual fuel engines are being used these days to overcome shortage of fossil fuels and fulfill stringent exhaust gas emission regulations. They have several advantages over conventional diesel engines. In this context, this paper makes use of experimental results obtained from a dual fuel engine for developing models to predict performance and emission parameters. Conventional modelling efforts to understand the relationships between the input and the output variables, requires thermodynamic analysis which is complex and time consuming. As a result, efforts have been made to use artificial intelligence modelling techniques like fuzzy logic, Artificial Neural Network (ANN), Genetic Algorithm (GA), etc. This paper uses a neuro fuzzy modelling technique, Adaptive Neuro Fuzzy Inference System (ANFIS) for developing prediction models for performance and emission parameter of a dual fuel engine. Percentage load, percentage Liquefied Petroleum Gas (LPG) and Injection Timing (IT) have been used as input parameters, whereas output parameters include Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Exhaust Gas Temperature (EGT) and smoke. In order to further improve the prediction accuracy of the model, GA has been used to optimize ANFIS. GA optimized ANFIS gives higher prediction accuracy of more than 90% for all parameters except for smoke, where there is a substantial improvement from 46.67% to 73.33%, when compared to conventional ANFIS model.

  14. Numerical Prediction of Dual-Cooled Annular Fuel Temperature During Control Rod Ejection Accident in OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Eun; In, Wang Kee; Yang, Soo Hyung; Chun, Tae Hyun; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    A dual-cooled annular fuel concept for a light water reactor has been introduced by MIT for a significant amount of reactor power uprate. MIT proposed a 13x13 annular fuel array replacing the 17x17 solid fuel in the Westinghouse 4-loop plant, which could increase the core power up to 50% with the considerable changes in the major reactor components. The Korea Atomic Energy Research Institute (KAERI) is also conducting a research to develop a dual-cooled fuel for its employment in an optimized pressurized water reactor in Korea, OPR1000. The dual-cooled fuel for the OPR1000 is targeted to increase the reactor power by 20% as well as reduce the fuel-pellet temperature by more than 30% without a change to the reactor components other than the fuel. Numerous technical tasks exist for assessing the applicability of the dual cooled annular fuel to the power uprate in the OPR1000. One of the important tasks is to evaluate the performance of the annular fuel during the design basis events. Particularly, the fuel temperature and the peak cladding temperature (PCT) are the important variables during the control rod ejection accident (REA), since the rod averaged fuel enthalpy should be lower than its safety limit. The fuel enthalpy is known to largely depend on the fuel temperature. This paper presents the predictions of the fuel and peak cladding temperatures during the REA. A general-purpose structural code, ABAQUS-6.8 and a computational fluid dynamics code, ANSYS CFX-11.0 were used to perform the numerical analysis of a heat transfer in the annular fuel as well as the solid fuel. The numerical predictions of the fuel maximum temperature (FMT) and PCT are compared against those predicted by a best-estimate system transient analysis code, MARS.

  15. Experimental study on the effect of varying syngas composition on the emissions of dual fuel CI engine operating at various engine speeds

    Science.gov (United States)

    Mahgoub, B. K. M.; Sulaiman, S. A.; Karim, Z. A. A.; Hagos, F. Y.

    2015-12-01

    Using syngas as a supplement fuel of diesel in dual fuel mode is a proposed solution in the effort to protect the environment and control the serious threats posed by greenhouse gas emissions from compression ignition engines. The objective of this study was to experimentally examine the effect of syngas composition on the exhaust emission of dual fuel compression ignition (CI) engine at various engine speeds, and to compare the operating ranges of imitated syngas versus pure diesel. The study was conducted using a naturally aspirated, two strokes, single cylinder 3.7 kW diesel engine operated at speeds of 1200, 2000 and 3000 rpm. The engine was tested with three different syngas compositions. Diesel fuel was partially substituted by syngas through the air inlet. The test results disclose the impact of using syngas in CI engines on emission of CO2, NOx, unburned hydrocarbons and carbon monoxide. The experimental measurements confirmed that all syngas compositions are capable of reducing the emissions of CO2 and NOX compared with diesel fuel. Wide range of diesel replacement ratios (up to 72%) was attained without any penalty. Syngas with composition of 49% N2, 12% CO2, 25% CO, 10% H2, and 4% CH4 reduced the emissions of CO2 and NOx at engine speed of 1200 rpm up to 1% and 108 ppm, respectively. The lowest emission of UHC and NOx was emitted when the engine was operating at speed of 2000 rpm and 3000 rpm, respectively with composition of 38% N2, 8% Co2, 29% CO, 19% H2, and 6% CH4. Therefore, syngas could be a promising technique for controlling NOx emissions in CI engines. However, hydrogen content in syngas is important parameter that needs to be further investigation for its effect.

  16. Sobolev Duals for Random Frames and Sigma-Delta Quantization of Compressed Sensing Measurements

    CERN Document Server

    Güntürk, S; Saab, R; Y\\ilmaz, Ö

    2010-01-01

    Quantization of compressed sensing measurements is typically justified by the robust recovery results of Cand\\`es, Romberg and Tao, and of Donoho. These results guarantee that if a uniform quantizer of step size $\\delta$ is used to quantize $m$ measurements $y = \\Phi x$ of a $k$-sparse signal $x \\in \\R^N$, where $\\Phi$ satisfies the restricted isometry property, then the approximate recovery $x^#$ via $\\ell_1$-minimization is within $O(\\delta)$ of $x$. The simplest and commonly assumed approach is to quantize each measurement independently. In this paper, we show that if instead an $r$th order $\\Sigma\\Delta$ quantization scheme with the same output alphabet is used to quantize $y$, then there is an alternative recovery method via Sobolev dual frames which guarantees a reduction of the approximation error by a factor of $(m/k)^{(r-1/2)\\alpha}$ for any $0 < \\alpha < 1$, if $m \\gtrsim_r k (\\log N)^{1/(1-\\alpha)}$. The result holds with high probability on the initial draw of the measurement matrix $\\Phi$ f...

  17. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  18. Performance of Cassava Starch as a Proton Exchange Membrane in a Dual Chambered Microbial Fuel Cell.

    OpenAIRE

    Livinus A. Obasi; Charles C. Opara; Akuma Oji

    2012-01-01

    This research work shows the feasibility of power generation in a mediatorless dual chambered microbial fuel cell, utilizing cassava starch as the proton exchange membrane (PEM). The study employed swine house effluent (a serious environmental threat) as the substrate (fuel) (pH, 7.2, BOD: 1200mg/l, COD: 3800mg/l) in the anode chamber prepared with a phosphate buffer solution (K2HPO4+KH2PO4), potassium ferry cyanide solution served as the oxygen acceptor in the cathode chamber using graphite ...

  19. Combustion and emission characteristics of a dual fuel engine operated with mahua oil and liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.

  20. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

    Directory of Open Access Journals (Sweden)

    Hossein Safaei

    2017-07-01

    Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.

  1. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  2. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  3. CNG (compressed natural gas) as fuel for the transport sector in Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    So`Brien, G.C.; Persad, P.; Satcunanathan, S. [University of the West Indies, St. Augustine (Trinidad)

    1996-08-01

    Several studies have established that Trinidad and Tobago is well positioned to consider the substitution of compressed natural gas (CNG) for gasoline or diesel in the transport sector. Consequently a programme of conversion of private motors was initiated. Despite considerable advertisement programs projecting CNG as an environmentally friendly and cheap fuel, there is not yet widespread acceptance of the technology. The reasons for this are analysed. It is recommended that the policy of CNG usage be reviewed and the emphasis be shifted to transport fleets. It is also recommended that tax credits be considered as an incentive to users. (author)

  4. The effect of inhomogeneous compression on water transport in the cathode of a PEM fuel cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    A three-dimensional, multi-component, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS inc.), is used to investigate the effect of porous media compression on transport phenomenon of a PEM Fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas diffusion...... layer, micro-porous layer and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation and mass transfer between phases by a non-equilibrium phase change model...

  5. Characterization and Effect of Using Mahua Oil Biodiesel as Fuel in Compression Ignition Engine

    Institute of Scientific and Technical Information of China (English)

    N.Kapilan; T.P.Ashok Babu; R.P.Reddy

    2009-01-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and com-pression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the en-gine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emis-sions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel 035 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  6. Durability testing modified compression ignition engines fueled with straight plant oil

    Energy Technology Data Exchange (ETDEWEB)

    Basinger, M.; Lackner, K.S. [Earth and Environmental Engineering, Columbia University, New York City 10027 (United States); Reding, T. [Mechanical Engineering, Manhattan College, New York City (United States); Rodriguez-Sanchez, F.S. [Mali Biocarburant, Bamako (Mali); Modi, V. [Mechanical Engineering, Columbia University, New York City 10027 (United States)

    2010-08-15

    Many short-run studies point to the potential for direct fueling of compression ignition engines with plant oil fuels. There is a much smaller body of work that examines the potential for these fuels in long-run tests that illuminate engine endurance and longevity issues. Generally, longevity studies involving direct fueling of engines with straight plant oils have shown significant impact to the life of the engine, though test results vary widely depending on the oil, engine type, test conditions, and measurement approach. This study utilizes a previously designed modification kit to investigate the longevity implications of directly fueling straight plant oil in an indirect injection (IDI) listeroid type, slow speed stationary engine common in agro-processing applications in developing countries. Specifically this study focuses on the lubrication oil by developing a model to characterize the engine wear and estimate lube oil change frequency. The model is extended to an analysis of the piston rings. Cylinder liner wear, emissions, engine performance, and a visual investigation of several critical engine components are also studied. The 500 hour test with waste vegetable oil fuel resulted in several important findings. The engine break-in period was identified as taking between 200 and 300 h. Emissions analysis supported the break-in definition as smoke opacity and carbon monoxide values fell from 9% and 600 ppm (respectively) during the first few hundred hours, to 5% and 400 ppm in the final 200 h. Lubrication oil viscosity was found to be the limiting degradation factor in the lube oil, requiring oil to be changed every 110 h. Piston ring mass loss was found to correlate very closely with chromium buildup in the lubrication oil and the mathematical model that was developed was used to estimate that piston ring inspection and replacement should occur after 1000 h. Cylinder ovalisation was found to be most sever at top dead center (TDC) at 53 microns of averaged

  7. Simulation of Cycle-to-Cycle Variation in Dual-Fuel Engines

    KAUST Repository

    Jaasim, Mohammed

    2017-03-13

    Standard practices of internal combustion (IC) engine experiments are to conduct the measurements of quantities averaged over a large number of cycles. Depending on the operating conditions, the cycle-to-cycle variation (CCV) of quantities, such as the indicated mean effective pressure (IMEP) are observed at different levels. Accurate prediction of CCV in IC engines is an important but challenging task. Computational fluid dynamics (CFD) simulations using high performance computing (HPC) can be used effectively to visualize such 3D spatial distributions. In the present study, a dual fuel large engine is considered, with natural gas injected into the manifold accompanied with direct injection of diesel pilot fuel to trigger ignition. Multiple engine cycles in 3D are simulated in series as in the experiments to investigate the potential of HPC based high fidelity simulations to accurately capture the cycle to cycle variation in dual fuel engines. Open cycle simulations are conducted to predict the combined effect of the stratification of fuel-air mixture, temperature and turbulence on the CCV of pressure. The predicted coefficient of variation (COV) of pressure compared to the results from closed cycle simulations and the experiments.

  8. Fabrication and characterization of high power dual chamber E. coli microbial fuel cell

    Science.gov (United States)

    Lalitha Priya, R.; Ramachandran, T.; Suneesh, P. V.

    2016-09-01

    This work reports the fabrication of a dual chamber microbial fuel cell with E. coli modified graphite as the anode and lead dioxide cathode. At the optimized operating conditions, the cell provided 778 mV open circuit potential, 3.47 mA m-2 of current density and 1660 mW m-2 power density. Morphology of the of E. coli biofilm on the electrode was analysed using AFM and the electrochemical characterization of the fuel cell was carried out using electrochemical impedance spectroscopy (EIS) and polarization curves. The composition of the anode and the time duration for E. coli biofilm formation were varied to obtain maximum power density. The MFC fabricated in this study was found to have improved power density in comparison with other reported fuel cells.

  9. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    Science.gov (United States)

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.

  10. Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere

    Science.gov (United States)

    Sabato, A. G.; Cempura, G.; Montinaro, D.; Chrysanthou, A.; Salvo, M.; Bernardo, E.; Secco, M.; Smeacetto, F.

    2016-10-01

    A glass-ceramic composition was designed and tested for use as a sealant in solid oxide fuel cell (SOFC) planar stack design. The crystallization behaviour was investigated by calculating the Avrami parameter (n) and the activation energy for crystallization (Ec) was obtained. The calculated values for n and Ec were 3 and 413.5 kJ/mol respectively. The results of thermal analyses indicate that this composition shows no overlap between the sintering and crystallization stages and thus an almost pore-free sealant can be deposited and sintered at 850 °C in air for 30 min. A gas tightness test has been carried out at 800 °C for 1100 h in dual atmosphere (Ar-H2 and air) without recording any leakage. Morphological and crystalline phase analyses were conducted prior and following tests in dual atmospheres in order to assess the compatibility of the proposed sealant with the metallic interconnect.

  11. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    Science.gov (United States)

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dual-fuel versus single-fuel propulsion systems for AMLS applications. [Advanced Manned Launch System

    Science.gov (United States)

    Stanley, Douglas O.; Talay, T. A.

    1989-01-01

    The results of using a computerized preliminary design system to integrate propulsion systems examined as a part of the Space Transportation Main Engine (STME) and Space Transportation Booster Engine (STBE) studies with reference vehicle concepts from the Advanced Manned Launch System (AMLS) study are presented. The major trade study presented is an analysis of the effect of using a single fuel for both stages of two-stage AMLS reference vehicles as opposed to using a separate fuel for the boosters. Other trade studies presented examine the effect of varying relevant engine parameters in an attempt to optimize the reference engines for use with the AMLS launch vehicles. In each propulsion trade discussed, special attention is given to the major vehicle performance and operational issues involved.

  13. Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network

    Institute of Scientific and Technical Information of China (English)

    刘震涛; 费少梅

    2004-01-01

    Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resum6, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.

  14. Design and analysis of dual fuel methanol-power poly-generation

    Institute of Scientific and Technical Information of China (English)

    Minghua WANG; Zheng LI; Weidou NI

    2009-01-01

    A dual fuel head poly-generation flowsheet was designed based on coal gas and coke oven gas. To help clearly understand the system performance, a 1.2×108-3.2×108 kg methanol and 274-496 MW power poly-generation system was simulated by using the commercially available software ASPEN Plus and GT Pro. The technology scheme, the operating parameters, and the efficiency of the system were also analyzed and evaluated, which will be used for building industrial devices.

  15. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  16. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    Science.gov (United States)

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  17. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A. [School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Department of Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom); Yap, D. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-03-15

    This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NO{sub x} emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced. (author)

  18. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    Science.gov (United States)

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance.

  19. Design and Development of Hybrid Multilevel Inverter employing Dual Reference Modulation Technique for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    R. Seyezhai

    2011-10-01

    Full Text Available MultiLevel Inverter (MLI has been recognized as an attractive topology for high voltage DC-AC conversion. This paper focuses on a new dual reference modulation technique for a hybrid multilevel inverter employing Silicon carbide (SiC switches for fuel cell applications. The proposed modulation technique employs two reference waveforms and a single inverted sine wave as the carrier waveform. This technique is compared with the conventional dual carrier waveform in terms of output voltage spectral quality and switching losses. An experimental five-level hybrid inverter test rig has been built using SiC switches to implement the proposed algorithm. Gating signals are generated using PIC microcontroller. The performance of the inverter has been analyzed and compared with the result obtained from theory and simulation. Simulation study of Proportional Integral (PI controller for the inverter employing the proposed modulation strategy has been done in MATLAB/SIMULINK. Keywords: Multilevel inverter, SiC , dual reference modulation, switching losses, PI

  20. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  1. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    Science.gov (United States)

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  2. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    严兆大; 周重光; 苏石川; 刘震涛; 王希珍

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  3. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    严兆大; 周重光; 苏石川; 刘震涛; 王希珍

    2003-01-01

    In order to predict and improve the performance of matural gas/diesel dual fuel engine(DFE),a combustion rate model based on forward meural network was built to study the combustion process of the DFE.The effect of the operating parameters on combustion rate was also studied by means of this model.The study showed that the predicted results were good agreement with the experimental data.It was proved that the de-veloped combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  4. Development of the on-demand fuel injection system for a light truck using the hydrogen enriched compressed natural gas (HCNG fuel

    Directory of Open Access Journals (Sweden)

    Sarawoot Watechagit

    2014-06-01

    Full Text Available The use of hydrogen as a fuel by mixing with a commercial fuel has recently been investigated continuously in order to solve the energy crisis and global warming. This article presents the results of the design and experimentation for the use of the hydrogen enriched compressed natural gas or HCNG as a fuel. The prototype vehicle a light truck equipped with a 1809 cc. gasoline engine. The proposed system is a mixing system where the compressed natural gas and the hydrogen are stored on-board and controlled separately. They are mixed as they are injected into the intake manifold right before the intake-port (Port Injection. The hydrogen supply system used in this investigation is adopted from the common system used for compressed natural gas system. The mixing ratio (%H in the total volume of HCNG ranges from 5% to 20% by volume. The performance testing is done through the Chassis Dynamometer. The results show that the power and the torque of the engine drops when using either CNG or HCNG as compared to the gasoline fuel. However, when compared to the case when using the CNG, the 10% addition of hydrogen can increase the performance by 1%. The performance, on the other hands, is reduced for other amount of hydrogen additions.

  5. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  6. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  7. Experimental Analysis of a Small Generator set Operating on Dual Fuel Diesel-Ethanol

    Directory of Open Access Journals (Sweden)

    Marcel Alex Vailatti

    2017-08-01

    Full Text Available This work aims to analyze the operation of a generator set on single fuel mode with diesel oil, and on dual fuel mode using diesel–ethanol blends. The engine used to realize the experimental analysis was a diesel cycle model, single cylinder, direct injection, air refrigerated and coupled to a three-phase electric generator, whose set capacity was 8.0 kVA. The generated electric energy was dissipated in electrical resistances inside a reservoir with running water. Fuels were blended in different volumetric ratios, using a small portion of vegetable castor oil to promote the homogenization. The percentages of substitutions of diesel oil were by 10% to 50%, increasing by 10% the replacement for each sample. Also, the engine was operated with 100% substitution of diesel oil, i.e., for this condition, the samples were composed of ethanol/castor oil 90/10 (volume/volume, 80/20 and 75/25. The blends of diesel and ethanol did not obtain good performance, mainly in taxes of substitution above 40%, causing combustion failures, operational instability, and increase of fuel consumption, although it has achieved a greatly reduction on opacity percentages. The blends with 100% of substitution of diesel oil obtained good performance except to blend with 90% ethanol, where occurred combustion failures, which caused operational instability. To these conditions, the results achieved are increase of consumption by 17%, decrease of opacity by 79%, decrease of exhaust gas temperature by 3.5% and increase of engine thermal efficiency by 1.3%. At the ethanol – castor oil blends there was a decrease in the percentage of opacity by 96%, decrease of exhaust gas temperature by 17.6%, with a minimum of operational irregularities, although fuel consumption has increased by 52.4% and the engine thermal efficiency has decreased almost 1.7%.

  8. Dual-fuel propulsion - Why it works, possible engines, and results of vehicle studies. [on earth-to-orbit Space Shuttle flights

    Science.gov (United States)

    Martin, J. A.; Wilhite, A. W.

    1979-01-01

    The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.

  9. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chao; Ming, Pingwen; Hou, Ming; Fu, Jie; Fu, Yunfeng; Luo, Xiaokuan; Shen, Qiang; Shao, Zhigang; Yi, Baolian

    Vacuum resin impregnation method has been used to prepare polymer/compressed expanded graphite (CEG) composite bipolar plates for proton exchange membrane fuel cells (PEMFCs). In this research, three different preparation techniques of the epoxy/CEG composite bipolar plate (Compression-Impregnation method, Impregnation-Compression method and Compression-Impregnation-Compression method) are optimized by the physical properties of the composite bipolar plates. The optimum conditions and the advantages/disadvantages of the different techniques are discussed respectively. Although having different characteristics, bipolar plates obtained by these three techniques can all meet the demands of PEMFC bipolar plates as long as the optimum conditions are selected. The Compression-Impregnation-Compression method is shown to be the optimum method because of the outstanding properties of the bipolar plates. Besides, the cell assembled with these optimum composite bipolar plates shows excellent stability after 200 h durability testing. Therefore the composite prepared by vacuum resin impregnation method is a promising candidate for bipolar plate materials in PEMFCs.

  10. Effect of ammonium and nitrate on current generation using dual-cathode microbial fuel cells.

    Science.gov (United States)

    Jang, Jae Kyung; Choi, Jung Eun; Ryou, Young Sun; Lee, Sung Hyoun; Lee, Eun Young

    2012-02-01

    These studies were conducted to determine the effects of various concentrations of ammonium and nitrate on current generation using dual-cathode microbial fuel cells (MFCs). Current generation was not affected by ammonium up to 51.8+/-0.0 mg/l, whereas 103.5+/-0.0 mg/l ammonium chloride reduced the current slightly. On the other hand, when 60.0+/-0.0 and 123.3+/-0.1 mg/l nitrate were supplied, the current was decreased from 10.23+/-0.07 mA to 3.20+/-0.24 and 0.20+/-0.01 mA, respectively. Nitrate did not seem to serve as a fuel for current generation in these studies. At this time, COD and nitrate removal were increased except at 123+/-0.1 mg NO(3)(-)/l. These results show that proper management of ammonium and nitrate is very important for increasing the current in a microbial fuel cell.

  11. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  12. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    Science.gov (United States)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  13. Obtention of fracture properties of unirradiated fuel cladding from ring compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    Zirconium alloy cladding is used as the first structural barrier to contain the nuclear fuel and the fission products. In addition to its neutron transparency, this material has a good corrosion resistance and remarkable mechanical properties at operational temperatures. Consequently, it is or paramount importance to precisely characterize the mechanical behaviour and fracture properties of irradiated cladding to ensure a safe operation. It is known that the mechanical behaviour of unirradiated zirconium alloy cladding is anisotropic. The elastoplastic response depends on the direction, namely radial, hoop or longitudinal. For this reason, different fracture properties should be expected in each direction. From the various tests employed to characterize the mechanical behaviour along the hoop direction in nuclear fuel cladding, the ring compression test is particularly useful to study material fracture. With this test it is possible to determine the moment when a real crack is formed, due to a sudden decrease in the applied load at a given displacement value. The aim of this research is to determine as precisely as possible the value of the fracture energy from the ring compression test load vs. displacement curves. To this end, a finite element calculation incorporating the cohesive zone model was performed. In this case, the cohesive zone theory is applied in its simplest form. It is considered that the cohesive crack transfers a constant stress until the displacement of this cohesive crack reaches a critical value. At this precise moment a real crack is generated. The properties of the softening curve of the cohesive zone model can be obtained by directly comparing the experimental load vs. displacement records with the finite element calculations. The area under the softening curve is the fracture energy, which is directly related with the material fracture toughness. The experimental data used in this work have been obtained on unirradiated Zirlo cladding

  14. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin

    2015-01-01

    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  15. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    Science.gov (United States)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  16. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  17. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    Science.gov (United States)

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  18. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  19. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization.

    Science.gov (United States)

    Bakhshian, Sahar; Kariminia, Hamid-Reza; Roshandel, Ramin

    2011-06-01

    Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as well. Maximum power density increased about 30% when enzymatic decolorization was performed in the cathode chamber. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fuel-optimal angular momentum vector control for spinning and dual-spin spacecraft.

    Science.gov (United States)

    Larson, V.; Likins, P.

    1973-01-01

    The problem of fuel-optimal small-angle reorientation of the spin axis of a spinning or dual-spin spacecraft is examined. The results obtained show significant improvements over previously published optimization studies by virtue of the introduction of two innovations: (1) mass-explusion active control is utilized for angular momentum vector pointing only, with passive damping relied upon for stable vehicles to attenuate vehicle coning about the angular momentum vector, so that the task of the active controller changes from spin axis control to angular momentum vector control, and (2) several options are considered for type, number, and location of attitude control jets. The first of these considerations introduces a target set which is a smooth, two-dimensional linear manifold in the four-dimensional state space, whereas previous studies have adopted the origin as the target set. The second innovation amounts to consideration of a spectrum of control restraint sets.

  1. Effect of propulsion system characteristics on ascent performance of dual-fueled single-stage earth-to-orbit transports

    Science.gov (United States)

    Rehder, J. J.

    1977-01-01

    The results of a parametric study of ascent performance are presented for a vertical take off, horizontal landing, single stage earth-to-orbit transport vehicle. Two dual fueled concepts, series burn and parallel burn, were investigated, both of which utilized dual position rocket nozzles. The analysis was made by systematically varying a set of propulsion similarity parameters, initial thrust-weight ratio, the proportion of the thrust due to dual position nozzle engines, expansion ratios of the rocket nozzle, and the relative split between the two fuels, hydrogen and hydrocarbon. The data are presented as a series of curves of mass ratio plotted against each of the similarity parameters for various combinations of the other similarity parameters.

  2. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Science.gov (United States)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  3. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2010-06-01

    Full Text Available Among the activities led by the Generation IV International Forum (GIF relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR. The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 – 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1. The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa, a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the

  4. The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review

    OpenAIRE

    Arcoumanis, C.; Bae, C.; Crookes, R.; Kinoshita, E

    2008-01-01

    This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME’s diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In a...

  5. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    Energy Technology Data Exchange (ETDEWEB)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production

  6. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  7. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    OpenAIRE

    Ivarsson, Anders; Schramm, Jesper

    2010-01-01

    This PhD dissertation was carried out at the Technical University of Denmark in Department of Mechanical Engineering and supervised by Associate Professor Jesper Schramm. The PhD project was funded by the Technical University of Denmark. Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the e...

  8. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang; Zhang, Yu; Traver, Michael; Cleary, David; Som, Sibendu

    2017-03-28

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most

  9. Numerical Simulation of Vitiation Effects on a Hydrogen-Fueled Dual-Mode Scramjet

    Science.gov (United States)

    Vyas, Manan A.; Engblom, William A.; Georgiadis, Nicholas J.; Trefny, Charles J.; Bhagwandin, Vishal A.

    2010-01-01

    The Wind-US computational fluid dynamics (CFD) flow solver was used to simulate dual-mode direct-connect ramjet/scramjet engine flowpath tests conducted in the University of Virginia (UVa) Supersonic Combustion Facility (SCF). The objective was to develop a computational capability within Wind-US to aid current hypersonic research and provide insight to flow as well as chemistry details that are not resolved by instruments available. Computational results are compared with experimental data to validate the accuracy of the numerical modeling. These results include two fuel-off non-reacting and eight fuel-on reacting cases with different equivalence ratios, split between one set with a clean (non-vitiated) air supply and the other set with a vitiated air supply (12 percent H2O vapor). The Peters and Rogg hydrogen-air chemical kinetics model was selected for the scramjet simulations. A limited sensitivity study was done to investigate the choice of turbulence model and inviscid flux scheme and led to the selection of the k-epsilon model and Harten, Lax and van Leer (for contact waves) (HLLC) scheme for general use. Simulation results show reasonably good agreement with experimental data and the overall vitiation effects were captured.

  10. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.

    Science.gov (United States)

    Izadi, Paniz; Rahimnejad, Mostafa; Ghoreyshi, Ali

    2015-01-01

    Microbial fuel cell (MFC) is a novel technology that is able to convert the chemical energy of organic and inorganic substrates to electrical energy directly. The use of fossil fuels and recent energy crisis bring increasing attention to this technology. Besides electricity generation, wastewater treatment is another application of MFCs. Sulfide is a hazardous ion that is common in wastes. In this article, dual-chamber MFC was fabricated and a mixed culture of microorganisms was used as an active biocatalyst in an anaerobic anodic chamber to convert substrate to electricity. The obtained experimental results indicate that this MFC can successfully alter sulfide to elementary sulfur and power generation. The initial concentration of sulfide in wastewater was 1.5 g L(-1) , and it was removed after 10 days of MFC operation. Maximum produced power and current density were 48.68 mW⋅m(-2) and 231.47 mA⋅m(-2) , respectively. Besides, the influences of a biocathode were investigated and accordingly the data obtained for power and current density were increased to 372.27 mW⋅m(-2) and 1,665.15 mA⋅m(-2) , respectively. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. Performance of Cassava Starch as a Proton Exchange Membrane in a Dual Chambered Microbial Fuel Cell.

    Directory of Open Access Journals (Sweden)

    Livinus A. Obasi

    2012-01-01

    Full Text Available This research work shows the feasibility of power generation in a mediatorless dual chambered microbial fuel cell, utilizing cassava starch as the proton exchange membrane (PEM. The study employed swine house effluent (a serious environmental threat as the substrate (fuel (pH, 7.2, BOD: 1200mg/l, COD: 3800mg/l in the anode chamber prepared with a phosphate buffer solution (K2HPO4+KH2PO4, potassium ferry cyanide solution served as the oxygen acceptor in the cathode chamber using graphite electrodes, the cell operating at room temperature (27 ± 30C. The PEM (gelatinized cassava starch was prepared with varying degrees of modifications for three cells, ranging from the untreated pure starch (A, starch treated with 5.9% sodium chloride (B and starch modified with sodium alginate (a gum and activated carbon (C. The open circuit voltages (OCV and powerperformances of the three cells were monitored for ten days. Each of the cells was inoculated with the adopted consortium in soil solution obtained from mangrove forest. The maximum power outputs from the cells were 945.69mW/m2, 1068.54 mW/m2 and 570.83 mW/m2 for A, B and C respectively.

  12. Compressed data separation via dual frames based split-analysis with Weibull matrices

    Institute of Scientific and Technical Information of China (English)

    CAI Yun; LI Song

    2013-01-01

    In this paper, we consider data separation problem, where the original signal is composed of two distinct subcomponents, via dual frames based Split-analysis approach. We show that the two distinct subcomponents, which are sparse in two diff erent general frames respectively, can be exactly recovered with high probability, when the measurement matrix is a Weibull random matrix (not Gaussian) and the two frames satisfy a mutual coherence property. Our result may be significant for analysing Split-analysis model for data separation.

  13. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianyong; Li, Jinhua, E-mail: lijinhua@sjtu.edu.cn; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Highlights: • A dual photoelcetrode PFC for converting hazardous organics into electricity. • The PFC possesses high cell performance operating in various model compounds. • Parameters were studied for optimization of the PFC performance. • Significant removal rate of chroma was observed in azo dyes solutions. -- Abstract: Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC{sup 2}) based on TiO{sub 2}/Ti photoanode and Cu{sub 2}O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO{sub 2}/Ti photoanode to combine with photoholes of Cu{sub 2}O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO{sub 2}/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm{sup −2}, open-circuit voltage 0.49 V, maximum power output 0.36 10{sup −4} W cm{sup −2} was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8 h for methyl orange, methylene blue, Congo red, respectively.

  14. Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC)

    Science.gov (United States)

    Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.

    2017-06-01

    Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

  15. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    Science.gov (United States)

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  16. Development of dual cooled annular fuel and its possibility to enhance both economy and safety of light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yanghyun; Kim, Keonsik; Park, Jeongyong; Yang, Yongsik; Kim, Hyungkyu; In, Wangkee; Song, Kunwoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Over the past few decades, extensive studies have been performed to improve the reliability and safety of light water reactor (LWR) fuel. In recent years, power updating of about 10% is being achieved by modifying safety analysis methodology and subsequent increase in safety margin. But departure from nucleate boiling (DNB) and loss of coolant accident (LOCA) are still two of the most important limiting factors which would restrict power updating more than 10%. Duel cooled annular fuel, cooled in both internal and external cooling channel, has advantages of considerably lower heat flux and lower fuel temperature than conventional solid fuel. While lower heat flus gives higher DNB margin for the same power retie, lower temperature reduces the stored energy of fuel. However, there are many technical issues that should be addressed before any new type of fuel can be considered for application to LWR. This paper describes the key technologies that Korea Atomic Energy Research Institute (KAERI) has developed for dual cooled annular fuel and discusses the feasibility of its application to LWR.

  17. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.

    Science.gov (United States)

    Li, Jianyong; Li, Jinhua; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm(-2), open-circuit voltage 0.49 V, maximum power output 0.3610(-4)W cm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    Science.gov (United States)

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III).

  19. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.

    Science.gov (United States)

    Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-10-01

    This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm(-2), the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Feed and fuel: the dual-purpose advantage of an industrial sweetpotato.

    Science.gov (United States)

    Mussoline, Wendy A; Wilkie, Ann C

    2017-03-01

    Sustainable agricultural systems must support nutritional requirements, meet the energy demands of a growing population, preserve environmental resources and mitigate climate change. The sweetpotato (Ipomoea batatas L.) is a high-yielding crop that requires minimal fertilization and irrigation, and the CX-1 industrial cultivar offers superior potential for feed and fuel. CX-1 had the highest agronomic fresh vine yield (51.5 t ha(-1) ), averaged over two cropping seasons, compared with Hernandez (33.7) and Beauregard (21.8) varieties. CX-1 vines were more nutritional than the table varieties, specifically in regard to relative feed value (205), water-soluble carbohydrates (171 g kg(-1) dry matter (DM)), total digestible nutrients (643 g kg(-1) DM), metabolizable energy (10.2 MJ kg(-1) DM) and organic matter digestibility. Their lower fiber and lignin concentrations contributed to their freshness and digestibility throughout maturity. Significantly higher iron concentrations make the CX-1 vines a valuable, low-fat iron supplement for animal feed. The CX-1 roots also showed the highest bioethanol potential (82.3 g ethanol kg(-1) fresh root) compared to Hernandez (64.5) and Beauregard (48.1). The CX-1 industrial sweetpotato is an ideal dual-purpose crop for tropical/subtropical climates that can be utilized as a non-grain-based feedstock for bioethanol production while contributing a valuable, high-yielding nutritional supplement for animal feed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    Science.gov (United States)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  2. [Effect of Cu2+ on the power output of dual-chamber microbial fuel cell].

    Science.gov (United States)

    Mu, Shu-Jun; Li, Xiu-Fen; Ren, Yue-Ping; Wang, Xin-Hua

    2014-07-01

    After addition of Cu2+ into the anodic and/or cathodic chamber, the effect of Cu2+ on the internal resistance and its distribution, power output and coulombic efficiency of dual-chamber microbial fuel cell (MFC) was investigated in this manuscript with the aid of analyzing the distribution of copper speciation. It could provide helpful information for correlative research on treatment of copper-containing wastewater by MFC. It showed that the addition of 10 mg x L(-1) Cu2+ into the anodic chamber inhibited the microbial activity, and increased the anodic activation resistance as well as the apparent internal resistance, consequently reduced the power output and coulombic efficiency of the system. However, the addition of 500 mg x L(-1) Cu2+ into the cathodic chamber significantly reduced the cathodic activation resistance as well as the apparent internal resistance, while improved the power output and the coulombic efficiency. Cu2+ in the anodic chamber was not transfered into the cathodic chamber. When adding Cu2+ into the cathodic chamber, it was mainly reduced and deposited on the cathodic chamber. It could also be transferred/diffused to the anodic chamber across the proton exchange membrane (2.8%) because of its concentration difference, thus affecting the microbial activity and power output. Only a small amount of Cu2+ remained in the supernatant of the cathodic chamber at the end of experiment.

  3. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas...... diffusion layer, microporous layer, and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation, and mass transfer between phases by a nonequilibrium phase change model...

  4. Economic evaluation of dual purpose desalination plants by fuel type in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seung-Su, Kim; Man-Ki, Lee [Korea Atomic Energy Research Institute, Dae-jeon city (Korea, Republic of)

    2007-07-01

    In light of the recent rapid increase in the fossil fuel prices it is meaningful to evaluate the impact of these price changes in the economics of dual-purpose desalination projects producing electricity and fresh water simultaneously. The price of crude oil and LNG (Liquefied Natural Gas) has increased by about 200% and 100% during the past three or four years. The uranium price has also increased by nearly 500% during the same period. The purpose of this paper is to analyze and compare the economics of SMART (System-integrated Modular Advanced ReacTor) which is being developed as a small size PWR type and the LNG Combine Cycle coupled with MED (Multi-Effect Distillation) which are being acknowledged as promising energy sources for the future in Korea. The methods of analysis used in this paper are the lifetime leveled cost method for the power and water cost calculation and the power credit method for the total cost allocation. DEEP (Devaluation Economic Evaluation Program) developed by IAEA was used to perform an economic comparison between the two dual-purpose desalination projects. From the results of the analysis it is found that the desalination by SMART-MED is much superior to that of LNG CC-MED under the current economic and technical situations. It is also shown that the relative superiority of SMART-MED to LNG CC-MED will be maintained even in case where an increase in the uranium price and the SMART construction cost would reach a maximum in the sensitivity analysis. In the case that the discount rate declines to 5% per year, the relative attractiveness of SMART-MED which is a capital intensive plant will be enhanced when compared to that for a 7% discount rate. In addition to this, it is thought that a nuclear energy source will be favored much more than now in the field of desalination if the regulations for the emission of greenhouse gases are to be strengthened. (authors)

  5. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  6. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, Gustavo [Renergh Consulting and Department of Commerce, State of Washington, 2001 6th Ave, Suite 2600, Seattle, WA 98121 (United States); Melaina, Marc W. [National Renewable Energy Laboratory (United States)

    2011-02-15

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  7. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Science.gov (United States)

    2010-10-01

    ... container integrity. 571.304 Section 571.304 Transportation Other Regulations Relating to Transportation... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of... recommended service life for the container. S8Test conditions: fuel container integrity. S8.1Pressure cycling...

  8. Characteristics of ultrafine particle from a compression-ignition engine fueled with low sulfur diesel

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; ZHANG WuGao; LEI Zhu; LI XinLing; HUANG Zhen

    2009-01-01

    Number size distributions (NSDs, 10-487 nm) and composition of nanoparticle emitted from an engine fueled with ordinary diesel (OD) and low sulfur diesel (LSD) fuel were comparatively studied. The re-suits indicate that, compared with the OD, the LSD was found to slightly decrease the mass concentra-tion, and significantly reduce the number concentration of the total particles (10-487 nm), and the reduction of number increased with the speed and load of engine. The NSD for the two fuels showed a similar bimodal structure under all test engine conditions. Under the same engine conditions, the nu-cleation mode for LSD fuel was significantly lower than that of ordinary diesel. However, the accumu-lation mode for the two fuels showed little difference. The elements composition of exhaust particles included C, O, Cl, S, Si, Ca, Na, Al and K. The S element was not detected in LSD fuel case. The main component of soluble organic fraction (SOF) of exhaust particles for the two fuels included saturated alkane (C15-C26), ester and polycyclic aromatic hydrocarbons (PAHs). However, PAHs were not found in LSD fuel case.

  9. 甲醇/柴油双燃料发动机燃烧过程分析%Combustion process analysis of methanol/diesel dual fuel engine

    Institute of Scientific and Technical Information of China (English)

    王忠; 李仁春; 张登攀; 李铭迪

    2013-01-01

    In recent years, environment concerns and depletion in petroleum resources have forced researchers to concentrate on exploiting renewable alternatives fuels. As a renewable and alternative fuel, methanol has gained great attendance. As for the application of methanol on compression ignition engines, researchers have focused on partial replacement of diesel with methanol, either blended with diesel or injected into the air intake. Due to the poor miscibility of diesel and methanol, an additive has to be added to form steady methanol/diesel blends. However, majority of these additives have bad influence on NOX emission. Methanol and diesel can also be applied separately to the engine. Dual injection system is one method, which is difficult and expensive to develop. Compared with other methods, intake premixed methanol is more flexible in operation and has greater potential to applied to practical application. In this paper, the methanol injection system was optimally designed according to the former investigation on air-methanol mixture formation inside internal combustion engine. However, previous research results showed that severe knock would happen at high load with high proportion of methanol. In addition, the intake charge temperature declined, owing to the high level of methanol vaporization latent heat. Thirdly, with the addition of methanol, high temperature and low temperature exothermic reaction were delayed, and the ignition delay of dual fuel was prolonged. The premixed methanol injection was controlled by intake manifold electrically system, and the combustion process of methanol/diesel dual fuel was experimentally investigated. Based on the experimental results, the optimization and application of methanol injection system were proposed, and make sure that the output power of optimized dual engine hardly changed. The experimental research was carried out on 4B26 turbocharged diesel engine. The tests were conducted at four different methanol proportion

  10. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  11. Emission and operating performance of a biomethane tractor with dual fuel engine; Emissions- und Betriebsverhalten eines Biomethan-Traktors mit Zuendstrahlmotor

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, Sebastian [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Emberger, Peter; Thuneke, Klaus; Remmele, Edgar

    2016-08-01

    The use of biomethane as fuel for agricultural machinery with dual fuel technology is contributing to climate protection and ensures safe fuel supply. So far, hardly any documented operational experiences are known. The aim of the project, funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology, was to investigate practicability for daily use and the emission behaviour of a Valtra N101 prototype tractor (exhaust stage IIIA). The retrofitted dual-fuel technology of the former conventional diesel tractor simultaneously uses biomethane or natural gas and diesel as ignition fuel. During the field test over 590 working hours, the tractor showed overall high reliability. On average the operating range in dual-fuel mode with one complete filling of the gas tanks was about 11.5 hours. On the tractor test bench a significant improvement of the exhaust emissions could be observed, since the gas ECU had been optimized and changed by the manufacturer. For dual-fuel operation, nitrogen oxides (NO{sub x}) are lower, whereas carbon monoxide (CO), hydrocarbons (HC) and particulate matter emissions (PM) are higher compared to solely diesel operation. In particular, HC emissions exceed the proposed limiting value, submitted by the European Commission. This is due to incomplete gas combustion and insufficient conversion by the exhaust after-treatment-system (methane slip). A big potential for optimization is expected by adjusting the operating point-specific gasdiesel ratio and improving the exhaust gas aftertreatment system.

  12. A numerical investigation of the effects of compression force on PEM fuel cell performance

    Science.gov (United States)

    Su, Z. Y.; Liu, C. T.; Chang, H. P.; Li, C. H.; Huang, K. J.; Sui, P. C.

    In the present study we report on numerical investigations into the effects of compression on the performance of a unit cell. The focus of this study is how the transport properties of the gas diffusion layer (GDL) material, specifically porosity and permeability, affect numerical predictions of cell performance. Experimental data of porosity and permeability of uncompressed and compressed GDLs were obtained using a porometer, and used in numerical simulations. A 3D model with two parallel channels and an membrane electrode assembly (MEA) is constructed for the calculations. Three different configurations of transport properties were tested, i.e. uniform uncompressed GDL properties, uniform compressed GDL properties, and non-homogeneous GDL properties. It is found that the non-homogeneous case shows noticeable differences in predicted cell performance. For the non-homogenous case, simulations with a pressure difference between two cathode channels were carried out to gain insight into the effect of cross-channel flow on the overall prediction of cell performance. We found that the cross-channel flow changes local current density distribution primarily on the high-pressure channel. The present study demonstrates the importance of the proper use of transport properties for the compressed portion of the GDL.

  13. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual...

  14. Generator gas as a fuel to power a diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2014-01-01

    Full Text Available The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15  2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power, because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.

  15. Thermal design of a natural gas - diesel dual fuel turbocharged V18 engine for ship propulsion and power plant applications

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.

  16. FERC denies rehearing on rule allowing automatic qualifying status to new diesel and dual-fuel cogeneration facilities

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The Federal Energy Regulatory Commission (FERC) denied Consolidated Edison's request for a rehearing on the 1981 rule which automatically qualifies new diesel and dual-fueled cogeneration facilities under sections 201 and 210 of the Public Utility Regulatory Policies Act. The petition was to return these two types of facilities on an interim exlusion status because of deficiencies in final environmental impact statements, faulty projections of the growth of cogeneration, socio-economic impacts, and tax effects. The article presents the arguments on both sides and FERC's conclusions.

  17. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers

    Science.gov (United States)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy

    2016-12-01

    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  18. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  19. A comparative study of diesel ignited methane and propane dual fuel low temperature combustion in a single cylinder research engine

    Science.gov (United States)

    Raihan, Mostafa Shameem

    The objective of this thesis is to investigate and compare the performance and emissions characteristics of diesel-ignited methane and diesel-ignited propane dual fuel LTC in a single cylinder research engine (SCRE) at a constant engine load of 5.1 bar net indicated mean effective pressure (IMEP) and at a constant engine speed of 1500 RPM. Percentage of energy substitution of propane or methane (0 - 90 percent), diesel injection timing (SOI: 355 CAD -- 280 CAD), rail pressure (200 bar -- 1300 bar) and boost pressure (1.1 bar -- 1.8 bar) were varied to quantify their impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. Advancing SOI to 310 CAD and beyond yielded simultaneous ISNOx and smoke emissions. A rail pressure of 500 bar was the optimal one for both fueling combinations while increasing boost pressure over 1.2 bar had a very little effect on ISNOx and smoke emissions.

  20. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  1. A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V.

    Science.gov (United States)

    Cohen, Jamie L; Volpe, David J; Westly, Daron A; Pechenik, Alexander; Abruña, Héctor D

    2005-04-12

    A dual electrolyte H2/O2 fuel cell system employing a planar microfluidic membraneless fuel cell has been investigated and compared to single electrolyte H2/O2 systems under analogous conditions. The fuel is H2 dissolved in 0.1 M KOH (pH 13), and the oxidant is O2 dissolved in 0.1 M H2SO4 (pH 0.9), comprising a system with a calculated thermodynamic potential of 1.943 V (when 1 M H2 and O2 concentrations are assumed). This value is well above the calculated thermodynamic maximum of 1.229 V for an acid, or alkaline, single electrolyte H2/O2 fuel cell. Experimentally, open-circuit potentials in excess of 1.4 V have been achieved with the dual electrolyte system. This is a 500 mV increase in the open circuit potentials observed for single electrolyte H2/O2 systems also studied. The dual electrolyte fuel cell system shows power generation of 0.6 mW/cm2 from a single device, which is nearly 0.25 mW/cm2)greater than the values obtained for single electrolyte H2/O2 fuel cell systems studied. Microchannels of varying dimensions have been employed to study both the single and dual electrolyte H2/O2 systems. Channel thickness variation and the flow rate dependences of power generation are also addressed.

  2. Effect of Syngas Moisture Content on the Emissions of Micro-Gas Turbine Fueled with Syngas/LPG in Dual Fuel Mode

    Directory of Open Access Journals (Sweden)

    Sadig Hussain

    2014-07-01

    Full Text Available Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53% H2, 24.94% CO, 2.03% CH4, 12.80% CO2, and 49.70% N2 and syngas 2 (21.62% H2, 32.48% CO, 3.72% CH4, 19.69% CO2, and 22.49% N2 mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20% by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It’s found that for 5% syngas moisture content, the NOx emission were reduced by 75.5% and 83% for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43% and 57% for syngas1 and syngas 2 respectively.

  3. Hydrodynamic Mixing of Ablator Material into the Compressed Fuel and Hot Spot of Direct-Drive DT Cryogenic Implosions

    Science.gov (United States)

    Regan, S. P.; Goncharov, V. N.; Epstein, R.; Betti, R.; Bonino, M. J.; Cao, D.; Collins, T. J. B.; Campbell, E. M.; Forrest, C. J.; Glebov, V. Yu.; Harding, D. R.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Sangster, T. C.; Stoeckl, C.; Luo, R. W.; Schoff, M. E.; Farrell, M.

    2016-10-01

    Hydrodynamic mixing of ablator material into the compressed fuel and hot spot of direct-drive DT cryogenic implosions is diagnosed using time-integrated, spatially resolved xray spectroscopy. The laser drive ablates most of the 8- μm-thick CH ablator, which is doped with trace amounts of Ge ( 0.5 at.) and surrounds the cryogenic DT layer. A small fraction of the ablator material is mixed into the compressed shell and the hot spot by the ablation-front Rayleigh-Taylor hydrodynamic instability seeded by laser imprint, the target mounting stalk, and surface debris. The amount of mix mass inferred from spectroscopic analysis of the Ge K-shell emission will be presented. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. The application of dual fuel /JP-LH2/ for hypersonic cruise vehicles

    Science.gov (United States)

    Weidner, J. P.

    1978-01-01

    The possibility of utilizing jet fuel (JP) stored primarily in the wings of hydrogen-fueled hypersonic cruise vehicles has been evaluated and compared to the performance of all hydrogen-fueled aircraft. Parametric investigations of wing loading, thrust-to-weight ratio, payload size and vehicle size are presented. Results indicate improvements in performance for a wide range of potential payload sizes, particularly when in-flight refueling of the JP fuel is considered as a means of increasing range and mission flexibility.

  5. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  6. On-board fuel conversion: Dimethyl ether from methanol for compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Stucki, S.

    2002-03-01

    One example of an on-board fuel conversion system is the fumigation of dimethyl ether. In this concept, a fraction of the methanol used as fuel is catalytically converted on-board to DME and water. The rate-determining step of the catalytic reaction with {gamma}-Al{sub 2}O{sub 3} as a catalyst is found to be the reaction of adsorbed intermediates; mass transfer is limited by Knudsen diffusivity. Providing DME for fumigation in a 180 kW engine will require approx. 0,7 kg of catalyst. The transient behavior of a pilot fixed-bed reactor has been estimated using simplified models, which show that the cold start should be manageable in less than one minute. This is an acceptable time for cold-starting an engine in heavy-duty vehicles. (author)

  7. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  8. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  9. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

    OpenAIRE

    B. Deepanraj; C. Dhanesh; Senthil, R.; M. Kannan; Santhoshkumar, A.; P. Lawrence

    2011-01-01

    Problem statement: The increasing awareness of the environmental hazards and the alarming levels of air pollution have led to more restrictive regulations on engines emission control in recent years. Approach: The dwindling resources and rising cost of crude oil have resulted in an intensified search for alternate fuels. In the present study biodiesel (palm oil methyl ester) blends with diesel was investigated in a direct injection stationary diesel engine. The stationary engine test bed used...

  11. Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas

    Directory of Open Access Journals (Sweden)

    L. De Simio

    2012-01-01

    Full Text Available Biomass, in form of residues and waste, can be used to produce energy with low environmental impact. It is important to use the feedstock close to the places where waste are available, and with the shortest conversion pathway, to maximize the process efficiency. In particular waste vegetable oil and the organic fraction of municipal solid waste represent a good source for fuel production in urban areas. Dual fuel engines could be taken into consideration for an efficient management of these wastes. In fact, the dual fuel technology can achieve overall efficiencies typical of diesel engines with a cleaner exhaust emission. In this paper the feasibility of a cogeneration system fuelled with waste vegetable oil and biogas is discussed and the evaluation of performance and emissions is reported on the base of experimental activities on dual fuel heavy duty engine in comparison with diesel and spark ignition engines. The ratio of biogas potential from MSW and biodiesel potential from waste vegetable oil was estimated and it results suitable for dual fuel fuelling. An electric power installation of 70 kW every 10,000 people could be achieved.

  12. Modelling and simulation of a dual-clutch transmission vehicle to analyse the effect of pump selection on fuel economy

    Science.gov (United States)

    Ahlawat, R.; Fathy, H. K.; Lee, B.; Stein, J. L.; Jung, D.

    2010-07-01

    Positive displacement pumps are used in automotive transmissions to provide pressurised fluid to various hydraulic components in the transmission and also lubricate the mechanical components. The output flow of these pumps increases with pump/transmission speed, almost linearly, but the transmission flow requirements often saturate at higher speeds, resulting in excess flow capacity that must be wasted by allowing it to drain back to the sump. This represents a parasitic loss in the transmission leading to a loss in fuel economy. To overcome this issue, variable displacement pumps have been used in the transmission, where the output flow can be reduced by controlling the displacement of the pump. The use of these pumps in automatic transmissions has resulted in better fuel economy as compared with some types of fixed displacement pumps. However, the literature does not fully explore the benefits of variable displacement pumps to a specific type of transmission namely, dual-clutch transmission (DCT), which has different pressure and flow requirements from an epicyclic gear train. This paper presents an analysis of the effect of pump selection on fuel economy in a five-speed DCT of a commercial vehicle. Models of the engine, transmission, and vehicle are developed along with the models of two different types of pumps: a fixed displacement gerotor pump and a variable displacement vane pump. The models are then parameterised using experimental data, and the fuel economy of the vehicle is simulated on a standard driving cycle. The results suggest that the fuel economy benefit obtained by the use of the variable displacement pump in DCTs is comparable to the benefit previously shown for these pumps in automatic transmissions.

  13. Toxic compounds emission from fossil fuels in compression with alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Halek, F.; Kavousi, A. [Dept. of Energy (Iran). Materials and Energy Resesarch Center

    2008-09-30

    Transportation sources are one of the leading contributors to hazardous air pollutants. The internal combustion engine emits a large percentage of pollutants, but gasoline and diesel in the liquid form also contribute chemical pollution in the form of vaporization of the fuel as it heats and cools within the gas tank. Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounts made up of two or more fused benzene rings in linear, angular or cluster arrangements. PAHs are considered highly toxic for human beings and several of these compounts are carcinogenic, mutagenic or teratogenic. A major source of PAH in Tehran is related to traffic and the number of gasoline and diesel vehicles. During nearly a 1-year period (throughout 2005) a comprehensive study was done in the Tehran area in 21 stations. Results of PAHs analysis indicated that existence of several low molecular weights, like Fluoranthene, Fluorene and Phenantherene confirm the role of diesel oil emissions in Tehran's atmosphere. Biodiesel, a renewable energy source, is the name for a variety of ester-based oxygenated fuels (11% oxygen by weight) made from vegetable oils: sunflower, safflower, soybean, palm, cottonseed, rapeseed or peanut. The lifecycle production and use of biodiesel produces approximately 80% less carbon dioxide emissions, and almost 100% less sulfur dioxide. Combustion of biodiesel alone provides over a 90% reduction in total unburned hydrocarbons, and a 75-90% reduction in aromatic hydrocarbons. Biodiesel further provides significant reductions in particulates and carbon monoxide than petroleum diesel fuel. Based on mutagenicity tests, biodiesel provides a 90% reduction in cancer risks.

  14. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    Science.gov (United States)

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-03-29

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.

  15. The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, Gustavo, E-mail: gustavo.collantes@commerce.wa.go [Renergh Consulting and Department of Commerce, State of Washington, 2001 6th Ave, Suite 2600, Seattle, WA 98121 (United States); Melaina, Marc W. [National Renewable Energy Laboratory (United States)

    2011-02-15

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. - Research Highlights: {yields}The broad scale adoption of CNG for transportation in Argentina was initiated by a market demand for an effective fuel that was priced at a significantly lower level compared to the mainstream alternatives. {yields}The Argentine played a marginal role in the development of refueling infrastructure. {yields}The role of the government focused on sending clear signals to the marketplace and developing effective codes and standards. {yields}Consumers willingness to switch to CNG increases as state of the economy deteriorates and disposable incomes decrease.

  16. Dual-ion Conducting Nanocompoiste for Low Temperature Solid Oxide Fuel Cell

    OpenAIRE

    wang, Xiaodi

    2012-01-01

    Solid oxide fuel cells (SOFCs) are considered as one of the most promising power generation technologies due to their high energy conversion efficiency, fuel flexibility and reduced pollution. There is a broad interest in reducing the operating temperature of SOFCs. The key issue to develop low-temperature (300~600 °C) SOFCs (LTSOFCs) is to explore new electrolyte materials. Recently, ceria-based composite electrolytes have been developed as capable alternative electrolyte for LTSOFCs. The ce...

  17. Development of a Sequencial Port Injection,Fully Electronically Controlled Gas/Diesel Dual Fuel Engine%气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究

    Institute of Scientific and Technical Information of China (English)

    苏万华; 林志强; 汪洋; 谢辉; 王江; 裴毅强; 费向阳; 刘文胜; 李红珍; 王根生

    2001-01-01

    采用气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机方案,对斯太尔WD615.64增压非中冷柴油机进行了改装。试验结果表明,改装后的发动机NOx、颗粒和NMHC排放均达到了欧Ⅱ排放指标。CO和HC(含甲烷)可以通过后处理解决。%A brief review of dual fuel engine technology is given in thispaper from the point of view of technology and market in China.A sequencial port injection,lean burn,fully electronically controlled dual fuel engine was proven to be the most suitable solution to the market requirement——clean and economical.It is also a important advantage in China that the engine could operate either on CNG or on 100% diesel fuel when gas supply is interrupted.Optimization of combustion process for the purpose of low emissions and high fuel economy was carefully conducted by calibration of natural compressed gas injection quantity and timing and quantity of diesel fuel injection at all operating condtions.The effects of air/gas ratio λ on NOx,PM,THC and CO were given and analyzed.

  18. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  19. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  20. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes.

    Science.gov (United States)

    Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Ajayi, Folusho F; Jang, Am; Kim, Chang-Won; Kim, In S

    2011-03-01

    Glucose-fed microbial fuel cells (MFCs) have displayed low Coulombic efficiency (CE); one reason for a low CE is metabolite generation, causing significant electron loss within MFC systems. In the present study, notable electron loss (15.83%) is observed in glucose-fed MFCs due to residual propionate, a glucose metabolite. In order to enhance the low CE caused by metabolite generation, a dual-anode MFC (DAMFC) is constructed, which are separately enriched by dissimilar substrates (glucose and propionate, respectively) to effectively utilize both glucose and propionate in one-anode chamber. In the DAMFC, propionate ceases to exist as a source of electron loss, and thus the CE increased from 33 ± 6 to 59 ± 4%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. MASS TRANSFER LIMITATION IN DIFFERENT ANODE ELECTRODE SURFACE AREAS ON THE PERFORMANCE OF DUAL CHAMBER MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Majid Sadeqzadeh

    2012-01-01

    Full Text Available In this study, the effect of different electrode surface areas on the performance of dual chamber Microbial Fuel Cells (MFC was investigated. Four different electrodes with 12, 16, 20 and 24 cm2 surface areas were tested in an MFC system. The 20 cm2 electrode generated an output power of 76.5 mW/m2 was found to be the highest among all the electrodes tested. This might be due to better interactions with microorganism and less mass transfer limitation. In addition, this indicates that the chances for attachment of bacteria and generation of electricity in larger electrode surface areas might be limited by mass transport and by higher surface area. The output power generation was then followed by the 16, 12 and 24 cm2 electrodes which generated 69.6, 64.7 and 61.25 mW/m2 electricity, respectively.

  2. A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation.

    Science.gov (United States)

    Bai, Jing; Wang, Rui; Li, Yunpo; Tang, Yuanyuan; Zeng, Qingyi; Xia, Ligang; Li, Xuejin; Li, Jinhua; Li, Caolong; Zhou, Baoxue

    2016-07-05

    In this paper, a novel dual heterojunction Photocatalytic Fuel Cell (PFC) system based on BiVO4/TiO2 nanotubes/FTO photoanode and ZnO/CuO nanowires/FTO photocathode has been designed. Compared with the electrodes in PFCs reported in earlier literatures, the proposed heterojunction not only enhances the visible light absorption but also offers a higher photoconversion efficiency. In addition, the nanostructured heterojunction owns a large surface area that ensures a large amount of active sites for organics degradation. The performance of the PFC base on the dual photoelectrodes was also studied herein. The results indicated that the PFC in ths paper exhibits a superior performance and its JV(max) reached 0.116 mw cm(-2), which is higher than that in most of reported PFCs with a Pt-free photocathode. When hazardous organic compounds such as methyl orange, Congo red and methylene blue were decomposed, the degradation rates obtained is to be 76%, 83%, and 90% respectively after 80 mins reaction. The proposed heterojunction photoelectrodes provided great potential for cost-effective and high-efficiency organic pollutants degradation and electricity generation in a PFC system.

  3. Design and Fabrication of a Dual-Photoelectrode Fuel Cell towards Cost-Effective Electricity Production from Biomass.

    Science.gov (United States)

    Zhang, Bingqing; Fan, Wenjun; Yao, Tingting; Liao, Shichao; Li, Ailong; Li, Deng; Liu, Mingyao; Shi, Jingying; Liao, Shijun; Li, Can

    2017-01-10

    A photo fuel cell (PFC) offers an attractive way to simultaneously convert solar and biomass energy into electricity. Photocatalytic biomass oxidation on a semiconductor photoanode combined with dark electrochemical reduction of oxygen molecules on a metal cathode (usually Pt) in separated compartments is the common configuration for a PFC. Herein, we report a membrane-free PFC based on a dual electrode, including a W-doped BiVO4 photoanode and polyterthiophene photocathode for solar-stimulated biomass-to-electricity conversion. Air- and water-soluble biomass derivatives can be directly used as reagents. The optimal device yields an open-circuit voltage (VOC ) of 0.62 V, a short-circuit current density (JSC ) of 775 μA cm(-2) , and a maximum power density (Pmax ) of 82 μW cm(-2) with glucose as the feedstock under tandem illumination, which outperforms dual-photoelectrode PFCs previously reported. Neither costly separating membranes nor Pt-based catalysts are required in the proposed PFC architecture. Our work may inspire rational device designs for cost-effective electricity generation from renewable resources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dual membrane hollow fiber fuel cell and method of operating same

    Science.gov (United States)

    Ingham, J. D.; Lawson, D. D. (Inventor)

    1978-01-01

    A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.

  5. The influence of high-octane fuel blends on the performance of a two-stroke SI engine with knock-limited-compression ratio

    Science.gov (United States)

    Poola, Ramesh B.; Bhasker, T.; Nagalingam, B.; Gopalakrishnan, K. V.

    The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a cosolvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends. Knock-limited maximum brake output also increases due to extension of the knock limit. The knock limit is extended by methanol-eucalyptus-ethanol-orange oil blends, in descending order.

  6. A comprehensive study on the emission characteristics of E-diesel dual-fuel engine

    Directory of Open Access Journals (Sweden)

    A. Avinash

    2016-03-01

    Full Text Available Each year, the ultimate goal of emission legislation is to force technology to the point where a practically viable zero emission vehicle becomes a reality. Albeit the direction to reach this target is a formidable challenge, homogeneous charge compression ignition (HCCI is a new combustion concept to produce ultra low nitrogen oxides (NOx and smoke emissions. By the way, an endeavor has been made in this work to achieve a simultaneous reduction in both NOx and smoke levels in a direct injection compression ignition engine converted to operate on premixed charge compression ignition mode. Indeed, these promises were made possible in this work by preparing premixed fuel–air mixture outside the engine cylinder. For this purpose, ethanol was injected in the intake port at various premixed ratios (5%, 10%, 15%, 20%, 25% and 30% and conventional diesel was injected as usual. It was extrapolated from the experimental results that e-diesel operation can significantly reduce NOx and smoke levels. In addition, NOx and smoke levels reduced in this experimental study with increase in premixed fraction. Nevertheless, unburned hydrocarbons (UBHC and carbon monoxide (CO emissions exhibited reverse trend with increase in premixed fraction and the maximum value of HC and CO emission levels was noted with 30% premixed fraction.

  7. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.

    Science.gov (United States)

    Venkata Mohan, S; Saravanan, R; Raghavulu, S Veer; Mohanakrishna, G; Sarma, P N

    2008-02-01

    The performance of aerated and ferricyanide catholytes on the bioelectricity production was evaluated in dual chambered microbial fuel cell (MFC) (mediatroless anode; graphite electrodes) employing selectively enriched H(2) producing mixed consortia as anodic inoculum. Two MFCs with aerated catholyte (MFC(AC)) and ferricyanide catholyte (MFC(FC)) were operated separately to elucidate the difference in power generation potential and carbon removal efficiency under similar operating conditions [ambient pressure; room temperature (28+/-2 degrees C); acidophilic microenvironment (pH 6)]. The experimental data demonstrated the feasibility of in situ bioelectricity generation along with wastewater treatment. Effective power generation and substrate removal efficiency was documented in the fuel cell operated with ferricyanide catholyte (586 mV; 2.37 mA; 0.559 kg COD/m(3) day) than aerated catholyte (572 mV; 1.68 mA; 0.464 kg COD/m(3) day). Maximum power yield (0.635 W/kg COD(R) and 0.440 W/kg COD(R)) and current density (222.59 mA/m(2) and 190.28 mA/m(2)) was observed at 100 Omega resistor with ferricyanide and aerated catholytes, respectively. The study documented both wastewater treatment and electricity production through direct conversion of H(2) in a single system.

  8. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  9. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    Directory of Open Access Journals (Sweden)

    Olalekan Wasiu Saheed

    2014-07-01

    Full Text Available Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 which represent stoichiometric, moderately lean, lean and very lean mixtures respectively, hydrogen fractions and EGR rates were studied. The results showed that increasing the relative air-fuel ratio increases the COVIMEP. The behavior is more pronounced at the larger relative air-fuel ratios. More so, for a specified EGR rate; increasing the hydrogen fractions decreases the maximum COVIMEP value just as increasing in EGR rates increases the maximum COVIMEP value. (i.e. When percentage EGR rates is increased from 0% to 17% and 20% respectively. The maximum COVIMEP value increases from 6.25% to 6.56% and 8.30% respectively. Since the introduction of hydrogen gas reduces the cycle-by-cycle combustion variation in engine cylinder; thus it can be concluded that addition of hydrogen into direct injection compressed natural gas engine employing EGR at various relative air-fuel ratios is a viable approach to obtain an improved combustion quality which correspond to lower coefficient of variation in imep, (COVIMEP in a direct injection compressed natural gas engine employing EGR at relative air-fuel ratios.

  10. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  11. Parallel-burn options for dual-fuel single-stage orbital transports

    Science.gov (United States)

    Martin, J. A.

    1978-01-01

    A parallel-burn version of a single-stage vehicle for transport from the earth to low-earth orbit using two fuels and rocket propulsion is considered. New engine results were incorporated in vehicle performance and design studies. The results indicate that a hydrogen-cooled gas generator cycle engine provides attractive vehicle performance and that there is little incentive for increasing the chamber pressure beyond 27 MPa.

  12. Development of mats composed by TiO{sub 2} and carbon dual electrospun nanofibers: A possible anode material in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gomez, Nora A.; Balderas-Renteria, Isaias [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Garcia-Gutierrez, Domingo I. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, PIIT, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); Mosqueda, Hugo A. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Av. Universidad S/N Cd. Universitaria San Nicolás de los Garza Nuevo León, C.P. 66451 México (Mexico); and others

    2015-03-15

    Highlights: • Dual nanofiber of TiO{sub 2}–C/C showed excellent electrical performance. • TiO{sub 2}–C/C dual nanofiber can host a dense biofilm of electroactivated Escherichia coli. • Dual nanofibers can be applied as anode to obtain electricity in microbial fuel cells. - Abstract: A new material based on TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} dual nanofiber mats is presented, whose composition and synthesis methodology are fundamental factors for the development of exoelectrogenic biofilms on its surface. Therefore, this material shows the required characteristics for possible applications in the bioconversion process of an organic substrate to electricity in a microbial fuel cell. Chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrical conductivity analyses showed excellent electrical performance of the material for the application intended; a resistance as low as 3.149 Ω was able to be measured on this material. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirmed the morphology sought on the material for the application intended, dual nanofibres TiO{sub 2(rutile)}–C{sub (semi-graphitic)}/C{sub (semi-graphitic)} with a side by side configuration. The difference in composition of the fibers forming the dual nanofibers was clearly observed and confirmed by energy dispersive X-ray spectroscopy (EDXS), and their crystal structure was evident in the results obtained from selected area electron diffraction (SAED) studies. This nanostructured material presented a high surface area and is biocompatible, given that it can host a dense biofilm of electroactivated Escherichia coli. In this study, the maximum current density obtained in a half microbial fuel cell was 8 A/m{sup 2} (0.8 mA/cm{sup 2})

  13. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  14. Studi Eksperimen Unjuk Kerja Mesin Diesel Menggunakan Sistem Dual Fuel Solar Gas CNG Dengan Variasi Tekanan Injeksi Gas Dan Derajat Waktu Injeksi

    Directory of Open Access Journals (Sweden)

    Dicky Yoko Exoryanto

    2017-01-01

    Full Text Available Bahan bakar gas ini jika ditinjau dari ekonomis tergolong sangat murah dan ramah lingkungan. Namun, pengaplikasian bahan bakar gas CNG pada generator diesel dengan sistem dual fuel berdampak pada penurunan performansinya. Hal ini terjadi karena rasio campuran udara dan bahan bakar pada sistem dual fuel belum sesuai, sehingga perlunya penelitian lebih lanjut. Penelitian ini bertujuan untuk meningkatkan performa pada mesin diesel dengan memodifikasi saluran masuk udara dengan memasang injector gas CNG untuk memasukkan bahan bakar tersebut kedalam ruang bakar sehingga mesin diesel berubah menjadi sitem dual fuel. Tidak hanya saluran masuk udara saja yang di modifikasi tetapi, variasi start of injection dan tekanan gas yang masuk juga di variasikan. Penelitian ini di lakukan secara eksperimental dengan menginjeksikan gas CNG ke dalam ruang bakar melalui saluran hisap yang sudah terpasang injector. Proses pengaturan injeksi gas CNG diatur oleh ECU programamble melalui software VEMSTUNE. Sistem pengaturan yang dilakukan adalah mengatur derajat waktu injection (SOI dengan nilai 5o, 30o, 55o, dan 80o CA BTDC dan variasi tekanan masuk gas CNG dengan nilai 1, 1,5, 2, dan 2,5 N/m2. Penelitian ini dilakukan dengan putaran mesin konstan sebesar 2000 rpm dengan beban 0 sampai 100 %. Hasil yang didapatkan dari eksperimen yang dilakukan kali ini, antara lain : performa dual fuel lebih optimal dibandingkan saat pengoperasian single fuel. Pengaturan paling optimal terjadi pada start of injection 80° CA BTDC dengan tekanan 1,5 gas CNG. Gas CNG dapat menggantikan porsi bahan bakar minyak solar sebesar 45,30 %. Nilai subtitusi minyak solar yang optimal sebesar 61,39 % dan SFC minyak solar rata-rata mengalami penurunan sebesar 47,10 %, tetapi SFC dual fuel rata-rata meningkat sebesar 47,67 % dibandingkan SFC single fuel. Nilai rata-rata efisiensi thermal turun sebesar 40,89 %, nilai AFR rata-rata turun dari 25,60 menjadi 12,90 dan Temperatur gas buang meningkat dari

  15. SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    JAE-HUN KO

    2014-08-01

    The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a 2×10 cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the 2×10 cask array, dose rates at the center point of the array and at the center of the casks’ height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the 2×10 cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.

  16. Electricity Production Through Treatment of Simulated Wastewater of Food Industries Using Dual Chamber Microbial Fuel Cell (MFC with Nafions Membrane

    Directory of Open Access Journals (Sweden)

    N Jaafarzadeh

    2012-03-01

    Full Text Available Background and Objectives: Microbial fuel cells are the electrochemical exchangers that convert the microbial reduced power, generated via the metabolism of organic substrate, to electrical energy. The aim of this study is to find out the rate of produced electricity and also treatment rate of simulated wastewater of food industries using dual chamber microbial fuel cell (MFC without mediator and catalyst. Materials and Methods: MFC used in this study was consisted of two compartments including anaerobic anode chamber containing simulated food industries wastewater as synthetic substrate and aerobic cathode chamber containing phosphate buffer, respectively. These two chambers were separated by proton exchange membrane made of Nafion. Produced voltage and current intensity were measured using a digital ohm meter and the amount of electricity was calculated by Ohms law. Effluent from the anode compartment was tested for COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity in accordance with the Standard Methods. Results: In this study, maximum current intensity and power production at anode surface in the OLR of 0.79 Kg/m3.d were measured as 1.71 mA and 140 mW/m2, respectively. The maximum voltage of 0.422 V was obtained in the OLR of 0.36 Kg/m3.d. The greatest columbic efficiency of the system was 15% in the OLR of 0.18 Kg/m3.d. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity, were obtained 78, 72, 66, 7, 56, 49, 26 and 40%, respectively.Conclusion: The findings showed that the MFC can be used as a new technology to produce electricity from renewable organic materials and for the treatment of different municipal and industrial wastewaters such as food industries.

  17. ACETONE REMOVAL AND BIOELECTRICITY GENERATION IN DUAL CHAMBER MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimnejad

    2012-01-01

    Full Text Available Synthetic waste water contain organic compound can be oxidized in an anaerobic conditions in microbial fuel cell while biodegradation of Chemical Oxygen Demand (COD takes place under anaerobic condition in anode compartment. The microorganisms for biological treatment of the organic matter were obtained from a UASFB bioreactor. In the treatment of waste water, ones COD was removed the current and power was generated and record. Also polarization curve was obtained. In cathode compartment ferocynide and potassium permanganate with several concentration were add for enhancement of proton oxidation. The performance of MFC for maximum current and power generation were obtained with 300 µM L-1 potassium permanganate as oxidizers agent. Maximum generated power and current densities were 22 mW/m2 and 70 mA/m2, respectively. Active microorganisms used acetone as electron donors and COD removal was 69% at the end of process.

  18. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    Science.gov (United States)

    Sulak, Kenneth J.; Berg, J.; Randall, Michael; Dennis, George D.; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  19. CYLINDER PRESSURE VARIATIONS OF THE FUMIGATED HYDROGEN-DIESEL DUAL FUEL COMBUSTION

    Directory of Open Access Journals (Sweden)

    Boonthum Wongchai

    2012-01-01

    Full Text Available Cylinder pressure is one of the main parameters of diesel engine combustion affecting several changes in exhaust gas emission composition and amount as well as engine useful power, specifically when alternative fuels are used. One among other alternative fuels for diesel engine is hydrogen that can be used as fumigated reagent with air prior to intake to engine in order to substitute the main fossil diesel. In this study, experimental investigation was accomplished using a single cylinder diesel engine for agriculture running on different ratios of hydrogen-to-diesel. Cylinder pressure traces corresponding to the crank angle positions were indicated and analyzed for maximum cylinder pressure and their coefficient of variation. The regression analysis is used to find the correlations between hydrogen percentage and the maximum cylinder pressure as well as its coefficient of variation. When higher hydrogen percentages were added, the combustion shifted toward later crank angles with the maximum cylinder pressure decreased and eminent effects at higher load and speed. The plots of hydrogen percentage against the coefficient of variation of the maximum cylinder pressure (COVPmax show the increase in variation of maximum cylinder pressure when the hydrogen percentage increased for all conditions tested. Gaseous hydrogen fumigated prior to intake to the engine reduced maximum cylinder pressure from the combustion while increasing the values of COVPmax. The maximum pressure-hydrogen percentage correlations and the COVPmax-hydrogen percentage correlations show better curve fittings by second order (n = 2 correlation compared to the first order (n = 1 correlation for all the test conditions.

  20. OH PLIF Visualization of a Premixed Ethylene-fueled Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.; Johansen, Craig T.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2016-01-01

    Hydroxyl radical (OH) planar induced laser fluorescence (PLIF) measurements have been performed in a small-scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 enthalpy. OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulation. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical predictions and measurements using WIDECARS. Finally, a comparison between NO PLIF non-combustion cases and OH PLIF combustion cases is provided: the comparison reveals that the dominant effect of flame propagation is freestream turbulence rather than heat release and concentration gradients.

  1. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    Science.gov (United States)

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m(-2) and excellent durability.

  2. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    Science.gov (United States)

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B4C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Precipitation dominates fire occurrence in Greece (1900–2010: its dual role in fuel build-up and dryness

    Directory of Open Access Journals (Sweden)

    F. Xystrakis

    2013-03-01

    Full Text Available Historical fire records and meteorological observations spanning over one century (1894–2010, were assembled in a database to collect long-term fire and weather data in Greece. Positive/negative events of fire occurrence on an annual basis were considered the years where the annual values of the examined parameters were above (positive values or below (negative values the 95% confidence limits around the trend line of the corresponding parameter. To analyze the association of positive/negative events of fire occurrence and meteorological extremes, we proceeded with a cross-tabulation analysis based on a Monte Carlo randomization. Positive/negative values of total annual precipitation were randomly associated with the corresponding values of burned areas, and significant associations were observed for seasonal precipitation totals (spring and fire season. Fire season precipitation is the dominant factor coinciding with negative values of area burned, while years with high spring precipitation coincide with large burnt area burned. These results demonstrate the dual role of precipitation in controlling a fire's extent through fuel build-up and dryness. Additionally, there is a clear outperformance of precipitation-related against temperature-related weather variables revealing that, at least in Greece, fire spread is controlled by precipitation totals rather than air temperature.

  4. Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell.

    Science.gov (United States)

    Zhang, Li-Juan; Tao, Hu-Chun; Wei, Xue-Yan; Lei, Tao; Li, Jin-Bo; Wang, Ai-Jie; Wu, Wei-Min

    2012-11-01

    The cathodic reduction of complex-state copper(II) was investigated in a dual chamber microbial fuel cell (MFC). The inner resistance of MFC system could be reduced in the presence of ionizing NH(4)(+), however, mass transfer was hindered at higher ammonia concentration. Thermodynamic and electrochemical analyses indicated that the processes of complex dissociation and copper reduction were governed by the ratio of T[Cu]:T[NH(3)] and the pH of solution. The reduction of Cu(NH(3))(4)(2+) could be achieved via two possible pathways: (1) releasing Cu(2+) from Cu(NH(3))(4)(2+), then reducing Cu(2+) to Cu or Cu(2)O and (2) Cu(NH(3))(4)(2+) accepting an electron and forming Cu(NH(3))(2)(+), and depositing as Cu or Cu(2)O consequently. At initial concentration of 350 mg T[Cu] L(-1), copper removal efficiency of 96% was obtained at pH=9.0 within 12 h (with △Cu/△COD=1.24), 84% was obtained at pH=3.0 within 8 h (with △Cu/△COD=1.72). Cu(NH(3))(4)(2+) was reduced as polyhedral deposits on the cathode. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Bacterial community shift and improved performance induced by in situ preparing dual graphene modified bioelectrode in microbial fuel cell.

    Science.gov (United States)

    Chen, Junfeng; Hu, Yongyou; Zhang, Lihua; Huang, Wantang; Sun, Jian

    2017-08-01

    Dual graphene modified bioelectrode (D-GM-BE) was prepared by in situ microbial-induced reduction of graphene oxide (GO) and polarity reversion in microbial fuel cell (MFC). Next Generation Sequencing technology was used to elucidate bacterial community shift in response to improved performance in D-GM-BE MFC. The results indicated an increase in the relative ratio of Proteobacteria, but a decrease of Firmicutes was observed in graphene modified bioanode (GM-BA); increase of Proteobacteria and Firmicutes were observed in graphene modified biocathode (GM-BC). Genus analysis demonstrated that GM-BE was beneficial to enrich electrogens. Typical exoelectrogens were accounted for 13.02% and 8.83% in GM-BA and GM-BC. Morphology showed that both GM-BA and GM-BC formed 3D-like graphene/biofilm architectures and revealed that the biofilm viability and thickness would decrease to some extent when GM-BE was formed. D-GM-BE MFC obtained the maximum power density by 124.58±6.32mWm(-2), which was 2.34 times over C-BE MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    Science.gov (United States)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  7. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.

    Science.gov (United States)

    Kim, Jisu; Kim, Bongkyu; An, Junyeong; Lee, Yoo Seok; Chang, In Seop

    2016-08-01

    To prevent the occurrence of the organic crossover in membraneless microbial fuel cells (ML-MFCs), dual-anode MFC (DA-MFC) was designed from multi-anode concept to ensure anode zone. The anode zone addressed increase the utilization of organic matter in ML-MFCs, as the result, the organic crossover was prevented and performance of MFCs were enhanced. The maximum power of the DA-MFC was 0.46mW, which is about 1.56 times higher than the ML-MFC (0.29mW). Furthermore, the DA-MFC had advantage in correlation of organic substance concentration and dissolved oxygen concentration, and even electric over-potential. In addition, in terms of cathode fouling, the DA-MFC showed clearer surface. Hence, the anode zone should be considered in the advanced ML-MFC for practically use in wastewater treatment process, and also for scale-up of MFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode.

    Science.gov (United States)

    Savizi, Iman Shahidi Pour; Kariminia, Hamid-Reza; Bakhshian, Sahar

    2012-06-19

    Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode resulted in 65% improvement of the power density and a decolorization efficiency of 74%. Laccase could act as a biocatalyst for oxygen reduction reaction along with catalyzing RB221 decolorization. Treatment of RB221 with immobilized laccase reduced its toxicity up to 5.2%. Degradation products of RB221 were identified using GC-MS, and the decomposition pathway was proposed. A discussion was also provided as to the mechanism of dye decolorization on the enhancement of the MFC performance.

  9. Desempeño y emisiones de un motor de combustión interna con combustible dual Diesel – Gas natural ;Performance and emissions study of an internal combustion engine with dual fuel diesel - natural gas

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2015-04-01

    Full Text Available Muchos de los problemas reportados para los sistemas duales diesel- gas natural ocurren por mala dosificación del gas. Por esta razón se adaptó un sistema de alimentación dual con inyección electrónica de gas natural a un motor de combustión interna encendido por compresión. Se plantea un diseño experimental controlando el dosado de gas natural.Como resultado se obtiene un análisis comparativo entre los valoresde desempeño y emisiones desde la operación Diesel y Diesel-Gas natural. A partir de este análisis es posible observar que el desempeño del motor no se ve afectado por la operación del motor bajo el esquema Dual Diesel-GN, es decir que el motor funcionando bajo modo dual puede sostener las cargas solicitadas al motor. También se observa que la eficiencia volumétrica mejora bajo todas las condiciones de operación dual y las emisiones son mejores sólo cuando el motor trabaja a altas cargas. Many of the problems reported for dual diesel-natural gas systems occur due to poor gas dosage. For this reason a natural gas electronic injection feeding system was adapted to a compression ignitios internal combustion engine. An experimental design controlling the natural gas dosage is considered. As a result a comparative analysis between performance and emissions from the Diesel-and diesel-Natural Gas operation is obtained. From this analysis it is possible to see that engine performance is not affected by operation of the engine under the dual mode, i.e. the motor running under dual mode can support the loads applied to the engine. It is also observed that the volumetric efficiency improves under all conditions of operation and emissions from the dual mode of operation are better only when working at high engine loads.

  10. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  11. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    Science.gov (United States)

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants.

  12. Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure.

    Science.gov (United States)

    Chiang, Kun-Keng; Chen, Jen-Sue; Wu, Jih-Jen

    2012-08-01

    Bipolar resistive switching in Al/fuel-assisted NiO(x) (40 nm)/ITO devices is demonstrated in this work. XPS analysis reveals the simultaneous presence of metallic Ni, Ni(2)O(3), and NiO components in the fuel-assisted NiO(x). The concentration, as well as spreading of the metallic Ni and accompanying oxygen vacancies, are related to the Al/NiO(x) interfacial reaction, which is enhanced by the increasing thickness of the Al top electrode. Correspondingly, the preswitching-on voltage decreases while the preswitching-off voltage increases with increasing thickness (from 15 to 60 nm) of Al. However, in regular switching operation, set and reset voltages are considerably lowered for devices with an increased thickness of the Al top electrode. The bipolar resistive switching behaviors of Al/fuel-assisted NiO(x)/ITO devices are therefore discussed based on the formation of conductive paths and their correlation with the Al-electrode modulated composition in the fuel-assisted NiO(x). The Al/NiO(x) interfacial reaction region pairs with ITO to form a dual-oxygen-reservoir structure. Mechanisms of construction/destruction of conducting paths originating from the electrochemical redox reactions at the interface between NiO(x), and the dual oxygen reservoirs will also be explicated.

  13. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  14. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bierry, Guillaume; Venkatasamy, Aina; Kremer, Stephane; Dosch, Jean-Claude; Dietemann, Jean-Louis [University Hospital of Strasbourg, Department of Radiology, Strasbourg (France)

    2014-04-15

    To prospectively evaluate the performance of virtual non-calcium (VNC) dual-energy CT (DECT) images for the demonstration of trauma-related abnormal marrow attenuation in collapsed and non-collapsed vertebral compression fractures (VCF) with MRI as a reference standard. Twenty patients presenting with non-tumoral VCF were consecutively and prospectively included in this IRB-approved study, and underwent MRI and DECT of the spine. MR examination served as a reference standard. Two independent readers visually evaluated all vertebrae for abnormal marrow attenuation (''CT edema'') on VNC DECT images; specificity, sensitivity, predictive values, intra and inter-observer agreements were calculated. A last reader performed a quantitative evaluation of CT numbers; cut-off values were calculated using ROC analysis. In the visual analysis, VNC DECT images had an overall sensitivity of 84 %, specificity of 97 %, and accuracy of 95 %, intra- and inter-observer agreements ranged from k = 0.74 to k = 0.90. CT numbers were significantly different between vertebrae with edema on MR and those without (p < 0.0001). Cut-off values provided sensitivity of 85 % (77 %) and specificity of 82 % (74 %) for ''CT edema'' on thoracic (lumbar) vertebrae. VNC DECT images allowed an accurate demonstration of trauma-related abnormal attenuation in VCF, revealing the acute nature of the fracture, on both visual and quantitative evaluation. (orig.)

  15. Design, development and implantation in experimental fleet of dual fuel motor systems, by alcohol carbonation, in Diesel engines; Projeto, desenvolvimento e implantacao em frotas experimentais de sistema de dupla alimentacao, por carburacao de alcool, em motores de ciclo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, P. [Servicos Tecnicos e Comercio Internacional Ltda. (SETEX) (Brazil)

    1984-12-31

    This paper presents a consolidated process through testing results, showing a simple, economical and reversible conception, aiming a partial substitution of diesel fuel by hydrated ethanol, in the brazilian fleet, by means of installing a kit named Dual Fuel Motor Kit. (author). 5 figs

  16. An investigation of using various diesel-type fuels in homogeneous charge compression ignition engines and their effects on operational and controlling issues

    Energy Technology Data Exchange (ETDEWEB)

    Milovanovic, N.; Chen, R. [Loughborough Univ., Aeronautical and Automotive Dept., Loughborough (United Kingdom); Dowden, R. [Swansea Inst. of Higher Education, School of Automotive Engineering, Swansea (United Kingdom); Turner, J. [Lotus Engineering, Powertrain Research Dept., Hethel (United Kingdom)

    2004-12-01

    Homogeneous charge compression ignition (HCCI) engines appear to be a future alternative to diesel and spark-ignited engines. The HCCI engine has the potential to deliver high efficiency and very low NO{sub x} and particulate matter emissions. There are, however, problems with the control of ignition and heat release range over the entire load and speed range which limits the practical application of this technology. The aim of this paper is to analyse the use of different types of diesel fuels in an HCCI engine and hence to find the most suitable with respect to operational and control issues. The single-zone combustion model with convective heat transfer loss is used to simulate the HCCI engine environment. n-Heptane, dimethyl ether and bio-diesel (methyl butanoate and methyl formate) fuels are investigated. Methyl butanoate and methyl formate represent surrogates of heavy and light bio-diesel fuel respectively. The effects of different engine parameters such as equivalence ratio and engine speed on the ignition timing are investigated. The use of internal exhaust gas recirculation is investigated as a potential strategy for controlling the ignition timing. The results indicate that the use of bio-diesel fuels will result in lower sensitivity of ignition timing to changes in operational parameters and in a better control of the ignition process when compared with the use of n-heptane and dimethyl ether. (Author)

  17. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Poitrasson-Rivière, Alexis, E-mail: alexispr@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, Alice [Lainsa-Italia S.R.L., Via E. Fermi 2749, 21027 Ispra, VA (Italy); Peerani, Paolo [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy)

    2015-10-11

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  18. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Science.gov (United States)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  19. 甲醇-汽油两用燃料发动机设计%Design of Petrol-methanol Dual-fuel Engine

    Institute of Scientific and Technical Information of China (English)

    杜爱民; 朱沛沛; 朱忠攀; 初川川

    2015-01-01

    A petrol-methanol dual-fuel engine was developed by locally modifying the hardware and software of a 1 .5 L inline 4-cylinder and 4-stroke engine .The dual fuel tank and rail which could be realized easily were chosen ,the fuel supply system , ignition system and control software for petrol-methanol dual-fuel were designed ,and the starting and warming up functions of petrol and the free switch and respective combustion for methanol and petrol were realized .The experiments of the dual-fuel engine show that methanol is more appropriate for transient conditions with large speed and load variance .Although the con-sumption of methanol is twice of the petrol ,the thermal efficiency of methanol is higher than that of petrol .%以一台1.5L、直列、四缸、四冲程发动机为基础开发了甲醇-汽油两用燃料发动机 ,对原发动机的硬件和软件进行了局部修改 ,选择了比较容易实现的双油箱双油轨结构 ,设计了甲醇-汽油两用的燃油供给系统、点火系统以及控制软件 ,实现了发动机汽油起动、暖机 ,甲醇、汽油之间的自由切换以及甲醇、汽油单独燃烧等功能.对甲醇-汽油两用燃料发动机进行了试验研究 ,试验表明 ,在转速变化较大而负荷相对变化较小的工况下适合燃用甲醇.虽然甲醇的消耗量大约是汽油的2倍 ,但其燃烧热效率比汽油高.

  20. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    Science.gov (United States)

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small.

  1. Economical and environmental assessments of compressed natural gas for diesel vehicle in Thailand

    Directory of Open Access Journals (Sweden)

    Prateep Chouykerd

    2008-08-01

    Full Text Available The economic assessments for the use of compressed natural gas as fuel for several types of diesel vehicles, rarely pick up, non-fixed route truck and private truck, were studied. It is noted that two main technologies of diesel natural gas vehicle (NGV, i.e. dedicated retrofit and diesel dual fuel (DDF, were considered in this work. It was found that the dedicated retrofit needs higher investment costs than dual fuel, but can achieve higher diesel saving than dual fuel. In detail, the payback period of dual fuel non-fixed route truck was found to be identical to dual fuel private truck both in the cases of6 wheel and 10 wheel, while dedicated retrofit non-fixed route truck and private truck are also identical and have longerpay back period than dual fuel due to its higher conversion costs.This work also presents the emissions released from all types of engines especially green house gas CO2. It was found that, in the case of light duty diesel i.e. pickup truck, dedicated retrofit emitted high level of CO2 than both dual fuel and conventional diesel engines. For heavy duty i.e. non-fixed route truck and private truck vehicles, dedicated retrofit emitted a lower level of CO2 than normal diesel engine. Other pollutants from engine emission, i.e. hydrocarbon (HC,nitric oxide (NOx, carbon monoxide (CO and particulate matter, (PM were also observed. The results indicated that, inthe case of light duty diesel, dedicated retrofit engine emits higher levels of HC and CO than diesel engine; in contrast, it emits lower level of NOx and PM than diesel and dual fuel. Dual fuel emits HC and CO higher than diesel and dedicated retrofit but emits lower level of NOx and PM than diesel. Lastly, for heavy duty diesel, it was demonstrated that non-fixed route truck and private truck heavy duty dedicated retrofit have potential to reduce emissions of HC, NOx, CO and PM when compared to normal heavy duty diesel. Engine efficiencies under dual fuel and dedicated

  2. Vehicle conversion to hybrid gasoline/alternative fuel operation

    Science.gov (United States)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  3. Precipitation dominates fire occurrence in Greece (1900-2010): its dual role in fuel build-up and dryness

    Science.gov (United States)

    Xystrakis, F.; Kallimanis, A. S.; Dimopoulos, P.; Halley, J. M.; Koutsias, N.

    2014-01-01

    Historical fire records and meteorological observations spanning over one century (1894-2010) were assembled in a database to collect long-term fire and weather data in Greece. Positive/negative events of fire occurrence on an annual basis were considered as the years where the annual values of the examined parameters were above (positive values) or below (negative values) the 95% confidence limits around the trend line of the corresponding parameter. To analyse the association of positive/negative events of fire occurrence with meteorological extremes, we proceeded with a cross-tabulation analysis based on a Monte Carlo randomization. Positive/negative values of total annual precipitation were randomly associated with the corresponding values of burned areas, and significant associations were observed for seasonal precipitation totals (spring and fire season). Fire season precipitation is the dominant factor coinciding with negative values of area burned, while years with high spring precipitation coincide with years with large areas burned. These results demonstrate the dual role of precipitation in controlling a fire's extent through fuel build-up and dryness. Additionally, there is a clear outperformance of precipitation-related variables compared with temperature-related weather revealing that, at least in Greece, total area burned at the national scale is controlled by precipitation totals rather than air temperature. This analysis improves our understanding of the underlying mechanisms of fire regimes and provides valuable information concerning the development of models relating fire activity to weather parameters, which are essential when facing a changing climate that may be associated with shifts in various aspects of the typical fire regimes of ecosystems. Our results may allow fire managers to more easily incorporate the effect of extreme weather conditions into long-term planning strategies. They contribute to the exploration of fire

  4. Effect of Modified Design on Engine Fuel Efficiency

    Directory of Open Access Journals (Sweden)

    Abdul Siddique Sk

    2016-09-01

    Full Text Available This paper covers key and representative developments in the area of high efficiency and cleans internal combustion engines. The main objective is to highlight recent efforts to improve (IC engine fuel efficiency and combustion. Rising fuel prices and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency from the IC engine. This need for increased efficiency has placed compression ignition (CI engines in the forefront compared to spark ignition (SI engines. However, the relatively high emission of oxides of nitrogen (NOx and particulate matter (PM emitted by diesel engines increases their cost and raises environmental barriers that have prevented their widespread use in certain markets. The desire to increase IC engine fuel efficiency while simultaneously meeting emissions mandates has thus motivated considerable research. This paper describes recent progress to improve the fuel efficiency of diesel or CI engines through advanced combustion and fuels research. In particular, a dual fuel engine combustion technology called ―reactivity controlled compression ignition‖ (RCCI, which is a variant of Homogeneous Charge Compression Ignition (HCCI, is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions. This paper reviews recent RCCI experiments and computational studies performed on light- and heavy-duty engines, and compares results using conventional and alternative fuels (natural gas, ethanol, and biodiesel with conventional diesel, advanced diesel and HCCI concepts.

  5. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    Science.gov (United States)

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  6. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  7. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    Directory of Open Access Journals (Sweden)

    Jalava Pasi I

    2012-09-01

    Full Text Available Abstract Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM. We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590 and two biodiesels were used − rapeseed methyl ester (RME, EN14214 and hydrotreated vegetable oil (HVO either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC. A bus powered by compressed natural gas (CNG was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were

  8. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  9. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  10. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau

    2017-06-10

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  11. Compression Ratio Adjuster

    Science.gov (United States)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  12. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    ) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  13. The Design and Manufacturing Report of Non-Instrumented Rig for Dual-cooled Annular Fuel Irradiation Test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Bang, Je Geon; Lim, Ik Sung; Kim, Sun Ki; Yang, Yong Sik; Song, Kun Woo; Seo, Chul Gyo; Park, Chan Kook

    2008-09-15

    This project is preparing to irradiation test of the developed double cooled annular fuel pellet in HANARO for pursuit advanced performance in High Performance Fuel Technology Development as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented rig designed and manufactured for irradiation test in HANARO OR hole. This non- instrumented rig was confirmed the compatibility of HANARO and the integrity of rig structure, and satisfied the quality assurance requirements. This non- instrumented rig is adopt to the irradiation test for double cooled annular fuel pellet in HANARO.

  14. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  15. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Directory of Open Access Journals (Sweden)

    Tohru Minamino

    2016-03-01

    Full Text Available The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  16. The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Iftekhair Ibnul Bashar

    2014-01-01

    Full Text Available The effect of molarity of alkali activator, manufactured sand (M-sand, and quarry dust (QD on the compressive strength of palm oil fuel ash (POFA and fly ash (FA based geopolymer mortar was investigated and reported. The variable investigated includes the quantities of replacement levels of M-sand, QD, and conventional mining sand (N-sand in two concentrated alkaline solutions; the contents of alkaline solution, water, POFA/FA ratio, and curing condition remained constant. The results show that an average of 76% of the 28-day compressive strength was found at the age of 3 days. The rate of strength development from 3 to 7 days was found between 12 and 16% and it was found much less beyond this period. The addition of 100% M-sand and QD shows insignificant strength reduction compared to mixtures with 100% N-sand. The particle angularity and texture of fine aggregates played a significant role in the strength development due to the filling and packing ability. The rough texture and surface of QD enables stronger bond between the paste and the fine aggregate. The concentration of alkaline solution increased the reaction rate and thus enhanced the development of early age strength. The use of M-sand and QD in the development of geopolymer concrete is recommended as the strength variation between these waste materials and conventional sand is not high.

  17. Verification of the FBR fuel bundle–duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Nemoto, Junichi [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ichikawa, Shoichi [Japan Atomic Energy Agency, 2-1, Shiraki, Tsuruga-shi, Fukui 919-1279 (Japan); Katsuyama, Kozo [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2014-09-15

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle–duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  18. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  19. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  20. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  1. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  2. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    OpenAIRE

    A. Megaritis; Yap, D

    2008-01-01

    This is the post-print version of the final paper published in Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V. This paper documents the application of exhaust gas fuel reforming ...

  3. Development of a phenomenological cycle simulation for a natural gas-fuelled, compression-ignited, internal combustion engine

    Science.gov (United States)

    Liu, Yafeng

    Engine cycle simulations have been developed for modeling both diesel and dual fuel combustion in compression ignition engines. The primary objective of this work was to investigate the dual fuel combustion process in an engine and to better understand the processes of ignition, flame propagation, and pollutant formation in the engine. A multizone diesel combustion model was first developed to predict the diesel combustion process and emissions for diesel fueling. A phenomenological combustion model for dual fuel operation was then developed to simulate the combustion process and emissions of a micro-pilot diesel ignition natural gas fueled engine. Coupled with the chemical equilibrium reactions for emission formation (i.e., extended Zeldovich NOx mechanism, soot formation and destruction submodeling, unburned hydrocarbon emissions submodeling), models for diesel droplet evaporation, air entrainment, cylinder heat transfer, piston work, mass flow rates, flame propagation, crevice flow, and flame quenching have been combined with a thermodynamic analysis of the engine to yield instantaneous cylinder conditions, engine performance, and emissions. Parametric and comparison studies of diesel operation, dual fuel combustion, and micro-pilot combustion have been conducted. The major conclusions that can be drawn from this work include (1) diesel evaporation and air entrainment can have significant influence on the ignition and combustion processes, (2) pressure and temperature of inlet air, compression ratio, and the start of fuel injection are important engine operating and design parameters, (3) the combustion process of the mixture of natural gas and air is dominantly premixed-combustion, and (4) the processes of crevice flow and flame quenching can have a substantial impact on the dual fuel/micro-pilot combustion and emission formation processes.

  4. Microgeneration of electricity with producer gas in dual fuel mode operation Microgeração de eletricidade com gás de gaseificação num motor gerador dual

    Directory of Open Access Journals (Sweden)

    Marcelo J. Silva

    2011-10-01

    Full Text Available Among the alternatives to meet the increasing of world demand for energy, the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a technological process of biomass energy production of a gaseous biofuel. The fuel gas has a low calorific value that can be used in Diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil Diesel an engine generator, using gas from gasification of wood. The engine generator brand used was a BRANCO, with direct injection power of 7.36 kW (10 HP coupled to an electric generator 5.5 kW. Diesel oil mixed with intake air was injected, as the oil was injected via an injector of the engine (dual mode. The fuel gas was produced in a downdraft gasifier. The engine generator was put on load system from 0.5 kW to 3.5 kW through a set of electrical resistances. Diesel oil consumption was measured with a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood decreased Diesel consumption by up to 57%.Dentre as alternativas à crescente demanda energética mundial, o uso da biomassa como fonte de energia é uma das formas mais promissoras, pois contribui para a redução das emissões de dióxido de carbono na atmosfera. A gaseificação é uma tecnologia de transformação energética da biomassa num biocombustível gasoso. O gás de gaseificação é um combustível de baixo poder calorífico que pode ser utilizado em motor ciclo Diesel no modo dual para geração de energia elétrica em comunidades isoladas. Este trabalho teve por objetivo avaliar a redução no consumo de Diesel num motor gerador, com a utilização de gás da gaseificação da madeira. O motor avaliado foi da marca BRANCO, com injeção direta e potência de 7,36 kW (10 cv acoplado a um gerador elétrico de 5

  5. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... base level. (7) For alcohol dual fuel automobiles and natural gas dual fuel automobiles the procedures... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate... economy values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel...

  6. 40 CFR 600.209-95 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... mpg; or (ii) For general labels for alcohol dual fuel and natural gas dual fuel automobiles: (A) Multiply the city model type fuel economy calculated from the tests performed using gasoline or diesel test... dual fuel and natural gas dual fuel automobiles: (A) Multiply the city model type fuel economy...

  7. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  8. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  9. Parametric Study of Jatropha Blended Gasoline Fuel In Compression Ignition Engine Of A Small Capacity Diesel Engine

    Directory of Open Access Journals (Sweden)

    Benjamin Ternenge Abur

    2014-11-01

    Full Text Available In this study, Jatropha Biodiesel was tested in a single cylinder direct-injection diesel engine to investigate the operational parameters of a small capacity diesel engine under six engine loads. Here the jatropha oil is used as a non edible oil to produce the biodiesel. The investigated blends were 40/60%, 30/70%, 20/80% and 100% jatropha biodiesel at various loads. The jatropha biodiesel was obtained from National Research Institute for Chemical Technology Zaria-Nigeria and was within EN, BIS and Brazil specifications for biodiesel. Each blend was tested on a short term basis of three hours. The result shows that the brake thermal efficiency increased for all tested blends at lower engine loads and decreases at higher engine loads. The specific fuel consumption (S.F.C increased for lower blends compared to neat jatropha oil while higher engine powers were obtained for lower blends compared to neat jatropha oil. In all the investigated operational parameters, the diesel reference fuel had better performance to jatropha biodiesel blends except in the percentage heat loss to the exhaust where jatropha biodiesel blends had better performance.

  10. Karakterisasi Unjuk Kerja Diesel Engine Generator Set Sistem Dual Fuel Solar-Syngas Hasil Gasifikasi Briket Municipal Solid Waste (MSW Secara Langsung

    Directory of Open Access Journals (Sweden)

    Achmad Rizkal

    2017-01-01

    Full Text Available Sejalan dengan semakin banyaknya kebutuhan energi untuk dapat digunakan sebagai bahan bakar maka perlu adanya pengembangan gas biomassa sebagai bahan bakar alternatif pada motor pembakaran dalam maka akan dilakukan penelitian mengenai aplikasi sistem dual fuel gas hasil gasifikasi biomassa municipal solid waste (msw pada sistem downdraft dengan minyak solar pada motor diesel stasioner. Penelitian ini bertujuan untuk mengetahui seberapa besar solar yang tersibtitusi dengan adanya penambahan syngas yang disalurkan secara langsung. Penelitian ini dilakukan secara eksperimental dengan proses pemasukan aliran syngas yang dihasilkan downdraft municipal solid waste (MSW kedalam saluran udara mesin diesel generator set secara langsung menggunakan sistem mixer. Pengujian dilakukan dengan putaran konstan 2000 rpm dengan pembebanan bervariasi dari 200 watt sampai dengan 2000 watt dengan interval 200 watt. Bahwa produksi syngas dari reaktor gasifikasi ditambahkan sistem bypass untuk mengetahui kesesuaian antara reaktor gasifikasi dan mesin generatorset data ṁ syngas yang dibutuhkan mesin diesel, ṁ syngas yang di bypass untuk mendapatkan kesesuaian antara produksi syngas dan yang di bypass.  Data-data yang diukur dari penelitian ini menunjukkan bahwa besar nilai mass flowrate gas syngas yang dibutuhkan mesin diesel pada AFR reaktor gasifier 1,39 sebesar 0,0003748 kg/s. Mass flowrate gas syngas yang di bypass menunjukkan nilai 0 pada saat sistem dijalankan karena seluruh gas syngas masuk kedalam ruang bakar. AFR rata-rata sebesar 14,54 ,Nilai Spesifik fuel consumption (sfc mengalami peningkatan 68% dari kondisi standar single fuel , Nilai efesiensi thermal mengalami kenaikan sebesar 7% dari kondisi single fuel, Nilai daya rata-rata sebesar 2,28kW, Nilai torsi rata-rata sebesar 10,94 N.m. Solar yang tersibtitusi sebesar 48%. Nilai temperatur (coolant, mesin, oil, dan gas buang pada setiap pembebanan mengalami kenaikan.

  11. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  12. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  13. Power distribution of a co-axial dual-mechanical-port flux-switching permanent magnet machine for fuel-based extended range electric vehicles

    Science.gov (United States)

    Zhou, Lingkang; Hua, Wei; Zhang, Gan

    2017-05-01

    In this paper, power distribution between the inner and outer machines of a co-axial dual-mechanical-port flux-switching permanent magnet (CADMP-FSPM) machine is investigated for fuel-based extended range electric vehicle (ER-EV). Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced, which consist of an inner FSPM machine used for high-speed, an outer FSPM machine for low-speed, and a magnetic isolation ring between them. Then, the magnetic field coupling of the inner and outer FSPM machines is analyzed with more attention paid to the optimization of the isolation ring thickness. Thirdly, the power-dimension (PD) equations of the inner and outer FSPM machines are derived, respectively, and thereafter, the PD equation of the whole CADMP-FSPM machine can be given. Finally, the PD equations are validated by finite element analysis, which supplies the guidance on the design of this type of machines.

  14. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation.

    Science.gov (United States)

    Miran, Waheed; Nawaz, Mohsin; Kadam, Avinash; Shin, Seolhye; Heo, Jun; Jang, Jiseon; Lee, Dae Sung

    2015-09-01

    The expansion in knowledge of the microbial community structure can play a vital role in the electrochemical features and operation of microbial fuel cells (MFCs). In this study, bacterial community composition in a dual chamber MFC fed with brewery waste was investigated for simultaneous electricity generation and azo dye degradation. A stable voltage was generated with a maximum power density of 305 and 269 mW m(-2) for brewery waste alone (2000 mg L(-1)) and after the azo dye (200 mg L(-1)) addition, respectively. Azo dye degradation was confirmed by Fourier transform infrared spectroscopy (FT-IR) as peak corresponding to -N=N- (azo) bond disappeared in the dye metabolites. Microbial communities attached to the anode were analyzed by high-throughput 454 pyrosequencing of the 16S rRNA gene. Microbial community composition analysis revealed that Proteobacteria (67.3 %), Betaproteobacteria (30.8 %), and Desulfovibrio (18.3 %) were the most dominant communities at phylum, class, and genus level, respectively. Among the classified genera, Desulfovibrio most likely plays a major role in electron transfer to the anode since its outer membrane contains c-type cytochromes. At the genus level, 62.3 % of all sequences belonged to the unclassified category indicating a high level of diversity of microbial groups in MFCs fed with brewery waste and azo dye. • Azo dye degradation and stable bioelectricity generation was achieved in the MFC. • Anodic biofilm was analyzed by high-throughput pyrosequencing of the 16S rRNA gene. • Desulfovibrio (18.3 %) was the dominant genus in the classified genera. • Of the genus, 62.3 % were unclassified, thereby indicating highly diverse microbes. Graphical Abstract A schematic diagram of a dual chamber microbial fuel cell for azo dye degradation and current generation (with microbial communities at anode electrode).

  15. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    Science.gov (United States)

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.

  16. Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chao; Ming, Pingwen; Hou, Ming; Fu, Jie; Shen, Qiang; Liang, Dong; Fu, Yunfeng; Luo, Xiaokuan; Shao, Zhigang; Yi, Baolian

    Although the composite bipolar plates prepared by the method of the vacuum resin impregnation in compressed expanded graphite (CEG) sheets have been applied in the KW-class stacks, there have been few investigations of the preparation and properties of them so far. In this research, the influences of the microstructure on the physical properties of the thin epoxy/CEG composites (the thickness is 1 mm) are investigated for the first time and the optimum preparation conditions are obtained. Results demonstrated that the mechanical property and the impermeability of the composites increases evidently with the resin content changing from 4% to 30%, while the electrical properties keep nearly constant. It can be attributed to the continuous expanded graphite (EG) conductive network of the raw CEG sheet. The epoxy (30 wt.%)/CEG composite is shown to be the optimum composite, displaying in-plane conductivity of 119.8 S cm -1, through-plane resistance of 17.13 mΩ cm 2, density of 1.95 g cm -3, gas permeability of 1.94 × 10 -6 cm 3 cm -2 s -1 and flexural strength of 45.8 MPa. The alcohol scrubbing is the optimum method of surface post-processing. The performance of a single cell with the optimum composite bipolar plates is tested and demonstrated to be outstanding. Above all, the composite prepared by resin vacuum impregnation in the CEG sheet is a promising candidate for bipolar plate materials in PEMFCs.

  17. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  18. Transient Response and Steady-State Analysis of the Anode of Direct Methanol Fuel Cells Based on Dual-Site Kinetics

    Directory of Open Access Journals (Sweden)

    Lei Xing

    2011-01-01

    Full Text Available An intrinsic time-dependent one-dimensional (1D model and a macro two-dimensional (2D model for the anode of the direct methanol fuel cell (DMFC are presented. The two models are based on the dual-site mechanism, which includes the coverage of intermediate species of methanol, OH, and CO (θM, θOH,Ru, and θCO,Pt on the surface of Pt and Ru. The intrinsic 1D model focused on the analysis of the effects of operating temperature, methanol concentration, and overpotential on the transient response. The macro 2D model emphasises the dimensionless distributions of methanol concentration, overpotential and current density in the catalyst layer which were affected by physical parameters such as thickness, specific area, and operating conditions such as temperature, bulk methanol concentration, and overpotential. The models were developed and solved in the PDEs module of COMSOL Multiphysics, giving good agreement with experimental data. The dimensionless distributions of methanol concentration, overpotential, and current density and the efficiency factor were calculated quantitatively. The models can be used to give accurate simulations for the polarisations of methanol fuel cell.

  19. Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.

    Science.gov (United States)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu

    2007-12-15

    Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of

  20. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... calculate the fuel economy for the base level. (7) For alcohol dual fuel automobiles and natural gas dual... diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests... fuel economy values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel...

  1. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    Science.gov (United States)

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  3. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    Science.gov (United States)

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC) and Nitrogen Oxide (NOx) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels.

  5. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  6. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  7. Effect of electric impulse for improved energy generation in mediatorless dual chamber microbial fuel cell through electroevolution of Escherichia coli.

    Science.gov (United States)

    Nandy, Arpita; Kumar, Vikash; Kundu, Patit P

    2016-05-15

    The main emphasis of this study is to understand the electroactive behavior of a microbe in microbial fuel cell (MFC) under specific selection pressure. This study explores potential of a non-electrogenic microbe for power production in a mediatorless MFC under the influence of a specific stress. Electric pulse of specific magnitude has been applied to Escherichia coli cells in a MFC and compared the results with unpulsed (control) MFC. Maximum power density of 187.77 mW/m(2) and 284.44 mW/m(2) for the control and experimental MFC has been observed at corresponding current density of 1444.44 mA/m(2) and 1777.77 mA/m(2). The results show improved performance for the pulsed (experimental) system, despite of initial downfall with respect to the control system. This suggests bacterial adaptation against electrical pulses which leads to evolution of an efficient electrogen. This observation is further confirmed by analyzing the results of Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM) Electrochemical Impedence Spectroscopy (EIS), enlightening different attributes like electrochemical property, bacterial morphology and impedance. The study is focused on development of a microbial fuel cell catalysed by E. coli, through triggering electroactive property in the microbe by exposing it to external stress. This study is unique in nature as it is mediatorless, economical and describes about a new method of natural bacterial evolution.

  8. Electricity Generation with the Novel 3D Electrode from Swim Wastewater in a Dual-chamber Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Lai Mei-Feng

    2016-01-01

    Full Text Available The swine wastewater has the characteristics of high concentration of organic matter, suspended solids and more high ammonia nitrogen, odor, complex pollution ingredient and large emissions. Microbial fuel cells (MFC is an electrochemical and biological systems related to chemical energy into electrical energy. A two-chambered cubic microbial fuel cell was used to evaluate the effect of a novel 3D electrode which made of iron and copper on the electricity generation. The swine wastewater containing total chemical oxygen demand (TCOD 3300±300 mg/L was used as the feedstock in anode chamber, and the potassium ferricyanide was used as electron acceptor in cathode chamber. The MFC reactor was incubated with the initial pH 7.0 in a air-shaker with a temperature (ca. 35°C and 100 rpm in fed-batch mode. A fixed external resistance (R of 100 Ω was connected between the electrodes and the closed circuit potentials of the MFCs were recorded every 2 min. The results show that using iron 3D electrode has the peak electricity generation of 176 mV at the first two day and maintained the stable electricity voltage of 110 mV during the 5th to 15th days. The COD removal efficiency could reach 80%. Using copper 3D electrode only can generate the peak electricity of 33.1 mV and stable electricity of 27 mV with the COD removal efficiency of 70%.

  9. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... ``dedicated [alternative fuel] or dual fueled vehicle,'' and sections 501 (42 U.S.C. 13251) and 507 (42 U.S.C... example, B20 (a 20 percent blend of biodiesel with 80 percent petroleum diesel) is not an alternative fuel... that operate solely on alternative fuel, or ``dual fueled vehicles,'' which have some capability for...

  10. Emission of a compression ignition engine fuelled by diesel and imitated syngas

    Science.gov (United States)

    Mahgoub, Bahaaddein Kamal M.; Sulaiman, S. A.; Karim, Zainal Ambri B. A.

    2012-06-01

    Biomass can be converted into a useful source of energy through gasification. The gasification product, known as synthesis gas or syngas, composition of syngas may fluctuate due to many factors such as operational errors of the gasifier as well as the type of feedstock used or may be due to the feeding rate fluctuation. Therefore it would be difficult to assess the effect of syngas composition and diesel replacement ratio to the emission when combusted in dual fuel syngas - diesel compression ignition engine. In order to overcome this problem controllable composition and conditions of imitated syngas was used in this study by selective three compositions of syngas close to the real conditions. The objective of this study is to determine the exhaust emissions of a compression ignition engine fuelled with diesel and imitated syngas at different compositions and diesel replacement ratios to determine the most appropriate composition of syngas and diesel replacement ratio which will give less emission. The test results on syngas emission are compared with the results of diesel. CO2 and NOX emission level was reduced on syngas dual fuel mode, but there were increases in CO and THC emissions throughout all syngas compositions examined due to poor combustion efficiency of dual fuel operation.

  11. The Role of Ruthenium in CO2 Capture and Catalytic Conversion to Fuel by Dual Function Materials (DFM

    Directory of Open Access Journals (Sweden)

    Shuoxun Wang

    2017-03-01

    Full Text Available Development of sustainable energy technologies and reduction of carbon dioxide in the atmosphere are the two effective strategies in dealing with current environmental issues. Herein we report a Dual Function Material (DFM consisting of supported sodium carbonate in intimate contact with dispersed Ru as a promising catalytic solution for combining both approaches. The Ru-Na2CO3 DFM deposited on Al2O3 captures CO2 from a flue gas and catalytically converts it to synthetic natural gas (i.e., methane using H2 generated from renewable sources. The Ru in the DFM, in combination with H2, catalytically hydrogenates both adsorbed CO2 and the bulk Na2CO3, forming methane. The depleted sites adsorb CO2 through a carbonate reformation process and in addition adsorb CO2 on its surface. This material functions well in O2- and H2O-containing flue gas where the favorable Ru redox property allows RuOx, formed during flue gas exposure, to be reduced during the hydrogenation cycle. As a combined CO2 capture and utilization scheme, this technology overcomes many of the limitations of the conventional liquid amine-based CO2 sorbent technology.

  12. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2010-11-15

    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  13. Power distribution of a co-axial dual-mechanical-port flux-switching permanent magnet machine for fuel-based extended range electric vehicles

    Directory of Open Access Journals (Sweden)

    Lingkang Zhou

    2017-05-01

    Full Text Available In this paper, power distribution between the inner and outer machines of a co-axial dual-mechanical-port flux-switching permanent magnet (CADMP-FSPM machine is investigated for fuel-based extended range electric vehicle (ER-EV. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced, which consist of an inner FSPM machine used for high-speed, an outer FSPM machine for low-speed, and a magnetic isolation ring between them. Then, the magnetic field coupling of the inner and outer FSPM machines is analyzed with more attention paid to the optimization of the isolation ring thickness. Thirdly, the power-dimension (PD equations of the inner and outer FSPM machines are derived, respectively, and thereafter, the PD equation of the whole CADMP-FSPM machine can be given. Finally, the PD equations are validated by finite element analysis, which supplies the guidance on the design of this type of machines.

  14. Simultaneous denoising and compression of multispectral images

    Science.gov (United States)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  15. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ...) For alcohol dual fuel automobiles and natural gas dual fuel automobiles, the procedures of paragraphs... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on... values for the model type. (5) For alcohol dual fuel automobiles and natural gas dual fuel automobiles...

  16. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m(-2), respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10(-6) mW m(-2), respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L(-1) d(-1)), whereas by using carbon paper the rate decreased to 270 mg COD L(-1) d(-1). Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  17. 40 CFR 600.107-93 - Fuel specifications.

    Science.gov (United States)

    2010-07-01

    ... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978... specifications for mixtures of petroleum and methanol fuels for methanol dual fuel vehicles are given in §...

  18. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell.

    Science.gov (United States)

    Kumar, Smita S; Malyan, Sandeep K; Basu, Suddhasatwa; Bishnoi, Narsi R

    2017-07-01

    Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m(3) and volumetric current density was 16.17 A/m(3). Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.

  19. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  20. 40 CFR 600.307-95 - Fuel economy label format requirements.

    Science.gov (United States)

    2010-07-01

    ... accordance with § 600.209 (a) and (b). (B) For alcohol dual fuel automobiles and natural gas dual fuel automobiles, the city and highway fuel economy estimates for operation on gasoline or diesel fuel as... in a bold condensed type and no smaller than 12 points in size. (C) For alcohol dual fuel automobiles...

  1. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2010-05-26

    ... Exceptions b. Heavy-Duty Engine Types and Gross Vehicle Weight Classes c. Dual-Fuel Standards 2. Useful Life... first type, dedicated alternative fueled vehicles or engines, are only capable of operating on one type of fuel. Dual-fueled vehicles or engines, the second type, can operate on two types of fuel,...

  2. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    Science.gov (United States)

    Kannan, Gopal Radhakrishnan

    2017-03-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  3. Introduction and Market Prospect Analysis of Diesel and natural gas dual- fuel heavy truck%柴油-天然气双燃料重卡简介及市场前景分析

    Institute of Scientific and Technical Information of China (English)

    耿志勇; 李丽君

    2012-01-01

    通过分析国内天然气行业现状和天然气重卡销售情况,认为目前发展柴油-天然气双燃料重卡更符合我国国情。该双燃料重卡突破纯天然气汽车续驶里程限制,不仅降低运营成本而且节能环保,在技术性能、二手车买卖、应用前景等方面更具市场推广价值。%Analysis of the domestic gas industry status quo and natural gas heavy-duty truck sales,the development of diesel fuel - natural gas dual-fuel heavy-duty truck is more in line with China's national conditions.The dual-fuel heavy-duty truck to break through the pure natural gas vehicles driving range restrictions not only reduce operating costs and energy saving and environmental protection to promote the value of technical performance,used cars,and application prospects of more market.

  4. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  5. Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure

    CERN Document Server

    Walter, Christian; Vyalikh, Denis; Brüser, Volker; Quade, Antje; Weltmann, Klaus-Dieter; 10.1149/2.078208jes

    2012-01-01

    A new dual plasma coating process to produce platinum-free catalysts for the oxygen reduction reaction in a fuel cell is introduced. The catalysts thus produced were analysed with various methods. Electrochemical characterisation was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk electrode. The surface porosity of the different catalysts thus obtained was characterised with the nitrogen gas adsorption technique and scanning electron microscopy was used to determine the growth mechanisms of the films. It is shown that catalytically active compounds can be produced with this dual plasma process. Furthermore, the catalytic activity can be varied significantly by changing the plasma process parameters. The amount of H$_2$O$_2$ produced was calculated and shows that a 2 electron mechanism is predominant. The plasma coating mechanism does not significantly change the surface BET area and pore size distribution of the carbon support used. Furthermore, scanning electron microscopy pictures o...

  6. "Compressed" Compressed Sensing

    CERN Document Server

    Reeves, Galen

    2010-01-01

    The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upper bound corresponding to a computationally simple thresholding estimator are derived. It is shown that in certain cases (e.g. discrete valued vectors or large distortions) the number of samples can be decreased. Interestingly though, it is also shown that in many cases no reduction is possible.

  7. Properties of Compressive Strength and Heating Value of Compressed Semi-Carbonized Sugi thinning

    Science.gov (United States)

    Sawai, Toru; Kajimoto, Takeshi; Akasaka, Motofumi; Kaji, Masuo; Ida, Tamio; Fuchihata, Manabu; Honjyo, Takako; Sano, Hiroshi

    Sugi thinnings with small diameter that are not suitable for lumber can be considered as important domestic energy resources. To utilize Sugi thinnings as alternative fuel of coal cokes, properties of compressive strength and heating value of compressed semi-carbonized wood fuel are investigated. To enhance the heating value, "semi-carbonization", that is the pyrolysis in the temperature range between 200 and 400 degree, is conducted. From the variation of heating value and energy yield of char with pyrolysis temperature, the semi-carbonization pyrolysis is found to be the upgrading technology to convert the woody biomass into the high energy density fuel at high energy yield. To increase the compressive strength, "Cold Isostatic Pressing" method is adopted. The compressive strength of the compressed wood fuel decreases with pyrolysis temperature, while the heating value increases. The drastic decrease in the compressive strength is observed at temperature of 250 degree. The increase in the hydrostatic compression pressure improves the compressive strength for an entire range of semi-carbonization pyrolysis. The alternative fuel with high heating value and high compressive strength can be produced by the semi-carbonization processing at temperature of 280 degree for wood fuel compressed at hydrostatic pressure of 200MPa.

  8. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  9. Fuel for Success: Academic Momentum as a Mediator between Dual Enrollment and Educational Outcomes of Two-Year Technical College Students

    Science.gov (United States)

    Wang, Xueli; Chan, Hsun-yu; Phelps, L. Allen; Washbon, Janet I.

    2015-01-01

    Objective: Despite the fairly substantial body of literature devoted to understanding whether dual enrollment programs are related to academic success in college, less is known regarding how dual enrollment transmits its potentially positive influence, especially among two-year college students. In this study, we fill this gap by delving into the…

  10. Fuel for Success: Academic Momentum as a Mediator between Dual Enrollment and Educational Outcomes of Two-Year Technical College Students

    Science.gov (United States)

    Wang, Xueli; Chan, Hsun-yu; Phelps, L. Allen; Washbon, Janet I.

    2015-01-01

    Objective: Despite the fairly substantial body of literature devoted to understanding whether dual enrollment programs are related to academic success in college, less is known regarding how dual enrollment transmits its potentially positive influence, especially among two-year college students. In this study, we fill this gap by delving into the…

  11. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    Science.gov (United States)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of

  12. models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    user

    combine laterite and quarry dust in sandcrete blocks or concrete are few. One of ... model for optimization of compressive strength of sand- laterite blocks using ..... compressive strength of Pulverise fuel Ash-Cement concrete''. IOSR Journal of ...

  13. Merger-driven Fueling of Active Galactic Nuclei: Six Dual and Offset Active Galactic Nuclei Discovered with Chandra and Hubble Space Telescope Observations

    CERN Document Server

    Comerford, Julia M; Barrows, R Scott; Greene, Jenny E; Zakamska, Nadia L; Madejski, Greg M; Cooper, Michael C

    2015-01-01

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically-selected dual AGN candidates at z < 0.34, where we use the X-rays to identify AGNs. We also present HST/WFC3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation of 2.2 kpc, where the two stellar bulges have coincident [O III] and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations < 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, a...

  14. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  15. 双树复小波特征融合的板材压缩感知协同检测与分选%Dual-tree complex wavelet feature fusion and wood board collaborative detection by compressed sensing

    Institute of Scientific and Technical Information of China (English)

    李超; 张怡卓; 于慧伶; 曹军

    2015-01-01

    提出一种对板材表面缺陷和纹理进行协同快速准确检测的算法. 根据双树复小波所特有的方向性和时移不变性,研究了板材表面图像的双树复小波特征提取及融合算法,对板材表面图像进行3级双树复小波分解得到40个特征向量,并通过遗传算法优选出23个关键特征,优选后的特征能够较为完整地表达板材图像的复杂信息并减小数据冗余. 最后采用压缩感知理论,将优选后的特征向量作为样本矩阵列,构造出训练样本数据字典,通过最小残差完成对板材表面信息的分类识别. 实验对木材表面存在的弦切纹、径切纹、活结和死结等4类柞木样本进行了检测,正确率分别为91. 8%、100%、96. 4%和91. 8%,该算法能够以95%的平均识别率完成板材表面缺陷、纹理的协同检测.%A quick and accurate collaborative classification method for wood defects and texture was pro-posed. As dual-tree complex wavelet has the advantages of approximate shift invariance and good direc-tional selectivity, dual-tree complex wavelet feature was extracted from wood board image and the fusion method was discussed. Three-level dual-tree complex wavelet decomposition was carried out to the surface image and 40 features were got, then genetic algorithm ( GA) was used for feature selection and 23 fea-tures were chosen. Feature fusion can better express the surface information and meanwhile heavily re-duce the data redundancy. Finally, wood surface classification was completed by using compressed sens-ing ( CS) , optimized dimensional feature vector was used as sample matrix and data dictionary of training samples was constructed, then, wood surface classification was completed by using least residual at last. Four types of Xylosma samples:radial texture, tangential texture, live knot and dead knot were used for experiment , the classification accuracy of the above four types were 91. 8%, 100%, 96. 4% and 91. 8%respectively

  16. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    Science.gov (United States)

    2012-09-01

    Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ...Baranescu, R., Diesel Engine Reference Book, SAE Publishing, 1999. 9. Edward, T. “ Kerosene Fuels for Aerospace Propulsion – Composition and Properties

  17. Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO3 anolyte and HCl or NaCl catholyte.

    Science.gov (United States)

    Maitlo, Hubdar Ali; Kim, Jung Hwan; Park, Joo Yang

    2017-04-01

    Dual-chambered fuel cells with an iron anode and an air-carbon cathode separated by an ion exchange membranes have been used to treat arsenate during power production. To select an effective catholyte, the dual-chambered fuel cell consisted 90 mL of 0.1 M HCl or 0.5 M NaCl as the catholyte and 1 L of 0.1 M NaHCO3 as the anolyte at an initial pH 5. The 0.1 M HCl was an effective catholyte, with which 1 ppm arsenate in 1 L of anolyte was reduced to 5 ppb in 1 h, and the maximum power density was about 6.3 w/m(2) with an anion exchange membrane fuel cell (AEM_FC) and 4.4 w/m(2) with a cation exchange membrane fuel cell (CEM_FC). Therefore, 90 mL of 0.1 M HCl was used as a catholyte to treat 20 L of 0.1 M NaHCO3 anolyte containing 1 ppm arsenate at an initial pH of 5 or 7. The arsenate level at pH 5 decreased to less than 5 ppb in 4 h, and the maximum power density was 5.9 W/m(2) and 4.7 W/m(2) with AEM_FC and CEM_FC, respectively. When using 0.01 M NaHCO3 as the anolyte at pH 5, arsenate was reduced to less than 5 ppb in 8 and 24 h for AEC_FC and CEM_FC, respectively. However, when using an anolyte at pH 7, arsenate could not be effectively removed in 24 h. Therefore, when using carbonate as an anolyte, the solution should be adjusted to a weakly acidic pH in order to remove arsenate.

  18. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  19. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  20. Focusing-schlieren visualization in a dual-mode scramjet

    Science.gov (United States)

    Kouchi, Toshinori; Goyne, Christopher P.; Rockwell, Robert D.; McDaniel, James C.

    2015-12-01

    Schlieren imaging is particularly suited to measuring density gradients in compressible flowfields and can be used to capture shock waves and expansion fans, as well as the turbulent structures of mixing and wake flows. Conventional schlieren imaging, however, has difficulty clearly capturing such structures in long-duration supersonic combustion test facilities. This is because the severe flow temperatures locally change the refractive index of the window glass that is being used to provide optical access. On the other hand, focusing-schlieren imaging presents the potential of reduced sensitivity to thermal distortion of the windows and to clearly capture the flow structures even during a combustion test. This reduced sensitivity is due the technique's ability to achieve a narrow depth of focus. As part of this study, a focusing-schlieren system was developed with a depth of focus near ±5 mm and was applied to a direct-connect, continuous-flow type, supersonic combustion test facility with a stagnation temperature near 1200 K. The present system was used to successfully visualize the flowfield inside a dual-mode scramjet. The imaging system captured combustion-induced volumetric expansion of the fuel jet and an anchored bifurcated shock wave at the trailing edge of the ramp fuel injector. This is the first time successful focusing-schlieren measurements have been reported for a dual-mode scramjet.

  1. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell.

    Science.gov (United States)

    Chung, Dong Young; Kim, Hyoung-il; Chung, Young-Hoon; Lee, Myeong Jae; Yoo, Sung Jong; Bokare, Alok D; Choi, Wonyong; Sung, Yung-Eun

    2014-12-12

    We propose a method to enhance the fuel cell efficiency with the simultaneous removal of toxic heavy metal ions. Carbon monoxide (CO), an intermediate of methanol oxidation that is primarily responsible for Pt catalyst deactivation, can be used as an in-situ reducing agent for hexavalent chromium (Cr (VI)) with reactivating the CO-poisoned Pt catalyst. Using electro-oxidation measurements, the oxidation of adsorbed CO molecules coupled with the concurrent conversion of Cr (VI) to Cr (III) was confirmed. This concept was also successfully applied to a methanol fuel cell to enhance its performance efficiency and to remove toxic Cr (VI) at the same time.

  2. Experimental Study on Homogeneous Charge Compression Ignition Engine Fueled with Ethanol%乙醇燃料均质压燃发动机的试验研究

    Institute of Scientific and Technical Information of China (English)

    刘金山; 黄为钧; 郭英男; 谭满志; 杨立平

    2005-01-01

    利用进气预热和废气再循环(EGR)控制方法,在由CA6110柴油机改造的单缸发动机上进行了以乙醇为燃料的均质混合气压燃(Homogeneous Charge Compression Ignition,HCCI)试验研究.结果表明:在过量空气系数λ=1~9时,发动机可以实现HCCI燃烧,但由过量空气系数和EGR率表示的HCCI工作范围受爆震和部分燃烧的限制.乙醇燃料HCCI燃烧最大平均指示压力可达到0.6 MPa,指示效率可达到60%.在HCCI燃烧中只产生少量的NOx,但是未燃HC和CO的排放较高.

  3. Analysis and Comparison Based on Component Stress Factor of Dual Active Bridge and Isolated Full Bridge Boost Converters for Bidirectional Fuel Cells Systems

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Mira Albert, Maria del Carmen; Zhang, Zhe;

    2014-01-01

    This paper presents an analysis and comparison of isolated topologies for bidirectional fuel cell systems. The analyzed topologies are the dua l active bridge (DAB) and the isolated full bridge boost converter (IFBBC). The analysis is performed based on the component stress factor (CSF). Results ...

  4. Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended

    Directory of Open Access Journals (Sweden)

    Prof. C. S. Koli

    2014-03-01

    Full Text Available Over the last two decades there has been a tremendous increase in the number of automobiles and a corresponding increase in the fuel price. In this regard, alternative fuels like vegetable oils play a major role. Use of pure vegetable oil in diesel engines causes some problems due to their high viscosity compared with diesel fuel. To solve the problems due to high viscosity various techniques are used. One such technique is fuel blending. This paper investigated the performance parameters of dual vegetable oil blends (mixture of Mustard oil and Palm oil with diesel on a stationary single cylinder, four stroke direct injection compression ignition engine. The blends of BB 10 (combination of Diesel 90% by volume, Mustard oil 5% by volume and Palm oil 5% by volume and blends of BB 20 (combination of Diesel 80% by volume, Mustard oil 10% by volume and Palm oil 10% by volume gave better brake thermal efficiency, lower total fuel consumption and lower brake specific fuel consumption than other blends (BB 30, BB 40 and BB 50.

  5. Evaluación energética de un sistema de generación de 400 kWe en modo diesel‐gas licuado de petróleo//Energy analysis of a 400 kWe power system operated on dual fuel mode with diesel‐liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    Carlos‐A. Forero-Núñez

    2014-08-01

    Full Text Available El constante aumento en los precios de los combustibles impulsó el desarrollo de sistemas energéticos cada vez más eficientes y flexibles, los cuales permitan el uso de distintos tipos de combustibles, tales como el gas licuado de petróleo (GLP. El presente trabajo buscó analizar el comportamiento energético y ambiental que tiene una planta de generación de 400 kWe operada en modo diesel y dual diesel-GLP de pozo. La eficiencia energética total del sistema en el punto de máxima carga fue igual a 39,9 % en modo diesel y 35,1 % con una relación de sustitución del 28,5 % en modo dual. La adición de GLP resultó en una disminución del índice de emisiones de CO2 de 0,76 a 0,71 kgkWh-1. El adecuado comportamiento del sistema genera interesantes oportunidades para la disminución del impacto ambiental causado por los sistemas diesel, la diversificación de la canasta energética y la reducción de costos de generación eléctrica en pozos petroleros.Palabras claves: eficiencia energética, diesel, GLP, modo dual.________________________________________________________________________________AbstractThe continuous increase of the fuel costs promoted the development of more efficient and flexible power systems, which could use alternative fuels such as liquefied petroleum gas (LPG. This work aimed to analyze the performance and environmental effect of a 400kWe power system fed with diesel and diesel-LGP on a dual fuel mode. The total electric efficiency of this system at his maximum load was 39,9 % with diesel and 35,1 % at a 28,5 % substitution level on a dual fuel mode. The addition of LPG decreased the CO2 emission index from 0,76 to 0,71 kgkWh-1. The proper behavior of this system on a dual fuel mode mitigated the environmental impact of diesel internal combustion engines, diversified the energy market, and reduced the power generation costs onto petroleum extraction wells.Key words: energy efficiency, diesel, LPG, dual fuel mode.

  6. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  7. Compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...

  8. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis

    National Research Council Canada - National Science Library

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne

    2014-01-01

    ... accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC...

  9. 废气再循环对高比例甲醇双燃料柴油机燃烧过程的影响%Influence of EGR on Combustion Process in High Methanol Proportion Dual Fuel Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    李仁春; 王忠; 张登攀; 李铭迪

    2014-01-01

    在4B26增压柴油机上,以进气管电控喷射的方式掺入甲醇,实现甲醇/柴油双燃料的燃烧。采用废气再循环技术拓宽高比例甲醇双燃料柴油机的工况范围,研究EGR对燃烧过程的影响规律。结果表明:适当的EGR率可以显著降低燃烧初期时的燃烧反应速度和加速度,缸内燃烧压力振荡明显减弱。随着EGR率的增加,甲醇/柴油预混合燃烧量减少,滞燃期缩短,燃烧持续期延长,燃烧最高温度降低;原甲醇/柴油双燃料燃烧放热以预混放热为主;引入EGR后,预混放热量减少,扩散放热量增加。随着EGR率的增加,放热率峰值降低;在相同工况下,保持掺混48%甲醇不变时,甲醇/柴油双燃料发动机的指示热效率随EGR率的增加而降低。%Methanol/diesel dual fuel combustion is realized on a turbocharged diesel engine 4B26 with methanol blended in by electronically controlled intake port injection. Exhaust gas recirculation ( EGR) technology is adopted to extend the working range of dual fuel diesel engine with high proportion of methanol with its effects on combustion process studied. The results show that an appropriate EGR rate can significantly reduce the speed and acceleration of combustion reaction at initial stage and weaken the oscillation of in-cylinder combustion pressure. With the increase in EGR rate, the volume of premixed combustion of methanol/diesel blend reduces, ignition delay period shortens, combustion duration prolongs and the combustion temperature peak lowers. The main parts of heat release is premixed one for methanol/diesel dual fuel combustion in nature, but with EGR introduced, premixed heat release reduces, diffusion heat release increases, and the peak heat release rate lowers when EGR rate increa-ses. In the same working condition with a fixed methanol proportion of 48%, the indicated thermal efficiency of methanol/diesel duel fuel engine lowers with the increase of

  10. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY... Development Manager, Fuel Cell Technology Program, EE-2H, 1000 Independence Ave., SE., Washington, DC 20585... 14th will be to identify strategies to lower the cost of high pressure hydrogen storage systems...

  11. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  12. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell.

    Science.gov (United States)

    Nourbakhsh, Fatemeh; Mohsennia, Mohsen; Pazouki, Mohammad

    2017-08-01

    A novel nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite has been prepared and used to modify the electrocatalytic properties of carbon cloth anode in fabricating dual-chamber MFC. The prepared nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy. The carbon cloth coated with the NCP nanocomposite showed the enhanced electrochemical performance as compared to bare carbon cloth anode. The electrochemical properties of the fabricated MFC with the modified anode have been investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The maximum power density of the MFC using the novel NCP nanocomposite-carbon cloth anode increased by 61.88% compared to that of the bare carbon cloth anode. In comparison to the bare carbon cloth anode, the new composite anode showed 26.8% enhancement of current density output which it can be due to the enhancement of the charge transfer capability.

  13. Conceptual design of a high-integrity impact limiter for use in shipment of dual-purpose spent-fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States)); Haelsig, R.T.; Hansen, L.J. (Hansen Haelsig Associates, Bellevue, Washington (USA))

    1991-09-01

    A conceptual design for a high-integrity impact limiting system to protect dry metallic spent fuel storage casks during rail transport is proposed. The system is intended to limit the deceleration of the cask during severe rail accidents through three layers of energy-absorbing polyurethane foam material. The crush strengths of the foam is chosen such that the lowest crush strength foam forms the most exterior layer, with the crush strengths increasingly progressively in the two inner layers. The design basis for the external layer of foam is the hypothetical 30-foot free drop impact event prescribed in 10 CFR 71, with a peak steady deceleration limit of about 75 g. The two interior layers absorb up to five times the impact energy of the 30-foot free drop while limiting the decelerations to first 125 g and then to 175 g. The former is felt to be a nominal fuel rod failure threshold, while the latter is at or near the failure level for bolted closure assemblies. These deceleration targets, if met, provide a means for substantially reducing the risk of radioactive material transport. The conceptual design incorporates features for maintaining the integrity of the impact limiter attachment system during severe accidents and enhancing heat dissipation through the impact limiter for short-cooled fuel, through the use of radial aluminum fins. An alternative impact-limiting material -- aluminum honeycomb -- is included in the economic assessment. Both the polyurethane foam and aluminum honeycomb designs appear to meet a cost target of $1.0M, with the polyurethane foam limiter cost estimated at somewhat less than $400K and the aluminum honeycomb cost at somewhat less than $700K. 28 refs., 17 figs., 5 tabs.

  14. Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition engine

    Institute of Scientific and Technical Information of China (English)

    SONG Ruizhi; HU Tiegang; ZHOU Longbao; LIU Shenghua; LI Wei

    2007-01-01

    The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether.The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx)emission and smokeless combustion under the compression ratio of both 10.7 and 14.The combustion process has obvious two stage combustion characteristics at ε = 10.7(εrefers to compression ratio),and the combustion beginning point is decided by the compression temperature,which varies very little with the engine load;the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature,and it moves forward versus crank angle with the increase in the engine load at ε = 14;the combustion durations are shortened with the increase in the engine load under both compression ratios.

  15. Effect of Pulverized Fuel Ashes on Autogenous Shrinkage and Compressive Strength of Cement Pastes%粉煤灰对水泥浆体自收缩和抗压强度的影响

    Institute of Scientific and Technical Information of China (English)

    郝成伟; 邓敏; 莫立武; 刘开伟

    2011-01-01

    Autogenous shrinkage of cement pastes with different contents of pulverized fuel ashes(PFA) and different water-to-binder ratio were measured by a shrinkage test device. Compressive strength of sealed cement paste were also measured. The influence of PFA on the pore structures and micrograph of hydration products were investigated through mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM) , on which the influence mechanism was analyzed. Experimental results demonstrated that autogenous shrinkage of cement pastes decreased with the increased contents of PFA at early age (before 7 d) , this may be ascribed to inhibition of PFA on the shrinkage. After 7 d, however, both autogenous shrinkage, and compressive strength of cement pastes increased. This may be attributed to decrease of pore radius and densification of cement hydration products due to the pozzolanic reaction of fly ash.%设计组装了水泥浆体自收缩测量装置,进行了不同粉煤灰掺量和水胶比的水泥浆体自收缩和抗压强度测试,采用压汞测孔仪(MIP)、扫描电镜(SEM)等测试技术研究了粉煤灰对水泥浆体孔结构、产物形貌等微观结构的影响,并对其影响机理进行了分析.结果表明:粉煤灰能够有效抑制水泥浆体的早期自收缩,在7d前,其自收缩随着粉煤灰掺量的增加而减小;与纯硅酸盐水泥浆体相比,粉煤灰水泥浆体7d后的抗压强度增幅较大,但自收缩增长速率也趋于增大;火山灰反应引起的孔径细化、水化产物结构致密是粉煤灰影响水泥浆体自收缩和抗压强度的根本原因.

  16. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  17. Classification of biodiesel and fuel blends using gas chromatography - differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering.

    Science.gov (United States)

    Pasupuleti, Dedeepya; Eiceman, Gary A; Pierce, Karisa M

    2016-08-01

    Fatty acid alkyl esters (FAAEs) were determined at 10-100mg/L in biodiesel and blends with petrodiesel without sample pre-treatment using gas chromatography with a tandem differential mobility detector. Selectivity was provided through chromatographic separations and atmospheric pressure chemical ionization reactions in the detector with mobility characterization of gas ions. Limits of detection were ~0.5ng with an average of 2.98% RSD for peak area precision, ≤1.3% RSD for retention time precision, and ≤9.2% RSD for compensation voltage precision. Biodiesel blends were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Unsupervised cluster analysis captured 52.72% of variance in a single PC while supervised analysis captured 71.64% of variance using Fisher ratio feature selection. Test set predictions showed successful clustering according to source or feedstock when regressed onto the training set model. Detection of the regulated substance methyl linolenate (C18:3 me) was achieved in 6-10s with a 1m long capillary column using dual ion filtering in the tandem differential mobility detector. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  19. Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes.

    Science.gov (United States)

    Zhao, Kai; Bai, Jing; Zeng, Qingyi; Zhang, Yan; Li, Jinhua; Li, Linsen; Xia, Ligang; Zhou, Baoxue

    2017-09-05

    Efficient conversion of wastewater into clean energy was achieved by applying a radical chain reaction strategy in a solar responsive photocatalytic fuel cell (PFC) system. The system was constructed with two photoelectrodes where ferrous ions were added to enhance the radical reactions for organic pollutants degradation from the surface of electrodes to the whole solution system via coming into a continuous radical chain reaction. The results indicated that the short-circuit current (Jsc) and the power density (JVmax) obtained in the PFC system is up to 1.41-1.60 and 1.52-2.02 times larger than those of the PFC without ferrous ions. Meanwhile, the degradation rate of refractory organics (methyl orange, methylene blue, congo red and tetracycline) increased to 91.98%, 98.57%, 92.36% and 68.09% from 53.61%, 45.38%, 51.09% and 30.65% respectively after 90min operation. The proposed PFC with a radical chain reaction strategy provides a more economical and efficient way for energy recovery and wastewater treatment and implies a possibility of developing much higher efficient PFC system when applying the other electrodes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    Science.gov (United States)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  1. Numerical investigation of spontaneous flame propagation under Reactivity Controlled Compression Ignition (RCCI) conditions

    Science.gov (United States)

    Bhagatwala, Ankit; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline

    2014-11-01

    Results from one and two-dimensional direct numerical simulations under dual-fuel Reactivity Controlled Compression Ignition (RCCI) conditions will be presented. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work, which incorporates feedback from the flow to follow a predetermined experimental pressure trace. One-dimensional simulations explored the effect of temperature and fuel concentration gradients on the combustion mode. Two-dimensional simulations explored parametric variation in temperature stratification, pressure profiles and n-heptane concentration. Statistics derived from analysis of local diffusion/reaction balances were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition modes were observed to co-exist. Higher n-heptane concentration and higher level of thermal stratification resulted in a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) and higher pressure resulted in more prevalent autoignition. Starting with a uniform initial temperature and a stratified n-heptane concentration also resulted in a large fraction of combustion occurring through flame propagation.

  2. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm(-2)) present superior cycling stability (727.4 mAh g(-1) after 500 cycles at 0.2 C) and high rate capability (814 mAh g(-1) at 2 C) and power density (∼10 mW cm(-2)), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm(-2)) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  3. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  4. Compressive Sensing Over Networks

    CERN Document Server

    Feizi, Soheil; Effros, Michelle

    2010-01-01

    In this paper, we demonstrate some applications of compressive sensing over networks. We make a connection between compressive sensing and traditional information theoretic techniques in source coding and channel coding. Our results provide an explicit trade-off between the rate and the decoding complexity. The key difference of compressive sensing and traditional information theoretic approaches is at their decoding side. Although optimal decoders to recover the original signal, compressed by source coding have high complexity, the compressive sensing decoder is a linear or convex optimization. First, we investigate applications of compressive sensing on distributed compression of correlated sources. Here, by using compressive sensing, we propose a compression scheme for a family of correlated sources with a modularized decoder, providing a trade-off between the compression rate and the decoding complexity. We call this scheme Sparse Distributed Compression. We use this compression scheme for a general multi...

  5. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: a dual approach based on radiocarbon and levoglucosan

    Science.gov (United States)

    Bonvalot, Lise; Tuna, Thibaut; Fagault, Yoann; Jaffrezo, Jean-Luc; Jacob, Véronique; Chevrier, Florie; Bard, Edouard

    2016-11-01

    concentrations are strongly correlated with the levoglucosan concentrations in winter samples, suggesting that almost all of the non-fossil carbon originates from wood combustion used for heating during winter. For summer samples, the joint use of 14C and levoglucosan measurements leads to a new model to separately quantify the contributions of biomass burning and biogenic emissions in the non-fossil fraction. The comparison of the biogenic fraction with polyols (a proxy for primary soil biogenic emissions) and with the temperature suggests a major influence of the secondary biogenic aerosols. Significant correlations are found between the NOx concentration and the fossil carbon concentration for all seasons and sites, confirming the relation between road traffic emissions and fossil carbon. Overall, this dual approach combining radiocarbon and levoglucosan analyses strengthens the conclusion concerning the impact of biomass burning. Combining these geochemical data serves both to detect and quantify additional carbon sources. The Arve River valley provides the first illustration of aerosols of this model.

  6. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  7. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  8. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  9. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  10. Compressed air energy storage technology program

    Science.gov (United States)

    Loscutoff, W. V.

    1980-06-01

    Progress in the development of compressed air energy storage (CAES) technologies for central station electric utility applications is reported. It is reported that the concept improves the effectiveness of a gas turbine using petroleum fuels, could reduce petroleum fuel consumption of electric utility peaking plants, and is technically feasible and economically viable. Specific topics discussed include stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications and second-generation technologies that have minimal or no dependence on petroleum fuels. The latter includes integration of thermal energy storage, fluidized bed combustion, or coal gasification with CAES.

  11. Positron Emission Mammotomography with Dual Planar Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  12. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  13. 40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.

    Science.gov (United States)

    2010-07-01

    ... vehicle is converted or is expected to be operated. (A) For dual-fuel vehicles, a separate test is... section. (A) For dual and flexible fuel vehicles, a separate test is required for each certification test... conversion from an engine or vehicle capable of operating on gasoline or diesel fuel only to a clean-fuel...

  14. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor

    Science.gov (United States)

    Zhang, Chenlin; Chang, Juntao; Zhang, Yuanshi; Wang, Youyin; Bao, Wen

    2017-08-01

    Experimental and numerical study of a strut/cavity dual-mode combustor has been conducted in this paper. Under different fuel equivalence ratio and allocation proportion conditions, the pressure distribution and flow field structure of combustor show distinct characteristics. For strut fuel injecting at a low equivalence ratio, the luminosity images show that combustion zone distributes in the shear layer behind the strut. The wall fuel injecting before strut would change the starting point of pressure rising. Based on the flow field structure, the dual-mode combustor operation process is classified into three combustion modes, including scramjet mode, weak ramjet mode and strong ramjet mode. Because of a strong interaction of the shock wave with the boundary layer, weak ramjet mode has a stronger isolator compression effect and higher combustion efficiency than scramjet mode. With heat release increasing, the thermal throat formation is an indication of the strong ramjet mode, which has a subsonic gap in the isolator. Further, by judging the pressure from dominant pressure sensor before the strut, the three different combustion modes could be classified. Comparing the specific impulse of combustor, it has an obvious distinction in the different combustion modes.

  15. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  16. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  17. Gas only nozzle fuel tip

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  18. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    Directory of Open Access Journals (Sweden)

    Abhishek Reddy G

    2015-10-01

    Full Text Available Variable compression ratio (VCR technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression ratio to improve on the performance is an option. The compression ratio is a factor that influences the performance characteristics of internal combustion engines. This work is an experimental investigation of the influence of the compression ratio on the brake power, brake thermal efficiency, brake mean effective pressure and specific fuel consumption of the Kirloskar variable compression ratio duel fuel engine. Compression Ratios of 14, 15, 16 and 18 and engine loads of 3kg to 12 kg, in increments of 3kg, were utilized for Diesel.

  19. Low emission fuel engine and method of operating same

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.

    1990-09-11

    This patent describes a low emission duel fuel engine system. It comprises: a dual fuel engine having a combustion chamber; a fuel oil supply connected to the engine; a fuel gas supply connected to the engine; and means connected between the fuel oil supply and the engine for injecting fuel oil into the engine. The means connected between the engine and fuel oil supply limiting the injection of fuel oil to the combustion chamber to pilot ignition quantities only, wherein the limiting means includes means for limiting the injection of fuel oil such that the exhaust emission of NO{sub x} is at an emission rate of less than 1 GM/PH-HR, whereby the exhaust emission performance of the dual fuel engine is enhanced.

  20. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong

    2015-01-01

    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  1. 行阶梯观测矩阵、对偶仿射尺度内点重构算法下的语音压缩感知%Compressed Sensing of Speech Signal Based on Row Echelon Measurement Matrix and Dual Affine Scaling Interior Point Reconstruction Method

    Institute of Scientific and Technical Information of China (English)

    叶蕾; 杨震; 王天荆; 孙林慧

    2012-01-01

    基于语音信号在离散余弦域上的近似稀疏性,针对采用随机高斯观测矩阵及线性规划方法进行语音压缩感知与重构时,重构零(近似零)系数定位能力差而导致重构效果不好的缺点,本文提出一种新的行阶梯矩阵做观测矩阵,用对偶仿射尺度内点重构算法对语音进行压缩感知与重构,并对该算法下的重构性能进行理论分析.语音压缩感知仿真结果表明,在离散余弦基下,压缩比(观测序列与原始序列样值数之比)为1∶4时,行阶梯观测矩阵下的平均重构信噪比比随机高斯观测矩阵下提高9.73dB,平均MOS分比随机高斯观测矩阵下提高1.22分.%Based on the approximate sparsity of speech signal in discrete cosine basis, this paper proposes a new algorithm of compressed sensing of speech signal based on special row echelon measurement matrix and dual affine scaling interior point re-construction method, This algorithra can resolve the problem of inaccuracy of location of reconstruction coefficient which is zero ornearly zero of compressed sensing based on Caussian measurement matrix and linear programming to some extent. The reconstruc-tion performance of this algorithm is analyzed theoretically. The simulation results of compressed sensing of speech signal showwhen the reduction ratio(the ratio of numbers of measurements and original samples) is 1:4 based on the discrete cosine basis,theaverage SNR of reconsm~on signal based on the special row echelon measurement matrix is 9.73 dB higher than the Gaussianmeasurement matrix,and the average MOS score of reconstruction signal based on the special row echelon measurement matrix is1.22 higher than the Gaussian measurement matrix.

  2. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with thermal efficiency is

  3. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    Science.gov (United States)

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  4. Focus on Compression Stockings

    Science.gov (United States)

    ... the stocking every other day with a mild soap. Do not use Woolite™ detergent. Use warm water ... compression clothing will lose its elasticity and its effectiveness. Compression stockings last for about 4-6 months ...

  5. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  6. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  7. Hyperspectral data compression

    CERN Document Server

    Motta, Giovanni; Storer, James A

    2006-01-01

    Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.

  8. Compressed gas manifold

    Science.gov (United States)

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  9. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  10. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  11. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  12. Compressive neuropathies related to ganglions of the wrist and hand.

    Science.gov (United States)

    Jayakumar, Prakash; Jayaram, Vijay; Nairn, David S

    2014-01-01

    Ganglions of the wrist and hand causing compressive neuropathies are rare clinical entities. Compression of the ulnar and median nerves in their respective fibro-osseous tunnels lead to characteristic patterns of motor and/or sensory deficits, which are directly related to the location of the lesion. We present a unique case of a "dumbbell" shaped ganglion invading both Guyon's canal and the carpal tunnel causing a dual compressive neuropathy of the ulnar and median nerve. We discuss the patho-anatomy, clinical assessment, investigation and surgical treatment of this condition.

  13. Low emissions compression ignited engine technology

    Science.gov (United States)

    Coleman, Gerald N.; Kilkenny, Jonathan P.; Fluga, Eric C.; Duffy, Kevin P.

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  14. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  15. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  16. Forecasting USAF JP-8 Fuel Needs

    Science.gov (United States)

    2009-03-01

    Homogeneous Charge Compression Ignition, or HCCI , which combines the best features of gasoline- and diesel-powered engines . The results could be up...FORECASTING USAF JP-8 FUEL NEEDS THESIS Presented to the Faculty Department of Logistics Management Graduate School of Engineering and Management...2008). Jet fuel is: ‘Kerosene-type; high-quality kerosene product used primarily as fuel for commercial turbojet and turboprop aircraft engines ’ (New

  17. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  18. Fabrication of Al/LiF Composite Dual-step Target Used in Quasi-isentropic Compression Experiment by Laser Loading%激光加载下准等熵压缩实验用铝/氟化锂复合双台阶靶的研制

    Institute of Scientific and Technical Information of China (English)

    叶君建; 谢志勇; 张志友; 陆驰中; 吴永刚; 董佳钦; 舒桦; 黄秀光; 傅思祖

    2016-01-01

    本文提出了一种激光加载下准等熵压缩实验用铝/氟化锂复合双台阶靶的加工技术.采用金刚石车削在1.5mm厚的氟化锂晶体表面加工两个10μm高度的台阶,然后利用电子束蒸发在氟化锂台阶面镀厚度为几十μm的高致密纯铝膜,再通过金刚石车削工艺将镀铝面车削成平面,最后在氟化锂晶体另一面蒸镀剩余反射率低于1%的增透膜,最终获得高质量的铝/氟化锂复合双台阶靶.采用N T 1100白光干涉仪、电子比重计、电子能谱、X射线衍射仪、扫描电镜等设备对靶参数进行测量,研究各工艺对靶参数的影响.%The fabrication technique for Al/LiF composite dual-step target used in quasi-isentropic compression experiment was described . The two 10 μm high steps were processed by diamond turning technology in the surface of the 1.5 mm LiF crystal .The high-density Al film with dozens of micron thickness was coated by electron beam evapo-ration ,and turned into a flat aluminized surface through the diamond turning process . A high-quality Al/LiF composite dual-step target was eventually completed with an evaporated antireflection film (the residual reflectivity was less than 1% ) on the other side of the LiF crystal .The target parameters were measured by NT1100 white light interferometer ,electron densimeter ,electron spectroscopy ,XRD and SEM for sensiti-vity analysis .

  19. Dual arm master controller development

    Energy Technology Data Exchange (ETDEWEB)

    Kuban, D.P.; Perkins, G.S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab.

  20. Basic Design of a LWR Fuel Compatibility Test Facility (PLUTO)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Hwan; Chun, Se Young; Kim, Bok Deuk; Park, Jong Kuk; Chun, Tae Hyun; Kim, Hyoung Kyu; Oh, Dong Seok

    2009-04-15

    KAERI is performing a project for developing a compatibility test facility and the relevant technology for an LWR fuel assembly. It includes the compatibility test and the long term wear test for dual fuel assemblies, and the pressure drop test, uplift force test, flow-induced vibration test, damping test, and the debris filtering capability test for a single fuel assembly. This compatibility test facility of the fuel assemblies is named PLUTO from Performance Test Facility for Fuel Assembly Hydraulics and Vibrations. The PLUTO will be basically constructed for a PWR fuel assembly, and it will be considered to test for the fuel assemblies of other reactors.

  1. Performance of direct ethanol fuel cells as function of using of compressed air; Desempenho de celulas a combustivel com alimentacao direta de etanol em funcao do uso de ar comprimido

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, P.M. [UFRGS - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Berns, B.A.; Ferreira, R.C.; Goldbach, A.; Carpenter, D. [FURB - Fundacao Universidade Regional de Blumenau, Blumenau, SC (Brazil)

    2010-07-01

    This paper compared the performance of a direct ethanol fuel cell (CCADE) cathode feeding with air replacing the pure oxygen. The results have shown that the small decreasing of the yield of the cell under both practical and experimental situations, by the use of air replacing pure oxygen, it completely acceptable as function of great diminishing of operational costs. (author)

  2. Digital ridgelet reconstruction based on local dual frame

    Institute of Scientific and Technical Information of China (English)

    BAI Jian; FENG Xiangchu

    2005-01-01

    A global dual frame (GDF) representation for the digital ridgelet reconstruction algorithm is discussed and a novel concept of local dual frame (LDF) is presented. Based on the properties of LDF, we propose a new digital ridgelet reconstruction algorithm. The method reduces the redundancy in the digital ridgelet reconstruction while keeping the characteristics of low computation cost. When applying it to the image compression and denoising, good results are obtained.

  3. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  4. Lossless Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Nagashree G

    2014-06-01

    Full Text Available Image compression has become an important process in today‟s world of information exchange. Image compression helps in effective utilization of high speed network resources. Medical Image Compression is very important in the present world for efficient archiving and transmission of images. In this paper two different approaches for lossless image compression is proposed. One uses the combination of 2D-DWT & FELICS algorithm for lossy to lossless Image Compression and another uses combination of prediction algorithm and Integer wavelet Transform (IWT. To show the effectiveness of the methodology used, different image quality parameters are measured and shown the comparison of both the approaches. We observed the increased compression ratio and higher PSNR values.

  5. Celiac Artery Compression Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammed Muqeetadnan

    2013-01-01

    Full Text Available Celiac artery compression syndrome is a rare disorder characterized by episodic abdominal pain and weight loss. It is the result of external compression of celiac artery by the median arcuate ligament. We present a case of celiac artery compression syndrome in a 57-year-old male with severe postprandial abdominal pain and 30-pound weight loss. The patient eventually responded well to surgical division of the median arcuate ligament by laparoscopy.

  6. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  7. Wavelet image compression

    CERN Document Server

    Pearlman, William A

    2013-01-01

    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  8. Stiffness of compression devices

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2013-03-01

    Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.

  9. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  10. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  11. Materials for High-Pressure Fuel Injection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N. (Caterpillar, Inc. Technical Center); Pollard, M. (Caterpillar, Inc. Technical Center)

    2011-09-30

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections

  12. Dual Resolution Images from Paired Fingerprint Cards

    Science.gov (United States)

    NIST Dual Resolution Images from Paired Fingerprint Cards (PC database for purchase)   NIST Special Database 30 is being distributed for use in development and testing of fingerprint compression and fingerprint matching systems. The database allows the user to develop and evaluate data compression algorithms for fingerprint images scanned at both 19.7 ppmm (500 dpi) and 39.4 ppmm (1000 dpi). The data consist of 36 ten-print paired cards with both the rolled and plain images scanned at 19.7 and 39.4 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  13. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  14. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  15. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  16. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek

    2013-12-01

    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.

  17. Spectral Animation Compression

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng

    2015-01-01

    This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.

  18. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  19. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  20. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Vascular compression syndromes.

    Science.gov (United States)

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  2. Critical Data Compression

    CERN Document Server

    Scoville, John

    2011-01-01

    A new approach to data compression is developed and applied to multimedia content. This method separates messages into components suitable for both lossless coding and 'lossy' or statistical coding techniques, compressing complex objects by separately encoding signals and noise. This is demonstrated by compressing the most significant bits of data exactly, since they are typically redundant and compressible, and either fitting a maximally likely noise function to the residual bits or compressing them using lossy methods. Upon decompression, the significant bits are decoded and added to a noise function, whether sampled from a noise model or decompressed from a lossy code. This results in compressed data similar to the original. For many test images, a two-part image code using JPEG2000 for lossy coding and PAQ8l for lossless coding produces less mean-squared error than an equal length of JPEG2000. Computer-generated images typically compress better using this method than through direct lossy coding, as do man...

  3. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J.P. [Bitzer France, 69 - Lyon (France)

    1997-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  4. Dual-Input Soft-Switched DC-DC Converter with Isolated Current-Fed Half-Bridge and Voltage-Fed Full-Bridge for Fuel Cell or Photovoltaic Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper introduces a new zero-voltage-switching (ZVS) isolated DC-DC converter with two input ports which can be utilized in hybrid energy systems, for instance, in a fuel cell and super-capacitor system. By fully using two high frequency transformers, the proposed converter can effectively...

  5. Fuel properties of loofah (Luffa cylindrica L.) biofuel blended with ...

    African Journals Online (AJOL)

    ajl6

    American Society for Testing and Materials (ASTM) standards. ... engines. Key words: Loofah ethyl esters, biodiesel, compression ignition engine, automotive gas oil (AGO). ... research interests in the use of vegetable oil fuels and.

  6. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  7. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  8. Visual combustion research using the rapid compression expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Dino; Takasaki, Koji [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)

    2012-08-15

    A large Rapid Compression Expansion Machine (RCEM) has been built at Kyushu University, Japan, for research on large marine engines. Three focal points of research are testing light cycle oil using a multiple injection to establish its potential as a low sulphur fuel; abnormal combustion caused by lubricating oil in lean burn gas engines; visualising high pressure natural gas injection (GI). (orig.)

  9. Prediction by Compression

    CERN Document Server

    Ratsaby, Joel

    2010-01-01

    It is well known that text compression can be achieved by predicting the next symbol in the stream of text data based on the history seen up to the current symbol. The better the prediction the more skewed the conditional probability distribution of the next symbol and the shorter the codeword that needs to be assigned to represent this next symbol. What about the opposite direction ? suppose we have a black box that can compress text stream. Can it be used to predict the next symbol in the stream ? We introduce a criterion based on the length of the compressed data and use it to predict the next symbol. We examine empirically the prediction error rate and its dependency on some compression parameters.

  10. LZW Data Compression

    Directory of Open Access Journals (Sweden)

    Dheemanth H N

    2016-07-01

    Full Text Available Lempel–Ziv–Welch (LZW is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch. LZW compression is one of the Adaptive Dictionary techniques. The dictionary is created while the data are being encoded. So encoding can be done on the fly. The dictionary need not be transmitted. Dictionary can be built up at receiving end on the fly. If the dictionary overflows then we have to reinitialize the dictionary and add a bit to each one of the code words. Choosing a large dictionary size avoids overflow, but spoils compressions. A codebook or dictionary containing the source symbols is constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to the gray levels 0-255. Remaining part of the dictionary is filled with sequences of the gray levels.LZW compression works best when applied on monochrome images and text files that contain repetitive text/patterns.

  11. Shocklets in compressible flows

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 男俊武; 沈清; 李筠

    2013-01-01

    The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront.

  12. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  13. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  14. Combustion Characteristics and Heat Release Analysis of a DI Compression Ignition Engine Fueled with Diesel-Dimethyl Carbonate Blends%直喷压燃式发动机燃用柴油/碳酸二甲酯的燃烧特性和放热过程研究

    Institute of Scientific and Technical Information of China (English)

    黄佐华; 蒋德明; 曾科; 刘兵; 杨中乐

    2003-01-01

    Investigation on combustion characteristics and heat release analysis of a DI compression ignition engine fueled with diesel-dimethyl carbonate (DMC)blends were carried out on a compression ignition engine.The study shows that the premixed combustion is prolonged and the duration of the diffusive combustion is shortened with the increase of DMC addition.For a specific brake mean effective pressure(BMEP),the maximum cylinder gas pressure,the maximum rate of pressure rise and the maximum rate of heat release increase with the increase of DMC addition at the middle and high loads while they remains less variation with DMC addition at the small load.The ignition delay increases while the rapid combustion duration and the total combustion duration show less variation with DMC addition.Brake specific fuel consumption (BSFC) increases while diesel equivalent BSFC decreases and thermal efficiency increase with the increase of DMC addition.CO and smoke decrease with increase of DMC addition,and NOx does not increase with the increase of DMC.%在一台直喷式发动机上开展了燃用柴油/碳酸二甲酯混合燃料的燃烧特性与放热过程研究.结果表明,随碳酸二甲酯含量的增加,预混燃烧推迟,扩散燃烧期缩短.在中高负荷区,相同平均有效压力下,缸内最高压力、最高压力升高率和最大放热率随碳酸二甲酯含量的增加而增加,而在低负荷区基本上不随碳酸二甲酯含量的增加而改变.着火滞燃期随碳酸二甲酯含量的增加而增加,而快速燃烧期和燃烧持续期不随碳酸二甲酯含量的变化而改变.随碳酸二甲酯含量的增加,燃油消耗率增加,等热值燃油消耗率降低.CO和烟度随碳酸二甲酯含量的增加而降低,NOx随碳酸二甲酯含量的变化,但变化不大.

  15. Deep Blind Compressed Sensing

    OpenAIRE

    Singh, Shikha; Singhal, Vanika; Majumdar, Angshul

    2016-01-01

    This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...

  16. Reference Based Genome Compression

    OpenAIRE

    Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...

  17. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  18. Alternative Compression Garments

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  19. Compressive sensing for nuclear security.

    Energy Technology Data Exchange (ETDEWEB)

    Gestner, Brian Joseph

    2013-12-01

    Special nuclear material (SNM) detection has applications in nuclear material control, treaty verification, and national security. The neutron and gamma-ray radiation signature of SNMs can be indirectly observed in scintillator materials, which fluoresce when exposed to this radiation. A photomultiplier tube (PMT) coupled to the scintillator material is often used to convert this weak fluorescence to an electrical output signal. The fluorescence produced by a neutron interaction event differs from that of a gamma-ray interaction event, leading to a slightly different pulse in the PMT output signal. The ability to distinguish between these pulse types, i.e., pulse shape discrimination (PSD), has enabled applications such as neutron spectroscopy, neutron scatter cameras, and dual-mode neutron/gamma-ray imagers. In this research, we explore the use of compressive sensing to guide the development of novel mixed-signal hardware for PMT output signal acquisition. Effectively, we explore smart digitizers that extract sufficient information for PSD while requiring a considerably lower sample rate than conventional digitizers. Given that we determine the feasibility of realizing these designs in custom low-power analog integrated circuits, this research enables the incorporation of SNM detection into wireless sensor networks.

  20. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options.

  1. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  2. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  3. Application of Dimethyl Ether in Compression Ignition Engines

    DEFF Research Database (Denmark)

    Hansen, Kim Rene

    -Marathon. The diesel engine test results from 1995 showed that DME is a superb diesel fuel. DME is easy to ignite by compression ignition and it has a molecular structure that results in near-zero emission of particulates when burned. These are features of a fuel that are highly desirable in a diesel engine....... The challenges with DME as a diesel engine fuel are mainly related to poor lubricity and incompatibility with a range of elastomers commonly used for seals in fuel injection systems. This means that although DME burns well in a diesel engine designing a fuel injection system for DME is challenging. Since...... then studies have revealed that the injection pressure for DME does not have to be as high as with diesel to achieve satisfactory performance. This opens for a larger range of possibilities when designing injection systems. In the period from 2004 to 2009 the DME engine was perfected for use in the car DTU...

  4. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    A dynamic fueling model is built to simulate the fueling process of a hydrogen tank with an integrated passive cooling system. The study investigates the possibility of absorbing a part of the heat of compression in the high latent-heat material during melting, with the aim of keeping the walls...

  5. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  6. Dimethyl ether (DME) as an alternative fuel

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  7. Transverse Compression of Tendons.

    Science.gov (United States)

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  8. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    Science.gov (United States)

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.

  9. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  10. SYMBOLIC VERSOR COMPRESSION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Li Hongbo

    2009-01-01

    In an inner-product space, an invertible vector generates a reflection with re-spect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogoual transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.

  11. Image compression for dermatology

    Science.gov (United States)

    Cookson, John P.; Sneiderman, Charles; Colaianni, Joseph; Hood, Antoinette F.

    1990-07-01

    Color 35mm photographic slides are commonly used in dermatology for education, and patient records. An electronic storage and retrieval system for digitized slide images may offer some advantages such as preservation and random access. We have integrated a system based on a personal computer (PC) for digital imaging of 35mm slides that depict dermatologic conditions. Such systems require significant resources to accommodate the large image files involved. Methods to reduce storage requirements and access time through image compression are therefore of interest. This paper contains an evaluation of one such compression method that uses the Hadamard transform implemented on a PC-resident graphics processor. Image quality is assessed by determining the effect of compression on the performance of an image feature recognition task.

  12. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  13. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  14. Building a Business Case for Compressed Natural Gas in Fleet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.

    2015-03-19

    Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.

  15. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  16. Compressive Shift Retrieval

    Science.gov (United States)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  17. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  18. Image data compression investigation

    Science.gov (United States)

    Myrie, Carlos

    1989-01-01

    NASA continuous communications systems growth has increased the demand for image transmission and storage. Research and analysis was conducted on various lossy and lossless advanced data compression techniques or approaches used to improve the efficiency of transmission and storage of high volume stellite image data such as pulse code modulation (PCM), differential PCM (DPCM), transform coding, hybrid coding, interframe coding, and adaptive technique. In this presentation, the fundamentals of image data compression utilizing two techniques which are pulse code modulation (PCM) and differential PCM (DPCM) are presented along with an application utilizing these two coding techniques.

  19. Image compression in local helioseismology

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper

    2014-01-01

    Context. Several upcoming helioseismology space missions are very limited in telemetry and will have to perform extensive data compression. This requires the development of new methods of data compression. Aims. We give an overview of the influence of lossy data compression on local helioseismology. We investigate the effects of several lossy compression methods (quantization, JPEG compression, and smoothing and subsampling) on power spectra and time-distance measurements of supergranulation flows at disk center. Methods. We applied different compression methods to tracked and remapped Dopplergrams obtained by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory. We determined the signal-to-noise ratio of the travel times computed from the compressed data as a function of the compression efficiency. Results. The basic helioseismic measurements that we consider are very robust to lossy data compression. Even if only the sign of the velocity is used, time-distance helioseismology is still...

  20. Metal Liner Implosions for Cylindrical Convergent Isentropic Compression of Deuterium and its Application to MAGLIF

    Science.gov (United States)

    Weinwurm, Marcus; Appelbe, Brian; Skidmore, Jonathan; Bland, Simon; Chittenden, Jeremy

    2012-10-01

    Isentropic Compression Experiments on pulsed power machines in the field of High Energy Density Physics have gained interest in recent years. We describe a method of isentropically compressing cryogenic Deuterium inside a metal liner. Pulse shaping was performed by solving Kidder's homogeneous isentropic compression for cylindrical geometry and extending it to an arbitrary Equation of State. The obtained pulse shape enables us to simulate a cylindrically convergent ramp wave, which quasi-isentropically compresses the Deuterium fill to densities much higher than achievable by using a standard pulse. The effect of Rayleigh-Taylor instabilities upon the peak density achieved is evaluated using the resistive magneto-hydrodynamics code Gorgon for a maximum current of 25 MA. Therefore, isentropic liner implosions are a promising technique for recreating the conditions present in the interiors of gas giants. We applied this technique to the High-Gain Magnetized Liner Inertial Fusion (MAGLIF) scheme [1]. There a metal liner is filled with DT gas surrounded by a layer of DT ice. We show how the current pulse can be shaped in order to isentropically compress the DT ice layer. By doing so, we keep the fuel at low temperature. This maximises the compression of the DT ice layer, and increases rho-r at stagnation. Burn wave propagation in the isentropically compressed fuel is compared to propagation in fuel compressed by a standard current pulse. [4pt] [1] S.A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)

  1. Characterizing Gaseous Fuels for Their Knock Resistance based on the Chemical and Physical Properties of the Fuel

    NARCIS (Netherlands)

    Levinsky, Howard; Gersen, Sander; van Essen, Martijn; van Dijk, Gerco

    2016-01-01

    A method is described to characterize the effects of changes in the composition of gaseous fuels on engine knock by computing the autoignition process during the compression and burn periods of the engine cycle. To account for the effects of fuel composition on the in-cylinder pressure and temperatu

  2. Critical Ignition Temperature of Fuel-air Explosive

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2004-10-01

    Full Text Available The charge of fuel-air explosive (FAE warhead usually is solid-liquid mixed fuel. The solid component is aluminium powder. To meet the demand of FAE weapon usage and storage safety, in the mixed-fuel medium, there must be gaps where adiabatic compression occurs during launchin-e overloading- of warhead. Adiabatic compression makes the temperature of the mediumin the gaps to rise. High temperature can cause dxplosion of the mixed fuel during launching acceleration of the warhead, which is very dangerous. Because the fuel is a multicomponentmixture, the critical ignitioh temperature can't be determined only by one component. Through experiment, the critical ignition temperature of the mixed fuel is attained, and the changingregularity of the pressure following the temperature is shown in this paper.

  3. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  4. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...

  5. Multiple snapshot compressive beamforming

    DEFF Research Database (Denmark)

    Gerstoft, Peter; Xenaki, Angeliki; Mecklenbrauker, Christoph F.

    2015-01-01

    For sound fields observed on an array, compressive sensing (CS) reconstructs the multiple source signals at unknown directions-of-arrival (DOAs) using a sparsity constraint. The DOA estimation is posed as an underdetermined problem expressing the field at each sensor as a phase-lagged superposition...

  6. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate Messag

  7. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Mess

  8. Beamforming Using Compressive Sensing

    Science.gov (United States)

    2011-10-01

    dB to align the peak at 7.3o. Comparing peaks to val- leys , compressive sensing provides a greater main to interference (and noise) ratio...elements. Acknowledgments This research was supported by the Office of Naval Research. The authors would like to especially thank of Roger Gauss and Joseph

  9. Simulation Analysis of Combustion Parameters and Emission Characteristics of CNG Fueled HCCI Engine

    Directory of Open Access Journals (Sweden)

    P. M. Diaz

    2013-01-01

    Full Text Available The naturally aspirated compressed natural gas (CNG fueled homogeneous charge compression ignition (HCCI engine operation region is narrow between heavy knock at rich air-fuel mixture side and misfire at the lean air-fuel mixture side. However, high activation energy is needed to attain autoignition temperature of CNG fueled HCCI engine. This paper seeks to provide guidance in overcoming challenges of CNG fueled HCCI engine by using CHEMKIN. It is used to investigate the fundamental characteristics of the homogeneous charge compression ignition combustion process for different air-fuel mixture inlet temperature, relative air-fuel ratio of 2.5, and with hemispherical bowl types of combustion chambers. The variation of various properties like the peak cylinder pressure, peak cylinder temperature, CO emission, NO emission, soot emission, and HC emission are studied. It is necessary to develop new combustion models to simulate and predict all parameters with high accuracy.

  10. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  11. An Experimental System of Constant Volume Combustion Bomb for Dual-fuel of Diesel/Methanol%一种研究柴油甲醇双燃料的定容燃烧弹试验装置

    Institute of Scientific and Technical Information of China (English)

    姚春德; 代乾; 许汉君; 杨广峰

    2012-01-01

    An experimental system of constant volume combustion bomb was designed and developed,which was carried out for the fundamental research of combustion characteristics of diesel in premixed air/methanol mixtures atmosphere.The distribution,function and characteristics of the sub-system of the experimental equipment were introduced.The experimental results show that the existence of methanol in the mixture can suppress ignition of diesel fuel.As the increase of the methanol concentration in the mixture,the flame of the combustion becomes dim and consequently the formation of soot are inhibited.Comparing with the combustion of diesel in the pure air atmosphere the ignition delay of diesel fuel is postponed and the lift-off length of diesel fuel flame is extended and the variation of lift-off length is strengthened in the premixed methanol ambient.%设计并研制了一种定容燃烧弹试验装置,用于对柴油在甲醇/空气预混均质混合气中燃烧特性的基础研究。介绍了该试验装置的各子系统的原理、结构及特点。定容燃烧弹试验结果表明:甲醇抑制了柴油的着火燃烧,随着甲醇/空气混合气浓度的增大,燃烧火焰变暗,碳烟生成受到抑制。与空气热氛围相比,甲醇/空气混合气氛围延长了柴油的滞燃期,加长了火焰的浮起长度。火焰稳定后,甲醇氛围中火焰的浮起长度随时间的变化比在纯空气氛围中大。

  12. Alternative Fuels: Are we Making the Right Choices?

    Science.gov (United States)

    2008-05-01

    diesel at any ratio with little to no modification. (U.S. Environmental Protection Agency, 2002) Homogeneous charge compression ignition ( HCCI ) engines ...have the potential to provide high, diesel-like efficiencies and very low emissions. In an HCCI engine , a dilute, premixed fuel/air charge auto...replacements for fossil fuels in the internal combustion engine . Liquefied petroleum gas (LPG), better known as propane, is a clean-burning fossil fuel

  13. Effect of Modified Design on Engine Fuel Efficiency

    OpenAIRE

    Abdul Siddique Sk; Nataraj T S C

    2016-01-01

    This paper covers key and representative developments in the area of high efficiency and cleans internal combustion engines. The main objective is to highlight recent efforts to improve (IC) engine fuel efficiency and combustion. Rising fuel prices and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency from the IC engine. This need for increased efficiency has placed compression ignition (CI) engines in the forefront compared to spark ignition (SI) engi...

  14. The Dual Career Family.

    Science.gov (United States)

    Gurtin, Lee

    1980-01-01

    The dual career couple is forced to make a series of choices and compromises that impact the realms of marriage and career. The dilemmas that confront dual career marriages can be overcome only by compromise, accommodation, and mutual understanding on the part of the individuals involved. A revamping of human resources and recruitment programs is…

  15. Dual Credit Report

    Science.gov (United States)

    Light, Noreen

    2016-01-01

    In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…

  16. Dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2003-01-01

    A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions are...

  17. Self-Dual Gravity

    CERN Document Server

    Krasnov, Kirill

    2016-01-01

    Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.

  18. Optical dual self functions

    Institute of Scientific and Technical Information of China (English)

    华建文; 刘立人; 王宁

    1997-01-01

    A recipe to construct the exact dual self-Fourier-Fresnel-transform functions is shown, where the Dirac comb function and transformable even periodic function are used. The mathematical proof and examples are given Then this kind of self-transform function is extended to the feasible optical dual self-transform functions.

  19. Dual doubled geometry

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.

    2011-01-01

    We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam

  20. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.