WorldWideScience

Sample records for dual fluorescent single

  1. Dual fluorescence of single LH2 antenna nanorings

    International Nuclear Information System (INIS)

    Freiberg, A.; Raetsep, M.; Timpmann, K.; Trinkunas, G.

    2004-01-01

    A dual nature of fluorescence from LH2 pigment-protein complexes, which is a part of the light harvesting system of purple bacteria, is confirmed by fluorescence-lifetime dependence on recording wavelength and spectrally selective spectroscopy. An analysis based on the Holstein molecular crystal model, modified by allowing diagonal disorder, suggests coexistence of large- and small-radius self-trapped excitons, which serve as the origin of the dual fluorescence

  2. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  3. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level [v1; ref status: indexed, http://f1000r.es/2tt

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Kojima

    2014-02-01

    Full Text Available RNA interference (RNAi is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA together with an enhanced green fluorescent protein (EGFP; the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry. Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3 and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi. To further facilitate testing of RNAi efficacy, we developed a negative selection marker (ccdB method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.

  6. An image-based, dual fluorescence reporter assay to evaluate the efficacy of shRNA for gene silencing at the single-cell level [v2; ref status: indexed, http://f1000r.es/39j

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Kojima

    2014-05-01

    Full Text Available RNA interference (RNAi is widely used to suppress gene expression in a specific manner. The efficacy of RNAi is mainly dependent on the sequence of small interfering RNA (siRNA in relation to the target mRNA. Although several algorithms have been developed for the design of siRNA, it is still difficult to choose a really effective siRNA from among multiple candidates. In this article, we report the development of an image-based, quantitative, ratiometric fluorescence reporter assay to evaluate the efficacy of RNAi at the single-cell level. Two fluorescence reporter constructs are used. One expresses the candidate small hairpin RNA (shRNA together with an enhanced green fluorescent protein (EGFP; the other expresses a 19-nt target sequence inserted into a cassette expressing a red fluorescent protein (either DsRed or mCherry. Effectiveness of the candidate shRNA is evaluated as the extent to which it knocks down expression of the red fluorescent protein. Thus, the red-to-green fluorescence intensity ratio (appropriately normalized to controls is used as the read-out for quantifying the siRNA efficacy at the individual cell level. We tested this dual fluorescence assay and compared predictions to actual endogenous knockdown levels for three different genes (vimentin, lamin A/C and Arp3 and twenty different shRNAs. For each of the genes, our assay successfully predicted the target sequences for effective RNAi. To further facilitate testing of RNAi efficacy, we developed a negative selection marker (ccdB method for construction of shRNA and red fluorescent reporter plasmids that allowed us to purify these plasmids directly from transformed bacteria without the need for colony selection and DNA sequencing verification.

  7. Combined "dual" absorption and fluorescence smartphone spectrometers.

    Science.gov (United States)

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  8. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry

    Science.gov (United States)

    Ouadahi, Karima; Sbargoud, Kamal; Allard, Emmanuel; Larpent, Chantal

    2012-01-01

    Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength. Electronic supplementary information (ESI) available: Experimental details and figures S1-S16 as mentioned in the text. See DOI: 10.1039/c2nr11413e

  9. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  10. The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis

    NARCIS (Netherlands)

    Bogaart, Geert van den; Mika, Jacek T.; Krasnikov, Viktor; Poolman, Bert

    Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second

  11. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    Science.gov (United States)

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  13. Design and implementation of a dual-wavelength intrinsic fluorescence camera system

    Science.gov (United States)

    Ortega-Martinez, Antonio; Musacchia, Joseph J.; Gutierrez-Herrera, Enoch; Wang, Ying; Franco, Walfre

    2017-03-01

    Intrinsic UV fluorescence imaging is a technique that permits the observation of spatial differences in emitted fluorescence. It relies on the fluorescence produced by the innate fluorophores in the sample, and thus can be used for marker-less in-vivo assessment of tissue. It has been studied as a tool for the study of the skin, specifically for the classification of lesions, the delimitation of lesion borders and the study of wound healing, among others. In its most basic setup, a sample is excited with a narrow-band UV light source and the resulting fluorescence is imaged with a UV sensitive camera filtered to the emission wavelength of interest. By carefully selecting the excitation/emission pair, we can observe changes in fluorescence associated with physiological processes. One of the main drawbacks of this simple setup is the inability to observe more than a single excitation/emission pair at the same time, as some phenomena are better studied when two or more different pairs are studied simultaneously. In this work, we describe the design and the hardware and software implementation of a dual wavelength portable UV fluorescence imaging system. Its main components are an UV camera, a dual wavelength UV LED illuminator (295 and 345 nm) and two different emission filters (345 and 390 nm) that can be swapped by a mechanical filter wheel. The system is operated using a laptop computer and custom software that performs basic pre-processing to improve the image. The system was designed to allow us to image fluorescent peaks of tryptophan and collagen cross links in order to study wound healing progression.

  14. Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yonglei; Liu, Juanjuan; Han, Yangxia; Ma, Sudai; Chen, Xingguo

    2018-08-01

    As we know, hexavalent chromium (Cr(VI)) was usually used as an additive to improve the color fastness during the printing and dyeing process, and thus posing tremendous threat to our health and living quality. In this work, the dual emissive carbon dots (DECDs) were synthesized through hydrothermal treatment of m-aminophenol and oxalic acid. The obtained DECDs not only exhibited dual emission fluorescence peaks (430 nm, 510 nm) under the single excitation wavelength of 380 nm, but also possessed good water solubility and excellent fluorescence stability. A ratiometric fluorescent method for the determination of Cr(VI) was developed using the DECDs as a probe. Under the optimal conditions, a linear range was obtained from 2 to 300 μM with a limit of detection of 0.4 μM. Furthermore, the proposed ratiometric fluorescent method was applied to the analysis of Cr(VI) in textile, steel, industrial wastewater and chromium residue samples with satisfactory recoveries (88.4-106.8%). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. In Vivo Dual Fluorescence Imaging to Detect Joint Destruction.

    Science.gov (United States)

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Lee, Sangmin; Brand, David D; Yi, Ae-Kyung; Hasty, Karen A

    2016-10-01

    Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  17. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  18. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.

    Science.gov (United States)

    Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B

    2010-09-01

    Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  20. Click strategies for single-molecule protein fluorescence.

    Science.gov (United States)

    Milles, Sigrid; Tyagi, Swati; Banterle, Niccolò; Koehler, Christine; VanDelinder, Virginia; Plass, Tilman; Neal, Adrian P; Lemke, Edward A

    2012-03-21

    Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.

  1. Dual isotope, single acquisition parathyroid imaging

    International Nuclear Information System (INIS)

    Triantafillou, M.; McDonald, H.J.

    1998-01-01

    Full text: Nuclear Medicine parathyroid imaging using Thallium-201(TI) and Technetium-99m(Tc) is an often used imaging modality for the detection of parathyroid adenomas and hyper parathyroidism. The conventional Tl/Tc subtraction technique requires 2 separate injections and acquisitions which are then normalised and subtracted from each other. This lengthy technique is uncomfortable for patients and can result in false positive scan results due to patient movement between and during the acquisition process. We propose a simplified injection and single acquisition technique, that reduces the chance of movement and thus reduces the chance of false positive scan results. The technique involves the injection of Tc followed by the Tl injection 10 minutes later. After a further 10 min wait, imaging is performed using a dual isotope acquisition, with window (W) 1 set on 140 keV 20%W 5% off peak and W2 peaked for 70 keV 20%W., acquired for 10 minutes. We have imaged 27 patients with this technique, 15 had positive parathyroid imaging. Of the 15, 11 had positive ultrasound correlation. Of the remaining 4, 2 have had positive surgical findings for adenomas, the other 2 are awaiting follow-up. Of the 12 patients with negative parathyroid imaging, 2 have been shown to be false - negative with surgery. In conclusion, the single acquisition technique suggested by us is a valid method of imaging parathyroids that reduces the chance of false positive results due to movement

  2. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells.

    Science.gov (United States)

    Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2013-03-04

    A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.

  3. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  4. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  5. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    Science.gov (United States)

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  6. Spatial and temporal superresolution concepts to study plasma membrane organization by single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Ruprecht, V.

    2010-01-01

    Fluorescence microscopy techniques are currently among the most important experimental tools to study cellular processes. Ultra-sensitive detection devices nowadays allow for measuring even individual farnesylacetate labeled target molecules with nanometer spatial accuracy and millisecond time resolution. The emergence of single molecule fluorescence techniques especially contributed to the field of membrane biology and provided basic knowledge on structural and dynamic features of the cellular plasma membrane. However, we are still confronted with a rather fragmentary understanding of the complex architecture and functional interrelations of membrane constituents. In this thesis new concepts in one- and dual-color single molecule fluorescence techniques are presented that allow for addressing organization principles and interaction dynamics in the live cell plasma membrane. Two complementary experimental strategies are described which differ in their detection principle: single molecule fluorescence imaging and fluorescence correlation spectroscopy. The presented methods are discussed in terms of their implementation, accuracy, quantitative and statistical data analysis, as well as live cell applications. State-of-the-art dual color single molecule imaging is introduced as the most direct experimental approach to study interaction dynamics between differently labeled target molecules. New analytical estimates for robust data analysis are presented that facilitate quantitative recording and identification of co localizations in dual color single molecule images. A novel dual color illumination scheme is further described that profoundly extends the current range and sensitivity of conventional dual color single molecule experiments. The method enables working at high surface densities of fluorescent molecules - a feature typically incommensurable with single molecule imaging - and is especially suited for the detection of rare interactions by tracking co localized

  7. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  8. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  9. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  10. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    Science.gov (United States)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  11. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and beta-cyclodextrin.

    Science.gov (United States)

    Rajendiran, N; Balasubramanian, T

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.

  12. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  13. Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe

    KAUST Repository

    Bourlinos, Athanasios B.; Bakandritsos, Aristides; Kouloumpis, Antonios; Gournis, Dimitrios; Krysmann, Marta; Giannelis, Emmanuel P.; Polakova, Katerina; Safarova, Klara; Hola, Katerina; Zboril, Radek

    2012-01-01

    We describe the synthesis of Gd(iii)-doped carbon dots as dual fluorescence-MRI probes for biomedical applications. The derived Gd(iii)-doped carbon dots show uniform particle size (3-4 nm) and gadolinium distribution and form stable dispersions in water. More importantly, they exhibit bright fluorescence, strong T1-weighted MRI contrast and low cytotoxicity. © The Royal Society of Chemistry 2012.

  14. Single-analyte to multianalyte fluorescence sensors

    Science.gov (United States)

    Lavigne, John J.; Metzger, Axel; Niikura, Kenichi; Cabell, Larry A.; Savoy, Steven M.; Yoo, J. S.; McDevitt, John T.; Neikirk, Dean P.; Shear, Jason B.; Anslyn, Eric V.

    1999-05-01

    The rational design of small molecules for the selective complexation of analytes has reached a level of sophistication such that there exists a high degree of prediction. An effective strategy for transforming these hosts into sensors involves covalently attaching a fluorophore to the receptor which displays some fluorescence modulation when analyte is bound. Competition methods, such as those used with antibodies, are also amenable to these synthetic receptors, yet there are few examples. In our laboratories, the use of common dyes in competition assays with small molecules has proven very effective. For example, an assay for citrate in beverages and an assay for the secondary messenger IP3 in cells have been developed. Another approach we have explored focuses on multi-analyte sensor arrays with attempt to mimic the mammalian sense of taste. Our system utilizes polymer resin beads with the desired sensors covalently attached. These functionalized microspheres are then immobilized into micromachined wells on a silicon chip thereby creating our taste buds. Exposure of the resin to analyte causes a change in the transmittance of the bead. This change can be fluorescent or colorimetric. Optical interrogation of the microspheres, by illuminating from one side of the wafer and collecting the signal on the other, results in an image. These data streams are collected using a CCD camera which creates red, green and blue (RGB) patterns that are distinct and reproducible for their environments. Analysis of this data can identify and quantify the analytes present.

  15. Optical probing of single fluorescent molecules and proteins

    NARCIS (Netherlands)

    Garcia Parajo, M.F.; Veerman, J.A.; Bouwhuis, R.; Bouwhuis, Rudo; van Hulst, N.F.; Vallée, R.A.L.

    2001-01-01

    Single-molecule detection and analysis of organic fluorescent molecules and proteins are presented, with emphasis o­n the underlying principles methodology and the application of single-molecule analysis at room temperature. This Minireview is mainly focused o­n the application of confocal and

  16. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    OpenAIRE

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but also in single molecule research confocal fluorescence microscopy became a popular technique. In this thesis the possibilities are shown to study a complicated biological process, which is Nucleotide ...

  17. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  18. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  19. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  20. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  1. Ratiometric fluorescent sensing of pH values in living cells by dual-fluorophore-labeled i-motif nanoprobes.

    Science.gov (United States)

    Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin

    2015-09-01

    We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.

  2. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  3. Antiphase dual-color correlation in a reactant-product pair imparts ultrasensitivity in reaction-linked double-photoswitching fluorescence imaging.

    Science.gov (United States)

    Wan, Wei; Zhu, Ming-Qiang; Tian, Zhiyuan; Li, Alexander D Q

    2015-04-08

    A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.

  4. Fluorescence spectroscopy of conformational changes of single LH2 complexes

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Cogdell, R.J.; van Grondelle, R.

    2005-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  5. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  6. Smart dual-mode fluorescent gold nanoparticle agents.

    Science.gov (United States)

    Kang, Kyung A; Wang, Jianting

    2014-01-01

    Fluorophore-mediated, molecular sensing is one of the most popular and important technique in biomedical studies. As in any sensing technique, the two most important factors in this sensing are the sensitivity and specificity. Since the fluorescence of a fluorophore is emitted in the process of fluorophore electrons returning from their excited to ground state, a tool that can locally manipulate the electron state can be useful to maximize the sensitivity and specificity. A good tool candidate for this purpose is nanosized metal particles that can form an electromagnetic (EM) field at a sufficiently strong level, upon receiving a particular wavelength that fits the excitation wavelength of the fluorophore to be used. There are several metal nanoparticle types that can generate a sufficiently strong EM field for this purpose. Nevertheless, for the biomedical studies, which require minimal toxicity, gold nanoparticles (GNPs) are known to be the most suitable. In this article, various methods for fluorescence alteration using GNPs, which can be beneficially utilized for biomarker-specific, highly sensitive molecular sensing and imaging, are discussed. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.

  7. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  8. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  9. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  10. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  11. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We

  12. Fluorescent single walled nanotube/silica composite materials

    Science.gov (United States)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  13. The application of image cytometry to viability assessment in dual fluorescence-stained fish spermatozoa

    Czech Academy of Sciences Publication Activity Database

    Flajšhans, Martin; Cosson, J.; Rodina, Marek; Linhart, Otomar

    2004-01-01

    Roč. 28, č. 12 (2004), s. 955-959 ISSN 1065-6995 R&D Projects: GA MŠk ME 638; GA ČR GA524/03/0178; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z5045916 Keywords : image cytometry * dual fluorescent * staining Subject RIV: ED - Physiology Impact factor: 1.015, year: 2004

  14. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  15. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-01-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex ® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  16. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  17. Dual fluorescence and laser emissions from fluorescein-Na and eosin-B

    International Nuclear Information System (INIS)

    Math, N.N.; Naik, L.R.; Suresh, H.M.; Inamdar, S.R.

    2006-01-01

    Dual laser emissions were observed from fluorescein-Na and eosin-B in ethanolic solutions individually in the concentration range from 10 -2 to 10 -3 mol dm -3 under N 2 laser excitation. The first compound was found to lase at two distinct regions with wavelength maxima around 540, 550 nm, while the second one around 558, 574 nm. Steady-state absorption, fluorescence excitation, fluorescence polarization, fluorescence emission and decays of the dyes in various solvents under varying conditions of excitation and detection systems were carried out to identify the nature of the emitting species responsible for laser emissions in two distinct regions. Both the dyes exhibited concentration and excitation wavelength dependence of fluorescence and the effects were found to be more pronounced in binary solution. The fluorescence decays of dyes were monoexponential in ethanol, while in some other solvents used, the decays showed biexponential behavior. The absorption and excitation studies using thin layers of solutions revealed the formation of dimers with the dye concentration around 1x10 -3 mol dm -3 . Fluorescence polarization and decay studies confirmed the presence of dimers. The two laser bands observed in the shorter and longer wavelengths were respectively ascribed to monomeric and dimeric species

  18. Dual fluorescence and laser emissions from fluorescein-Na and eosin-B

    Energy Technology Data Exchange (ETDEWEB)

    Math, N.N. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India)]. E-mail: nnm31@rediffmail.com; Naik, L.R. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India); Suresh, H.M. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India); Inamdar, S.R. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India)

    2006-12-15

    Dual laser emissions were observed from fluorescein-Na and eosin-B in ethanolic solutions individually in the concentration range from 10{sup -2} to 10{sup -3} mol dm{sup -3} under N{sub 2} laser excitation. The first compound was found to lase at two distinct regions with wavelength maxima around 540, 550 nm, while the second one around 558, 574 nm. Steady-state absorption, fluorescence excitation, fluorescence polarization, fluorescence emission and decays of the dyes in various solvents under varying conditions of excitation and detection systems were carried out to identify the nature of the emitting species responsible for laser emissions in two distinct regions. Both the dyes exhibited concentration and excitation wavelength dependence of fluorescence and the effects were found to be more pronounced in binary solution. The fluorescence decays of dyes were monoexponential in ethanol, while in some other solvents used, the decays showed biexponential behavior. The absorption and excitation studies using thin layers of solutions revealed the formation of dimers with the dye concentration around 1x10{sup -3} mol dm{sup -3}. Fluorescence polarization and decay studies confirmed the presence of dimers. The two laser bands observed in the shorter and longer wavelengths were respectively ascribed to monomeric and dimeric species.

  19. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod

    NARCIS (Netherlands)

    Yuan, H.; Khatua, S.; Zijlstra, P.; Yorulmaz, M.; Orrit, M.

    2013-01-01

    Single molecules: Large enhancements of single-molecule fluorescence up to 1100 times by using synthesized gold nanorods are reported (see picture). This high enhancement is achieved by selecting a dye with its adsorption and emission close to the surface plasmon resonance of the gold nanorods

  20. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  1. [Chromosomal localization of foreign genes in transgenic mice using dual-color fluorescence in situ hybridization].

    Science.gov (United States)

    Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying

    2008-02-01

    To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.

  2. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, Masateru; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-01-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation

  3. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  4. Developments in dual-energy, single-exposure chest radiography

    International Nuclear Information System (INIS)

    Ho Jungtsuoe.

    1990-01-01

    Conventional chest radiography (CCR), the most commonly performed technique for the diagnosis of lung cancer, does not detect a high percentage of these tumors. One reason for errors is the overlap of tumor image with bone image in a chest radiograph. Dual-energy (DE) radiography has been suggested as the most effective method to eliminate bone contrast for better lung tumor visualization. DE radiography also provides a bone image from which benign nodules can be identified by the presence of nodule calcification. The purpose of this study is to evaluate the performance of a film-screen based DE, single exposure technique in lung nodule detection and to improve its performance by both hardware (HD) and software developments (SD) to increase the accuracy of lung cancer diagnosis. Previous implementation of the technique resulted in small residual tissue contrast and incomplete tissue subtraction due to screen selection and x-ray beam hardening, respectively. HD, including uses of a new screen pair (Y 2 O 2 S/CaWO 4 ) and a K-edge filter (europium), were studied to improve residual tissue contrast by increasing the energy separation. Successful SD included a three-dimensional interpolation algorithm and noise suppression methods to achieve complete tissue subtraction and noise reduction, respectively. The results show that the new screen pair performed better than LaOBr/CaWo 4 ; the use of K-edge filter produced more residual tissue contrast than that obtained without it. Even though the dual exposure technique performed better than the single exposure technique in a simulated lung nodule detection study, the difference between the two techniques was statistically insignificant and they both performed better than CCR. Based on these encouraging results, the author concludes that the film-screen based DE, single exposure technique, with the HD and SD holds promise for further clinical study

  5. 3D dual-virtual-pinhole assisted single particle tracking microscopy

    International Nuclear Information System (INIS)

    Ma, Ye; Wang, Yifan; Zhou, Xin; Kuang, Cuifang; Liu, Xu

    2014-01-01

    We propose a novel approach for high-speed, three-dimensional single particle tracking (SPT), which we refer to as dual-virtual-pinhole assisted single particle tracking microscopy (DVPaSPTM). DVPaSPTM system can obtain axial information of the sample without optical or mechanical depth scanning, so as to offer numbers of advantages including faster imaging, improved efficiency and a great reduction of photobleaching and phototoxicity. In addition, by the use of the dual-virtual-pinhole, the effect that the quantum yield exerts to the fluorescent signal can be eliminated, which makes the measurement independent of the surroundings and increases the accuracy of the result. DVPaSPTM system measures the intensity within different virtual pinholes of which the radii are given by the host computer. Axial information of fluorophores can be measured by the axial response curve through the ratio of intensity signals. We demonstrated the feasibility of the proposed method by a series of experiments. Results showed that the standard deviation of the axial measurement was 19.2 nm over a 2.5 μm range with 30 ms temporal resolution. (papers)

  6. Single electron counting using a dual MCP assembly

    International Nuclear Information System (INIS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming

    2016-01-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 µm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained. - Highlights: • Dual MCPs assembly with four electrodes using different voltage combinations has been investigated for single electron counting. • Both the MCP voltages and the gap voltage can affect the gain, pulse height resolution and P/V ratio. • A high gain of the first stage MCP, a saturation mode of the second stage MCP and an appropriately reverse gap voltage can improve the resolution greatly. • The optimum voltage arrangements is significant for the design of MCP detectors in single electron counting applications.

  7. Discriminative detection of bivalent Cu by dual-emission ZnSe quantum dot fluorescence sensing via ratiometric fluorescence measurements

    International Nuclear Information System (INIS)

    Wang, Chunlei; Zhou, Shujie; Xu, Shuhong; Wang, Zhuyuan; Cui, Yiping

    2014-01-01

    In this work, we showed that 1-thioglycerol (TG)-capped ZnSe quantum dots (QDs) with dual-emission could perform ideal QD fluorescence sensing for ratiometric fluorescence measurements. By comparing the fluorescence ratios at two emission peaks before and after the addition of cations, the discriminative detection of Cu(II) was realized, even in the case of co-existing with large amounts of other sensitive cations, such as Ag(I). The discriminative detection of Cu(II) is accurate with co-existing Ag(I) below 10 μmol L −1 . By a joint investigation of the ionic diffuse dynamics and carrier recombination dynamics, we found that the adsorbed layer of QDs plays a key role in the discriminative detection of Cu(II) from Ag(I) or other sensitive cations. The moderate adsorption capacity with a QD adsorbed layer makes Cu(II) capable of travelling across the QD double-layer structure, following a surface doping process via chemical reactions between Cu(II) and the QD surface atoms. As a result of Cu(II) doping, there were three major carrier recombination channels: the non-radiation recombination between the QD conduction band to the Cu(II) energy level, together with the non-radiation recombination and radiation recombination between the trap state energy levels and the Cu(II) energy level. As for Ag(I) and other sensitive cations, they have a strong adsorption capacity with the QD adsorbed layer, making them mainly present on the adsorbed layer. Due to the blocking of the ligand layer, we only observed weak coupling of the ZnSe conduction band with the Ag(I) energy level via a non-radiation recombination channel. (paper)

  8. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  9. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  10. In Vivo Photoacoustic and Fluorescence Cystography Using Clinically Relevant Dual Modal Indocyanine Green

    Directory of Open Access Journals (Sweden)

    Sungjo Park

    2014-10-01

    Full Text Available Conventional X-ray-based cystography uses radio-opaque materials, but this method uses harmful ionizing radiation and is not sensitive. In this study, we demonstrate nonionizing and noninvasive photoacoustic (PA and fluorescence (FL cystography using clinically relevant indocyanine green (ICG in vivo. After transurethral injection of ICG into rats through a catheter, their bladders were photoacoustically and fluorescently visualized. A deeply positioned bladder below the skin surface (i.e., ~1.5–5 mm was clearly visible in the PA and FL image using a laser pulse energy of less than 2 mJ/cm2 (1/15 of the safety limit. Then, the in vivo imaging results were validated through in situ studies. Our results suggest that dual modal cystography can provide a nonionizing and noninvasive imaging tool for bladder mapping.

  11. Numerical simulation of dynamic quenching of dual-split fluorescence of molecules with intramolecular hydrogen bonds

    International Nuclear Information System (INIS)

    Morozov, V.A.; Chuvulkin, N.D.; Smolenskij, E.A.; Dubina, Yu.M.

    2014-01-01

    The dynamic quenching of intensity pulses of the dual-split fluorescence (DSF) has been simulated using numerical solutions of the equations for the population matrix of five states of the model fluorescent molecule (FM). The state with the highest energy is considered as resonantly excited by irradiation, and two other excited states populated by subsequent relaxation processes are taken as initial states for the FM transitions with emission of the DSF photons. The FM model parameters are selected to fit typical parameters of the molecules with intramolecular proton photo transfer. Quenching is considered as a consequence of non-radiative decay of the FM excited states due to collisions with the quencher molecules. Examples of two types of the DSF quenching of the FM are given. The first type leads to an intramolecular radiationless decay of particular excited states of the FM, and the second one results in radiationless transitions from the same states to the quencher molecule states. (authors)

  12. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  13. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    Science.gov (United States)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  14. Fluorescence Spectroscopy, Exciton Dynamics and Photochemistry of Single Allophycocyanin Trimers

    International Nuclear Information System (INIS)

    Ying, Liming; Xie, Xiaoliang

    1998-01-01

    We report a study of the spectroscopy and exciton dynamics of the allophycocyanin trimer (APC), a light harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed, because of generation of exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible ixciton trap formation within the three quasi-independent pairs of strong interacting a84 and B84 chromophores in APC, as well a photobleaching of individual chromophores. Comparison experiments under continuous wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into exciton dynamics and photochemistry of light-harvesting complexes

  15. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    Science.gov (United States)

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  16. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    Science.gov (United States)

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    Science.gov (United States)

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    Science.gov (United States)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-03-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.

  19. Single- and dual-photon absorptiometry in osteoporosis and osteomalacia

    International Nuclear Information System (INIS)

    Wahner, H.W.

    1987-01-01

    Single- and dual-photon absorptiometric methods have been used in the past to identify populations at risk for bone loss, to define the osteoporotic syndrome in terms of bone mass, and to evaluate treatment regimens to prevent bone loss. Technical improvements have made these procedures available for the nontraumatic measurement of bone mineral in the management of the individual patient suspected of having osteoporosis or other bone loss. This requires a different approach to data interpretation because decisions have to be made on the basis of a single measurement. Osteoporosis and osteomalacia cannot be distinguished by bone mineral measurements because both are characterized by a decrease in content of bone mineral. Bone mineral measurements can be used to assess the risk of fracture and, with it, the severity of bone loss. This allows treatment decisions to be made. Repeated measurements made under well-defined conditions allow estimation of long-term rate of bone loss and monitoring of treatment effect. 38 references

  20. The Need to Change Army Policies Toward Single Parents and Dual Military Couples With Children

    National Research Council Canada - National Science Library

    Carroll, Carolyn

    2005-01-01

    ... and to best manage our single parent service members and dual-military couples. There is a need to address the Army regulations that are ambiguous and contradictory toward enlisting and retaining single parents...

  1. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    Science.gov (United States)

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  2. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin

    Science.gov (United States)

    Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.

    1999-05-01

    The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).

  3. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    Science.gov (United States)

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research

  4. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  5. Developmental tumors and adjacent cortical dysplasia: single or dual pathology?

    Science.gov (United States)

    Palmini, André; Paglioli, Eliseu; Silva, Vinicius Duval

    2013-12-01

    Developmental tumors often lead to refractory partial seizures and constitute a well-defined, surgically remediable epilepsy syndrome. Dysplastic features are often associated with these tumors, and their significance carries both practical and conceptual relevance. If associated focal cortical dysplasia (FCD) relates to the extent of the epileptogenic tissue, then presurgical evaluation and surgical strategies should target both the tumor and the surrounding dyslaminated cortex. Furthermore, the association has been included in the recently revised classification of FCD and the epileptogenicity of this associated dysplastic tissue is crucial to validate such revision. In addition to the possibility of representing dual pathology, the association of developmental tumors and adjacent dysplasia may instead represent a single developmental lesion with distinct parts distributed along a histopathologic continuum. Moreover, the possibility that this adjacent dyslamination is of minor epileptogenic relevance should also be entertained. Surgical data show that complete resection of the solid tumors and immediately adjacent tissue harboring satellites may disrupt epileptogenic networks and lead to high rates of seizure freedom, challenging the epileptogenic relevance of more extensive adjacent dyslaminated cortex. Whether the latter is a primary or secondary abnormality and whether dyslaminated cortex in the context of a second lesion may produce seizures after complete resection of the main lesion is still to be proven. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  6. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  7. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  8. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  9. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical

  10. Comparing the da Vinci si single console and dual console in teaching novice surgeons suturing techniques.

    Science.gov (United States)

    Crusco, Salvatore; Jackson, Tiffany; Advincula, Arnold

    2014-01-01

    Robot-assisted laparoscopic surgery is often taught with the surgical mentor at the surgeon console and the trainee at the patient's bedside. The da Vinci dual console (Intuitive Surgical, Sunnyvale, California) allows a surgical mentor to teach with both the mentor and the trainee working at a surgeon console simultaneously. The purpose of this study is to evaluate the effectiveness of the dual console versus the single console for teaching medical students robotic tasks. Forty novice medical students were randomized to either the da Vinci single-console or dual-console group and were taught 4 knot-tying techniques by a surgical mentor. The students were timed while performing the tasks. No statistically significant differences in mean task times were observed between the single- and dual-console groups: interrupted stitch with a 2-handed knot (300 seconds for single vs 294 seconds for dual, P=.59), interrupted stitch with a 1-handed knot (198 seconds for single vs 212 seconds for dual, P=.88), figure-of-8 stitch with a 2-handed knot (261 seconds for single vs 219 seconds for dual, P=.20), and figure-of-8 stitch with a 1-handed knot (200 seconds for single vs 199 seconds for dual, P=.53). No significant difference was observed in performance time when teaching knot-tying techniques to medical students using the da Vinci dual console compared with the single console. More research needs to be performed on the utility of the da Vinci dual console in surgical training.

  11. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  13. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    Science.gov (United States)

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  14. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling

    International Nuclear Information System (INIS)

    Jiang Dafeng; Liu Chunxia; Wang Lei; Jiang Wei

    2010-01-01

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0 x 10 -14 -3.0 x 10 -12 mol L -1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach.

  15. Fast intramolecular electron transfer and dual fluorescence. Configurational change of the amino nitrogen (pyramidal→planar)

    International Nuclear Information System (INIS)

    Haar, Th. von der; Hebecker, A.; Il'Ichev, Yu.; Kuehnle, W.; Zachariasse, K. A.

    1996-01-01

    The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase of the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states

  16. Solvent-Dependent Dual Fluorescence of the Push-Pull System 2-Diethylamino-7-Nitrofluorene

    KAUST Repository

    Larsen, Martin A. B.; Stephansen, Anne B.; Alarousu, Erkki; Pittelkow, Michael; Mohammed, Omar F.; Sø lling, Theis I

    2018-01-01

    The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

  17. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  18. Solvent-Dependent Dual Fluorescence of the Push-Pull System 2-Diethylamino-7-Nitrofluorene

    KAUST Repository

    Larsen, Martin A. B.

    2018-01-31

    The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

  19. New insights into the dual fluorescence of methyl salicylate: effects of intermolecular hydrogen bonding and solvation.

    Science.gov (United States)

    Zhou, Panwang; Hoffmann, Mark R; Han, Keli; He, Guozhong

    2015-02-12

    In this paper, we propose a new and complete mechanism for dual fluorescence of methyl salicylate (MS) under different conditions using a combined experimental (i.e., steady-state absorption and emission spectra and time-resolved fluorescence spectra) and theoretical (i.e., time-dependent density function theory) study. First, our theoretical study indicates that the barrier height for excited state intramolecular proton transfer (ESIPT) reaction of ketoB depends on the solvent polarity. In nonpolar solvents, the ESIPT reaction of ketoB is barrierless; the barrier height will increase with increasing solvent polarity. Second, we found that, in alcoholic solvents, intermolecular hydrogen bonding plays a more important role. The ketoB form of MS can form two hydrogen bonds with alcoholic solvents; one will facilitate ESIPT and produce the emission band in the blue region; the other one precludes ESIPT and produces the emission band in the near-UV region. Our proposed new mechanism can well explain previous results as well as our new experimental results.

  20. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    Science.gov (United States)

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  1. Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2018-01-01

    Full Text Available In this article, we expand the dual generalized weighted BM (DGWBM and dual generalized weighted geometric Bonferroni mean (DGWGBM operator with single valued neutrosophic numbers (SVNNs to propose the dual generalized single-valued neutrosophic number WBM (DGSVNNWBM operator and dual generalized single-valued neutrosophic numbers WGBM (DGSVNNWGBM operator. Then, the multiple attribute decision making (MADM methods are proposed with these operators. In the end, we utilize an applicable example for strategic suppliers selection to prove the proposed methods.

  2. A New Theoretical Approach to Single-Molecule Fluorescence Optical Studies of RNA Dynamics

    International Nuclear Information System (INIS)

    Zhao Xinghai; Shan Guangcun; Bao Shuying

    2011-01-01

    Single-molecule fluorescence spectroscopy in condensed phases has many important chemical and biological applications. The single-molecule fluorescence measurements contain information about conformational dynamics on a vast range of time scales. Based on the data analysis protocols methodology proposed by X. Sunney Xie, the theoretical study here mainly focuses on the single-molecule studies of single RNA with interconversions among different conformational states, to with a single FRET pair attached. We obtain analytical expressions for fluorescence lifetime correlation functions that relate changes in fluorescence lifetime to the distance-dependent FRET mechanism within the context of the Smoluchowski diffusion model. The present work establishes useful guideline for the single-molecule studies of biomolecules to reveal the complicated folding dynamics of single RNA molecules at nanometer scale.

  3. Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

    Science.gov (United States)

    Xie, Min; Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Pang, Dai-Wen

    2012-01-01

    Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.

  4. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  5. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    Science.gov (United States)

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  6. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  7. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Gao, Ning

    2002-01-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites

  8. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer.

    Science.gov (United States)

    Hamadani, Kambiz M; Howe, Jesse; Jensen, Madeleine K; Wu, Peng; Cate, Jamie H D; Marqusee, Susan

    2017-09-22

    Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational

  9. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  10. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.

    Science.gov (United States)

    Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2015-06-01

    Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Single Switch Dual Output Non-Isolated Boost Converter

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2008-01-01

    There are many applications for high gain dc-dc converters. In several of these applications galvanic isolation is not required, but there are some safety issues regarding missing isolation and leakage current. Usage of a half-bridge inverter and a dual dc-link may solve this issues. In this paper...

  12. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  13. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.

    Science.gov (United States)

    Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom

    2015-06-10

    A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).

  14. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    Science.gov (United States)

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  15. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    OpenAIRE

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical fiber. After passage through appropriate filters the light is measured using a photomultiplier tube. The optical fiber is mounted in one of the microscope outlets. Signals derived from the photomultipl...

  16. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.

    Science.gov (United States)

    Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun

    2017-06-15

    With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Single-Walled Carbon Nano tubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    International Nuclear Information System (INIS)

    Upadhyayula, V.K.K

    2008-01-01

    The possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k) for S.aureus and E.coli determined from batch adsorption study was found to be 9 x108 and 2 x108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  18. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  19. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  20. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    Science.gov (United States)

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  1. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.

  2. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but

  3. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states.

    Science.gov (United States)

    Toneff, M J; Sreekumar, A; Tinnirello, A; Hollander, P Den; Habib, S; Li, S; Ellis, M J; Xin, L; Mani, S A; Rosen, J M

    2016-06-17

    The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably

  4. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements

    International Nuclear Information System (INIS)

    Saito, Toshiro; Takahashi, Satoshi; Obara, Takayuki; Itabashi, Naoshi; Imai, Kazumichi

    2011-01-01

    We fabricated platinum bowtie nanostructure arrays producing fluorescence enhancement and evaluated their performance using two-photon photoluminescence and single-molecule fluorescence measurements. A comprehensive selection of suitable materials was explored by electromagnetic simulation and Pt was chosen as the plasmonic material for visible light excitation near 500 nm, which is preferable for multicolor dye-labeling applications like DNA sequencing. The observation of bright photoluminescence (λ = 500-600 nm) from each Pt nanostructure, induced by irradiation at 800 nm with a femtosecond laser pulse, clearly indicates that a highly enhanced local field is created near the Pt nanostructure. The attachment of a single dye molecule was attempted between the Pt triangles of each nanostructure by using selective immobilization chemistry. The fluorescence intensities of the single dye molecule localized on the nanostructures were measured. A highly enhanced fluorescence, which was increased by a factor of 30, was observed. The two-photon photoluminescence intensity and fluorescence intensity showed qualitatively consistent gap size dependence. However, the average fluorescence enhancement factor was rather repressed even in the nanostructure with the smallest gap size compared to the large growth of photoluminescence. The variation of the position of the dye molecule attached to the nanostructure may influence the wide distribution of the fluorescence enhancement factor and cause the rather small average value of the fluorescence enhancement factor.

  5. Fluorescence blinking in MEH-PPV single molecules at low temperature

    International Nuclear Information System (INIS)

    Mirzov, O.; Cichos, F.; Borczyskowski, C. von; Scheblykin, I.

    2005-01-01

    Fluorescence intensity transients of single molecules of the conjugated polymer poly[2-methoxy,5-(2'-ethylhexyloxy)-p-phenylene-vinylene] (MEH-PPV) were studied at 15 K. Fluorescence blinking behavior was observed despite the expected low-temperature suppression of energy migration in such disordered molecular systems. Presence of the fluorescence blinking effect at 15 K indicates that the single molecules possess a collapsed conformation with characteristic size of not more than several nanometers, which corresponds to only a few exciton hops over a polymer chain

  6. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  7. Dual in vivo Photoacoustic and Fluorescence Imaging of HER2 Expression in Breast Tumors for Diagnosis, Margin Assessment, and Surgical Guidance

    Directory of Open Access Journals (Sweden)

    Azusa Maeda

    2015-01-01

    Full Text Available Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3 and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low–HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.

  8. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    Science.gov (United States)

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  9. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope.

    Science.gov (United States)

    Cho, Soohee; Islas-Robles, Argel; Nicolini, Ariana M; Monks, Terrence J; Yoon, Jeong-Yeol

    2016-12-15

    The use of organ-on-a-chip (OOC) platforms enables improved simulation of the human kidney's response to nephrotoxic drugs. The standard method of analyzing nephrotoxicity from existing OOC has majorly consisted of invasively collecting samples (cells, lysates, media, etc.) from an OOC. Such disruptive analyses potentiate contamination, disrupt the replicated in vivo environment, and require expertize to execute. Moreover, traditional analyses, including immunofluorescence microscopy, immunoblot, and microplate immunoassay are essentially not in situ and require substantial time, resources, and costs. In the present work, the incorporation of fluorescence nanoparticle immunocapture/immunoagglutination assay into an OOC enabled dual-mode monitoring of drug-induced nephrotoxicity in situ. A smartphone-based fluorescence microscope was fabricated as a handheld in situ monitoring device attached to an OOC. Both the presence of γ-glutamyl transpeptidase (GGT) on the apical brush-border membrane of 786-O proximal tubule cells within the OOC surface, and the release of GGT to the outflow of the OOC were evaluated with the fluorescence scatter detection of captured and immunoagglutinated anti-GGT conjugated nanoparticles. This dual-mode assay method provides a novel groundbreaking tool to enable the internal and external in situ monitoring of the OOC, which may be integrated into any existing OOCs to facilitate their subsequent analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    International Nuclear Information System (INIS)

    Pina-Luis, Georgina; Martínez-Quiroz, Marisela; Ochoa-Terán, Adrián; Santacruz-Ortega, Hisila; Mendez-Valenzuela, Eduardo

    2013-01-01

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb 2+ ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV–visible and fluorescence spectroscopy. Compounds 1(a–d) with different length alkyl linkers (CH 2 ) n (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5–8) and was only slightly influenced by the addition of metal ions in CH 3 CN solutions. However, derivative 1e with amino-containing spacer (CH 2 –NH–CH 2 ) showed excimer emission in aqueous solution, a wide response to pH (2.5–9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li + , Na + , K + , Cs + , Ca 2+ , Mg 2+ , Ba 2+ , Cu 2+ , Pb 2+ , Ni 2+ , Zn 2+ and Cd 2+ . The coordination chemistry of these complexes was studied by UV–Vis, fluorescence and 1 H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb 2+ ions in the presence of the metals ions mentioned in CH 3 CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb 2+ ions, results in less than ±5% fluorescence intensity changes. Linear calibration up to 1×10 −5 M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0×10 −8 M. - Highlights: ► A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb 2+ ions is synthetized. ► The excimer formation depends on the spacer that links the two naphthalimide groups. ► Bis(naphthalimide) with amino-containing spacer showed a wide selective response to pH. ► This chemosensor displayed a selective fluorescence enhancement effect towards Pb 2+ ions. ► Mechanism for the fluorescence OFF

  11. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  12. A single dual-emissive nanofluorophore test paper for highly sensitive colorimetry-based quantification of blood glucose.

    Science.gov (United States)

    Huang, Xiaoyan; Zhou, Yujie; Liu, Cui; Zhang, Ruilong; Zhang, Liying; Du, Shuhu; Liu, Bianhua; Han, Ming-Yong; Zhang, Zhongping

    2016-12-15

    Fluorescent test papers are promising for the wide applications in the assays of diagnosis, environments and foods, but unlike classical dye-absorption-based pH test paper, they are usually limited in the qualitative yes/no type of detection by fluorescent brightness, and the colorimetry-based quantification remains a challenging task. Here, we report a single dual-emissive nanofluorophore probe to achieve the consecutive color variations from blue to red for the quantification of blood glucose on its as-prepared test papers. Red quantum dots were embedded into silica nanoparticles as a stable internal standard emission, and blue carbon dots (CDs) were further covalently linked onto the surface of silica, in which the ratiometric fluorescence intensity of blue to red is controlled at 5:1. While the oxidation of glucose induced the formation of Fe(3+) ions, the blue emission of CDs was thus quenched by the electron transfer from CDs to Fe(3+), displaying a serial of consecutive color variations from blue to red with the dosage of glucose. The high-quality test papers printed by the probe ink exhibited a dosage-sensitive allochromatic capability with the clear differentiations of ~5, 7, 9, 11mM glucose in human serum (normal: 3-8mM). The blood glucose determined by the test paper was almost in accordance with that measured by a standard glucometer. The method reported here opens a window to the wide applications of fluorescent test paper in biological assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  14. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  15. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  16. Single versus Dual Paycheck: Married Parents' Attitudes about Maternal Employment.

    Science.gov (United States)

    Ryckebusch, Jenna-Lyn; Miller, Heather; Fulmer, Kimberly; Fontanez, Mary; Ellis, Trisha; DiBlasi, Francis Paul; Carey, Brandi; Chambliss, Catherine

    This study examines attitudes about maternal employment by comparing the responses of married parents from single versus two-paycheck families. Participants in this study were 138 mothers and 120 fathers given the Beliefs About the Consequences of Maternal Employment for Children Scale (BACMEC), which assesses views about maternal employment.…

  17. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  18. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  19. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  20. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.

    Science.gov (United States)

    DeSantis, Michael C; DeCenzo, Shawn H; Li, Je-Luen; Wang, Y M

    2010-03-29

    Standard deviation measurements of intensity profiles of stationary single fluorescent molecules are useful for studying axial localization, molecular orientation, and a fluorescence imaging system's spatial resolution. Here we report on the analysis of the precision of standard deviation measurements of intensity profiles of single fluorescent molecules imaged using an EMCCD camera.We have developed an analytical expression for the standard deviation measurement error of a single image which is a function of the total number of detected photons, the background photon noise, and the camera pixel size. The theoretical results agree well with the experimental, simulation, and numerical integration results. Using this expression, we show that single-molecule standard deviation measurements offer nanometer precision for a large range of experimental parameters.

  1. Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.

    Science.gov (United States)

    Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong

    2017-09-21

    Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons

  2. The development of children's knowledge of attention and resource allocation in single and dual tasks.

    Science.gov (United States)

    Dossett, D; Burns, B

    2000-06-01

    Developmental changes in kindergarten, 1st-, and 4th-grade children's knowledge about the variables that affect attention sharing and resource allocation were examined. Findings from the 2 experiments showed that kindergartners understood that person and strategy variables affect performance in attention-sharing tasks. However, knowledge of how task variables affect performance was not evident to them and was inconsistent for 1st and 4th graders. Children's knowledge about resource allocation revealed a different pattern and varied according to the dissimilarity of task demands in the attention-sharing task. In Experiment 1, in which the dual attention tasks were similar (i.e., visual detection), kindergarten and 1st-grade children did not differentiate performance in single and dual tasks. Fourth graders demonstrated knowledge that performance on a single task would be better than performance on the dual tasks for only 2 of the variables examined. In Experiment 2, in which the dual attention tasks were dissimilar (i.e., visual and auditory detection), kindergarten and 1st-grade children demonstrated knowledge that performance in the single task would be better than in the dual tasks for 1 of the task variables examined. However, 4th-grade children consistently gave higher ratings for performance on the single than on the dual attention tasks for all variables examined. These findings (a) underscore that children's meta-attention is not unitary and (b) demonstrate that children's knowledge about variables affecting attention sharing and resource allocation have different developmental pathways. Results show that knowledge about attention sharing and about the factors that influence the control of attention develops slowly and undergoes reorganization in middle childhood.

  3. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    International Nuclear Information System (INIS)

    Bilski, P.; Marczewska, B.

    2017-01-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F_2 and F_3"+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  4. Retarded Local Dynamics of Single Fluorescent Probes in Polymeric Glass due to Interaction Strengthening

    Science.gov (United States)

    Zhang, Hao; Yang, Jingfa; Zhao, Jiang

    The effect of strengthening of interaction between single fluorescent probes and polymer matrix to the probes dynamics is investigated using single molecule fluorescence defocus microscopy. By introducing multiple hydroxyl groups to the fluorescent probes, which builds up hydrogen bonds between the probe and polymer matrix, the dynamics is discovered to be retarded. This is evidenced by the lowering of the frequency of the vibrational modes in the power spectra of the rotation trajectories of individual fluorescent probes, and also by the lowering of population of rotating probes. The results show that by strengthening the probe-matrix interaction, the local dynamics detected by the probes is equivalent to that detected by a bigger probe, due to the enhanced friction between the probe and the polymer matrix. the National Basic Research Program of China (2012CB821500).

  5. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.

    Science.gov (United States)

    Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J

    2017-01-01

    Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.

  6. Resonance fluorescence and quantum jumps in single atoms: Testing the randomness of quantum mechanics

    International Nuclear Information System (INIS)

    Erber, T.; Hammerling, P.; Hockney, G.; Porrati, M.; Putterman, S.; La Jolla Institute, La Jolla, California 92037; Department of Physics, University of California, Los Angeles, California 90024)

    1989-01-01

    When a single trapped 198 Hg + ion is illuminated by two lasers, each tuned to an approximate transition, the resulting fluorescence switches on and off in a series of pulses resembling a bistable telegraph. This intermittent fluorescence can also be obtained by optical pumping with a single laser. Quantum jumps between successive atomic levels may be traced directly with multiple-resonance fluorescence. Atomic transition rates and photon antibunching distributions can be inferred from the pulse statistics and compared with quantum theory. Stochastic tests also indicate that the quantum telegraphs are good random number generators. During periods when the fluorescence is switched off, the radiationless atomic currents that generate the telegraph signals can be adjusted by varying the laser illumination: if this coherent evolution of the wave functions is sustained over sufficiently long time intervals, novel interactive precision measurements, near the limits of the time-energy uncertainty relations, are possible. Copyright 1989 Academic Press, Inc

  7. Visibility Restoration for Single Hazy Image Using Dual Prior Knowledge

    Directory of Open Access Journals (Sweden)

    Mingye Ju

    2017-01-01

    Full Text Available Single image haze removal has been a challenging task due to its super ill-posed nature. In this paper, we propose a novel single image algorithm that improves the detail and color of such degraded images. More concretely, we redefine a more reliable atmospheric scattering model (ASM based on our previous work and the atmospheric point spread function (APSF. Further, by taking the haze density spatial feature into consideration, we design a scene-wise APSF kernel prediction mechanism to eliminate the multiple-scattering effect. With the redefined ASM and designed APSF, combined with the existing prior knowledge, the complex dehazing problem can be subtly converted into one-dimensional searching problem, which allows us to directly obtain the scene transmission and thereby recover visually realistic results via the proposed ASM. Experimental results verify that our algorithm outperforms several state-of-the-art dehazing techniques in terms of robustness, effectiveness, and efficiency.

  8. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  9. Comparison of the effect of radiation exposure from dual-energy CT versus single-energy CT on double-strand breaks at CT pulmonary angiography.

    Science.gov (United States)

    Tao, Shu Min; Li, Xie; Schoepf, U Joseph; Nance, John W; Jacobs, Brian E; Zhou, Chang Sheng; Gu, Hai Feng; Lu, Meng Jie; Lu, Guang Ming; Zhang, Long Jiang

    2018-04-01

    To compare the effect of dual-source dual-energy CT versus single-energy CT on DNA double-strand breaks (DSBs) in blood lymphocytes at CT pulmonary angiography (CTPA). Sixty-two patients underwent either dual-energy CTPA (Group 1: n = 21, 80/Sn140 kVp, 89/38 mAs; Group 2: n = 20, 100/Sn140 kVp, 89/76 mAs) or single-energy CTPA (Group 3: n = 21, 120 kVp, 110 mAs). Blood samples were obtained before and 5 min after CTPA. DSBs were assessed with fluorescence microscopy and Kruskal-Walls tests were used to compare DSBs levels among groups. Volume CT dose index (CTDIvol), dose length product (DLP) and organ radiation dose were compared using ANOVA. There were increased excess DSB foci per lymphocyte 5 min after CTPA examinations in three groups (Group 1: P = .001; Group 2: P = .001; Group 3: P = .006). There were no differences among groups regarding excess DSB foci/cell and percentage of excess DSBs (Group 1, 23%; Group 2, 24%; Group 3, 20%; P = .932). CTDIvol, DLP and organ radiation dose in Group 1 were the lowest among the groups (all P dual-source and single-source CTPA, while dual-source dual-energy CT protocols do not increase the estimated radiation dose and also do not result in a higher incidence of DNA DSBs in patients undergoing CTPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Change Detection in Full and Dual Polarization, Single- and Multifrequency SAR Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    of obtaining a smaller value of the test statistic are given. In a case study, airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bifrequency, bitemporal change detection with full and dual polarimetry...

  11. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  12. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  13. Operational characteristics of dual gain single cavity Nd:YVO 4 laser

    Indian Academy of Sciences (India)

    Operational characteristics of a dual gain single cavity Nd:YVO4 laser have been investigated. With semiconductor diode laser pump power of 2 W, 800 mW output was obtained with a slope efficiency of 49%. Further, by changing the relative orientation of the two crystals the polarization characteristics of the output could be ...

  14. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model.

    Directory of Open Access Journals (Sweden)

    Liyi Mai

    Full Text Available Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.

  15. Laser excited fluorescence spectrum of Ho3+:SrF2 single crystal

    International Nuclear Information System (INIS)

    Lal, Bansi; Ramachandra Rao, D.

    1980-01-01

    The fluorescence spectrum of Ho 3+ : SrF 2 single crystal excited by the various lines of an Ar + laser, is reported. The three fluorescence groups recorded in the region 5300-7700 A, correspond to the transitions from ( 5 F 4 , 5 S 2 ) to 5 I 8 , 5 F 5 to 5 I 8 , 5 F 3 to 5 I 7 and ( 5 F 4 , 5 S 2 ) to 5 I 7 . Marked changes in the total integrated intensity of the various fluorescence groups with the change in the exciting wavelength are observed. (author)

  16. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity.

    Science.gov (United States)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G; Achilefu, Samuel

    2013-01-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  17. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation.

    Science.gov (United States)

    Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong

    2016-01-01

    Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  19. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wu-Sheng Sun

    2016-01-01

    Full Text Available Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE and proximal enhancer (PE, in the 5′ upstream regulatory sequences (URSs of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs and epiblast stem cells (EpiSCs. We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free-Oct4-promoter-driven EGFP reporter cassette with a PE-free-Oct4-promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9 and a mouse EpiSC-like cell line (P19 before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  20. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanovic, Zoran; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans; Weckhuysen, Bert M.

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a ...

  1. Perspectives about family meals from single-headed and dual-headed households: a qualitative analysis.

    Science.gov (United States)

    Berge, Jerica M; Hoppmann, Caroline; Hanson, Carrie; Neumark-Sztainer, Dianne

    2013-12-01

    Cross-sectional and longitudinal research has shown that family meals are protective for adolescent healthful eating behaviors. However, little is known about what parents think of these findings and whether parents from single- vs dual-headed households have differing perspectives about the findings. In addition, parents' perspectives regarding barriers to applying the findings on family meals in their own homes and suggestions for more widespread adoption of the findings are unknown. The current study aimed to identify single- and dual-headed household parents' perspectives regarding the research findings on family meals, barriers to applying the findings in their own homes, and suggestions for helping families have more family meals. The current qualitative study included 59 parents who participated in substudy of two linked multilevel studies-EAT 2010 (Eating and Activity in Teens) and Families and Eating and Activity in Teens (F-EAT). Parents (91.5% female) were racially/ethnically and socioeconomically diverse. Data were analyzed using a grounded theory approach. Results from the current study suggest that parents from both single- and dual-headed households have similar perspectives regarding why family meals are protective for healthful eating habits for adolescents (eg, provides structure/routine, opportunities for communication, connection), but provide similar and different reasons for barriers to family meals (eg, single-headed=cost vs dual-headed=lack of creativity) and ideas and suggestions for how to increase the frequency of family meals (eg, single-headed=give fewer options vs dual-headed=include children in the meal preparation). Findings can help inform public health intervention researchers and providers who work with adolescents and their families to understand how to approach discussions regarding reasons for having family meals, barriers to carrying out family meals, and ways to increase family meals depending on family structure. Copyright

  2. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications

    International Nuclear Information System (INIS)

    Madhan Kumar, A.; Kwon, Sun Hwan; Jung, Hwa Chul; Shin, Kwang Seon

    2015-01-01

    Plasma Electrolytic Oxidation (PEO) coatings are known to be one of the most appropriate method for corrosion protection of magnesium (Mg) alloy. The improvement of PEO coatings and the optimization of their surface aspects are of major importance. In this current work, the influence of dual PEO coating on strip-cast AZ31 Mg alloy substrate has been evaluated with the aim of improving the surface and corrosion protection aspects. For this purpose, AZ31 Mg substrates are subjected to single and dual PEO processing in silicate and phosphate electrolyte under similar condition. Scanning electron microscopy (SEM) analysis confirmed that the number of pores in PEO coating processed in silicate electrolyte is higher than others. X-ray diffraction analysis of PEO coatings showed that the surface coating is mainly comprised of Mg 2 SiO 4 , Mg 3 (PO 4 ) 2 and MgO with different quantity based on PEO processing. Compared with the AZ31 Mg, the corrosion potential (E corr ) of both type PEO coatings was positively shifted about 250–400 mV and the corrosion current density (i corr ) was lowered by 3-4 orders of magnitude as result of adequate corrosion protection to the Mg alloy in 3.5% NaCl solution. All of the observation obviously showed that the dual PEO coating provides better corrosion protection performance than their respective single due to its synergistic beneficial effect. - Highlights: • Influence of dual PEO coating on AZ31 Mg alloy substrate was evaluated. • XRD confirmed formation of thin MgO inner, Mg 3 (PO 4 ) 2 and Mg 2 SiO 4 outer layer. • SEM results showed uniform coating with no cracks and relatively less micro pores. • Micro hardness of dual PEO coatings is higher than single PEO coatings. • Dual coating provides superior corrosion performance due to its synergistic effect

  3. Monitoring the aggregation of single casein micelles using fluorescence microscopy

    DEFF Research Database (Denmark)

    Bomholt, Julie; Moth-Poulsen, Kasper; Harboe, Marianne

    2011-01-01

    The aggregation of casein micelles (CMs) induced by milk-clotting enzymes is a process of fundamental importance in the dairy industry for cheese production; however, it is not well characterized on the nanoscale. Here we enabled the monitoring of the kinetics of aggregation between single CMs (30...

  4. Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2006-01-01

    When analyzing the emission of a large number of individual chromophores embedded in a matrix, the spread of the observed parameters is a characteristic property for the particular chromophore-matrix system. To quantitatively assess the influence of the matrix on the single molecule emission

  5. Single Oligomer Spectra Probe Chromophore Nanoenvironments of Tetrameric Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J.; Subramaniam, Vinod

    2006-01-01

    When analyzing the emission of a large number of individual chromophores embedded in a matrix, the spread of the observed parameters is a characteristic property for the particular chromophore−matrix system. To quantitatively assess the influence of the matrix on the single molecule emission

  6. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.

    Science.gov (United States)

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R; Hale, Laura P

    2016-02-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies. © 2016 The Histochemical Society.

  7. Exchange mechanisms for single photo- and electroproduction using the dual fermion model

    International Nuclear Information System (INIS)

    Becker, L.; Weigt, G.

    1976-01-01

    Single pion real and virtual photoproduction data are compared with phenomenological dual fermion amplitudes, which were previously applied to quasi-two body vector and tensor meson production. The similar structures of the photon and the corresponding vector meson data (in the s-channel helicity system) such as spikes and dips, usually described by Regge pole/Regge cut interferences, are reproduced by the dual Born amplitudes. Predictions of the model for the differential cross sections, in particular their parts for natural and unnatural spin-parity t-channel exchanges as well as their mass dependence, and photon and target asymmetries are in reasonable agreement with the experimental data. (author)

  8. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  9. Resonance fluorescence and quantum interference of a single NV center

    Science.gov (United States)

    Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.

    2017-11-01

    The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.

  10. Spectrum of acetylene fluorescence excited by single XUV photons

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1982-01-01

    The spectrum of visible emission from photofragments of acetylene excited by single 16.85 eV photons has been recorded for the first time. The spectrum is dominated by the Swan and Deslandres-d'Azambuja bands of C 2 and the 431.5 nm band of CH. The yields of these emissions are of the order 10 -3 photons per absorbed incident photon. The experimental conditions suggest that the emission results from primary C* 2 and CH* photofragments

  11. Control of Single Molecule Fluorescence Dynamics by Stimulated Emission Depletion

    OpenAIRE

    Marsh, R. J.; Osborne, M. A.; Bain, A. J.

    2003-01-01

    The feasibility of manipulating the single molecule absorption-emission cycle using picosecond stimulated emission depletion (STED) is investigated using a stochastic computer simulation. In the simulation the molecule is subjected to repeated excitation and depletion events using time delayed pairs of excitation (PUMP) and depletion (DUMP) pulses derived from a high repetition rate pulsed laser system. The model is used to demonstrate that a significant and even substantial reduction in the ...

  12. Comparison of single and dual layer detector blocks for pre-clinical MRI–PET

    International Nuclear Information System (INIS)

    Thompson, Christopher; Stortz, Greg; Goertzen, Andrew; Berg, Eric; Retière, Fabrice; Kozlowski, Piotr; Ryner, Lawrence; Sossi, Vesna; Zhang, Xuezhu

    2013-01-01

    Dual or multi-layer crystal blocks have been proposed to minimise the radial blurring effect in PET scanners with small ring diameters. We measured two potential PET detector blocks' performance in a configuration which would allow 16 blocks in a ring which could be inserted in a small animal 7T MRI scanner. Two crystal sizes, 1.60×1.60 mm 2 and 1.20×1.20 mm 2 , were investigated. Single layer blocks had 10 or 12 mm deep crystals, the dual layer blocks had 4 mm deep crystals on the top layer and 6 mm deep crystals on the bottom layer. The crystals in the dual layer blocks are offset by ½ of the crystal pitch to allow for purely geometric crystal identification. Both were read out with SensL 4×4 SiPM arrays. The software identifies 64 crystals in the single layer and either 85 or 113 crystals in the dual layer array, (either 49 or 64 in the lower layers and 36 or 49 in the upper layers). All the crystals were clearly visible in the crystal identification images and their resolvability indexes (average FWHM/crystal separation) were shown to range from 0.29 for the best single layer block to 0.33 for the densest dual layer block. The best coincidence response FWHM was 0.95 mm for the densest block at the centre of the field. This degraded to 1.83 mm at a simulated radial offset of 16 mm from the centre, while the single layer crystals blurred this result to 3.4 mm. The energy resolution was 16.4±2.2% averaged over the 113 crystals of the densest block

  13. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G

    2009-05-01

    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  14. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples

    Science.gov (United States)

    He, Lijun; Zhang, Heng; Fan, Huanhuan; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guo Qiang

    2018-01-01

    Herein, we propose a simple and effective strategy for designing a ratiometric fluorescent nanosensor. We designed and developed a carbon dots (CDs) based dual-emission nanosensor for vanadium(V) by coating the surface of dye-doped silica nanoparticles with CDs. The fluorescence of dual-emission silica nanoparticles was quenched in acetic acid through potassium bromate (KBrO3) oxidation. V(V) could catalyze KBrO3 oxidation reaction process, resulting in the ratiometric fluorescence quenching of dual-emission silica nanoparticles. We investigated several important parameters affecting the performance of the nanosensor. Under the optimized conditions, the detection limit of this nanosensor reached 1.1 ng mL- 1 and the linear range from 10 to 800 ng mL- 1. Furthermore, we found that the sensor was suitable for determination of V(V) in different mineral water samples with satisfactory results.

  15. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  16. A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery

    Science.gov (United States)

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Hu, Chuanzhen; Ye, Jian; Gan, Qi; Liu, Peng; Yue, Jian; Wang, Benzhong; Shao, Pengfei; Povoski, Stephen P.; Martin, Edward W.; Yilmaz, Alper; Tweedle, Michael F.; Xu, Ronald X.

    2016-03-01

    Surgical resection remains the primary curative intervention for cancer treatment. However, the occurrence of a residual tumor after resection is very common, leading to the recurrence of the disease and the need for re-resection. We develop a surgical Google Glass navigation system that combines near infrared fluorescent imaging and ultrasonography for intraoperative detection of sites of tumor and assessment of surgical resection boundaries, well as for guiding sentinel lymph node (SLN) mapping and biopsy. The system consists of a monochromatic CCD camera, a computer, a Google Glass wearable headset, an ultrasonic machine and an array of LED light sources. All the above components, except the Google Glass, are connected to a host computer by a USB or HDMI port. Wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A control program is written in C++ to call OpenCV functions for image calibration, processing and display. The technical feasibility of the system is tested in both tumor simulating phantoms and in a human subject. When the system is used for simulated phantom resection tasks, the tumor boundaries, invisible to the naked eye, can be clearly visualized with the surgical Google Glass navigation system. This system has also been used in an IRB approved protocol in a single patient during SLN mapping and biopsy in the First Affiliated Hospital of Anhui Medical University, demonstrating the ability to successfully localize and resect all apparent SLNs. In summary, our tumor simulating phantom and human subject studies have demonstrated the technical feasibility of successfully using the proposed goggle navigation system during cancer surgery.

  17. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  18. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  19. Fluorescence spectra of bithiophene and terthiophene single crystals and of their isolated molecules in cyclodextrin

    International Nuclear Information System (INIS)

    Gombojav, Bold; Namsrai, Nasanbat; Yoshinari, Takehisa; Nagasaka, Shin-ichiro; Itoh, Hiroki; Koyama, Kiyohito

    2004-01-01

    In order to examine the effect of subsumption space of β- and γ-cyclodextrin (CyD) on the photophysics of oligothiophenes, 2, 2'-bithiophene (BT) and 2, 2': 5', 2''-terthiophene (TT), the fluorescence spectra were compared with those of the single crystals (SC) at 15, 77 K and room temperature (RT). Both the numbers of BT included in β- and γ-CyD are twin (BT 2 ). The numbers of TT included in β- and γ-CyD are unit (TT 1 ) and twin (TT 2 ), respectively. Electronic excitation of BT encapsulated in β- and γ-CyD gives similar fluorescence spectra, showing bathochromic shift compared with that of BT single crystal, (BT) SC . The observation that the fluorescence spectra of encapsulated BT 2 are similar to the spectra of its THF solution suggests the configuration of BT 2 in β- and γ-CyD should be face-to-face configuration (BT 2 ) parrallel . On the contrary, TT in β- and in γ-CyD afford quite different fluorescence spectra. Encapsulated TT in β-CyD exhibits the hypsochromic shift of fluorescence maxima compared to that of TT single crystal, (TT) SC . While the bathochromically shifted fluorescence spectra of TT 2 in γ-CyD is also ascribed to the face-to-face configuration (TT 2 ) parallel as in the case of BT 2 in γ-CyD. Fluorescence spectra show the excited ground state complex of BT 2 and TT 2 in γ-CyD

  20. Abnormal Ventral and Dorsal Attention Network Activity During Single and Dual Target Detection in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Amy M. Jimenez

    2016-03-01

    Full Text Available Early visual perception and attention are impaired in schizophrenia, and these deficits can be observed on target detection tasks. These tasks activate distinct ventral and dorsal brain networks which support stimulus-driven and goal-directed attention, respectively. We used single and dual target rapid serial visual presentation (RSVP tasks during fMRI with an ROI approach to examine regions within these networks associated with target detection and the attentional blink (AB in 21 schizophrenia outpatients and 25 healthy controls. In both tasks, letters were targets and numbers were distractors. For the dual target task, the second target (T2 was presented at 3 different lags after the first target (T1 (lag1=100ms, lag3=300ms, lag7=700ms. For both single and dual target tasks, patients identified fewer targets than controls. For the dual target task, both groups showed the expected AB effect with poorer performance at lag 3 than at lags 1 or 7, and there was no group by lag interaction. During the single target task, patients showed abnormally increased deactivation of the temporo-parietal junction (TPJ, a key region of the ventral network. When attention demands were increased during the dual target task, patients showed overactivation of the posterior intraparietal cortex, a key dorsal network region, along with failure to deactivate TPJ. Results suggest inefficient and faulty suppression of salience-oriented processing regions, resulting in increased sensitivity to stimuli in general, and difficulty distinguishing targets from non-targets.

  1. Dual joint space arthrography in temporomandibular joint disorders: Comparison with single inferior joint space arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Sik; Chang, Duk Soo; Lee, Kyung Soo; Kim, Woo Sun; Sung, Jung Ho; Jun, Young Hwan [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1989-02-15

    The temporomandibular joint(TMJ) is really a complex of two synovial space separated by fibrocartilaginous disc. Single inferior joint space arthrography is commonly performed for evaluation of TMJ disorders, which is known to be superior in demonstrating joint dynamics. But it reveals only the inferior surface of the disc. Therefore, dual space arthrography is superior to demonstrate the soft tissue anatomic feature of the joint such as disc position and shape. Authors performed 83 TMJ arthrograms in TMJ problems. Initially, the inferior joint space was done and then the superior space was sequentially contrasted. The follow results were noted: 1. In all cases, dual space arthrography revealed accurate disc shape and positions. 2. Concordant findings between the two techniques: 68 cases (82%). Discordance between the two techniques: 15 cases (18%) 3. Possible causes of discordance between inferior and dual space arthrography. a) Normal varians of anterior recess: 3 cases b) Posterior disc displacement: 4 cases c) Influence of the patient's head position change :4 cases d) False perforation: 2 cases e) Reduction change: 2 cases 4. In 5 cases with anterior displacement, dual space arthrography gave additional findings such as adhesion within the superior space, which could not be evaluated by single inferior space.

  2. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    Science.gov (United States)

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  3. Dual purpose scanner for thyroid imaging in the fluorescence and emission modes

    International Nuclear Information System (INIS)

    Charleston, D.; Beck, R.; Yasillo, N.; Atkins, F.; Cooper, M.; Kirchner, P.

    1981-01-01

    Quantitative elemental analysis by the use of stimulated fluorescence x-rays has been applied in an imaging modality whereby the relative concentration of iodine-127 in the thyroid can be mapped, and total iodine in the gland estimated for the diagnosis of malignant and benign nodules. To further the development of fluorescence imaging of the thyroid, three areas of work are described which include theoretical studies, empirical studies and hardware development, and clinical feasibility studies

  4. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  6. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  7. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament.

    Science.gov (United States)

    Genjo, Takuya; Sotoma, Shingo; Tanabe, Ryotaro; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-01-01

    Recently, the importance of conformational changes in actin filaments induced by mechanical stimulation of a cell has been increasingly recognized, especially in terms of mechanobiology. Despite its fundamental importance, however, long-term observation of a single actin filament by fluorescent microscopy has been difficult because of the low photostability of traditional fluorescent molecules. This paper reports a novel molecular labeling system for actin filaments using fluorescent nanodiamond (ND) particles harboring nitrogen-vacancy centers; ND has flexible chemical modifiability, extremely high photostability and biocompatibility, and provides a variety of physical information quantitatively via optically detected magnetic resonance (ODMR) measurements. We performed the chemical surface modification of an ND with the actin filament-specific binding peptide Lifeact and observed colocalization of pure Lifeact-modified ND and actin filaments by the ODMR selective imaging protocol, suggesting the capability of long-term observation and quantitative analysis of a single molecule by using an ND particle.

  8. Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe.

    Science.gov (United States)

    Zhang, Ruilong; Zhao, Jun; Han, Guangmei; Liu, Zhengjie; Liu, Cui; Zhang, Cheng; Liu, Bianhua; Jiang, Changlong; Liu, Renyong; Zhao, Tingting; Han, Ming-Yong; Zhang, Zhongping

    2016-03-23

    Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime.

  9. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezkhin, V.; Cogdell, R.J.; van Grondelle, R.

    2004-01-01

    We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as

  10. A Nanofluidic Mixing Device for High-throughput Fluorescence Sensing of Single Molecules

    NARCIS (Netherlands)

    Mathwig, Klaus; Fijen, C.; Fontana, M.; Lemay, S.G.; Hohlbein, J.C.

    2017-01-01

    We introduce a nanofluidic mixing device entirely fabricated in glass for the fluorescence detection of single molecules. The design consists of a nanochannel T-junction and allows the continuous monitoring of chemical or enzymatic reactions of analytes as they arrive from two independent inlets.

  11. Single- versus dual-energy quantitative computed tomography for spinal densitometry in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laan, R.F.J.M.; Erning, L.J.Th.O. van; Lemmens, J.A.M.; Putte, L.B.A. van de; Ruijs, S.H.J.; Riel, P.L.C.M. van

    1992-01-01

    Lumbar bone mineral density was measured by both single- and dual-energy quantitative computed tomography in 109 patients with rheumatoid arthritis. The results were corrected for the age-related increase in vertebral fat content by converting them to percentages of expected densities, using sex and energy-level specific regression equations obtained in a normal reference population. The percentages of expected density are approximately 10% lower in the single- than in the dual-energy mode, both in the patients with and without prednisone therapy. This difference is statistically highly significant, and is positively correlated with the duration of the disease and with the degree of radiological joint destruction. The data suggest that the vertebral fat content may be increased in patients with rheumatoid arthritis, as a consequence of disease-dependent mechanisms. (Author)

  12. Ultrasound-guided single-penetration dual-injection block for leg and foot surgery

    DEFF Research Database (Denmark)

    Børglum, Jens; Johansen, Karina; Christensen, Karen Margrethe

    2014-01-01

    We describe a new approach to blocking the sciatic and saphenous nerves in the proximal thigh (level of the lesser trochanter or immediately below) using a single-penetration dual-injection (SPEDI) technique. The popliteal-sciatic approach necessitates repositioning of the leg exposing the poplit......We describe a new approach to blocking the sciatic and saphenous nerves in the proximal thigh (level of the lesser trochanter or immediately below) using a single-penetration dual-injection (SPEDI) technique. The popliteal-sciatic approach necessitates repositioning of the leg exposing...... the popliteal fossa and an extra injection for the saphenous nerve (SAN) block at the midthigh level. We introduce an alternative, effective, and possibly faster method....

  13. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    Energy Technology Data Exchange (ETDEWEB)

    Pina-Luis, Georgina, E-mail: gpinaluis@yahoo.com [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Martinez-Quiroz, Marisela; Ochoa-Teran, Adrian [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Santacruz-Ortega, Hisila [Departamento de investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Mendez-Valenzuela, Eduardo [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico)

    2013-02-15

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb{sup 2+} ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV-visible and fluorescence spectroscopy. Compounds 1(a-d) with different length alkyl linkers (CH{sub 2}){sub n} (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5-8) and was only slightly influenced by the addition of metal ions in CH{sub 3}CN solutions. However, derivative 1e with amino-containing spacer (CH{sub 2}-NH-CH{sub 2}) showed excimer emission in aqueous solution, a wide response to pH (2.5-9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li{sup +}, Na{sup +}, K{sup +}, Cs{sup +}, Ca{sup 2+}, Mg{sup 2+}, Ba{sup 2+}, Cu{sup 2+}, Pb{sup 2+}, Ni{sup 2+}, Zn{sup 2+} and Cd{sup 2+}. The coordination chemistry of these complexes was studied by UV-Vis, fluorescence and {sup 1}H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb{sup 2+} ions in the presence of the metals ions mentioned in CH{sub 3}CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb{sup 2+} ions, results in less than {+-}5% fluorescence intensity changes. Linear calibration up to 1 Multiplication-Sign 10{sup -5} M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0 Multiplication-Sign 10{sup -8} M. - Highlights: Black-Right-Pointing-Pointer A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb{sup 2+} ions is synthetized. Black-Right-Pointing-Pointer The excimer formation depends on the spacer that links the two naphthalimide groups. Black-Right-Pointing-Pointer Bis

  14. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  15. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  16. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  17. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  18. Mobility-limiting mechanisms in single and dual channel strained Si/SiGe MOSFETs

    International Nuclear Information System (INIS)

    Olsen, S.H.; Dobrosz, P.; Escobedo-Cousin, E.; Bull, S.J.; O'Neill, A.G.

    2005-01-01

    Dual channel strained Si/SiGe CMOS architectures currently receive great attention due to maximum performance benefits being predicted for both n- and p-channel MOSFETs. Epitaxial growth of a compressively strained SiGe layer followed by tensile strained Si can create a high mobility buried hole channel and a high mobility surface electron channel on a single relaxed SiGe virtual substrate. However, dual channel n-MOSFETs fabricated using a high thermal budget exhibit compromised mobility enhancements compared with single channel devices, in which both electron and hole channels form in strained Si. This paper investigates the mobility-limiting mechanisms of dual channel structures. The first evidence of increased interface roughness due to the introduction of compressively strained SiGe below the tensile strained Si channel is presented. Interface corrugations degrade electron mobility in the strained Si. Roughness measurements have been carried out using AFM and TEM. Filtering AFM images allowed roughness at wavelengths pertinent to carrier transport to be studied and the results are in agreement with electrical data. Furthermore, the first comparison of strain measurements in the surface channels of single and dual channel architectures is presented. Raman spectroscopy has been used to study channel strain both before and after processing and indicates that there is no impact of the buried SiGe layer on surface macrostrain. The results provide further evidence that the improved performance of the single channel devices fabricated using a high thermal budget arises from improved surface roughness and reduced Ge diffusion into the Si channel

  19. Single- and dual-energy quantitative CT adjacent to acetabular prosthetic components

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    2017-01-01

    and to compare BMD measurements in single and dual energy CT (SECT and DECT). Methods and Materials: 10 male patients with uncemented hip prosthetics were scanned and rescanned using 120 kVp SECT and DECT with virtual monochromatic images reconstructed at 130 keV. Hemispherical ROIs were defined slice...... that the intraobserver agreement of the scan modes is equal. BMD cannot be measured interchangeably with SECT and DECT....

  20. Performance of low-resistivity single and dual-gap RPCs for LHCb

    CERN Document Server

    Adinolfi, M; Messi, R; Pacciani, L; Paoluzi, L; Santovetti, E

    2000-01-01

    Resistive plate chambers (RPC) are strong candidates for the outer regions of the LHCb muon detector. We have tested single-gap and dual-gap detectors built with low-resistivity phenolic plates ( rho =9*10/sup 9/ Omega cm) and operated in avalanche mode. Measurements have been performed over a wide range of beam intensities and on the GIF at CERN. The results are presented and discussed, with special emphasis on the detection efficiency. (6 refs).

  1. Performance of low resistivity single and dual-gap RPCs for LHCb

    CERN Document Server

    Adinolfi, M; Messi, R; Pacciani, L; Santovetti, E; Santovetti, Emanuele

    1999-01-01

    99-049 RPCs are strong candidates for the outer regions of the LHCb muon detector. We have tested single-gap and dual-gap detectors built with low-resistivity phenolic plates (ro = 9 x 10^9 microcm) and operated in avalanche mode. Measurements have been performed over a wide range of beam intensities and on the GIF at CERN. The results are presented and discussed, with special emphasis on the detection efficiency.

  2. Comparison of single and consecutive dual frequency induction surface hardening of gear wheels

    Science.gov (United States)

    Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.

    2018-05-01

    Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.

  3. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    Science.gov (United States)

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  4. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  5. Multivariate statistical analyses demonstrate unique host immune responses to single and dual lentiviral infection.

    Directory of Open Access Journals (Sweden)

    Sunando Roy

    2009-10-01

    Full Text Available Feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals, and the "immune profiles" that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNgamma, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual

  6. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    Science.gov (United States)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.

    2016-01-01

    Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions. PMID:27760166

  7. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    Science.gov (United States)

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  9. Dansyl-8-aminoquinoline as a sensitive pH fluorescent probe with dual-responsive ranges in aqueous solutions.

    Science.gov (United States)

    Zhang, Min; Zheng, Shuyu; Ma, Liguo; Zhao, Meili; Deng, Lengfang; Yang, Liting; Ma, Li-Jun

    2014-04-24

    A sensitive pH fluorescent probe based on dansyl group, dansyl-8-aminoquinoline (DAQ), has been synthesized. The probe showed dual-responsive ranges to pH changes, one range from 2.00 to 7.95 and another one from 7.95 to 10.87 in aqueous solution, as it showed pKa values of 5.73 and 8.56 under acid and basic conditions, respectively. Furthermore, the pH response mechanism of the probe was explored successfully by using NMR spectra. The results indicated that the responses of DAQ to pH changes should attribute to the protonation of the nitrogen atom in the dimethylamino group and deprotonation of sulfonamide group. Copyright © 2014. Published by Elsevier B.V.

  10. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank|info:eu-repo/dai/nl/412642697; Meirer, Florian; Kubarev, Alexey V.; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Roeffaers, Maarten B J; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the

  11. A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocystein.

    Science.gov (United States)

    Wang, Feiyi; Zhou, Li; Zhao, Chunchang; Wang, Rui; Fei, Qiang; Luo, Sihang; Guo, Zhiqian; Tian, He; Zhu, Wei-Hong

    2015-04-01

    In situ monitoring of intracellular thiol activity in cell growth and function is highly desirable. However, the discriminative detection of glutathione (GSH) from cysteine (Cys) and homocystein (Hcy) and from common amino acids still remains a challenge due to the similar reactivity of the thiol groups in these amino acids. Here we report a novel strategy for selectively sensing GSH by a dual-response mechanism. Integrating two independent reaction sites with a disulfide linker and a thioether function into a fluorescent BODIPY-based chemsensor can guarantee the synergetic dual-response in an elegant fashion to address the discrimination of GSH. In the first synergetic reaction process, the thiol group in GSH, Cys and Hcy induces disulfide cleavage and subsequent intramolecular cyclization to release the unmasked phenol-based BODIPY ( discriminating thiol amino acids from other amino acids ). In the second synergetic process, upon the substitution of the thioether with the nucleophilic thiolate to form a sulfenyl-BODIPY, only the amino groups of Cys and Hcy, but not that of GSH, undergo a further intramolecular displacement to yield an amino-substituted BODIPY. In this way, we make full use of the kinetically favorable cyclic transition state in the intramolecular rearrangement, and enable photophysical distinction between sulfenyl- and amino-substituted BODIPY for allowing the discriminative detection of GSH over Cys and Hcy and thiol-lacking amino acids under physiological conditions. Moreover, this probe exhibits a distinguishable ratiometric fluorescence pattern generated from the orange imaging channel to the red channel, which proves the differentiation of GSH from Cys and Hcy in living cells.

  12. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  14. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kačenka, M.; Kaman, Ondřej; Kotek, J.; Falteisek, L.; Černý, J.; Jirák, D.; Herynek, V.; Zacharovová, K.; Berková, A.; Jendelová, Pavla; Kupčík, Jaroslav; Pollert, Emil; Veverka, Pavel; Lukeš, I.

    2011-01-01

    Roč. 21, č. 1 (2011), s. 157-164 ISSN 0959-9428 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390703; CEZ:AV0Z40720504 Keywords : cellular labelling * dual probe * magnetic nanoparticles * MRI * silica coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  15. Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties

    Science.gov (United States)

    Han, Yuzhi; Tang, Di; Yang, Yanmei; Li, Chuanxi; Kong, Weiqian; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-03-01

    A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction.A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction. Electronic supplementary information (ESI) available: TEM images, UV-Vis absorption, PL, Raman, FTIR, XPS, CV, and LSV data of single/dual doped CQDs, a table for the calculated mass concentrations of different atoms in various B, N, P or S containing CQDs and a table for summary of the ORR performance of various catalysts in an O2-saturated 0.1 M KOH solution. See DOI: 10.1039/c4nr07116f

  16. Single-Task and Dual-Task Gait Among Collegiate Athletes of Different Sport Classifications: Implications for Concussion Management.

    Science.gov (United States)

    Howell, David R; Oldham, Jessie R; DiFabio, Melissa; Vallabhajosula, Srikant; Hall, Eric E; Ketcham, Caroline J; Meehan, William P; Buckley, Thomas A

    2017-02-01

    Gait impairments have been documented following sport-related concussion. Whether preexisting gait pattern differences exist among athletes who participate in different sport classifications, however, remains unclear. Dual-task gait examinations probe the simultaneous performance of everyday tasks (ie, walking and thinking), and can quantify gait performance using inertial sensors. The purpose of this study was to compare the single-task and dual-task gait performance of collision/contact and noncontact athletes. A group of collegiate athletes (n = 265) were tested before their season at 3 institutions (mean age= 19.1 ± 1.1 years). All participants stood still (single-task standing) and walked while simultaneously completing a cognitive test (dual-task gait), and completed walking trials without the cognitive test (single-task gait). Spatial-temporal gait parameters were compared between collision/contact and noncontact athletes using MANCOVAs; cognitive task performance was compared using ANCOVAs. No significant single-task or dual-task gait differences were found between collision/contact and noncontact athletes. Noncontact athletes demonstrated higher cognitive task accuracy during single-task standing (P = .001) and dual-task gait conditions (P = .02) than collision/contact athletes. These data demonstrate the utility of a dual-task gait assessment outside of a laboratory and suggest that preinjury cognitive task performance during dual-tasks may differ between athletes of different sport classifications.

  17. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  18. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.

    Science.gov (United States)

    Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin

    2011-03-01

    Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.

  19. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    Science.gov (United States)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  20. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential.

    Science.gov (United States)

    Moscatelli, Natalina; Spagnolo, Barbara; Pisanello, Marco; Lemma, Enrico Domenico; De Vittorio, Massimo; Zara, Vincenzo; Pisanello, Ferruccio; Ferramosca, Alessandra

    2017-12-20

    Sperm cells progressive motility is the most important parameter involved in the fertilization process. Sperm middle piece contains mitochondria, which play a critical role in energy production and whose proper operation ensures the reproductive success. Notably, sperm progressive motility is strictly related to mitochondrial membrane potential (MMP) and consequently to mitochondrial functionality. Although previous studies presented an evaluation of mitochondrial function through MMP assessment in entire sperm cells samples, a quantitative approach at single-cell level could provide more insights in the analysis of semen quality. Here we combine laser scanning confocal microscopy and functional fluorescent staining of mitochondrial membrane to assess MMP distribution among isolated spermatozoa. We found that the sperm fluorescence value increases as a function of growing progressive motility and that such fluorescence is influenced by MMP disruptors, potentially allowing for the discrimination of different quality classes of sperm cells in heterogeneous populations.

  1. Fluorescent metal nanoshell and CK19 detection on single cell image

    International Nuclear Information System (INIS)

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R.; Zhao, Richard Y.

    2011-01-01

    Highlights: → Novel metal nanoshell as fluorescence imaging agent. → Fluorescent mAb-metal complex with enhanced intensity and shortened lifetime. → Immuno-interactions of mAb-metal complexes with CK19 molecules on CNCAP and HeLa cell surfaces. → Isolation of conjugated mAb-metal complexes from cellular autofluorescence on cell image. -- Abstract: In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  2. Single-task and dual-task tandem gait test performance after concussion.

    Science.gov (United States)

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  4. Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.

    Science.gov (United States)

    Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur

    2016-01-01

    Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus.

    Science.gov (United States)

    He, Xiaoxiao; Li, Yuhong; He, Dinggen; Wang, Kemin; Shangguan, Jingfang; Shi, Hui

    2014-07-01

    This paper describes a sensitive and specific determination strategy for Staphylococcus aureus (S. aureus) detection using aptamer recognition and fluorescent silica nanoparticles (FSiNPs) label based dual-color flow cytometry assay (Aptamer/FSiNPs-DCFCM). In the protocol, an aptamer, having high affinity to S. aureus, was first covalently immobilized onto chloropropyl functionalized FSiNPs through a click chemistry approach to generate aptamer-nanoparticles bioconjugates (Aptamer/FSiNPs). Next, S. aureus was incubated with Aptamer/FSiNPs, and then stained with SYBR Green I (a special staining material for the duplex DNA). Upon target binding and nucleic acid staining with SYBR Green I, the S. aureus was determined using two-color flow cytometry. The method took advantage of the specificity of aptamer, signal amplification of FSiNPs label and decreased false positives of two-color flow cytometry assay. It was demonstrated that these Aptamer/FSiNPs could efficiently recognize and fluorescently label target S. aureus. Through multiparameter determination with flow cytometry, this assay allowed for detection of as low as 1.5 x 10(2) and 7.6 x 10(2) cells mL(-1) S. aureus in buffer and spiked milk, respectively, with higher sensitivity than the Aptamer/FITC based flow cytometry.

  6. Surgical treatment of patients with single and dual pathology: relevance of lesion and of hippocampal atrophy to seizure outcome.

    Science.gov (United States)

    Li, L M; Cendes, F; Watson, C; Andermann, F; Fish, D R; Dubeau, F; Free, S; Olivier, A; Harkness, W; Thomas, D G; Duncan, J S; Sander, J W; Shorvon, S D; Cook, M J; Arnold, D L

    1997-02-01

    Modern neuroimaging can disclose epileptogenic lesions in many patients with partial epilepsy and, at times, display the coexistence of hippocampal atrophy in addition to an extrahippocampal lesion (dual pathology). We studied the postoperative seizure outcome of 64 patients with lesional epilepsy (median follow-up, 30 months) and considered separately the surgical results in the 51 patients with a single lesion and in the 13 who had dual pathology. In patients with a single lesion, 85% were seizure free or significantly improved (Engel's class I-II) when the lesion was totally removed compared with only 40% when there was incomplete resection (p dual pathology who had both the lesion and the atrophic hippocampus removed became seizure free. In contrast, only 2 of the 10 patients with dual pathology undergoing surgery aimed at the lesion or at the hippocampus alone became seizure free (p dual pathology, surgery should, if possible, include resection of both the lesion and the atrophic hippocampus.

  7. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles.

    Science.gov (United States)

    Sun, Feifei; You, Ying; Liu, Jie; Song, Quanwei; Shen, Xiaotong; Na, Na; Ouyang, Jin

    2017-05-23

    A label- and enzyme-free fluorescent sensor for the detection of single-nucleotide polymorphisms (SNPs) at room temperature is proposed, using new copper nanoparticles (CuNPs) as fluorescent reporters. The CuNPs were constructed by using a DNA three-way junction (3WJ) template. In this assay, two complementary adenine/thymine-rich probes can hybridize with the wild-type target simultaneously to construct a 3WJ structure, serving as an efficient scaffold for the generation of CuNPs. However, the CuNPs produce weak fluorescence when the probes bind with a mutant-type target. SNPs can be identified by the difference in fluorescence intensity of the CuNPs. This SNPs detection strategy is straightforward, cost-effective, and avoids the complicated procedures of labeling or enzymatic reactions. The fluorescent sensor is versatile and can be applied to all types of mutation because the probes are programmable. Moreover, the sensor exhibits good detection performance in biological samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system

    International Nuclear Information System (INIS)

    Gil, Youngmi; Oh, Youngdo; Cho, Moohyun; Namkung, Won

    2011-01-01

    We propose a method to identify materials in the dual energy X-ray (DeX) inspection system. This method identifies materials by combining information on the relative proportions T of high-energy and low-energy X-rays transmitted through the material, and the ratio R of the attenuation coefficient of the material when high-energy are used to that when low energy X-rays are used. In Monte Carlo N-Particle Transport Code (MCNPX) simulations using the same geometry as that of the real container inspection system, this T vs. R method successfully identified tissue-equivalent plastic and several metals. In further simulations, the single-shot mode of operating the accelerator led to better distinguishing of materials than the dual-shot system.

  9. Contrasting single and multi-component working-memory systems in dual tasking.

    Science.gov (United States)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  11. Book reading styles in dual-parent and single-mother families.

    Science.gov (United States)

    Blake, Joanna; Macdonald, Silvana; Bayrami, Lisa; Agosta, Vanessa; Milian, Andrea

    2006-09-01

    Whereas many studies have investigated quantitative aspects of book reading (frequency), few have examined qualitative aspects, especially in very young children and through direct observations of shared reading. The purpose of this study was to determine possible differences in book-reading styles between mothers and fathers and between mothers from single- and dual-parent families. It also related types of parental verbalizations during book reading to children's reported language measures. Dual-parent (29) and single-parent (24) families were observed in shared book reading with their toddlers (15-month-olds) or young preschoolers (27-month-olds). Parent-child dyads were videotaped while book reading. The initiator of each book-reading episode was coded. Parents' verbalizations were exhaustively coded into 10 categories. Mothers completed the MacArthur Communicative Development Inventory, and the children were given the Bayley scales. All parents differentiated their verbalizations according to the age rather than the gender of the child, but single mothers imitated female children more than males. Few differences in verbalizations were found between mothers and fathers or between mothers from single- and dual-parent families. Fathers allowed younger children to initiate book-reading episodes more than mothers. For both age groups of children, combined across families, verbalizations that related the book to the child's experience were correlated with reported language measures. Questions and imitations were related to language measures for the older age group. The important types of parental verbalizations during shared book reading for children's language acquisition are relating, questions and imitations.

  12. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  13. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  14. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    Science.gov (United States)

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  15. Dual Optical Recordings for Action Potentials and Calcium Handling in Induced Pluripotent Stem Cell Models of Cardiac Arrhythmias Using Genetically Encoded Fluorescent Indicators

    Science.gov (United States)

    Song, LouJin; Awari, Daniel W.; Han, Elizabeth Y.; Uche-Anya, Eugenia; Park, Seon-Hye E.; Yabe, Yoko A.; Chung, Wendy K.

    2015-01-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics. PMID:25769651

  16. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  17. Dual fluorescence excitation spectra of methyl salicylate in a free jet

    Science.gov (United States)

    Heimbrook, Lou Ann; Kenny, Jonathan E.; Kohler, Bryan E.; Scott, Gary W.

    1981-11-01

    Separate fluorescence excitation spectra of the blue- and UV-emitting forms of methyl salicylate cooled in a free-jet expansion are reported. This study represents the first observation of the detailed vibrational structure of these transitions. The two excitation spectra have no features in common, and their intensity patterns are very different. Many individual lines are ˜2 cm-1 wide (nearly laser limited), although in the excitation spectrum of the UV emission, spectral congestion persists at high energies despite the high degree of cooling. (AIP)

  18. Complications and Mortality of Single Versus Dual Chamber Implantable Cardioverter Defibrillators

    Directory of Open Access Journals (Sweden)

    Ataallah Bagherzadeh

    2006-04-01

    Full Text Available Background: The implantable cardioverter defibrillators (ICDs are increasingly being used as a treatment modality for life threatening tachyarrhythmia. The purpose of this study was to compare the frequency of complications and mortality between single-chamber and dual-chamber ICD implantation in Shahid Rajaie cardiovascular center. Methods and results: Between January 2000 and December 2004, 234 patients received ICD by a percutaneous transvenous approach and were followed for 33 ± 23 months. The cumulative incidence of complications was 9.4% over the follow-up period. There was no significant difference in overall complication rate between single chamber (VR and dual chamber (DR ICD groups in the follow-up period (P= 0.11. The risk of complications did not have any statistically significant difference in secondary versus primary prevention groups (P=0.06. The complications were not associated with the severity of left ventricular systolic dysfunction (P=0.16.The frequency of lead-related complications was higher in dual chamber ICDs in comparison with single chamber ICDs (P=0.02. There was no significant difference in mortality between different sex groups (P=0.37, different indications for ICD implantation (P=0.43 or between VR and DR ICD groups (P= 0.55. Predictors of mortality were NYHA class III or more (P65 years (P=0.011 and LVEF<30% (P<0.001. The mortality in patients with CAD and DCM were significantly higher than those with other structural heart diseases (P=0.001. Conclusions: Close monitoring of patients during the first 2 month after ICD implantation is recommended because the majority of complications occur early after the procedure.

  19. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    Science.gov (United States)

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  20. Conversion of Beckman DK-2A spectrophotometer into an automatic single-photon counting fluorescence spectrophotometer

    International Nuclear Information System (INIS)

    Chikkur, G.C.; Lagare, M.T.; Umakantha, N.

    1981-01-01

    Details of how a DK-2A spectrophotometer can be modified into an automatic single-photon counting fluorescence spectrophotometer for recording a low intensity spectrum, are reported. The single-photon count-rate converted into a DC voltage is applied at the appropriate stage in the sample channel amplifier circuit of a DK-2A to get the pen deflection proportional to the count-rate. A high intensity spectrum may be recorded in the usual way by merely turning the shaft of the mirror motor by 180 degrees. (author)

  1. Single-Layer, Dual-Port, Dual-Band, and Orthogonal-Circularly Polarized Microstrip Antenna Array with Low Frequency Ratio

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available A single-layer, dual-port, dual-band, and dual circularly polarized (CP microstrip array is designed for satellite communication in this paper. The operating frequencies are 8.2 and 8.6 GHz with a very low ratio of 1.05. First, a rectangular patch element is fed through microstrip lines at two orthogonal edges to excite two orthogonal dominant modes of TM01 and TM10. The very low frequency ratio can be realized with high polarization isolations. Then, a 2-by-2 dual-band dual-CP subarray is constructed by two independent sets of sequentially rotated (SR feed structures. An 8-by-8 array is designed on the single-layer thin substrate. Finally, by utilizing one-to-four power dividers and semirigid coaxial cables, a 16-by-16 array is developed to achieve higher gain. Measured results show that the 16-by-16 array has 15 dB return loss (RL bandwidths of 4.81% and 6.75% and 3 dB axial ratio (AR bandwidths of 2.84% and 1.57% in the lower and the upper bands, respectively. Isolations of 18.6 dB and 19.4 dB and peak gains of 25.1 dBic and 25.6 dBic are obtained at 8.2 and 8.6 GHz, respectively.

  2. Single lead atrial vs. dual chamber pacing in sick sinus syndrome

    DEFF Research Database (Denmark)

    Brandt, Niels H; Kirkfeldt, Rikke Esberg; Nielsen, Jens Cosedis

    2017-01-01

    Aims The DANPACE trial randomized patients with sick sinus syndrome (SSS) to single lead atrial (AAIR) or dual chamber (DDDR) pacemaker (PM). After 5 years follow-up, no difference in overall survival, stroke or heart failure (HF) was observed, whereas risk of atrial fibrillation (AF) and PM...... This register-based long-term follow-up study indicates that there is no difference in mortality among patients with SSS randomized to AAIR or DDDR pacing, even with very long follow-up. Nor is there any difference in risk of AF hospitalization, stroke or HF. The higher rate of pacing mode-change to DDDR...

  3. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single-shot, volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...acquisition; (110.6955) Tomographic imaging ; (110.6960) Tomography; (280.2490) Flow diagnostics; (300.2530) Fluorescence , laser-induced...84 (1983). 2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence ,” Exp

  4. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  5. Establishment of a hepatocellular carcinoma cell line expressing dual reporter genes: sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP)

    International Nuclear Information System (INIS)

    Kwak, Won Jung; Koo, Bon Chul; Kwon, Mo Sun

    2007-01-01

    Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, T 1/2 of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene

  6. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huishan, E-mail: yanghuishan1697@163.com

    2013-10-15

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq{sub 3} (5 nm)/QAD(y nm)/Alq{sub 3}(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m{sup 2} at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially

  7. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  8. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method

    International Nuclear Information System (INIS)

    Mori, Tadashi; Hidaka, Masafumi; Lin, Yi-Chin; Yoshizawa, Ibuki; Okabe, Takayoshi; Egashira, Shinichiro; Kojima, Hirotatsu; Nagano, Tetsuo; Koketsu, Mamoru; Takamiya, Mari; Uchida, Takafumi

    2011-01-01

    Research highlights: → A Pin1 (prolyl isomerase) inhibitor, TME-001, has been discovered by using a new established high-throughput screening method. → The TME-001 showed a cell-active inhibition with lower cytotoxic effect than known Pin1 inhibitors. → Kinetic analyses revealed that the TME-001 is the first compound that exhibits dual inhibition of Pin1 and another type of prolyl isomerase, cyclophilin. → Thus, similarities of structure and reaction mechanism between Pin1 and cyclophilin are proposed. -- Abstract: Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer's disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC 50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC 50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.

  9. Dual-Modal Nanoprobes for Imaging of Mesenchymal Stem Cell Transplant by MRI and Fluorescence Imaging

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Hong, Kyung Ah; Lin, Shun Mei

    2009-01-01

    To determine the feasibility of labeling human mesenchymal stem cells (hMSCs) with bifunctional nanoparticles and assessing their potential as imaging probes in the monitoring of hMSC transplantation. The T1 and T2 relaxivities of the nanoparticles (MNP SiO 2 [RITC]-PEG) were measured at 1.5T and 3T magnetic resonance scanner. Using hMSCs and the nanoparticles, labeling efficiency, toxicity, and proliferation were assessed. Confocal laser scanning microscopy and transmission electron microscopy were used to specify the intracellular localization of the endocytosed iron nanoparticles. We also observed in vitro and in vivo visualization of the labeled hMSCs with a 3T MR scanner and optical imaging. MNP SiO 2 (RITC)-PEG showed both superparamagnetic and fluorescent properties. The r 1 and r 2 relaxivity values of the MNP SiO 2 (RITC)-PEG were 0.33 and 398 mM -1 s -1 at 1.5T, respectively, and 0.29 and 453 mM -1 s -1 at 3T, respectively. The effective internalization of MNP SiO 2 (RITC)-PEG into hMSCs was observed by confocal laser scanning fluorescence microscopy. The transmission electron microscopy images showed that MNP SiO 2 (RITC)-PEG was internalized into the cells and mainly resided in the cytoplasm. The viability and proliferation of MNP SiO 2 (RITC)-PEG-labeled hMSCs were not significantly different from the control cells. MNP SiO 2 (RITC)-PEG-labeled hMSCs were observed in vitro and in vivo with optical and MR imaging. MNP SiO 2 (RITC)-PEG can be a useful contrast agent for stem cell imaging, which is suitable for a bimodal detection by MRI and optical imaging

  10. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity.

    Science.gov (United States)

    Karimi, G; Jamaluddin, R; Mohtarrudin, N; Ahmad, Z; Khazaai, H; Parvaneh, M

    2017-10-01

    Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats. A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups. B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B

  11. Dual turn-on fluorescence signal-based controlled release system for real-time monitoring of drug release dynamics in living cells and tumor tissues.

    Science.gov (United States)

    Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying

    2018-01-01

    Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.

  12. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  13. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.

    Science.gov (United States)

    Boehm, E M; Subramanyam, S; Ghoneim, M; Washington, M Todd; Spies, M

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary) complexes using multicolor setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches have become today. © 2016 Elsevier Inc. All rights reserved.

  14. Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull's Eye-Type Plasmonic Chip.

    Science.gov (United States)

    Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko

    2017-12-19

    Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.

  15. FEM analysis of an single stator dual PM rotors axial synchronous machine

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2017-01-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.

  16. STEEL CORROSION AT 600°C IN SINGLE AND DUAL CONDITION IN OXYFUEL ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Daniel Massari de Souza Coelho

    2014-10-01

    Full Text Available Coal-fired power plants using the Oxyfuel process are being developed to produce electricity with zero CO2 emission. Steels used in this and other processes are often exposed to different atmospheres in each side of the material, especially in heat exchangers and solid oxide fuel cells. Some studies have shown that steels exposed to different hydrogen partial pressures in each side have a different corrosion behavior from steels exposed to a single atmosphere condition. In this investigation, two experimental steels were studied at 600°C and 1 atm in dual atmospheres containing water vapor in one side and flue gas in the other and they were compared to steels oxidized in single atmospheres. The gas composition used is similar to the ones found in Oxyfuel coal power plants, where there is a great concentration of CO2, and also H2O and SO2. Analyses were made using SEM and TEM.

  17. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    International Nuclear Information System (INIS)

    Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-01-01

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu"3"+; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu"3"+, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu-TDA network

  18. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jingjing, E-mail: jjdeng@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Shi, Guoyue [Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhou, Tianshu, E-mail: tszhou@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu{sup 3+}; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu{sup 3+}, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu

  19. Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.

    Science.gov (United States)

    Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A

    2016-10-01

    The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.

  20. Single excitation-emission fluorescence spectrum (EEF) for determination of cetane improver in diesel fuel.

    Science.gov (United States)

    Insausti, Matías; Fernández Band, Beatriz S

    2015-04-05

    A highly sensitive spectrofluorimetric method has been developed for the determination of 2-ethylhexyl nitrate in diesel fuel. Usually, this compound is used as an additive in order to improve cetane number. The analytical method consists in building the chemometric model as a first step. Then, it is possible to quantify the analyte with only recording a single excitation-emission fluorescence spectrum (EEF), whose data are introduced in the chemometric model above mentioned. Another important characteristic of this method is that the fuel sample was used without any pre-treatment for EEF. This work provides an interest improvement to fluorescence techniques using the rapid and easily applicable EEF approach to analyze such complex matrices. Exploding EEF was the key to a successful determination, obtaining a detection limit of 0.00434% (v/v) and a limit of quantification of 0.01446% (v/v). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  2. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  3. Comparative study of shale-gas production using single- and dual-continuum approaches

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we explore the possibility of specifying the ideal hypothetical positions of matrices blocks and fractures in fractured porous media as a single-continuum reservoir model in a way that mimics the dual-porosity dual-permeability (DPDP) configuration. In order to get an ideal mimic, we use the typical configuration and geometrical hypotheses of the DPDP model for the SDFM. Unlike the DPDP model which consists of two equations for the two-continuum coupled by a transfer term, the proposed single-domain fracture model (SDFM) model consists of a single equation for the single-continuum. Each one of the two models includes slippage effect, adsorption, Knudsen diffusion, geomechanics, and thermodynamics deviation factor. For the thermodynamics calculations, the cubic Peng-Robinson equation of state is employed. The diffusion model is verified by calculating the total mass flux through a nanopore by combination of slip flow and Knudsen diffusion and compared with experimental data. A semi-implicit scheme is used for the time discretization while the thermodynamics equations are updated explicitly. The spatial discretization is done using the cell-centered finite difference (CCFD) method. Finally, numerical experiments are performed under variations of the physical parameters. Several results are discussed such as pressure, production rate and cumulative production. We compare the results of the two models using the same dimensions and physical and computational parameters. We found that the DPDP and the SDFM models production rate and cumulative production behave similarly with approximately the same slope but with some differences in values. Moreover, we found that the poroelasticity effect reduces the production rate and consequently the cumulative production rate but in the SDFM model the reservoir takes more time to achieve depletion than the DPDP model. The normal fracture factor which appears in the transfer term of the DPDP model is adjusted against

  4. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome

    DEFF Research Database (Denmark)

    Nielsen, Jens Cosedis; Thomsen, Poul Erik B; Højberg, Søren

    2011-01-01

    In patients with sick sinus syndrome, bradycardia can be treated with a single-lead pacemaker or a dual-chamber pacemaker. Previous trials have revealed that pacing modes preserving atrio-ventricular synchrony are superior to single-lead ventricular pacing, but it remains unclear if there is any ...

  5. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

    Science.gov (United States)

    Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang

    2017-10-01

    To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

  6. A dual-color fluorescence-based platform to identify selective inhibitors of Akt signaling.

    Directory of Open Access Journals (Sweden)

    Aranzazú Rosado

    Full Text Available BACKGROUND: Inhibition of Akt signaling is considered one of the most promising therapeutic strategies for many cancers. However, rational target-orientated approaches to cell based drug screens for anti-cancer agents have historically been compromised by the notorious absence of suitable control cells. METHODOLOGY/PRINCIPAL FINDINGS: In order to address this fundamental problem, we have developed BaFiso, a live-cell screening platform to identify specific inhibitors of this pathway. BaFiso relies on the co-culture of isogenic cell lines that have been engineered to sustain interleukin-3 independent survival of the parental Ba/F3 cells, and that are individually tagged with different fluorescent proteins. Whilst in the first of these two lines cell survival in the absence of IL-3 is dependent on the expression of activated Akt, the cells expressing constitutively-activated Stat5 signaling display IL-3 independent growth and survival in an Akt-independent manner. Small molecules can then be screened in these lines to identify inhibitors that rescue IL-3 dependence. CONCLUSIONS/SIGNIFICANCE: BaFiso measures differential cell survival using multiparametric live cell imaging and permits selective inhibitors of Akt signaling to be identified. BaFiso is a platform technology suitable for the identification of small molecule inhibitors of IL-3 mediated survival signaling.

  7. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  8. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  9. A fluoride-sensing receptor based on 2,2'-bis(indolyl)methane by dual-function of colorimetry and fluorescence.

    Science.gov (United States)

    Wei, Wei; Shao, Shi Jun; Guo, Yong

    2015-10-05

    A compound based on 2,2'-bis(indolyl)methane containing nitro group was studied as a new anion receptor. It could recognize selectively F(-) by an increasing fluorescence signal and a visible color change from colorless to blue. The introduction of nitro group induced the spectral dual-function related to the deprotonation of N-H protons. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    Science.gov (United States)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  11. Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Nunn, Nicholas; Shenderova, Olga A; Gibson, Brant C

    2018-02-06

    Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles' absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.

  12. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    Science.gov (United States)

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.

    Science.gov (United States)

    Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike

    2010-01-01

    An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.

  14. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  15. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marcelina Cardoso Dos Santos

    2017-06-01

    Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.

  16. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays.

    Science.gov (United States)

    Hua, Boyang; Wang, Yanbo; Park, Seongjin; Han, Kyu Young; Singh, Digvijay; Kim, Jin H; Cheng, Wei; Ha, Taekjip

    2018-03-13

    Here, we demonstrate that the use of the single-molecule centroid localization algorithm can improve the accuracy of fluorescence binding assays. Two major artifacts in this type of assay, i.e., nonspecific binding events and optically overlapping receptors, can be detected and corrected during analysis. The effectiveness of our method was confirmed by measuring two weak biomolecular interactions, the interaction between the B1 domain of streptococcal protein G and immunoglobulin G and the interaction between double-stranded DNA and the Cas9-RNA complex with limited sequence matches. This analysis routine requires little modification to common experimental protocols, making it readily applicable to existing data and future experiments.

  17. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  18. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  19. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  20. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image.

    Science.gov (United States)

    Saukko, Annina E A; Honkanen, Juuso T J; Xu, Wujun; Väänänen, Sami P; Jurvelin, Jukka S; Lehto, Vesa-Pekka; Töyräs, Juha

    2017-12-01

    Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

  1. Single- and dual energy QCT around acetabular cups in total hip arthroplasty using 3-dimensional segmentation

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    of segmentation software and to compare bone mineral density (BMD) measurements in single- and dual energy CT (SECT and DECT) Materials and Methods: 24 male patients with total hip arthroplasty (12 cemented and 12 uncemented) were scanned and rescanned using SECT and virtual monochromatic DECT images. 3D- ROIs......Background: Bone density measurements around hip implants are challenged by artifacts and the complex anatomy of the acetabulum. We developed 3D segmentation software and used dual energy CT to reduce artifacts. Purpose / Aim of Study: To test the between-scan agreement and reliability...... the cemented cup the mean BMD for SECT was 523 mg/ccm with a between-scan difference of 14 mg/ccm, p=0.25 and 186 mg/ccm in DECT with a difference of 6 mg/ccm, p=0.15. ICC was >0.95 with more narrow limits of agreement in DECT compared with SECT. Computed tomography dose index (CTDI) was 25% higher with DECT...

  2. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    Science.gov (United States)

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  3. Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White rover during the MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Sattler, Birgit; Weisleitner, Klemens; Hunger, Lars; Kohstall, Christoph; Frisch, Albert; Józefowicz, Mateusz; Meszyński, Sebastian; Storrie-Lombardi, Michael; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Frischauf, Norbert; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ragonig, Christoph; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sams, Sebastian; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Soucek, Alexander; Stadler, Andrea; Stummer, Florian; Stumptner, Willibald; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    Abstract We have developed a portable dual-wavelength laser fluorescence spectrometer as part of a multi-instrument optical probe to characterize mineral, organic, and microbial species in extreme environments. Operating at 405 and 532 nm, the instrument was originally designed for use by human explorers to produce a laser-induced fluorescence emission (L.I.F.E.) spectral database of the mineral and organic molecules found in the microbial communities of Earth's cryosphere. Recently, our team had the opportunity to explore the strengths and limitations of the instrument when it was deployed on a remote-controlled Mars analog rover. In February 2013, the instrument was deployed on board the Magma White rover platform during the MARS2013 Mars analog field mission in the Kess Kess formation near Erfoud, Morocco. During these tests, we followed tele-science work flows pertinent to Mars surface missions in a simulated spaceflight environment. We report on the L.I.F.E. instrument setup, data processing, and performance during field trials. A pilot postmission laboratory analysis determined that rock samples acquired during the field mission exhibited a fluorescence signal from the Sun-exposed side characteristic of chlorophyll a following excitation at 405 nm. A weak fluorescence response to excitation at 532 nm may have originated from another microbial photosynthetic pigment, phycoerythrin, but final assignment awaits development of a comprehensive database of mineral and organic fluorescence spectra. No chlorophyll fluorescence signal was detected from the shaded underside of the samples.

  4. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    Science.gov (United States)

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    Science.gov (United States)

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  6. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3 + and its practical application

    Science.gov (United States)

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-01

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.

  7. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters

    International Nuclear Information System (INIS)

    Pauwels, K; Gundacker, S; Lecoq, P; Lucchini, M; Auffray, E; Dujardin, C; Lebbou, K; Moretti, F; Xu, X; Petrosyan, A G

    2013-01-01

    For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jets measurements, there is a need for highly granular detectors requiring peculiar geometries. Heavy inorganic scintillators allow compact homogeneous calorimeter designs with excellent energy resolution and dual-readout abilities. These scintillators are however not usually suited for geometries with a high aspect ratio because of the important losses observed during the light propagation. Elongated single crystals (fibers) of Lutetium Aluminium garnet (LuAG, Lu 3 Al 5 O 12 ) were successfully grown with the micropulling-down technique. We present here the results obtained with the recent fiber production and we discuss how the light propagation could be enhanced to reach attenuation lengths in the fibers better than 0.5 m

  8. Comparative Analysis of Single and Dual Irradiation Pass of Deep Burn High Temperature Reactor Scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Jo, Chang Keun; Noh, Jae Man

    2012-01-01

    A concept of a deep-burn (DB) of trans uranic (TRU) elements in a high temperature reactor (HTR) has been proposed and studied with a single irradiation pass. However, there is still a significant amount of TRU after burn in an HTR. Therefore, it is necessary to burn more TRU in a fast reactor (FR) with repeated reprocessing such as a pyro-process. In this study, the fuel cycle calculations are performed and the results are compared for a singlepass DB-HHR scenario and a dual-pass sodium-cooled fast reactor (SFR) scenario. For the analysis, front-end and back-end parameters are compared. The calculations were performed by the DANESS (Dynamic Analysis of Nuclear Energy System Strategies), which is an integrated system dynamic fuel cycle analysis code

  9. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  10. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  11. A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.

    Science.gov (United States)

    Ghorbanian, A; Rezaei, S M; Khoogar, A R; Zareinejad, M; Baghestan, K

    2013-03-01

    A novel trilateral control architecture for the Dual-master/Single-slave teleoperation is proposed in this paper. This framework has been used in surgical training and rehabilitation applications. In this structure, the slave motion has been controlled by weighted summation of signals transmitted by the operator referring to task control authority through the dominance factors. The nonlinear dynamics for telemanipulators are considered which were considered as disregarded issues in previous studies of this field. Bounded variable time-delay has been considered which affects the transmitted signals in the communication channels. Two types of controllers have been offered and an appropriate stability analysis for each controller has been demonstrated. The first controller includes Proportional with dissipative gains (P+d). The second one contains Proportional and Derivative with dissipative gains (PD+d). In both cases, the stability of the trilateral control framework is preserved by choosing appropriate controller's gains. It is shown that these controllers attempt to coordinate the positions of telemanipulators in the free motion condition. The stability of the Dual-master/Single-slave teleoperation has been proved by an appropriate Lyapunov like function and the stability conditions have been studied. In addition the proposed PD+d control architecture is modified for trilateral teleoperation with internet communication between telemanipulators that caused such communication complications as packet loss, data duplication and swapping. A number of experiments have been conducted with various levels of dominance factor to validate the effectiveness of the new control architecture. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  13. Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.

    Science.gov (United States)

    Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng

    2018-02-15

    Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of single and dual physical modifications on pinhão starch.

    Science.gov (United States)

    Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra

    2015-11-15

    Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  16. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Brameshuber, M.

    2009-01-01

    Unrevealing the detailed structure of the cellular plasma membrane at a nanoscopic length scale is the key for understanding the regulation of various signaling pathways or interaction mechanism. Hypotheses postulate the existence of nanoscopic lipid platforms in the cell membrane which are termed lipid- or membrane rafts. Based on biochemical studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition and heterogeneity. In this thesis I present an ultra-sensitive fluorescence based method which allows for the first time the direct imaging of single mobile rafts in the live cell plasma membrane. The method senses rafts by their property to assemble a characteristic set of fluorescent marker-proteins or lipids on a time-scale of seconds. A special photobleaching protocol was developed and used to reduce the surface density of labeled mobile rafts down to the level of well-isolated diffraction-limited spots, without altering the single spot brightness. The statistical distribution of probe molecules per raft was determined by single molecule brightness analysis. For demonstration, I used the consensus markers Bodipy-GM1, a fluorescent lipid analogue, and glycosylphosphatidyl-inositol-anchored monomeric GFP. For both markers I found cholesterol-dependent association in the plasma membrane of living CHO and Jurkat T cells in the resting state, indicating the presence of mobile, stable rafts hosting these probes. I further characterized these structures by taking cell-to-cell variations under consideration. By comparing Bodipy-GM1 with mGFP-GPI homo-association upon temperature variation, two different states - a non-equilibrated and an equilibrated state - could be identified. I conclude that rafts are loaded non-randomly; the characteristic load is maintained during its lifetime in the plasma membrane of a non-activated cell. Beside these

  17. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Pattanaik, Bhabani; Nayak, Chandrakanta [Department of Mechanical Eng., Gandhi Institute for Technological Advancement, Madanpur, Bhubaneswar - 752054, Odisha (India); Kumar Nanda, Basanta [Department of Mechanical Eng., Maharaja Institute of Technology, Bhubaneswar, Odisha (India)

    2013-07-01

    In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  18. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    Science.gov (United States)

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-05

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Potentials for the Use of Single- versus Dual-Purpose Officers in Firms:

    DEFF Research Database (Denmark)

    Theotokas, Ioannis; Wagtmann, Maria Anne

    2010-01-01

    In the article, we will focus on economic issues concerning the favourability of employing dual pur­pose officers, given that national dual-purpose educational programs exist; we will thus delimit us from discussing potential advantages and disadvantages of firm-specific educational investments...... of employing dual-purpose officers....

  20. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    Science.gov (United States)

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dual-colour chromogenic in-situ hybridization is a potential alternative to fluorescence in-situ hybridization in HER2 testing.

    Science.gov (United States)

    Hwang, Cheng-Cheng; Pintye, Mariann; Chang, Liang-Che; Chen, Huang-Yang; Yeh, Kun-Yan; Chein, Hui-Ping; Lee, Nin; Chen, Jim-Ray

    2011-11-01

    Dual-colour chromogenic in-situ hybridization (dc-CISH) is an emerging methodology for characterizing genomic alterations. This study was aimed at evaluating the performance of a dc-CISH kit (ZytoVision) in determining human epidermal growth factor receptor 2 (HER2) status in breast cancer. Two hundred and twenty-eight invasive breast carcinomas arranged in tissue microarrays were analysed in parallel with dc-CISH, fluorescence in-situ hybridization (FISH), and immunohistochemistry. Of 227 tumours with available FISH and dc-CISH results, HER2 amplification and non-amplification were detected in 49 (21.6%) and 178 (78.4%) tumours, respectively, by both assays. The concordance between dc-CISH and FISH results showed 100% agreement (κ-coefficient=1.00). Immunohistochemically, 162 (71%), 25 (11.0%) and 41 (18%) tumours were scored 0/1+, 2+, and 3+, respectively. The corresponding results with both FISH and dc-CISH demonstrated HER2 amplification in two (3.2%), nine (36%) and 38 (93%) tumours, respectively. Complete consensus among these three methods was observed in 197 cases, representing 98% of all 3+ and 0/1+ tumours (κ-coefficient=0.92). Confirmatory testing of 25 2+ tumours showed complete consensus between FISH and dc-CISH. dc-CISH is a promising alternative to FISH in HER2 testing, and the single-institute incidence of HER2 amplification in breast cancer in Taiwan is 21.2%. © 2011 Blackwell Publishing Limited.

  2. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes

    DEFF Research Database (Denmark)

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes

    2016-01-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels...... interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination...

  3. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  4. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Nader, Michel N.; Foran, Kelly A.; Groskopf, Craig; Reno, Michael C.; Ware, Chris S.; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J.

    2017-01-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20 µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K_α, selenium K_α, arsenic K_β, selenium K_β, and bromine K_α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K_α peak only, ranged from 0.210±0.002 µg/g selenium under one condition of analysis to 0.777±0.009 µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3 min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. - Highlights: • Portable X-ray fluorescence was used to assess As and Se in nail clipping phantoms. • Calibration lines were consistent between two different conditions of data analysis. • This new XRF approach was sensitive and required only a single nail clipping.

  5. Dual-task and anticipation impact lower limb biomechanics during a single-leg cut with body borne load.

    Science.gov (United States)

    Seymore, Kayla D; Cameron, Sarah E; Kaplan, Jonathan T; Ramsay, John W; Brown, Tyler N

    2017-12-08

    This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.

    Science.gov (United States)

    Suzuki, Kenichi G N; Ando, Hiromune; Komura, Naoko; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Fujiwara, Takahiro K; Kusumi, Akihiro

    2018-01-01

    Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods. © 2018 Elsevier Inc. All rights reserved.

  7. Comment on ’Single Pentacene Molecules Detected by Fluorescence Excitation in a P-Terphenyl Crystal’

    Science.gov (United States)

    1990-12-10

    8217 NO 11 TITLE (include Security Classification) Comment on "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal" 12...8217 {Continue on reverse it necessary and identify by block numboer) Using h--,Ihly efficient Fluorescence excitation spectroscov of individual pentacene ...molecular impurities in p-terphenvl crystals, we have observed that some pentacene defects exhibit spcntaneous spectral jumps in their resonance frequency at

  8. Study of the fluorescence blinking behavior of single F2 color centers in LiF crystal

    International Nuclear Information System (INIS)

    Boichenko, S V; Koenig, K; Zilov, S A; Dresvianskiy, V P; Rakevich, A L; Kuznetsov, A V; Bartul, A V; Martynovich, E F; Voitovich, A P

    2014-01-01

    Using confocal fluorescence microscopy technique, we observed experimentally the luminescence of single F 2 color centers in LiF crystal. It is disclosed that the fluorescence shows blinking behavior. It is shown that this phenomenon is caused by the F 2 center reorientation occurring during the experiment. The ratio of luminescence intensities of differently oriented centers is assessed theoretically for two different experiment configurations. The calculated ratios are in fine agreement with experimental result

  9. Corrections to “Change Detection in Full and Dual Polarization, Single- and Multi-Frequency SAR Data”

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2017-01-01

    of obtaining a smaller value of the test statistic are given. In a case study airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry...

  10. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  11. Age-Related Changes in Brain Activation Underlying Single- and Dual-Task Performance: Visuomanual Drawing and Mental Arithmetic

    Science.gov (United States)

    Van Impe, A.; Coxon, J. P.; Goble, D. J.; Wenderoth, N.; Swinnen, S. P.

    2011-01-01

    Depending on task combination, dual-tasking can either be performed successfully or can lead to performance decrements in one or both tasks. Interference is believed to be caused by limitations in central processing, i.e. structural interference between the neural activation patterns associated with each task. In the present study, single- and…

  12. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Núñez-Milland, Daliángelis R. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Baines, Stephen B. [Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11755 (United States); Vogt, Stefan [Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Twining, Benjamin S., E-mail: btwining@bigelow.org [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2010-07-01

    Phosphorus abundance was quantified in individual phytoplankton cells by synchrotron X-ray fluorescence and compared with bulk spectrophotometric measurements to confirm accuracy of quantification. Figures of merit for P quantification on three different types of transmission electron microscopy grids are compared to assess possible interferences. Phosphorus is required for numerous cellular compounds and as a result can serve as a useful proxy for total cell biomass in studies of cell elemental composition. Single-cell analysis by synchrotron X-ray fluorescence (SXRF) enables quantitative and qualitative analyses of cell elemental composition with high elemental sensitivity. Element standards are required to convert measured X-ray fluorescence intensities into element concentrations, but few appropriate standards are available, particularly for the biologically important element P. Empirical P conversion factors derived from other elements contained in certified thin-film standards were used to quantify P in the model diatom Thalassiosira pseudonana, and the measured cell quotas were compared with those measured in bulk by spectrophotometry. The mean cellular P quotas quantified with SXRF for cells on Au, Ni and nylon grids using this approach were not significantly different from each other or from those measured spectrophotometrically. Inter-cell variability typical of cell populations was observed. Additionally, the grid substrates were compared for their suitability to P quantification based on the potential for spectral interferences with P. Nylon grids were found to have the lowest background concentrations and limits of detection for P, while background concentrations in Ni and Au grids were 1.8- and 6.3-fold higher. The advantages and disadvantages of each grid type for elemental analysis of individual phytoplankton cells are discussed.

  13. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    Science.gov (United States)

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  14. Dual aerosol detector based on forward light scattering with a single laser beam

    International Nuclear Information System (INIS)

    Kovach, B.J.; Custer, R.A.; Powers, F.L.; Kovach, A.

    1985-01-01

    The in-place leak testing of HEPA filter banks using a single detector can lead to some error in the measurement due to the fluctuation of the aerosol concentration while the single detector is being switched from the upstream to downstream sampling. The time duration of the test also can cause unnecessarily high DOP loading of the HEPA filters and in some cases higher radiation exposure to the testing personnel. The new forward light scattering detector uses one 632.8 nm laser beam for aerosol detection in a dual chamber sampling and detecting aerosol concentration simultaneously both upstream and downstream. This manner of operation eliminates the errors caused by concentration variations between upstream and downstream sample points while the switching takes place. The new detector uses large area silicone photodiodes with a hole in the center, to permit uninterrupted passage of the laser beam through the downstream sample chamber. The nonlinearity due to the aerosol over population of the laser beam volume is calculated to be less than 1% using a Poisson distribution method to determine the average distance of the particles. A simple pneumatic system prevents mixing of the upstream and downstream samples even in wide pressure variations of the duct system

  15. A design of a high speed dual spectrometer by single line scan camera

    Science.gov (United States)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  16. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  17. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  18. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Kang, Eun Bi [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Mazrad, Zihnil Adha Islamy [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Lee, Gibaek [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); In, Insik [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of)

    2017-02-01

    Here, we report a pH- and thermo-responsive fluorescent nanomaterial of functionalized reduced graphene oxide (rGO) with cross-linked polymer produced via catechol-boronate diol binding mechanism. When conjugated with the hydrophobic dye boron dipyrromethane (BODIPY), this material can act as a dual-responsive nanoplatform for cells imaging. 2-Chloro-3′,4′-dihydroxyacetophenone (CCDP)-quaternized-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [C-PDN] was cross-linked with BODIPY and 4-chlorophenyl boronic acid (BA)-quaternized-poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [BB-PPDN]. The GO was then reduced by the catechol group in the cross-linked polymer to synthesize rGO nanoparticles, which able to stabilize the quenching mechanism. This nanoplatform exhibits intense fluorescence at acidic pH and low fluorescence at physiological pH. Confocal laser scanning microscopy (CLSM) images shows bright fluorescence at lysosomal pH and total quench at physiological pH. Therefore, we have successfully developed a promising sensitive bio-imaging probe for identifying cancer cells. - Graphical abstract: [BB-PPDN]-[C-PDN]/rGO nanoparticles with boronic acid-catechol cis-diol binding mechanism toward change in pH demonstrated good biocompatibility and effective quenching for cancer cell detection. - Highlights: • Dual responsive (pH- and thermo) fluorescent nano probe was proposed for cells imaging. • The mechanism was based on cis-diol binding mechanism of boronic acid and catechol. • Reduced graphene oxide was used as quencher on nano-platform. • Detection was controlled dependent on pH based on diol compound of boron chemistry.

  19. Dual vs. single computer monitor in a Canadian hospital Archiving Department: a study of efficiency and satisfaction.

    Science.gov (United States)

    Poder, Thomas G; Godbout, Sylvie T; Bellemare, Christian

    This paper describes a comparative study of clinical coding by Archivists (also known as Clinical Coders in some other countries) using single and dual computer monitors. In the present context, processing a record corresponds to checking the available information; searching for the missing physician information; and finally, performing clinical coding. We collected data for each Archivist during her use of the single monitor for 40 hours and during her use of the dual monitor for 20 hours. During the experimental periods, Archivists did not perform other related duties, so we were able to measure the real-time processing of records. To control for the type of records and their impact on the process time required, we categorised the cases as major or minor, based on whether acute care or day surgery was involved. Overall results show that 1,234 records were processed using a single monitor and 647 records using a dual monitor. The time required to process a record was significantly higher (p= .071) with a single monitor compared to a dual monitor (19.83 vs.18.73 minutes). However, the percentage of major cases was significantly higher (p= .000) in the single monitor group compared to the dual monitor group (78% vs. 69%). As a consequence, we adjusted our results, which reduced the difference in time required to process a record between the two systems from 1.1 to 0.61 minutes. Thus, the net real-time difference was only 37 seconds in favour of the dual monitor system. Extrapolated over a 5-year period, this would represent a time savings of 3.1% and generate a net cost savings of $7,729 CAD (Canadian dollars) for each workstation that devoted 35 hours per week to the processing of records. Finally, satisfaction questionnaire responses indicated a high level of satisfaction and support for the dual-monitor system. The implementation of a dual-monitor system in a hospital archiving department is an efficient option in the context of scarce human resources and has the

  20. Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites.

    Science.gov (United States)

    Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua

    2017-01-01

    In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance-fluorescence imaging for tracking of chemotherapeutic agents.

    Science.gov (United States)

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM(-1) s(-1), which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM(-1) s(-1)). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy.

  2. An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan, E-mail: gxj1124@sxu.edu.cn [Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Liu, Yang; Yang, Zhenhua; Shuang, Shaomin [Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Zhang, Zeyu [Faculty of Science, Beijing University of Chemical Technology, Beijing, 100029 (China); Dong, Chuan, E-mail: dc@sxu.edu.cn [Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China)

    2017-05-22

    Chromium (VI) [Cr(VI)] is a harsh environmental contaminates and has been proved to be highly toxic, carcinogenic and mutagenic. Therefore, developing an inexpensive, good selective and highly sensitive nanoprobe for the detection of Cr(VI) is in urgent demand. Recently, the highly fluorescent carbon quantum dots (CQDs) have been successfully utilized as efficient fluorescent nanoprobes for the detection of ions, pH and molecular substances. In this work, an “on-off” fluorescence phosphorus/nitrogen dual-doped CQDs (PNCQDs) probe was developed for the determination of Cr(VI) based on inner filter effect (IFE). The proposed PNCQDs nanoprobe shows its distinct merits of simplicity, convenience, fast implementation, good selectivity and high sensitivity towards Cr(VI), allowing its potential application in the determination of Cr(VI) in environment and biosystem. In addition, the chelation effect of the functional groups in reductant and Cr(VI), and the easy-conversion of Cr(VI) to reduced states (i.e. Cr(III) and Cr(0)) by reductants makes the minimization of IFE with a concomitant recovery of PNCQDs fluorescence possible. Hence, the PNCQDs/Cr(VI) hybrid was used as an “off-on” fluorescence probe for sensing ascorbic acid (AA), which is a model reductant. For the detection of Cr(VI), the linear range and the limit of detection achieved were 1.5–30 μmol/L and 23 nmol/L, respectively. For the detection of AA, the linear range and the limit of detection obtained were 5.0–200 μmol/L and 1.35 μmol/L, respectively. The as-constructed “on-off-on” PNCQDs fluorescent nanoprobe was successfully applied for detecting Cr(VI) and AA in biosystem. Furthermore, the as-constructed fluorescent sensing system was successfully applied to the analyses of AA in fresh fruits and in commercial fruit juices with satisfactory results. - Highlights: • Fast synthesis of phosphorus/nitrogen dual-doped CQDs (PNCQDs) by acid-base neutralization carbonization method.

  3. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  4. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    Science.gov (United States)

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2017-07-01

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise

    2012-01-01

    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has...... been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...

  6. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  7. Analysis of photon count data from single-molecule fluorescence experiments

    Science.gov (United States)

    Burzykowski, T.; Szubiakowski, J.; Rydén, T.

    2003-03-01

    We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].

  8. Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way.

    Science.gov (United States)

    Yang, Lingang; Cui, Chuanfeng; Wang, Lingzhi; Lei, Juying; Zhang, Jinlong

    2016-07-27

    The rational design and controlled synthesis of a smart device with flexibly tailored response ability is all along desirable for bioapplication but long remains a considerable challenge. Here, a pH-stimulated valve system with a visualized "on-off" mode is constructed through a dual-shell fluorescence resonance energy transfer (FRET) strategy. The dual shells refer to carbon dots and fluorescent molecules embedded polymethacrylic acid (F-PMAA) layers successively coating around a SiO2 core (ca. 120 nm), which play the roles as energy donor and acceptor, respectively. The total thickness of the dual-shell in the solid composite is ca. 10 nm. The priorities of this dual-shell FRET nanovalve stem from three facts: (1) the thin shell allows the formation of efficient FRET system without chemical bonding between energy donor and acceptor; (2) the maximum emission wavelength of CD layer is tunable in the range of 400-600 nm, thus providing a flexible energy donor for a wide variety of energy acceptors; (3) the outer F-PMAA shell with a pH-sensitive swelling-shrinking (on-off) behavior functions as a valve for regulating the FRET process. As such, a sensitive and stable pH ratiometric sensor with a working pH range of 3-6 has been built by simply encapsulating pH-responsive fluorescein isothiocyanate (FITC) into PMAA; a pH-dependent swelling-shrinking shuttle carrier with a finely controllable molecule-release behavior has been further fabricated using rhodamine B isothiocyanate (RBITC) as the energy donor and model guest molecule. Significantly, the controlled releasing process is visually self-monitorable.

  9. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria.

    Science.gov (United States)

    Gomes, I B; Lemos, M; Mathieu, L; Simões, M; Simões, L C

    2018-08-01

    The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175mg·l -1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The effect of single-task and dual-task balance exercise programs on balance performance in adults with osteoporosis: a randomized controlled preliminary trial.

    Science.gov (United States)

    Konak, H E; Kibar, S; Ergin, E S

    2016-11-01

    Osteoporosis is a serious disease characterized by muscle weakness in the lower extremities, shortened length of trunk, and increased dorsal kyphosis leading to poor balance performance. Although balance impairment increases in adults with osteoporosis, falls and fall-related injuries have been shown to occur mainly during the dual-task performance. Several studies have shown that dual-task performance was improved with specific repetitive dual-task exercises. The aims of this study were to compare the effect of single- and dual-task balance exercise programs on static balance, dynamic balance, and activity-specific balance confidence in adults with osteoporosis and to assess the effectiveness of dual-task balance training on gait speed under dual-task conditions. Older adults (N = 42) (age range, 45-88 years) with osteoporosis were randomly assigned into two groups. Single-task balance training group was given single-task balance exercises for 4 weeks, whereas dual-task balance training group received dual-task balance exercises. Participants received 45-min individualized training session, three times a week. Static balance was evaluated by one-leg stance (OLS) and a kinesthetic ability trainer (KAT) device. Dynamic balance was measured by the Berg Balance Scale (BBS), Time Up and Go (TUG) test, and gait speed. Self-confidence was assessed with the Activities-specific Balance Confidence (ABC-6) scale. Assessments were performed at baseline and after the 4-week program. At the end of the treatment periods, KAT score, BBS score, time in OLS and TUG, gait speeds under single- and dual-task conditions, and ABC-6 scale scores improved significantly in all patients (p gait speeds under single- and dual-task conditions showed significantly greater improvement in the dual-task balance training group than in the single-task balance training group (p gait speeds showed greater improvement following the application of a specific type of dual-task exercise programs

  11. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  12. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  13. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  14. Single versus dual renal transplantation from donors with significant arteriosclerosis on pre-implant biopsy.

    Science.gov (United States)

    Kayler, Liise K; Mohanka, Ravi; Basu, Amit; Shapiro, Ron; Randhawa, Parmjeet S

    2009-01-01

    Transplantation of kidneys from donor with arteriosclerosis seen on pre-implantation biopsy has not been well studied. We retrospectively evaluated 20 dual kidney transplant (DKT) and 28 single (SKT) kidney transplant recipients with >or=12 months follow-up from donors with moderate arteriosclerosis (>or=25% luminal diameter narrowing). Death censored graft survival was 100% and 79%, respectively (p = 0.0339). DKT recipients had significantly lower mean creatinine levels at one, three, six, and nine months and spent somewhat less time on the waiting list (181 +/- 160 vs. 318 +/- 306 d, p = 0.1429). DKT patients received kidneys from significantly older donors (64 +/- 7 vs. 54 +/- 11 yr; p = 0.0012), proportionately more expanded criteria donors (95% vs. 54%; p = 0.0029), and more donors with hypertension (81% vs. 48%, p = 0.0344) and death related to cerebrovascular accident (100% vs. 71%, p = 0.0143); however, more DKT kidneys underwent machine perfusion (95% vs. 57%, p = 0.0068). Baseline recipient variables were comparable between the two groups including age, race, gender, retransplantation, and HLA mismatch. Pre-implant biopsy was notable for similar frequencies of moderate interstitial fibrosis (10% vs. 14%, respectively) and glomerulosclerosis. Among recipients of deceased-donor kidneys with >25% arteriosclerosis, short-term outcomes after DKT were superior to that of SKT grafts. This approach may help to expand the donor-organ pool while optimizing outcomes.

  15. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  16. Adrenal incidentaloma triage with single source (fast kVp switch) dual energy CT

    Science.gov (United States)

    Glazer, Daniel I; Keshavarzi, Nahid R; Parker, Robert A; Kaza, Ravi K; Platt, Joel F; Francis, Isaac R

    2015-01-01

    Purpose To evaluate single source dual energy CT (DECT) for distinguishing benign and indeterminate adrenal nodules, with attention to effects of phase of intravenous contrast enhancement. Materials and methods An IRB-approved, HIPAA-compliant retrospective review revealed 273 contrast-enhanced abdominal DECTs from November 2009–March 2012. 50 adrenal nodules ≥ 0.8 cm were identified in 41 patients: 22 female, 19 male, average age 66 (range 36–88 years). CT post-processing and measurements were independently performed by two radiologists (R1 and R2) for each nodule: (1) HU on true non-contrast images; (2) post-contrast HU on monochromatic spectral images at 40, 75, and 140 keV; (3) post-contrast material density (mg/cc) on virtual non-contrast (VNC) images. Nodules were separated into benign (VNC images, benign nodules had significantly lower material density (R1: 992.4 mg/cc ± 9.9; R2: 992.7 mg/cc ±9.6) than indeterminate nodules (R1: 1001.1mg/cc ±20.5 (p .038); R2: 1007.6 HU ±13.4 (p <.0001). Conclusion DECT tools can mathematically subtract iodine or minimize its effects in high energy reconstructions, approximating non-contrast imaging and potentially reducing the need for additional studies to triage adrenal nodules detected on post-contrast DECT exams. PMID:25055267

  17. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  18. 1,3-Bis(2-chloroethyl-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance–fluorescence imaging for tracking of chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    Wei KC

    2016-08-01

    Full Text Available Kuo-Chen Wei,1 Feng-Wei Lin,2 Chiung-Yin Huang,1 Chen-Chi M Ma,3 Ju-Yu Chen,1 Li-Ying Feng,1 Hung-Wei Yang2 1Department of Neurosurgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, 2Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 3Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China Abstract: To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA-based nanoparticles (NPs with dual magnetic resonance (MR and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl-1-nitrosourea [BCNU] NPs to deliver BCNU for inhibition of brain tumor cells (MBR 261-2. These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1 of FITC-BSA-Gd/BCNU NPs was 3.25 mM-1 s-1, which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM-1 s-1. The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy. Keywords: drug tracking, fluorescence imaging, MR imaging, BSA nanoparticles, cancer therapy

  19. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  20. Graft function assessment in mouse models of single- and dual- kidney transplantation.

    Science.gov (United States)

    Wang, Lei; Wang, Ximing; Jiang, Shan; Wei, Jin; Buggs, Jacentha; Fu, Liying; Zhang, Jie; Liu, Ruisheng

    2018-05-23

    Animal models of kidney transplantation (KTX) are widely used in studying immune response of hosts to implanted grafts. Additionally, KTX can be used in generating kidney-specific knockout animal models by transplantation of kidneys from donors with global knockout of a gene to wild type recipients or vise verse. Dual kidney transplantation (DKT) provides a more physiological environment for recipients than single kidney transplantation (SKT). However, DKT in mice is rare due to technical challenges. In this study, we successfully performed DKT in mice and compared the hemodynamic response and graft function with SKT. The surgical time, complications and survival rate of DKT were not significantly different from SKT, where survival rates were above 85%. Mice with DKT showed less injury and quicker recovery with lower plasma creatinine (Pcr) and higher GFR than SKT mice (Pcr = 0.34 and 0.17 mg/dl in DKT vs. 0.50 and 0.36 mg/dl in SKT at 1 and 3 days, respectively; GFR = 215 and 131 µl/min for DKT and SKT, respectively). In addition, the DKT exhibited better renal functional reserve and long-term outcome of renal graft function than SKT based on the response to acute volume expansion. In conclusion, we have successfully generated a mouse DKT model. The hemodynamic responses of DKT better mimic physiological situations with less kidney injury and better recovery than SKT because of reduced confounding factors such as single nephron hyperfiltration. We anticipate DKT in mice will provide an additional tool for evaluation of renal significance in physiology and disease.

  1. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    International Nuclear Information System (INIS)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung

    2016-01-01

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image

  2. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image.

  3. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    Science.gov (United States)

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag 2 S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag 2 S nanocomposite shortly as Ag 2 S@C). The nanostructure exhibits strong fluorescent emission at λ ex /λ em = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag 2 S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag 2 S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag 2 S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL -1 . Meanwhile, the Ag 2 S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10 6 -10 7 cfu mL -1 with 3.3 or 10 μg mL -1 of Ag 2 S@C with an interaction time of 5 or 0.5 min, respectively.

  4. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe.

    Science.gov (United States)

    Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang

    2016-12-16

    A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.

  5. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Ryu, Dae Hyun [Department of Information Technology, Hansei University, Gunpo (Korea, Republic of); Wood, Richard [Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada); Moon, C.-B. [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2013-11-15

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE{sub x,y}) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE{sub x,y} coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source.

  6. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  7. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    International Nuclear Information System (INIS)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn; Ryu, Dae Hyun; Wood, Richard; Moon, C.-B.; Kim, Woo Young

    2013-01-01

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE x,y ) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE x,y coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source

  8. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  9. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  10. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  11. Can Dual Task Walking Improve in Parkinson's Disease After External Focus of Attention Exercise? A Single Blind Randomized Controlled Trial.

    Science.gov (United States)

    Beck, Eric N; Intzandt, Brittany N; Almeida, Quincy J

    2018-01-01

    It may be possible to use attention-based exercise to decrease demands associated with walking in Parkinson's disease (PD), and thus improve dual task walking ability. For example, an external focus of attention (focusing on the effect of an action on the environment) may recruit automatic control processes degenerated in PD, whereas an internal focus (limb movement) may recruit conscious (nonautomatic) control processes. Thus, we aimed to investigate how externally and internally focused exercise influences dual task walking and symptom severity in PD. Forty-seven participants with PD were randomized to either an Externally (n = 24) or Internally (n = 23) focused group and completed 33 one-hour attention-based exercise sessions over 11 weeks. In addition, 16 participants were part of a control group. Before, after, and 8 weeks following the program (pre/post/washout), gait patterns were measured during single and dual task walking (digit-monitoring task, ie, walking while counting numbers announced by an audio-track), and symptom severity (UPDRS-III) was assessed ON and OFF dopamine replacement. Pairwise comparisons (95% confidence intervals [CIs]) and repeated-measures analyses of variance were conducted. Pre to post: Dual task step time decreased in the external group (Δ = 0.02 seconds, CI 0.01-0.04). Dual task step length (Δ = 2.3 cm, CI 0.86-3.75) and velocity (Δ = 4.5 cm/s, CI 0.59-8.48) decreased (became worse) in the internal group. UPDRS-III scores (ON and OFF) decreased (improved) in only the External group. Pre to washout: Dual task step time ( P = .005) and percentage in double support ( P = .014) significantly decreased (improved) in both exercise groups, although only the internal group increased error on the secondary counting task (ie, more errors monitoring numbers). UPDRS-III scores in both exercise groups significantly decreased ( P = .001). Since dual task walking improvements were found immediately, and 8 weeks after the cessation of an

  12. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  13. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  14. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    Science.gov (United States)

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  15. Single-larger-portion-size and dual-column nutrition labeling may help consumers make more healthful food choices.

    Science.gov (United States)

    Lando, Amy M; Lo, Serena C

    2013-02-01

    The Food and Drug Administration is considering changes to the Nutrition Facts label to help consumers make more healthful choices. To examine the effects of modifications to the Nutrition Facts label on foods that can be listed as having 1 or 2 servings per container, but are reasonably consumed at a single eating occasion. Participants were randomly assigned to study conditions that varied on label format, product, and nutrition profile. Data were collected via an online consumer panel. Adults aged 18 years and older were recruited from Synovate's online household panel. Data were collected during August 2011. A total of 32,897 invitations were sent for a final sample of 9,493 interviews. Participants were randomly assigned to one of 10 label formats classified into three groups: listing 2 servings per container with a single column, listing 2 servings per container with a dual column, and listing a single serving per container. Within these groups there were versions that enlarged the font size for "calories," removed "calories from fat," and changed the wording for serving size declaration. The single product task measured product healthfulness, the amount of calories and various nutrients per serving and per container, and label perceptions. The product comparison task measured ability to identify the healthier product and the product with fewer calories per container and per serving. Analysis of covariance models with Tukey-Kramer tests were used. Covariates included general label use, age, sex, level of education, and race/ethnicity. Single-serving and dual-column formats performed better and scored higher on most outcome measures. For products that contain 2 servings but are customarily consumed at a single eating occasion, using a single-serving or dual-column labeling approach may help consumers make healthier food choices. Published by Elsevier Inc.

  16. A dual spectroscopic fluorescence probe based on carbon dots for detection of 2,4,6-trinitrophenol/Fe (III) ion by fluorescence and frequency doubling scattering spectra and its analytical applications.

    Science.gov (United States)

    Xu, Jinxia; Bai, Zhangjun; Zu, Fanlin; Yan, Fanyong; Wei, Junfu; Zhang, Saihui; Luo, Yunmei

    2018-07-05

    A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe 3+ ) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe 3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe 3+ , the FDS of CDs appeared to be highly sensitive with a quick response to Fe 3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe 3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe 3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe 3+ in the analysis of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection.

    Science.gov (United States)

    Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-12-26

    The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.

  18. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    Science.gov (United States)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  19. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  20. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  1. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    International Nuclear Information System (INIS)

    Yao, Yuan; Pelc, Norbert J.; Ng, Joshua M.; Megibow, Alec J.

    2016-01-01

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition may be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly

  2. Biological Particle Emissions From a South-East Asian Tropical Rainforest Using a Real- Time Dual Channel UV Fluorescence Bio-Aerosol Spectrometer

    Science.gov (United States)

    Gabey, A.; Coe, H.; Gallagher, M.; McFiggans, G.; Kaye, P.; Stanley, W.; Foot, V.

    2008-12-01

    and net emission for all fungal spores is ~1 μ g m-3 and ~50 Tg yr-1. These calculations demonstrate the potential importance of PBA, and in particular fungal spores, for global budgets of organic aerosols, particularly in tropical regions, however uncertainties are extremely large, ranging from 50 - 1000 Tg yr- 1. In this study we use the WIBS-3: a low-cost portable single-particle dual-channel UV fluorescence spectrometer (Kaye et al., 2008) to investigate the dynamics of PBA in real-time within and above a tropical forest of 50 m height in Borneo, Malaysia, to estimate net PBA emissions. Different circadian cycles were observed for bio and non-bio aerosol sources and the factors controlling bioaerosol emissions will be discussed in detail.

  3. Single- and Dual-Task Balance Training Are Equally Effective in Youth.

    Science.gov (United States)

    Lüder, Benjamin; Kiss, Rainer; Granacher, Urs

    2018-01-01

    Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.

  4. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    International Nuclear Information System (INIS)

    Kim, Yung Kyoon; Park, Sang Hoon; Kim, Yon Min

    2017-01-01

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods

  5. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yung Kyoon; Park, Sang Hoon [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Yon Min [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2017-06-15

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods.

  6. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  7. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    International Nuclear Information System (INIS)

    Li, I-H.; Huang, W.-S.; Yeh, C.-B.; Liao, M.-H.; Chen, C.-C.; Shen, L.-H.; Liu, J.-C.; Ma, K.-H.

    2009-01-01

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [ 99m Tc]TRODAT-1 (a dopamine transporter imaging agent) and [ 123 I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [ 99m Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [ 123 I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [ 99m Tc]TRODAT-1 and [ 123 I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  8. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Energy Technology Data Exchange (ETDEWEB)

    Li, I-H. [Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan (China); Huang, W.-S. [Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Yeh, C.-B. [Department of Psychiatry, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Liao, M.-H.; Chen, C.-C.; Shen, L.-H. [Division of Isotope Application, Institute of Nuclear Energy Research, Taoyaun, 325 Taiwan (China); Liu, J.-C. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China); Ma, K.-H. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China)], E-mail: kuohsing91@yahoo.com.tw

    2009-08-15

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [{sup 99m}Tc]TRODAT-1 (a dopamine transporter imaging agent) and [{sup 123}I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [{sup 99m}Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [{sup 123}I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [{sup 99m}Tc]TRODAT-1 and [{sup 123}I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  9. Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system

    Science.gov (United States)

    Lemus-Diaz, Nicolas; Böker, Kai O.; Rodriguez-Polo, Ignacio; Mitter, Michael; Preis, Jasmin; Arlt, Maximilian; Gruber, Jens

    2017-01-01

    Despite major advances on miRNA profiling and target predictions, functional readouts for endogenous miRNAs are limited and frequently lead to contradicting conclusions. Numerous approaches including functional high-throughput and miRISC complex evaluations suggest that the functional miRNAome differs from the predictions based on quantitative sRNA profiling. To resolve the apparent contradiction of expression versus function, we generated and applied a fluorescence reporter gene assay enabling single cell analysis. This approach integrates and adapts a mathematical model for miRNA-driven gene repression. This model predicts three distinct miRNA-groups with unique repression activities (low, mid and high) governed not just by expression levels but also by miRNA/target-binding capability. Here, we demonstrate the feasibility of the system by applying controlled concentrations of synthetic siRNAs and in parallel, altering target-binding capability on corresponding reporter-constructs. Furthermore, we compared miRNA-profiles with the modeled predictions of 29 individual candidates. We demonstrate that expression levels only partially reflect the miRNA function, fitting to the model-projected groups of different activities. Furthermore, we demonstrate that subcellular localization of miRNAs impacts functionality. Our results imply that miRNA profiling alone cannot define their repression activity. The gene regulatory function is a dynamic and complex process beyond a minimalistic conception of “highly expressed equals high repression”. PMID:28338079

  10. Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Osinga, J-M; Jäkel, O; Ambrožová, I; Brabcová, K Pachnerová; Davídková, M; Akselrod, M S; Greilich, S

    2014-01-01

    In this paper we present a method for single track coincidence measurements using two different track detector materials. We employed plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) in the entrance channel of a monoenergetic carbon ion beam covering the therapeutic energy range from 80 to 425 MeV/u. About 99% of all primary particle tracks detected by both detectors were successfully matched, while 1% of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82% and 99.83% respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. The investigated method can be adapted to other nuclear track detectors and offers the possibility to characterize new track detector materials against well-known detectors. Further, by combining two detectors with a restricted working range in the presented way a hybrid-detector system can be created with an extended and optimized working range

  11. Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens

    Science.gov (United States)

    García-Caballero, Tomás; Grabau, Dorthe; Green, Andrew R; Gregory, John; Schad, Arno; Kohlwes, Elke; Ellis, Ian O; Watts, Sarah; Mollerup, Jens

    2010-01-01

    García-Caballero T, Grabau D, Green A R, Gregory J, Schad A, Kohlwes E, Ellis I O, Watts S & Mollerup J (2010) Histopathology56, 472–480 Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens Aims: Fluorescence in situ hybridization (FISH) can be used to reveal several genomic imbalances relevant to proper cancer diagnosis and to the correct treatment regime. However, FISH requires expensive and advanced fluorescence microscopes in addition to expertise in fluorescence microscopy. To determine whether a newly developed dual-colour chromogenic in situ hybridization (CISH) method is a suitable alternative to FISH, we analysed the human epidermal growth factor receptor 2 gene (HER2) amplification level of 168 breast cancer specimens using dual-colour CISH and FISH and compared the results. Methods and results: We found 100% agreement between HER2 status determined by FISH and dual-colour CISH. Furthermore, we observed that the time used to score slides was significantly reduced by 28% in dual-colour CISH compared with the FISH protocol. Concordance between HER2 protein status and dual-colour CISH or FISH was equally good with an overall agreement of 96.8%. Correlation between the HER2/centromere 17 gene ratios obtained with dual-colour CISH and FISH was highly significant with an overall correlation coefficient (ρ) of 0.96. Conclusions: We conclude that dual-colour CISH and bright field microscopy are excellent alternatives to FISH when analysing the HER2 status of primary breast cancer. PMID:20459554

  12. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation.

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S; Goldman, Yale E

    2011-01-25

    Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.

  13. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  14. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    Science.gov (United States)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  15. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline.

    Science.gov (United States)

    Xu, Shenghao; Li, Xiaolin; Mao, Yaning; Gao, Teng; Feng, Xiuying; Luo, Xiliang

    2016-04-01

    In this work, we present a direct one-step strategy for rapidly preparing dual ligand co-functionalized fluorescent Au nanoclusters (NCs) by using threonine (Thr) and 11-mercaptoundecanoic acid (MUA) as assorted reductants and capping agents in aqueous solution at room temperature. Fluorescence spectra, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared (IR) spectroscopy were performed to demonstrate the optical properties and chemical composition of the as-prepared AuNCs. They possess many attractive features such as near-infrared emission (λem = 606 nm), a large Stoke's shift (>300 nm), high colloidal stability (pH, temperature, salt, and time stability), and water dispersibility. Subsequently, the as-prepared AuNCs were used as a versatile probe for "turn off" sensing of Hg(2+) based on aggregation-induced fluorescence quenching and for "turn-on" sensing of oxytetracycline (OTC). This assay provided good linearity ranging from 37.5 to 3750 nM for Hg(2+) and from 0.375 to 12.5 μM for OTC, with detection limits of 8.6 nM and 0.15 μM, respectively. Moreover, the practical application of this assay was further validated by detecting OTC in human serum samples.

  16. Characterising coarse PBA dynamics in real-time above and below a tropical rainforest canopy using a dual channel UV fluorescence aerosol spectrometer.

    Science.gov (United States)

    Gabey, A.; Gallagher, M. W.; Burgess, R.; Coe, H.; McFiggans, G.,; Kaye, P. H.; Stanley, W. R.; Davies, F.; Foot, V. E.

    2009-04-01

    single-particle dual channel UV fluorescence spectrometer (Kaye et al., 2008) capable of detecting PBA by inducing fluorescence in two so-called biofluorophores - one present during metabolism and the other an amino acid - in the particle size range 1 m System (ACES) projects. PBA were found to dominate the coarse loading at Dp > 2 m. In qualitative agreement with measurements of culturable airborne material in a tropical forest's understory (Gilbert, 2005) a diurnal cycle of PBA number concentration is present, reaching a maximum of ~4000 l-1 at local midnight and falling to ~100 l-1 around midday. The role of the planetary boundary layer's collapse and re-establishment in dictating this variation in is also investigated using LIDAR data. Transient PBA concentration spikes lasting several minutes are superposed on the smooth underlying diurnal variation and occur at similar times each day. Nucleopore filter samples were also taken in-situ and analysed under an Environmental scanning electron microscope (ESEM) in Manchester. The images obtained showed the PBA fraction to be dominated by fungal spores of diameter 2-5 m, from various species including ABM. Since such species tend to release spores in bursts at regular times this appears to account for the PBA concentration spikes.

  17. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Science.gov (United States)

    Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2013-01-01

    Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.

  18. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Directory of Open Access Journals (Sweden)

    Sai Jin Xiao

    Full Text Available Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C, and the diseases associated isoform, PrP(Res in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C or PrP(Res and Gdn-HCl and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res performs the "OR" logic operation while PrP(C performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1 and quantum dots (QDs-Apt2. The dual-aptamer logic gate simplifies the discrimination results of PrP(Res, leaving the detection of PrP(Res either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res and Gdn-HCl is an important step toward the design of prion diseases diagnosis and therapy systems.

  19. Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin.

    Science.gov (United States)

    Zhu, Shuyun; Liu, Zhongyuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao

    2012-12-14

    Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)-based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single-walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein-based dye (FAM)-labeled peptide (FAM-pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM-pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium

    International Nuclear Information System (INIS)

    Wang Lei; Xu Guang; Shi Zhikun; Jiang Wei; Jin Wenrui

    2007-01-01

    We developed a sensitive single-molecule imaging method for quantification of protein by total internal reflection fluorescence microscopy with adsorption equilibrium. In this method, the adsorption equilibrium of protein was achieved between solution and glass substrate. Then, fluorescence images of protein molecules in a evanescent wave field were taken by a highly sensitive electron multiplying charge coupled device. Finally, the number of fluorescent spots corresponding to the protein molecules in the images was counted. Alexa Fluor 488-labeled goat anti-rat IgG(H + L) was chosen as the model protein. The spot number showed an excellent linear relationship with protein concentration. The concentration linear range was 5.4 x 10 -11 to 8.1 x 10 -10 mol L -1

  1. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  2. Magnifications of Single and Dual Element Accommodative Intraocular Lenses: Paraxial Optics Analysis

    Science.gov (United States)

    Ale, Jit B; Manns, Fabrice; Ho, Arthur

    2010-01-01

    Purpose Using an analytical approach of paraxial optics, we evaluated the magnification of a model eye implanted with single-element (1E) and dual-element (2E) translating-optics accommodative intraocular lenses (AIOL) with an objective of understanding key control parameters relevant to their design. Potential clinical implications of the results arising from pseudophakic accommodation were also considered. Methods Lateral and angular magnifications in a pseudophakic model eye were analyzed using the matrix method of paraxial optics. The effects of key control parameters such as direction (forward or backward) and distance (0 to 2 mm) of translation, power combinations of the 2E-AIOL elements (front element power range +20.0 D to +40.0 D), and amplitudes of accommodation (0 to 4 D) were tested. Relative magnification, defined as the ratio of the retinal image size of the accommodated eye to that of unaccommodated phakic (rLM1) or pseudophakic (rLM2) model eyes, was computed to determine how retinal image size changes with pseudophakic accommodation. Results Both lateral and angular magnifications increased with increased power of the front element in 2E-AIOL and amplitude of accommodation. For a 2E-AIOL with front element power of +35 D, rLM1 and rLM2 increased by 17.0% and 16.3%, respectively, per millimetre of forward translation of the element, compared to the magnification at distance focus (unaccommodated). These changes correspond to a change of 9.4% and 6.5% per dioptre of accommodation, respectively. Angular magnification also increased with pseudophakic accommodation. 1E-AIOLs produced consistently less magnification than 2E-AIOLs. Relative retinal image size decreased at a rate of 0.25% with each dioptre of accommodation in the phakic model eye. The position of the image space nodal point shifted away from the retina (towards the cornea) with both phakic and pseudophakic accommodation. Conclusion Power of the mobile element, and amount and direction of

  3. Single-Event Latchup Testing of the Micrel MIC4424 Dual Power MOSFET Driver

    Science.gov (United States)

    Pellish, J. A.; Boutte, A.; Kim, H.; Phan, A.; Topper, A.

    2016-01-01

    We conducted 47 exposures of four different MIC4424 devices and did not observe any SEL or high-current events. This included worst-case conditions with a LET of 81 MeV-sq cm/mg, applied voltage of 18.5 V, a case temperature greater than 120 C, and a final fluence of 1x10(exp 7)/sq cm. We also monitored both the outputs for the presence of SETs. While the period of the 1 MHz square wave was slightly altered in some cases, no pulses were added or deleted. 1. Purpose: The purpose of this testing is to characterize the BiCMOS/DMOS Micrel MIC4424 dual, non-inverting MOSFET driver for single-event latchup (SEL) susceptibility. These data will be used for flight lot evaluation purposes. 2. Devices Tested: The MIC4423/4424/4425 family are highly reliable BiCMOS/DMOS buffer/driver MOSFET drivers. They are higher output current versions of the MIC4426/4427/4428. They can survive up to 5V of noise spiking, of either polarity, on the ground pin. They can accept, without either damage or logic upset, up to half an amp of reverse current (either polarity) forced back into their outputs. Primarily intended for driving power MOSFETs, the MIC4423/4424/4425 drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low-impedance, high peak currents, and fast switching times. Heavily loaded clock lines, coaxial cables, or piezoelectric transducers are some examples. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package. Five (5) parts were provided for SEL testing. We prepared four parts for irradiation and reserved one piece as an un-irradiated control. More information about the devices can be found in Table 1. The parts were prepared for testing by removing the lid from the CDIP package to expose the target die. The parts were then soldered to small copper circuit adapter boards for easy handling. These parts are fabricated in a bulk Bi

  4. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  5. Comparative effectiveness of single and dual rapid diagnostic tests for syphilis and HIV in antenatal care services in Colombia.

    Science.gov (United States)

    Gaitán-Duarte, Hernando Guillermo; Newman, Lori; Laverty, Maura; Habib, Ndema Abu; González-Gordon, Lina María; Ángel-Müller, Edith; Abella, Catleya; Barros, Esther Cristina; Rincón, Carlos; Caicedo, Sidia; Gómez, Bertha; Pérez, Freddy

    2016-12-01

    To assess the effectiveness of a dual rapid test compared to a single rapid test for syphilis and HIV screening. A cluster-randomized open-label clinical trial was performed in 12 public antenatal care (ANC) centers in the cities of Bogotá and Cali, Colombia. Pregnant women who were over 14 years of age at their first antenatal visit and who had not been previously tested for HIV and syphilis during the current pregnancy were included. Pregnant women were randomized to single HIV and single syphilis rapid diagnostic tests (Arm A) or to dual HIV and syphilis rapid diagnostic tests (Arm B). The four main outcomes measured were: (1) acceptability of the test, (2) uptake in testing, (3) treatment on the same day (that is, timely treatment), and (4) treatment at any time for positive rapid test cases. Bivariate and multivariate analyses were calculated to adjust for the clustering effect and the period. A total of 1 048 patients were analyzed in Arm A, and 1 166 in Arm B. Acceptability of the rapid tests was 99.8% in Arm A and 99.6% in Arm B. The prevalence of positive rapid tests was 2.21% for syphilis and 0.36% for HIV. Timely treatment was provided to 20 of 29 patients (69%) in Arm A and 16 of 20 patients (80%) in Arm B (relative risk (RR), 1.10; 95% confidence interval (CI): (1.00 -1.20). Treatment at any time was given to 24 of 29 patients (83%) in Arm A and to 20 of 20 (100%) in Arm B (RR, 1.11; 95% CI: 1.01-1.22). There were no differences in patient acceptability, testing and timely treatment between dual rapid tests and single rapid tests for HIV and syphilis screening in the ANC centers. Same-day treatment depends also on the interpretation of and confidence in the results by the health providers.

  6. Optimizing CT angiography in patients with Fontan physiology: single-center experience of dual-site power injection

    International Nuclear Information System (INIS)

    Sandler, K.L.; Markham, L.W.; Mah, M.L.; Byrum, E.P.; Williams, J.R.

    2014-01-01

    Aim: To identify adult patients with single-ventricle congenital heart disease and Fontan procedure palliation who have been misdiagnosed with or incompletely evaluated for pulmonary embolism. Additionally, this study was designed to demonstrate that simultaneous, dual-injection of contrast medium into an upper and lower extremity vein is superior to single-injection protocols for CT angiography (CTA) of the chest in this population. Materials and methods: Patients included in the study were retrospectively selected from the Adult Congenital Heart Disease (ACHD) database. Search criteria included history of Fontan palliation and available chest CT examination. Patients were evaluated for (1) type of congenital heart disease and prior operations;(2) indication for initial CT evaluation;(3) route of contrast medium administration for the initial CT examination and resulting diagnosis;(4) whether or not anticoagulation therapy was initiated; and (5) final diagnosis and treatment plan. Results: The query of the ACHD database resulted in 28 individuals or patients with Fontan palliation (superior and inferior venae cavae anastomosed to the pulmonary arteries). Of these, 19 patients with Fontan physiology underwent CTA of the pulmonary circulation, and 17 had suboptimal imaging studies. Unfortunately, seven of these 17 patients (41%) were started on anticoagulation therapy due to a diagnosis of pulmonary embolism that was later excluded. Conclusion: Patients with single-ventricle/Fontan physiology are at risk of thromboembolic disease. Therefore, studies evaluating their complex anatomy must be performed with the optimal imaging protocol to ensure diagnostic accuracy, which is best achieved with dual-injection of an upper and lower extremity central vein. - Highlights: • The adult congenital heart disease population is growing. • Many of these patients have single ventricle/Fontan physiology. • Patients with Fontan physiology are at increased risk for

  7. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  8. Development of windows based software to analyze fluorescence decay with time-correlated single photon counting (TCSPC) setup

    International Nuclear Information System (INIS)

    Mallick, M.B.; Ravindranath, S.V.G.; Das, N.C.

    2002-07-01

    A VUV spectroscopic facility for studies in photophysics and photochemistry is being set up at INDUS-I synchrotron source, CAT, Indore. For this purpose, a data acquisition system based on time-correlated single photon counting method is being developed for fluorescence lifetime measurement. To estimate fluorescence lifetime from the data collected with this sytem, a Windows based program has been developed using Visual Basic 5.0. It uses instrument response function (IRF) and observed decay curve and estimates parameters of single exponential decay by least square analysis and Marquardt method as convergence mechanism. Estimation of parameters was performed using data collected with a commercial setup. Goodness of fit was judged by evaluating χR 2 , weighted residuals and autocorrelation function. Performance is compared with two commercial software packages and found to be satisfactory. (author)

  9. Overnight Glucose Control with Dual- and Single-Hormone Artificial Pancreas in Type 1 Diabetes with Hypoglycemia Unawareness: A Randomized Controlled Trial.

    Science.gov (United States)

    Abitbol, Alexander; Rabasa-Lhoret, Remi; Messier, Virginie; Legault, Laurent; Smaoui, Mohamad; Cohen, Nathan; Haidar, Ahmad

    2018-03-01

    The dual-hormone (insulin and glucagon) artificial pancreas may be justifiable in some, but not all, patients. We sought to compare dual- and single-hormone artificial pancreas systems in patients with hypoglycemia unawareness and documented nocturnal hypoglycemia. We conducted a randomized crossover trial comparing the efficacy of dual- and single-hormone artificial pancreas systems in controlling plasma glucose levels over the course of one night's sleep. We recruited 18 adult participants with hypoglycemia unawareness and 17 participants with hypoglycemia awareness, all of whom had documented nocturnal hypoglycemia during 2 weeks of screening. Outcomes were calculated using plasma glucose. In participants with hypoglycemia unawareness, the median (interquartile range [IQR]) percentage of time that plasma glucose was below 4.0 mmol/L was 0% (0-0) on dual-hormone artificial pancreas nights and 0% (0-10) on single-hormone artificial pancreas nights (P = 0.20). Additionally, participants with hypoglycemia unawareness experienced two hypoglycemic events (dual-hormone artificial pancreas nights and three hypoglycemic events on single-hormone artificial pancreas nights. In participants with hypoglycemia awareness, the median (IQR) percentage of time that plasma glucose was below 4.0 mmol/L was 0% (0-0) on both dual- and single-hormone artificial pancreas nights. Hypoglycemia awareness participants experienced zero hypoglycemic events on dual-hormone artificial pancreas nights and one event on single-hormone artificial pancreas nights. In this study, dual-hormone and single-hormone systems performed equally well in preventing nocturnal hypoglycemia in participants with hypoglycemia unawareness. Longer studies over the course of multiple days and nights may be needed to explore possible specific benefits in this population. ClinicalTrials.gov No. NCT02282254.

  10. The Effects of Single and Dual Coded Multimedia Instructional Methods on Chinese Character Learning

    Science.gov (United States)

    Wang, Ling

    2013-01-01

    Learning Chinese characters is a difficult task for adult English native speakers due to the significant differences between the Chinese and English writing system. The visuospatial properties of Chinese characters have inspired the development of instructional methods using both verbal and visual information based on the Dual Coding Theory. This…

  11. Operational characteristics of dual gain single cavity Nd:YVO laser

    Indian Academy of Sciences (India)

    . This approach also leads to higher ... birefringence effects are less in dual gain systems which leads to better beam quality [2]. ... Since the quality of the pump beam (M2-parameter) is an important parameter to opti- mize the overlap of the ...

  12. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  13. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles

    Science.gov (United States)

    Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.

    2004-12-01

    We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.

  14. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  15. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Directory of Open Access Journals (Sweden)

    Baoshan Guo

    Full Text Available The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary and nitrogen-deficient (lipid-accumulated E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  16. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.

    Science.gov (United States)

    Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling

    2015-11-01

    The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yonghua Zhan

    2017-12-01

    Full Text Available Multifunctional manganese oxide nanoparticles (NPs with impressive enhanced T1 contrast ability show great promise in biomedical diagnosis. Herein, we developed a dual-modality imaging agent system based on polyethylene glycol (PEG-coated manganese oxide NPs conjugated with organic dye (Cy7.5, which functions as a fluorescence imaging (FI agent as well as a magnetic resonance imaging (MRI imaging agent. The formed Mn3O4@PEG-Cy7.5 NPs with the size of ~10 nm exhibit good colloidal stability in different physiological media. Serial FI and MRI studies that non-invasively assessed the bio-distribution pattern and the feasibility for in vivo dual-modality imaging-guided lymph node mapping have been investigated. In addition, histological and biochemical analyses exhibited low toxicity even at a dose of 20 mg/kg in vivo. Since Mn3O4@PEG-Cy7.5 NPs exhibited desirable properties as imaging agents and good biocompatibility, this work offers a robust, safe, and accurate diagnostic platform based on manganese oxide NPs for tumor metastasis diagnosis.

  18. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    International Nuclear Information System (INIS)

    Kanmani, B; Vasu, R M

    2007-01-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme

  19. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments

    OpenAIRE

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel n...

  20. 3D Restoration Microscopy Improves Quantification of Enzyme-Labeled Fluorescence-Based Single-Cell Phosphatase Activity in Plankton

    OpenAIRE

    Diaz-de-Quijano, Daniel; Palacios, Pilar; Hornák, Karel; Felip, Marisol

    2014-01-01

    The ELF or fluorescence-labeled enzyme activity (FLEA) technique is a culture-independent single-cell tool for assessing plankton enzyme activity in close-to-in situ conditions. We demonstrate that single-cell FLEA quantifications based on two-dimensional (2D) image analysis were biased by up to one order of magnitude relative to deconvolved 3D. This was basically attributed to out-of-focus light, and partially to object size. Nevertheless, if sufficient cells were measured (25-40 cells), bia...

  1. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  2. Evaluation of planar 3D electrical capacitance tomography: from single-plane to dual-plane configuration

    International Nuclear Information System (INIS)

    Wei, Hsin-Yu; Qiu, Chang-Hua; Soleimani, Manuchehr

    2015-01-01

    Electrical capacitance tomography (ECT) is a non-invasive imaging technique that is sensitive to the dielectric permittivity property of an object. Conventional ECT systems have a circular/cylindrical or rectangular geometry, in which the electrode plates are usually spaced equally around the tank. It is the most common configuration as it can be easily applied to industrial pipelines. However, under some circumstances, the full access to the imaging geometry may not be applicable due to the limitation of the process area. In those cases, and with limited access, planar ECT sensors can fit the process structure if access to only one side is possible. A single-plane ECT configuration has been proposed for such applications. However, the planar array often suffers from a lack of sensitivity and difficulty with depth detection. To better understand these limitations we investigate the imaging performance from the single-plane ECT to dual-plane ECT structure. The limitations and constraints of the planar configuration will also be discussed. Several experiments were conducted using both single-plane and dual-plane configurations to evaluate the potential applications. The initial results are promising, and the quality of the reconstructed images are compared with the real condition for process validation. (paper)

  3. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  4. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Hardie, Andrew D.; Felmly, Lloyd M.; Perry, Jonathan D.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Mangold, Stefanie [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Caruso, Damiano [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncological and Pathological Sciences, Latina (Italy); Canstein, Christian [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Siemens Medical Solutions USA, Malvern, PA (United States); Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2017-02-15

    To compare single-energy (SECT) and dual-energy (DECT) abdominal CT examinations in matched patient cohorts regarding differences in radiation dose and image quality performed with second- and third-generation dual-source CT (DSCT). We retrospectively analysed 200 patients (100 male, 100 female; mean age 61.2 ± 13.5 years, mean body mass index 27.5 ± 3.8 kg/m{sup 2}) equally divided into four groups matched by gender and body mass index, who had undergone portal venous phase abdominal CT with second-generation (group A, 120-kV-SECT; group B, 80/140-kV-DECT) and third-generation DSCT (group C, 100-kV-SECT; group D, 90/150-kV-DECT). The radiation dose was normalised for 40-cm scan length. Dose-independent figure-of-merit (FOM) contrast-to-noise ratios (CNRs) were calculated for various organs and vessels. Subjective overall image quality and reader confidence were assessed. The effective normalised radiation dose was significantly lower (P < 0.001) in groups C (6.2 ± 2.0 mSv) and D (5.3 ± 1.9 mSv, P = 0.103) compared to groups A (8.8 ± 2.3 mSv) and B (9.7 ± 2.4 mSv, P = 0.102). Dose-independent FOM-CNR peaked for liver, kidney, and portal vein measurements (all P ≤ 0.0285) in group D. Subjective image quality and reader confidence were consistently rated as excellent in all groups (all ≥1.53 out of 5). With both DSCT generations, abdominal DECT can be routinely performed without radiation dose penalty compared to SECT, while third-generation DSCT shows improved dose efficiency. (orig.)

  5. Work-to-personal-life conflict among dual and single-career expatriates : Is it different for men and women?

    OpenAIRE

    Mäkelä, Liisa; Lämsä, Anna-Maija; Heikkinen, Suvi; Tanskanen, Jussi

    2017-01-01

    Purpose The purpose of this paper is to explore if an expatriate’s career situation at the level of the couple (single career couple (SCC)/dual career couple (DCC)) is related to the expatriate’s work-to-personal-life conflict (WLC) and if the expatriate’s gender is related to WLC. The authors also investigate if the level of WLC is different for men and women in a DCC or SCC (interaction). Design/methodology/approach The study was conducted among 393 Finnish expatriates who were i...

  6. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging.

    Science.gov (United States)

    Wang, Ying; Cui, Yu; Zhao, Yating; He, Bing; Shi, Xiaoli; Di, Donghua; Zhang, Qiang; Wang, Siling

    2017-08-01

    A distinctive and personalized nanocarrier is described here for controlled and targeted antitumor drug delivery and real-time bioimaging by combining a redox/enzyme dual-responsive disulfide-conjugated carbon dot with mesoporous silica nanoparticles (MSN-SS-CD HA ). The carbon dot with controlling and targeting abilities was prepared through a polymerizing reaction by applying citric acid and HA as starting materials (named CD HA ). The as-prepared MSN-SS-CD HA exhibited not only superior photostability and excellent biocompatibility, but also the ability to target A549 cells with overexpression of CD44 receptors. Upon loading the antitumor drug, doxorubicin (DOX), into the mesoporous channels of MSN nanoparticles, CD HA with a diameter size of 3nm completely blocked the pore entrance of DOX-encapsulated MSN nanoparticles with a pore size of about 3nm, thus preventing the premature leakage of DOX and increasing the antitumor activity until being triggered by specific stimuli in the tumor environment. The results of the cell imaging and cytotoxicity studies demonstrated that the redox/enzyme dual-responsive DOX-encapsulated MSN-SS-CD HA nanoparticles can selectively deliver and control the release of DOX into tumor cells. Ex vivo fluorescence images showed a much stronger fluorescence of MSN-SS-CD HA -DOX in the tumor site than in normal tissues, greatly facilitating the accumulation of DOX in the target tissue. However, its counterpart, MSN-SH-DOX exhibited no or much lower tumor cytotoxicity and drug accumulation in tumor tissue. In addition, MSN-SS-CD was also used as a control to investigate the ability of MSN-SS-CD HA to target A549 cells. The results obtained indicated that MSN-SS-CD HA possessed a higher cellular uptake through the CD44 receptor-mediated endocytosis compared with MSN-SS-CD in the A549 cells. Such specific redox/enzyme dual-responsive targeted nanocarriers are a useful strategy achieving selective controlled and targeted delivery of

  7. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  8. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  9. Single molecule localization imaging of telomeres and centromeres using fluorescence in situ hybridization and semiconductor quantum dots.

    Science.gov (United States)

    Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping

    2018-07-13

    Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.

  10. Single and dual fiber nano-tip optical tweezers: trapping and analysis

    OpenAIRE

    Decombe , Jean-Baptiste; Huant , Serge; Fick , Jochen

    2013-01-01

    International audience; An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decre...

  11. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...... and permeabilization; indirect labeling of the internal antigen using a secondary antibody tagged with a spectrally distinct fluorescent dye; and detection of the differentially labeled antigens using a laser scanning confocal microscope. The protocol can be completed in approximately 7 h. Although the protocol...... surface antigen labeling on live cells with subsequent fixation and permeabilization, which enables antibodies to penetrate the cell and label internal antigens. The key steps of the protocol are as follows: indirect labeling of the surface antigen using a fluorescently tagged secondary antibody; fixation...

  12. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    Science.gov (United States)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  13. Dual-sided reading versus single-sided reading: comparison of image quality and radiation dose between the two computed radiography system

    International Nuclear Information System (INIS)

    Song Shaojuan; Qi Hengtao; Zhao Yongxia; Jiao Fanglian

    2007-01-01

    Objective: To assess and compare the difference in image quality and exposure dose between single-sided reading image plate (IP) and dual-sided reading IP. Methods: A contrast-detail phantom CDRAD 2.0 was exposed by single-sided and dual-sided reading IP with different mAs sets. The entrance surface doses were recorded for all images. Images were then presented to two radiologists on a high resolution monitor of diagnosis workstation. The image quality figure (IQF) was measured for each image. Statistical analysis was performed using Spearman's correlation test and Wilcoxon signed-rank test to compare the difference in image quality and exposure dose between single-sided IP and dual-sided reading IP. Results: With different tube current dosage of 5.6, 12.0, 20.0, 25.0, and 40.0 mAs, IQF values of single-sided reading IP were 47.95, 37.68, 34.31, 28.61, and 24.65, respectively, while those of dual- sided reading IP were 38.83, 29.81, 29.65, 25.16, and 21.43, respectively. The IQF difference between them showed statistical significance (P<0.05). Conclusion: Image quality of dual-sided reading IP has been proved to be far superior to that of single-sided reading IP, in particular for low contrast detail. The image quality of single-sided reading IP is similar to that of dual-sided reading IP only at high dose levels. The clinical application of dual-sided reading IP will reduce the exposure dose by about 25% compared with single-sided reading IP. (authors)

  14. The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: Accumulation and function of QB-nonreducing centers

    NARCIS (Netherlands)

    Vredenberg, W.J.; Kasalicky, V.; Durchan, M.; Prasil, O.

    2006-01-01

    The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is

  15. Single phase computed tomography is equivalent to dual phase method for localizing hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism: a retrospective review

    Directory of Open Access Journals (Sweden)

    Fanny Morón

    2017-08-01

    Full Text Available Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial versus single phase (arterial CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695. These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient.

  16. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    Science.gov (United States)

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  17. Donor-estimated GFR as an appropriate criterion for allocation of ECD kidneys into single or dual kidney transplantation.

    Science.gov (United States)

    Snanoudj, R; Rabant, M; Timsit, M O; Karras, A; Savoye, E; Tricot, L; Loupy, A; Hiesse, C; Zuber, J; Kreis, H; Martinez, F; Thervet, E; Méjean, A; Lebret, T; Legendre, C; Delahousse, M

    2009-11-01

    It has been suggested that dual kidney transplantation (DKT) improves outcomes for expanded criteria donor (ECD) kidneys. However, no criteria for allocation to single or dual transplantation have been assessed prospectively. The strategy of DKT remains underused and potentially eligible kidneys are frequently discarded. We prospectively compared 81 DKT and 70 single kidney transplant (SKT) receiving grafts from ECD donors aged >65 years, allocated according to donor estimated glomerular filtration rate (eGFR): DKT if eGFR between 30 and 60 mL/min, SKT if eGFR greater than 60 mL/min. Patient and graft survival were similar in the two groups. In the DKT group, 13/81 patients lost one of their two kidneys due to hemorrhage, arterial or venous thrombosis. Mean eGFR at month 12 was similar in the DKT and SKT groups (47.8 mL/min and 46.4 mL/min, respectively). Simulated allocation of kidneys according to criteria based on day 0 donor parameters such as those described by Remuzzi et al., Andres et al. and UNOS, did not indicate an improvement in 12-month eGFR compared to our allocation based on donor eGFR.

  18. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  19. SISTEM KONTROL OTOMATIK DENGAN MODEL SINGLE-INPUT-DUAL-OUTPUT DALAM KENDALI EFISIENSI UMUR-PEMAKAIAN INSTRUMEN

    Directory of Open Access Journals (Sweden)

    S.N.M.P. Simamora

    2014-10-01

    Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.

  20. The effects of stimulus modality and task integrality: Predicting dual-task performance and workload from single-task levels

    Science.gov (United States)

    Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.

    1986-01-01

    The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.

  1. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  2. Dual-channel amplification in a single-mode diode laser for multi-isotope laser cooling

    International Nuclear Information System (INIS)

    Booth, James L.; Van Dongen, Janelle; Lebel, Paul; Klappauf, Bruce G.; Madison, Kirk W.

    2007-01-01

    The output from two grating-stabilized external-cavity diode lasers were injected into a single-mode diode laser. Operating at a wavelength of 780 nm, this laser produced ∼50 mW of power with two main frequency components of the same spectral characteristics of the seed lasers. The power ratio of the amplified components was freely adjustable due to gain saturation, and amplification was observed for frequency differences of the two seed lasers in the range from 73 MHz to 6.6 GHz. This system was used to realize a dual isotope magneto-optic trap (MOT) for rubidium ( 85 Rb and 87 Rb). The resulting position and cloud size of the dual isotope MOT was the same as that of the single species MOTs to within ±10 and ±20 μm, respectively. We also characterized the additional spectral components produced by four wave mixing (FWM) in the diode laser amplifier and utilized a particular FWM sideband to realize hyperfine pumping and subsequent laser trapping of 85 Rb in the absence of a 'repump' laser dedicated to hyperfine pumping

  3. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    International Nuclear Information System (INIS)

    University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Tutelea, L N; University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Boldea, I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Deaconu, S I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Popa, G N

    2014-01-01

    The actual e – continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper

  4. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  5. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Czech Academy of Sciences Publication Activity Database

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, E.; Dawson, B.; Horváth, P.; Hrabovský, M.; Jiang, J.; Mandát, Dušan; Matalon, A.; Matthews, J.N.; Motloch, P.; Palatka, Miroslav; Pech, Miroslav; Privitera, P.; Schovánek, Petr; Takizawa, Y.; Thomas, S.B.; Trávníček, Petr; Yamazaki, K.

    2016-01-01

    Roč. 74, Feb (2016), s. 64-72 ISSN 0927-6505 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * fluorescence detector * extensive air shower Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  6. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex

    Czech Academy of Sciences Publication Activity Database

    Magennis, S.W.; Habtemariam, A.; Nováková, Olga; Henry, J.B.; Meier, S.; Parsons, S.; Oswald, D.H.; Brabec, Viktor; Sadler, P.J.

    2007-01-01

    Roč. 46, č. 12 (2007), s. 5059-5068 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA203/06/1239; GA ČR(CZ) GA305/05/2030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * ruthenium * fluorescence Subject RIV: BO - Biophysics Impact factor: 4.123, year: 2007

  7. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows

    International Nuclear Information System (INIS)

    Rust, T C; DiBella, E V R; McGann, C J; Christian, P E; Hoffman, J M; Kadrmas, D J

    2006-01-01

    Quantification of myocardial blood flows at rest and stress using 13 N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13 N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r = 0.998, mean absolute difference = 0.06 ml min -1 g -1 ). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use

  8. An asynchronous rapid single-flux-quantum demultiplexer based on dual-rail information coding

    International Nuclear Information System (INIS)

    Dimov, B; Khabipov, M; Balashov, D; Brandt, C M; Buchholz, F-Im; Niemeyer, J; Uhlmann, F H

    2005-01-01

    We present a novel asynchronous RSFQ demultiplexer based on dual-rail information coding. The electrical scheme of the circuit is designed and optimized to maximize the margins of its elements and to improve the fabrication yield. This optimized scheme has been fabricated with the 4 μm 1 kA cm -2 Nb/Al 2 O 3 -Al/Nb technology of PTB-Braunschweig. The demultiplexer has been tested with different samples of the low-speed incoming data stream and in all cases a correct circuit functionality has been observed

  9. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    Science.gov (United States)

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  10. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    Biebersdorf, A; Lingk, C; De Giorgi, M; Feldmann, J; Sacher, J; Arzberger, M; Ulbrich, C; Boehm, G; Amann, M-C; Abstreiter, G

    2003-01-01

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  11. Comparative effectiveness of single and dual rapid diagnostic tests for syphilis and HIV in antenatal care services in Colombia

    Directory of Open Access Journals (Sweden)

    Hernando Guillermo Gaitán-Duarte

    Full Text Available ABSTRACT Objective To assess the effectiveness of a dual rapid test compared to a single rapid test for syphilis and HIV screening. Methods A cluster-randomized open-label clinical trial was performed in 12 public antenatal care (ANC centers in the cities of Bogotá and Cali, Colombia. Pregnant women who were over 14 years of age at their first antenatal visit and who had not been previously tested for HIV and syphilis during the current pregnancy were included. Pregnant women were randomized to single HIV and single syphilis rapid diagnostic tests (Arm A or to dual HIV and syphilis rapid diagnostic tests (Arm B. The four main outcomes measured were: (1 acceptability of the test, (2 uptake in testing, (3 treatment on the same day (that is, timely treatment, and (4 treatment at any time for positive rapid test cases. Bivariate and multivariate analyses were calculated to adjust for the clustering effect and the period. Results A total of 1 048 patients were analyzed in Arm A, and 1 166 in Arm B. Acceptability of the rapid tests was 99.8% in Arm A and 99.6% in Arm B. The prevalence of positive rapid tests was 2.21% for syphilis and 0.36% for HIV. Timely treatment was provided to 20 of 29 patients (69% in Arm A and 16 of 20 patients (80% in Arm B (relative risk (RR, 1.10; 95% confidence interval (CI: (1.00 −1.20. Treatment at any time was given to 24 of 29 patients (83% in Arm A and to 20 of 20 (100% in Arm B (RR, 1.11; 95% CI: 1.01−1.22. Conclusions There were no differences in patient acceptability, testing and timely treatment between dual rapid tests and single rapid tests for HIV and syphilis screening in the ANC centers. Same-day treatment depends also on the interpretation of and confidence in the results by the health providers.

  12. The clinical determination of absolute density in bone utilizing single and dual energy compton scattering

    International Nuclear Information System (INIS)

    Huddleston, A.L.; Weaver, J.

    1980-01-01

    Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)

  13. Clinical Profile and Early Complications after Single and Dual Chamber Permanent Pacemaker Implantation at Manmohan Cardiothoracic Vascular and Transplant Centre, Kathmandu, Nepal.

    Science.gov (United States)

    Khanal, J; Poudyal, R R; Devkota, S; Thapa, S; Dhungana, R R

    2015-01-01

    Permanent pacemaker implantation is a minimally invasive surgical procedure in the management of patients with cardiac problems. However, complications during and after implantation are not uncommon. There is lack of evidences in rate of complications with the selection of pacemakers in Nepal. Therefore, this study was performed to compare the frequency of implantation and complication rate between single chamber and dual chamber pacemaker. The present study is based on all consecutive pacemaker implantations in a single centre between April 2014 and May 2015. A total of 116 patients were categorized into two cohorts according to the type of pacemaker implanted- single chamber or dual chamber. All patients had regular 2-weeks follow-up intervals with standardized documentation of all relevant patient data till 6-week after implantation. Data were presented as means ± standard deviation (SD) for continuous variables and as proportions for categorical variables. Comparison of continuous variables between the groups was made with independent Student's t-test. For discrete variables distribution between groups were compared with Chi-square test. The mean age (±SD) of total population at implant was 64.08 (± 15.09) years. Dual chamber units were implanted in 44 (37.93%) of patients, single chamber in 72 (62.06%). Only 14 women (31.81%) received dual chamber compared with 42 women (58.33%) who received single chamber (Chi-square=18, DF=1, P = 0.0084). Complete atrioventricular block was the commonest (56.03%) indication for permanent pacemaker insertion followed by sick sinus syndrome (33.62%), symptomatic high-grade AV block (11.20%). Hypertension (dual chamber 21.55%, single chamber 40.51%) was the most common comorbidity in both cohorts. Complications occurred in 11 (9.48%) patients. More proportion of complication occurred in single chamber group (9 patients, 12.50%) than in dual chamber (2 patients, 4.54%). Complications occurring in dual chamber group include

  14. Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids.

    Science.gov (United States)

    Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia

    2016-08-01

    A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The correlation between dual-color chromogenic in situ hybridization and fluorescence in situ hybridization in assessing HER2 gene amplification in breast cancer.

    Science.gov (United States)

    Pedersen, Marianne; Rasmussen, Birgitte Bruun

    2009-06-01

    Fluorescence in situ hybridization (FISH) is regarded as the gold standard method for detecting HER2 gene amplification. Chromogenic in situ hybridization (CISH) is a promising alternative to FISH because CISH has the advantages of being a method evaluated by bright-field microscopy and the generated chromogenic signals are also stable. This study presents a dual color CISH for simultaneous detection of the HER2 gene and chromosome 17. The CISH method performs a chromogenic detection "on top" of the Food and Drug Administration (FDA)-approved HER2 FISH pharmDx method, where the fluorochrome-labeled probes are detected using enzyme-labeled antibodies and visualized by chromogenic enzymatic reactions. The HER2 status (amplified/not amplified and HER2 ratios) was evaluated by the CISH method and compared with results obtained by the FDA-approved FISH method. Of the 72 successfully investigated invasive breast carcinomas, both FISH and CISH detected HER2 amplification in 24 cases and nonamplification was detected in 47 cases. One case showed a discrepancy between FISH and CISH. The concordance between CISH and FISH was found to be almost perfect (98.6%). The correlation between the HER2 ratios obtained by the 2 methods showed excellent correlation (correlation coefficient 0.95). In conclusion, it is possible by dual-color CISH method to demonstrate HER2 genes and chromosome 17 genes, in the same tissue section and reliably assess HER2 status. The CISH method is a very promising alternative to the FISH method.

  16. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  17. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    Al-Gubory, Kais H.

    2005-01-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  18. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  19. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    Science.gov (United States)

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  20. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Santangelo, Teresa [CHU Lille (EA 2694) University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Duhamel, Alain [University of Lille (EA 2694), Department of Biostatistics, CHU Lille, Lille (France); Deschildre, Antoine [CHU Lille - University of Lille, Department of Pediatric Pulmonology, Lille (France)

    2017-02-15

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol{sub 32}) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP{sub 32} was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP{sub 32}, CTDI{sub vol32} and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP{sub 32}, 0.78-1.25 mGy for the CTDI{sub vol32} and 1.6-2.1 mGy for the SSDE. (orig.)

  1. Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT

    International Nuclear Information System (INIS)

    Martine, Remy-Jardin; Colas, Lucie; Jean-Baptiste, Faivre; Remy, Jacques; Santangelo, Teresa; Duhamel, Alain; Deschildre, Antoine

    2017-01-01

    The availability of dual-source technology has introduced the possibility of scanning children at lower kVp with a high-pitch mode, combining high-speed data acquisition and high temporal resolution. To establish the radiation dose levels of dual-source, single-energy chest CT examinations in children. We retrospectively recorded the dose-length product (DLP) of 499 consecutive examinations obtained in children <50 kg, divided into five weight groups: group 1 (<10 kg, n = 129); group 2 (10-20 kg, n = 176); group 3 (20-30 kg, n = 99), group 4 (30-40 kg, n = 58) and group 5 (40-49 kg, n = 37). All CT examinations were performed with high temporal resolution (75 ms), a high-pitch mode and a weight-adapted selection of the milliamperage. CT examinations were obtained at 80 kVp with a milliamperage ranging between 40 mAs and 90 mAs, and a pitch of 2.0 (n = 162; 32.5%) or 3.0 (n = 337; 67.5%). The mean duration of data acquisition was 522.8 ± 192.0 ms (interquartile range 390 to 610; median 490). In the study population, the mean CT dose index volume (CTDIvol 32 ) was 0.83 mGy (standard deviation [SD] 0.20 mGy; interquartile range 0.72 to 0.94; median 0.78); the mean DLP 32 was 21.4 mGy.cm (SD 9.1 mGy.cm; interquartile range 15 to 25; median 19.0); and the mean size-specific dose estimate (SSDE) was 1.7 mGy (SD 0.4 mGy; interquartile range 1.5 to 1.9; median 1.7). The DLP 32 , CTDI vol32 and SSDE were found to be statistically significant in the five weight categories (P < 0.0001). This study establishes the radiation dose levels for dual-source, single-kVp chest CT from a single center. In the five weight categories, the median values varied 15-37 mGy.cm for the DLP 32 , 0.78-1.25 mGy for the CTDI vol32 and 1.6-2.1 mGy for the SSDE. (orig.)

  2. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  3. Development of a dual ion beam system with single accelerator for materials studies

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Nishimura, Eiichi; Hashimoto, Tsuneyuki

    1986-01-01

    The dual ion beam accelerator system has been developed for simulation studies of neutron radiation damage of structural materials for nuclear fusion and fission reactors. One accelerator is used to accelerate two different kinds of ions, which are generated in the ion source simultaneously. One of these ions is selected alternatively by switching the magnetic field of the analyzing magnet, and is then accelerated to the desired energy value. The system is controlled by a microcomputer. The accelerator used in the system is a conventional 400 kV Cockcroft-Walton accelerator. The performance test by the acceleration of He + and Ar + shows that the system is capable of accelerating two ions alternatively with a switching time of less than 22 s. The beam current obtained with the microcomputer control is more than 98% of the current obtained by manual operation. (orig.)

  4. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis.

    Science.gov (United States)

    Yang, Limin; Chen, Yuanyuan; Yu, Zhengze; Pan, Wei; Wang, Hongyu; Li, Na; Tang, Bo

    2017-08-23

    Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O 2 •- ) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O 2 •- measurement were doped in the outer layer shell of SiO 2 . Then, chitosan and triphenylphosphonium were modified on the surface of SiO 2 . The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O 2 •- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O 2 •- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O 2 •- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O 2 •- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O 2 •- and pH in autophagy and apoptosis in various pathological conditions and diseases.

  5. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  6. An investigation of single diffractive p-Be, p-Al, and p-W interactions within the Dual Parton Model

    International Nuclear Information System (INIS)

    Ranft, J.; Roesler, S.

    1994-01-01

    Single diffractive proton-beryllium, -aluminium, and -tungsten interactions are studied within the framework of the Dual Parton Model. Their implementation into the Monte-Carlo event generator DTUNUC is described, and the main features of single diffractive particle production are discussed, comparing them to recent experimental results. Furthermore, single diffractive hadron-nucleus cross sections are calculated using the Glauber theory and the influence of hadronic cross section fluctuations is investigated. (author). 17 refs., 3 figs., 2 tabs

  7. Superiority of triple-detector single-photon emission tomography over single- and dual-detector systems in the minimization of motion artefacts

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Taki, Junichi; Michigishi, Takatoshi; Tonami, Norihisa

    1998-01-01

    A patient motion-related artefact is one of the most important artefacts in single-photon emission tomography (SPET) imaging. This study evaluated the effect of the number and configuration of SPET detectors on motion artefacts. The following acquisition conditions were simulated based on original 360 projection images: (1) single-detector 180 rotation (S180), (2) a dual-detector rectangular (L-shaped) 180 acquisition (D180L), (3) dual-detector cameras mounted opposite each other with 360 acquisition (D360) and (4) triple-detector 360 acquisition (T360). The motion artefacts were introduced using a syringe and a myocardial phantom. Clinical cases with technetium-99m methoxyisobutylisonitrile and thallium-201 studies were analysed to confirm the validity of this phantom simulation. The effect of continuous alternate rotation acquisition and summing the projections on the reduction of motion artefacts was investigated in each model. The effect of motion depended on the number and the configuration of the SPET detectors. A 1-pixel (6.4 mm) motion in the S180, D180L and D360 models generated only slight artefacts, and a 2-pixel motion led to an apparent decrease in activity or created hot areas in the myocardium. On the other hand, a T360 rotation created few artefacts even with a 2-pixel motion of the last quarter of the projections. Despite the difference in attenuation with 201 Tl and 99m Tc, similar artefact patterns were observed with both radionuclides in selected patient model studies. Continuous alternate rotation could reduce artefacts caused by less than a 2-pixel motion. In conclusion, calculating the average of the sum of the projections of triple-detector 360 rotations with alternate rotation is the best method to minimize motion artefacts. This ''averaging'' effect of motion artefacts is a key to this simulation. (orig.)

  8. Comparative study of dobutamine stress echocardiography and dual single-photon emission computed tomography (Thallium-201 and I-123 BMIPP) for assessing myocardial viability after acute myocardial infarction

    International Nuclear Information System (INIS)

    Yasugi, Naoko; Hiroki, Tadayuki

    2002-01-01

    Discordance between the 123 I-labelled 15-iodophenyl-3-R, S-methyl pentadecanoic acid (BMIPP) and 201 Tl findings may indicate myocardial viability (MV). This study compared dobutamine stress echocardiography (DSE) and single-photon emission computed tomography (SPECT) using the dual tracers for assessment of MV and prediction of functional recovery after acute myocardial infarction (AMI). DSE and dual SPECT were studied in 35 patients after AMI, of whom 28 underwent percutaneous coronary intervention in the acute stage. Dual SPECT was performed to compare the defect score of BMIPP and 201 Tl. The left ventricular wall motion score (WMS) was estimated during DSE and 6 months later to assess functional recovery of the infarct area. The rate of agreement of MV between dual SPECT and DSE was 89% (p 201 Tl were significantly smaller in patients with functional recovery than in those without. Assessment of MV using DSE concords with the results of dual SPECT in the early stage of AMI. DSE may have a higher predictive value for long-term functional recovery at the infarct area. However, a finding of positive MV by dual SPECT, without functional recovery, may indicate residual stenosis of the infarct-related artery, although the number of cases was small. Combined assessment by dual SPECT and DSE may be useful for detecting MV and jeopardized myocardium. Furthermore, the results suggest that functional recovery of dysfunctional myocardium may depend on the size of the infarct and risk area. (author)

  9. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    Science.gov (United States)

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  10. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    Science.gov (United States)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  11. The Need to Change Army Policies Toward Single Parents and Dual Military Couples With Children

    National Research Council Canada - National Science Library

    Carroll, Carolyn

    2005-01-01

    The purpose of this report is to identify the key challenges with current Army personnel policies and to provide recommendations that would reduce the impact of single parents on Army unit readiness...

  12. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  14. Analysis of the substrate recognition state of TDP-43 to single-stranded DNA using fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2018-07-01

    Full Text Available Normal function and abnormal aggregation of transactivation response (TAR DNA/RNA-binding protein 43 kDa (TDP-43 are directly associated with the lethal genetic diseases: cystic fibrosis, amyotrophic lateral sclerosis (ALS, and frontotemporal lobar degeneration (FTLD. The binding of TDP-43 to single-stranded DNA (ssDNA or RNA is involved in transcriptional repression, regulation of RNA splicing, and RNA stabilization. Equilibrium dissociation constants (Kd of TDP-43 and ssDNA or RNA have been determined using various methods; however, methods that can measure Kd with high sensitivity in a short time using a small amount of TDP-43 in solution would be advantageous. Here, in order to determine the Kd of TDP-43 and fluorescence-labeled ssDNA as well as the binding stoichiometry, we use fluorescence correlation spectroscopy (FCS, which detects the slowed diffusion of molecular interactions in solution with single-molecule sensitivity, in addition to electrophoretic mobility shift assay (EMSA. Using tandem affinity chromatography of TDP-43 dually tagged with glutathione-S-transferase and poly-histidine tags, highly purified protein was obtained. FCS successfully detected specific interaction between purified TDP-43 and TG ssDNA repeats, with a Kd in the nanomolar range. The Kd of the TDP-43 mutant was not different from the wild type, although mutant oligomers, which did not bind ssDNA, were observed. Analysis of the fluorescence brightness per dimerized TDP-43/ssDNA complex was used to evaluate their binding stoichiometry. The results suggest that an assay combining FCS and EMSA can precisely analyze ssDNA recognition mechanisms, and that FCS may be applied for the rapid and quantitative determination of the interaction strength between TDP-43 and ssDNA or RNA. These methods will aid in the elucidation of the substrate recognition mechanism of ALS- and FTLD-associated variants of TDP-43.

  15. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  16. Father involvement and marital relationship during transition to parenthood: differences between dual and single-earner families.

    Science.gov (United States)

    Menéndez, Susana; Hidalgo, M Victoria; Jiménez, Lucía; Moreno, M Carmen

    2011-11-01

    Research into the process of becoming mother or father shows very conclusively that this important life transition is accompanied by both a decrease in marital quality and a more traditional division of labour. In this paper these changes are analyzed with special emphasis on the relationships between them and exploring the role played in this process by the mother's work status. Results showed a significant link between the development of marital quality and violated expectations regarding father involvement on childrearing. Dual-earner families were characterized by a specific pattern of changes, with greater stability than single-earner families in marital and parental roles during transition to parenthood and a significant role played by spouse support as a partner, but not as a parent.

  17. Dual-mode optical microscope based on single-pixel imaging

    OpenAIRE

    Rodríguez Jiménez, Angel David; Clemente Pesudo, Pedro Javier; Tajahuerce, Enrique; Lancis Sáez, Jesús

    2016-01-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD...

  18. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  19. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy

    Science.gov (United States)

    Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, George; Thieke, Christian; Würl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Jürgen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia

    2017-03-01

    The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β + activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECTdist to a measured patient PET scan showed improved agreement when compared to SECTSchneider. The agreement between predicted and measured PET

  20. The risk assessment of Gd_2O_3:Yb"3"+/Er"3"+ nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    International Nuclear Information System (INIS)

    Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li

    2017-01-01

    Our group has synthesized Gd_2O_3:Yb"3"+/Er"3"+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd_2O_3:Yb"3"+/Er"3"+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd_2O_3:Yb"3"+/Er"3"+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T_1-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd_2O_3:Yb"3"+/Er"3"+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  1. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    Science.gov (United States)

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  2. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles.

    Science.gov (United States)

    Cui, Zhimin; Han, Cuiping; Li, Haibing

    2011-04-07

    A versatile yet simple strategy for the fabrication of a highly selective and sensitive fenamithion probe based on Rhodamine B (RB) modified silver nanoparticles (RB-Ag NPs) was developed. The advantage of our system over classical assays is that it combined fluorescence with colorimetry which can realize the prompt on-site and real-time detection of fenamithion with high sensitivity (0.1 nM) in aqueous solution. Moreover, the detection system presents excellent anti-disturbance ability when exposed to a series of interfering ionic/pesticides mixtures and can be applied to the determination of fenamithion in real vegetables and different water samples with the limit of detection (LOD) as low as 10 nM (0.0026 mg L(-1)), which is in accord with the maximum contamination level of 0.001∼0.25 mg L(-1) for organophosphorus pesticides as defined by the U.S. Environmental Protection Agency (EPA). Advantage is taken of the fact that RB would be displaced from the surface of the Ag NPs because of the stronger coordination ability of Ag NPs with fenamithion, an amino-containing organophosphorus pesticide, accompanying the clustered Ag NPs (9 nm) dissipating into smaller individual particles (7 nm). Based on this phenomenon, a novel analyte-induced etching mechanism was proposed. © The Royal Society of Chemistry 2011

  3. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  4. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  5. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects

    Science.gov (United States)

    Hartmann, Carolin; Patil, Roshani; Lin, Charles P.; Niedre, Mark

    2018-01-01

    There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, ‘in vivo flow cytometry’ (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.

  6. Neural Correlates of Single- and Dual-Task Walking in the Real World

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-09-01

    Full Text Available Recent developments in mobile brain-body imaging (MoBI technologies have enabled studies of human locomotion where subjects are able to move freely in more ecologically valid scenarios. In this study, MoBI was employed to describe the behavioral and neurophysiological aspects of three different commonly occurring walking conditions in healthy adults. The experimental conditions were self-paced walking, walking while conversing with a friend and lastly walking while texting with a smartphone. We hypothesized that gait performance would decrease with increased cognitive demands and that condition-specific neural activation would involve condition-specific brain areas. Gait kinematics and high density electroencephalography (EEG were recorded whilst walking around a university campus. Conditions with dual tasks were accompanied by decreased gait performance. Walking while conversing was associated with an increase of theta (θ and beta (β neural power in electrodes located over left-frontal and right parietal regions, whereas walking while texting was associated with a decrease of β neural power in a cluster of electrodes over the frontal-premotor and sensorimotor cortices when compared to walking whilst conversing. In conclusion, the behavioral “signatures” of common real-life activities performed outside the laboratory environment were accompanied by differing frequency-specific neural “biomarkers”. The current findings encourage the study of the neural biomarkers of disrupted gait control in neurologically impaired patients.

  7. Dual-artery stenting of a type III single coronary artery from right aortic sinus

    Directory of Open Access Journals (Sweden)

    Shivanad Patil

    2015-12-01

    Full Text Available A single coronary artery presenting with stenosis in two of the three vessels arising from a common ostium is a rare anomaly Lipton et al. proposed a classification, which was modified by Yamanaka and Hobbs. In our case, a single coronary artery was giving rise to the LAD, left circumflex (LCx, and the right coronary artery (RCA. There was 80% stenosis in the ostium of the LCx. The RCA in the mid and distal segment had stenosis of 80% and 70%, respectively. We were able to successfully stent the three stenotic segments.

  8. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    Directory of Open Access Journals (Sweden)

    Zhang M

    2015-11-01

    Full Text Available Miaomiao Zhang,1,* Huixiang Ju,2,* Li Zhang,1,* Mingzhong Sun,2 Zhongwei Zhou,2 Zhenyu Dai,3 Lirong Zhang,1 Aihua Gong,1 Chaoyao Wu,1 Fengyi Du1 1School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China; 2Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China; 3Radiology Department, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: X-ray computed tomography (CT is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. Keywords: carbon dots, contrast agents, iodine-doped, CT imaging

  9. The effect of methylphenidate on postural stability under single and dual task conditions in children with attention deficit hyperactivity disorder - a double blind randomized control trial.

    Science.gov (United States)

    Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak

    2009-05-15

    To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.

  10. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.

    Science.gov (United States)

    Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel

    2017-09-13

    We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.

  11. Learning Effectiveness and Cognitive Loads in Instructional Materials of Programming Language on Single and Dual Screens

    Science.gov (United States)

    Hsu, Jenq-Muh; Chang, Ting-Wen; Yu, Pao-Ta

    2012-01-01

    The teaching and learning environment in a traditional classroom typically includes a projection screen, a projector, and a computer within a digital interactive table. Instructors may apply multimedia learning materials using various information communication technologies to increase interaction effects. However, a single screen only displays a…

  12. o-Toluidine blood protein adducts: HPLC analysis with fluorescence detection after a single dose in the adult male rat

    International Nuclear Information System (INIS)

    Cheever, K.L.; DeBord, G.D.; Swearengin, T.F.

    1991-01-01

    Hemoglobin (Hb) and albumin (Alb) adducts of the suspect human carcinogen o-toluidine (OT) were quantified in blood samples collected from rats after a single i.p. injection. Mild alkaline hydrolysis of Hb-adducted [ 14 C]OT followed by extraction with ethylacetate resulted in recovery of 66% of the bound radioactivity. HPLC analysis revealed a single radiolabeled peak which was identified as OT by GC-MS. In subsequent experiments the Hb and Alb adduct levels were determined by HPLC analysis of this split product using fluorescence detection. 4-Ethylaniline was used as internal standard. The detection limit for OT was approximately 450 pg/injection of 5 pmol. mg Hb. Mean adduct levels for Hb increased rapidly over the first 4 hr with the highest (ng/mg Hb ± SD) 3.7 ± 0.5 detected 24 hr after OT (50 mg/kg body wt). In contrast, adduct levels for pooled Alb samples increased from 0.7 ng/mg Alb at 2 hr to 2.5 ng/mg Alb at 4 hr, but were not detectable 24 hr after OT (50 mg/kg body wt). In contrast, adduct levels for pooled Alb samples increased from 0.7 ng/mg Alb at 2 hr to 2.5 ng/mg Alb at 4 hr, but were not detectable 24 hr after dosing. Hb adducts showed a linear relationship for OT doses of 10, 20, 40, 50, and 100 mg/kg body wt. The Hb adduct t 1/2 (11.2 days) was determined after a single 100 mg/kg OT dose. Hb adduct levels were quantifiable (1.3 ± 0.2 ng/mg Hb) by HPLC/fluorescence 28 days after 100 mg/kg OT

  13. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    Science.gov (United States)

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  14. Morphological changes in cultured bovine lymphoid cell lines associated with bovine viral diarrhea virus (BVDV) single and dual infections with bovine leukemia virus (BLV)

    Science.gov (United States)

    Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...

  15. Intermediate-Term Outcomes of Dual Adult versus Single-Kidney Transplantation: Evolution of a Surgical Technique

    Directory of Open Access Journals (Sweden)

    Ana K. Islam

    2016-01-01

    Full Text Available Background. Acceptance of dual kidney transplantation (DKT has proven difficult, due to surgical complexity and concerns regarding long-term outcomes. We herein present a standard technique for ipsilateral DKT and compare outcomes to single-kidney transplant (SKT recipients. Methods. A retrospective single-center comparison of DKT and SKT performed between February 2007 and July 2013. Results. Of 516 deceased donor kidney transplants, 29 were DKT and 487 were SKT. Mean follow-up was 43 ± 67 months. DKT recipients were older and more likely than SKT recipients to receive an extended criteria graft (p<0.001. For DKT versus SKT, the rates of delayed graft function (10.3 versus 9.2% and acute rejection (20.7 versus 22.4% were equivalent (p = ns. A higher than expected urologic complication rate in the DKT cohort (14 versus 2%, p<0.01 was reduced through modification of the ureteral anastomosis. Graft survival was equivalent between DKT and SKT groups (p = ns with actuarial 3-year DKT patient and graft survivals of 100% and 93%. At 3 years, the groups had similar renal function (p = ns. Conclusions. By utilizing extended criteria donor organs as DKT, the donor pool was enlarged while providing excellent patient and graft survival. The DKT urologic complication rate was reduced by modification of the ureteral anastomosis.

  16. Intermediate-Term Outcomes of Dual Adult versus Single-Kidney Transplantation: Evolution of a Surgical Technique.

    Science.gov (United States)

    Islam, Ana K; Knight, Richard J; Mayer, Wesley A; Hollander, Adam B; Patel, Samir; Teeter, Larry D; Graviss, Edward A; Saharia, Ashish; Podder, Hemangshu; Asham, Emad H; Gaber, A Osama

    2016-01-01

    Background. Acceptance of dual kidney transplantation (DKT) has proven difficult, due to surgical complexity and concerns regarding long-term outcomes. We herein present a standard technique for ipsilateral DKT and compare outcomes to single-kidney transplant (SKT) recipients. Methods. A retrospective single-center comparison of DKT and SKT performed between February 2007 and July 2013. Results. Of 516 deceased donor kidney transplants, 29 were DKT and 487 were SKT. Mean follow-up was 43 ± 67 months. DKT recipients were older and more likely than SKT recipients to receive an extended criteria graft (p DKT versus SKT, the rates of delayed graft function (10.3 versus 9.2%) and acute rejection (20.7 versus 22.4%) were equivalent (p = ns). A higher than expected urologic complication rate in the DKT cohort (14 versus 2%, p DKT and SKT groups (p = ns) with actuarial 3-year DKT patient and graft survivals of 100% and 93%. At 3 years, the groups had similar renal function (p = ns). Conclusions. By utilizing extended criteria donor organs as DKT, the donor pool was enlarged while providing excellent patient and graft survival. The DKT urologic complication rate was reduced by modification of the ureteral anastomosis.

  17. Prediction of postoperative pulmonary function. Preliminary comparison of single-breath dual-energy xenon CT with three conventional methods

    International Nuclear Information System (INIS)

    Yanagita, Hisami; Honda, Norinari; Nakayama, Mitsuo

    2013-01-01

    The purpose of this study was to assess the use of xenon ventilation maps (Xe-images) for predicting postoperative pulmonary function. After study approval by the institutional review board, written informed consent was obtained from 30 patients with lung tumors who underwent pre- and postoperative spirometry, pulmonary perfusion single photon emission computed tomography (SPECT) and dual-energy CT (80 kV and 140 kV/Sn) after single-breath inspiration of 35% xenon. Xe-images were calculated by three-material decomposition. Sum of pixel values of the part to be resected (A) and of the whole lung (B) on Xe-images or lung perfusion SPECT, and volumes or the number of segments of the part to be resected (A) and of the whole lung (B) on Xe-images were enumerated, respectively. We multiplied (1-A/B) by each preoperative value from spirometry for prediction. Predictions by each of the four methods were compared with postoperative values. Predicted values for vital capacity (VC), forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ) by the four methods regressed significantly with measured values (R 2 =0.56-0.77, p 1 with accuracy comparable to that of CT volumetry. (author)

  18. Dual-Stack Single-Radio Communication Architecture for UAV Acting As a Mobile Node to Collect Data in WSNs

    Directory of Open Access Journals (Sweden)

    Ali Sayyed

    2015-09-01

    Full Text Available The use of mobile nodes to collect data in a Wireless Sensor Network (WSN has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces. The present work presents a Dual-Stack Single-Radio Communication Architecture (DSSRCA, which allows a UAV to communicate in a bidirectional manner with a WSN and a Sink node. The proposed architecture was specifically designed to support different network QoS requirements, such as best-effort and more reliable communications, attending both UAV-to-WSN and UAV-to-Sink communications needs. DSSRCA was implemented and tested on a real UAV, as detailed in this paper. This paper also includes a simulation analysis that addresses bandwidth consumption in an environmental monitoring application scenario. It includes an analysis of the data gathering rate that can be achieved considering different UAV flight speeds. Obtained results show the viability of using a single radio transmitter for collecting data from the WSN and forwarding such data to the Sink node.

  19. Dual-Stack Single-Radio Communication Architecture for UAV Acting As a Mobile Node to Collect Data in WSNs.

    Science.gov (United States)

    Sayyed, Ali; de Araújo, Gustavo Medeiros; Bodanese, João Paulo; Becker, Leandro Buss

    2015-09-16

    The use of mobile nodes to collect data in a Wireless Sensor Network (WSN) has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs) as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces.