WorldWideScience

Sample records for dual filler based

  1. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  2. Dispersion of complex permeability and EM-wave absorbing characteristics of polymer-based composites with dual ferrite filler

    Energy Technology Data Exchange (ETDEWEB)

    Dosoudil, Rastislav [Faculty of Electrical Engineering and Information Technology, Ilkovicova3, 81219Bratislava (Slovakia)], E-mail: rastislav.dosoudil@stuba.sk; Usakova, Marianna; Franek, Jaroslav; Gruskova, Anna; Slama, Jozef [Faculty of Electrical Engineering and Information Technology, Ilkovicova3, 81219Bratislava (Slovakia)

    2008-10-15

    Triple-component PVC-polymer-based composites with MnZn and LiZn ferrites were synthesized by a dry hot-pressing route and their complex permeability and electromagnetic wave absorption characteristics have been studied in the frequency interval of 10 kHz-1 GHz. The model concerning the domain wall and magnetization rotation dynamics was used to decompose the measured spectra of sintered ferrites and composites into the contributions of the resonance of oscillating domain walls and the natural (ferromagnetic) resonance of precessing magnetic moments in domains. The permeability, resonance frequency, return loss (RL) and bandwidth (for RL{<=}-20 dB) can be better tuned in triple-component composites than in those with single ferrite fillers.

  3. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  4. Fillers

    Science.gov (United States)

    McLain, Leslie; Ingle, Danny

    The American Heritage dictionary defines filler as ‘something added to augment weight or size or fill space'. Historically, commercial papermakers have used a variety of inexpensive, minimally beneficiated minerals as fillers for economic extension of more costly wood fibre. As such, these fillers played a relatively inconsequential role in contributing specific quality characteristics to the final sheet. However, as paper grades have evolved, the role of mineral fillers has dramatically expanded to contribute specific functionality to final paper grades. In general, this has resulted in a broader offering of mineral products to the papermaker delivering a range of optical and physical properties. Additionally, the use of mineral fillers may significantly impact dynamics on the paper machine itself. For example, the type and level of filler can dramatically affect chemical demand, drainage, speed and drying rates. A basic understanding of the fundamental characteristics of fillers and their resulting impact, both within the paper matrix and on the paper machine, is a critical requirement for cost-effective grade optimization.

  5. Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers

    OpenAIRE

    Edwin Azwar; Minna Hakkarainen

    2012-01-01

    Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences...

  6. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    Science.gov (United States)

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  7. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Caroline Kohn-Polster

    2017-05-01

    Full Text Available Toward the next generation of nerve guidance conduits (NGCs, novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR. As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM-like characteristics and specific biochemical cues holds great potential to support PNR.

  8. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available of Composites from Renewable Materials, Volume 1, Structure and Chemistry, p. 243-270 Bio-based Fillers for Environmentally Friendly Composites Thabang H. Mokhothu and Maya J. John ABSTRACT: The use of bio-based fillers as alternative replacement...

  9. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  10. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  11. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    Science.gov (United States)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  12. Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys

    Institute of Scientific and Technical Information of China (English)

    Ma Tianjun; Kang Hui; Wu Yongqin; Qu Ping

    2004-01-01

    The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.

  13. Perspectives for Titanium-Derived Fillers Usage on Denture Base Composite Construction: A Review Article

    Directory of Open Access Journals (Sweden)

    Nidal W. Elshereksi

    2014-01-01

    Full Text Available Poly(methyl methacrylate (PMMA is an extensively used material in dentistry because of its aesthetics, processability, and reparability. However, PMMA is still far from being ideal in fulfilling the mechanical requirements of prosthesis. PMMA-based denture base polymers exhibit low fracture resistance and radiopacity behavior. Efforts to improve the mechanical and radiopacity properties of denture base materials through inclusion of silica-based fillers are ongoing. Although silane-treated siliceous fillers are commonly used, they are not sufficiently strong. They also exhibit cracks, which either cut through the glass fillers or propagate around the filler particles. This defect occurs when the dental composites are placed in aqueous oral environment because of the hydrolytic degradation of silica-based fillers and silane-coupling agents. The clinical problem of using silanes in adhesion promotion is bond degradation over time in oral environment. In addition, silanes do not bond effectively to nonsilica-based dental restorative materials. This review presents titanium-derived fillers as alternatives to siliceous fillers. Titanate-coupling agents are found to be effective couplers in treating Ti-based fillers because of their chemical compatibility and relatively high stability in aqueous environment.

  14. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  15. Provskite Structure Based Filler Impregnated Pvdf—Hfp Micro Composites For Lithium Ion Batteries

    Science.gov (United States)

    Vickraman, P.; Pandiraj, A.

    2011-07-01

    Lithium BETI (Lithium bis (perfluoroethanesulfonyl) imide) (guest species) based PVDF-HFP(host matrix) Polymer NanoComposites (PNC) films by loading barium titanate (BaTiO3) as a filler, in ascending proportions with the plasticizer (mixture of EC+DMC) while keeping host and guest content as constants, has been investigated by employing AC impedance, Thermal, and XRD. The ionic conductivity measurements on these PNC show that 2.5% BaTiO3 loaded PNC showed mitigation in magnitude of the conductivity compared to that of 0 wt% loaded PNC but thereafter increase in conductivity is noted with increase in filler content upto 7.5 wt%. The higher conductivity is observed for 7.5 % filler loaded membrane. The XRD study identifies suppression of polymer phase associated with (200) plane. The thermal profile registers the endothermic changes associated with polymer host indicating varying heat of fusion ΔHm with filler increase.

  16. The Influence of Chicken Egg Shell as Fillers on Biocomposite Acrylic Resin for Denture Based

    Science.gov (United States)

    Lubis, M.; Ginting, M. H. S.; Dalimunthe, N. F.; Hasibuan, D. M. T.; Sastrodihardjo, S.

    2017-03-01

    This research was conducted to discover the influence of the addition of chicken egg shells microparticle as filler on the mechanical properties such as modulus of elasticity, modulus of rapture and particle size analysis on biocomposite acrylic resin for denture based. The raw materials used in this research were acrylic resin, egg shell, cold mold seals, gypsum, Vaseline and wax. The process of making biocomposite acrylic resin for denture based with mix the acrylic resin in ratio 2:1 (w/w). Then added the microparticle filler 0,10,20,30 (%w) to mold and boil in 75°C for 90 minutes and increase the temperature to 90 °C for 30 minutes. Took the sample and let it dried. The results of research showed the increase of modulus elasticity and modulus of rapture. The modulus of elasticity showed a very significant increase by adding fillers 10% of 2.123 GPa, which was only 1.932 GPa without adding the filler of chicken egg shells. For modulus of rapture showed the increase by adding fillers 20% of 48,311MPa, which was only 46,865 GPa without adding the filler of chicken egg shells

  17. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  18. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  19. Laser brazing of inconel 718 alloy with a silver based filler metal

    Science.gov (United States)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  20. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  1. Aminoalcohol functionalized zirconium phosphate as versatile filler for starch-based composite membranes.

    Science.gov (United States)

    Pica, Monica; Donnadio, Anna; Bianchi, Valentina; Fop, Sacha; Casciola, Mario

    2013-08-14

    Microcrystalline zirconium phosphate was exfoliated by treatment with aqueous solutions of α,ω-alkylaminoalcohols and employed for the fabrication of potato starch composite membranes. Glycerol-based and glycerol-free composite membranes, containing 5 wt% of filler, were prepared from gelatinized starch and characterized for their physico-chemical properties. Despite of a partial filler reaggregation, as revealed by XRD and SEM analysis, all the composites exhibited a significant increase in the Young's modulus with respect to the glycerol-starch membrane, up to 80% and 190% for the glycerol-based and the glycerol-free composites, respectively. For both kinds of membranes the filler delays to a large extent the starch decomposition above about 300°C. A significant reduction in the water uptake of the composites was also observed with respect to the neat glycerol-based membrane, up to about 70% for the glycerol-free composites.

  2. Epoxy composites based on inexpensive tire waste filler

    Energy Technology Data Exchange (ETDEWEB)

    Ahmetli, Gulnare, E-mail: ahmetli@selcuk.edu.tr; Gungor, Ahmet, E-mail: ahmetli@selcuk.edu.tr; Kocaman, Suheyla, E-mail: ahmetli@selcuk.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42031 Konya (Turkey)

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  3. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  4. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  5. Effect of denture base-resin with prereacted glass-ionomer filler on dentin demineralization

    NARCIS (Netherlands)

    Y. Mukai; K. Kamijo; F. Fujino; T. Teranaka; J.M. ten Cate

    2009-01-01

    The demineralization of dentin was studied when placed adjacent to one of four experimental denture base-resins. These experimental resins contained polymethylmethacrylate (PMMA) and 0, 5, 10, 20 or 30 wt% surface reaction-type prereacted glass-ionomer (S-PRG) filler, respectively. A dentin thin-sec

  6. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite.

    Science.gov (United States)

    Lung, Christie Ying Kei; Sarfraz, Zenab; Habib, Amir; Khan, Abdul Samad; Matinlinna, Jukka Pekka

    2016-02-01

    To evaluate the physical and mechanical properties of an experimental bis-GMA-based resin composite incorporated with non-silanized and silanized nano-hydroxyapatite (nHAP) fillers. Experimental bis-GMA based resin composites samples which were reinforced with nHAP fillers were prepared. Filler particles were surface treated with a silane coupling agent. Five test groups were prepared: 1. Unfilled, 2. Reinforced with 10wt% and 30wt% non-silanized nHAP fillers, and 3. Reinforced with 10wt% and 30wt% silanized nHAP fillers. The samples were subjected to tests in dry condition and in deionized water, aged at 37°C for 30 days. Prepared silanized and non-silanized nHAP were analyzed with Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The micro-hardness and water sorption were evaluated. Data were analyzed by one-way ANOVA (psilane treated fillers was superior to unfilled and untreated fillers resins. The resin matrix loaded with 30wt% silanized-nHAP fillers would improve the physical and mechanical properties of a bis-GMA based resin.

  7. Development of (fe–b–c-based filler for wear-resistant composite coatings

    Directory of Open Access Journals (Sweden)

    О. V. Sukhovа

    2014-12-01

    Full Text Available Purpose. Development of multi-alloyed filler for abrasive wear-resistant composites. Methodology. The methods of microstructural, X-ray and energy-dispersive X-ray analyses were used to achieve research purpose. Micro-mechanical properties of structural constituents and abrasive wear-resistance of composites were determined. Findings. The complete dissolution of chromium and vanadium in the borides of Fe2В and FeВ that are initial structural constituents of Fe–В–С peritectic alloys has been established. These elements primarily dissolve in iron monoboride. Dissolution of molybdenum and niobium is not practically observed. As a result the phases of Мо2В, Мо2(В,С or NbВ2 can be seen in the structure. Alloying with chromium and vanadium increases compression strength and crack resistance coefficient, but that with molybdenum and niobium enhances total microhardness and hardness of the alloys. Structure formation of the interfaces between the filler and the binder of the composites based on МNМts 20-20 binder is governed by dissolution and diffusion processes when multi-alloyed (Fe–В–С alloy is applied as filler of the composites. The phase and the structural composition of contact interaction zones can be explained by re-crystallization of the filler surface layers after dissolution caused by contact with the molten binder. Consequently the macroheterogeneous structure of the composites is free of defects and strong adhesion between the filler and the binder is assured. Contact interaction intensity can be controlled by the choice of temperature- and-time infiltration regimes. Originality. The peculiarities in the formation of structure and properties of Fe2В- and FeВ-based solid solutions observed in the structure of the Fe–В–С peritectic alloys were investigated that allowed us to recommend composition of multicomponent alloy to be applied as filler of (Cu–Ni–Mn-matrix macroheterogeneous composites. Practical

  8. Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties.

    Science.gov (United States)

    Jose, Josmin P; Thomas, Sabu

    2014-07-28

    Herein, investigation on XLPE-Al2O3-clay ternary hybrid systems of Al2O3 and clay in 1 : 1 and 2 : 1 ratios, binary systems of XLPE-clay and XLPE-Al2O3 nanocomposites, with special reference to the hybrid filler effect and the superior microstructural development in ternary systems is conducted. The ternary hybrid composite of Al2O3 and clay in a 1 : 1 ratio exhibits the highest tensile strength (100% increase) and Young's modulus (208% increase), followed by the Al2O3 : clay = 2 : 1 system. The interaction between alumina and clay altered the composite morphology, filler dispersion and gave rise to a unique filler architecture leading to a substantial boost up in mechanics compared to predictions based on the idealized filler morphology. Experimentally observed much higher mechanics compared to theoretical predictions confirmed that the dramatic improvement in mechanics is the outcome of the positive hybrid effect and a second factor of synergism, i.e. filler-filler networks. Morphological control of the hybrid filler network is realized by adjusting the ratio between different fillers. For the Al2O3 : clay = 2 : 1 system, the microstructural limitation of dispersion due to the steric effect of alumina clusters shifts the properties to the negative hybrid effect region.

  9. Bismuth subcarbonate as filler particle for an Epoxy-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Eduardo Schwartzer

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the addition of bismuth subcarbonate with different concentrations regarding the rheological properties of an experimental epoxy-based root canal sealer. Materials and Methods: Endodontic sealers were prepared with epoxy resin-based sealer with bismuth subcarbonate additions of 20%, 40%, 60%, 80%, 100%, and 120%. Flow, film thickness, working time, setting time, dimensional change, sorption, solubility, and cytotoxicity were studied according to the ISO standards. Data were statistically analyzed by one-way ANOVA, and Tukey multiple comparisons were used, with a significance level of 5%. Results: The flow, working time, water sorption, and solubility significantly decreased and the film thickness and dimensional change increased with higher filler particle addition. There were no statistically significant differences for setting time and cytotoxicity between the filler particle proportions. Conclusion: Experimental resin-based sealer with bismuth subcarbonate addition up to 40% can be an alternative for root canal sealer.

  10. Interfacial structure and joint strengthening in arc brazed galvanized steels with copper based filler

    Institute of Scientific and Technical Information of China (English)

    LI Rui-feng; YU Zhi-shui; QI Kai

    2006-01-01

    Galvanized steel sheets were joined by tungsten inert gas(TIG) and metal inert gas(MIG) brazing process using copper based filler. The results show that the joint zone hardness is higher than that of the base material or copper filler from the microhardness tests of TIG brazing specimens, and the fracture spot is at the base materials zone from the tensile tests of MIG brazing specimens. Examination using energy dispersive X-ray analysis reveals the presence of intermetallic compound Fe5Si3(Cu) in the joint. The dispersal of fine Fe5Si3(Cu) particles is the main strengthening factor for the joint. The Fe5Si3(Cu) particles are determined to arise from three sources, namely, spot micro-melt, whisker-like fragmentation and dissolve-separation actions.

  11. Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal

    Institute of Scientific and Technical Information of China (English)

    LI Li-qun; FENG Xiao-song; CHEN Yan-bin

    2008-01-01

    The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes. The microstructures and element distributions of joint interface were investigated by SEM and EDS. The results show that there is no obvious interface layer with the circular individual beam heating and lamellar Fe-Si intermetallic compound layer is found with dual-beam laser spot heating. With the irradiation of rectangular laser spot, the joint interface layer is also formed. The layer thickness is larger than that of dual-beam brazing and the layer shape is fiat so that intermetallic compounds trend to grow into cellular crystals. Moreover, the interface layer shape also depends on its position in the joint. Under the high heat input, dendritic or granular intermetallic compounds dispersively distribute in brazing seam adjacent to the interface, which is caused by the melting or dissolving of the base metal. According to the results, the brazing quality can be controlled by laser heating mode and processing parameters.

  12. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Science.gov (United States)

    Roes, A. L.; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K.

    2010-08-01

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the `functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  13. Factors influencing the biodegradability of biocomposites based on ethylene-octene copolymer (EOC) and vegetable fillers

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Kolesnikova, N. N.; Popov, A. A.; Ramos, C. C.

    2016-11-01

    In this study the role of the content of filler, its nature (particle geometry in particular) and the type of the copolymer matrix were examined. For the study three grades of ethylene-octene copolymer were chosen. Composites were mixed in proportion from 70 to 30 wt % of the polymer matrix content. Water absorption was determined; thermal oxidative degradation was studied; and a biodegradation test on recovered soil was carried out. It was concluded that water absorption and weight loss correlate with the filler content. It was found that biocomposites with oil flax straw are more prone to water absorption and weight loss than the same ones with wood flour. The most stable matrix to oxidation was Lucene 370, then Lucene 670 and Lucene 760. Therefore, biocomposites based on Lucene 760 should be more biodegradable than others.

  14. Mechanical and electrical properties of a polyester resin reinforced with clay-based fillers

    Energy Technology Data Exchange (ETDEWEB)

    Buncianu, Dorel; Jadaneant, Mihai [UPT Timisoara, Timisoara (Romania); Tessier-Doyen, Nicolas; Absi, Joseph [Centre Européen de la Céramique, Limoges Cedex (France); Courreges, Fabien [Laboratoire XLIM, 123, Limoges Cedex (France)

    2017-03-15

    In this study, composite polymer-based materials were fabricated, in which a significant proportion of polyester resin was substituted by low-cost and environmentally-friendly clay-based raw materials. The main objective is to improve mechanical properties while maintaining a reasonable electrical insulating behavior. A homogenized distribution of fillers within the matrix compatible with the processing parameters was obtained up to a maximum added fraction of 20 vol%. Mechanical characterization using uniaxial traction tests and Charpy impact pendulum machine showed that stress-to-rupture can be enhanced of approximately 25 %. In addition, fracture energy was doubled for the best formulation. Dielectric constant was decreased and loss factor was slightly increased when electrical resistivity remained almost constant. In general, the composite materials with metakaolin fillers exhibited higher mechanical properties and greater electrical insulating behavior. Microstructural observation showed the presence of decohesive agglomerates of particles at the interface with the matrix. The mechanical properties were found to be more sensitive than electrical properties to the homogeneity of filler dispersion in the matrix.

  15. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    Science.gov (United States)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  16. PVDF-Based Micro Inorganic Fillers-Containing Polymer Electrolyte Membranes

    Institute of Scientific and Technical Information of China (English)

    BAI Ying; WU Feng; WU Chuan

    2006-01-01

    Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process.Morphologies, porosities and electrochemical properties of the as-prepared membranes were investigated by means of scanning electronic microscopy (SEM), PC (propylene carbonate) uptake and alternating current(AC) impedance technique. Compared with other membranes, the membrane with micro SiO2 filler shows a dense morphology so that its PC uptake is the highest, namely, 339%. The membrane filled with micro TiO2exhibits good electrochemical performances: the ion conductivity is as high as 1.1 × 10-3 S/cm at 18 ℃,which can meet the demand of lithium ion batteries. Moreover, its initial charge-discharge efficiency exceeds89 %. The composite membranes with micro SiO2, TiO2 and A12O3 are more suitable for the utilization in lithium ion batteries due to better cycleability, whereas the battery assembled with the blank membrane containing no inorganic fillers encounters a short circuit after the 5th cycle.

  17. A Study on Mechanical Properties of Vinylester Based BioComposite Material with Starch as a Filler Material

    Directory of Open Access Journals (Sweden)

    Mr. Vignesh M

    2014-11-01

    Full Text Available In composites a conglomeration produces material properties which are unavailable from individual constituent materials. The use of petroleum based products as constituents in polymer matrix composite has raised concerns regarding environmental issue and non-renewability of the resource. Therefore in this work an attempt has been made to develop a biocomposite material using untreated dupion silk fiber as reinforcement material and vinyl ester as matrix material with Potato Starch used as filler material by hand layup technique. The biocomposites were prepared in varying percentage of filler addition (0%, 10%, 20%, and 30% and different mechanical tests (tensile, flexure and hardness were conducted on the samples prepared to the ASTM standards. From the results of the experiments conducted on the specimen it can be concluded that the performance of 10% Starch filler content Biocomposite is satisfactory in all aspects compared to 0%, 20%, and 30% Starch filler content Biocomposites.

  18. Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.

  19. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  20. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  1. Wrinkle Fillers

    Science.gov (United States)

    ... packages for authenticity. The FDA is aware of counterfeit products being marketed and used in the U.S. Do ... dermal filler products online, because they could be counterfeit products, or products not approved for use in the ...

  2. Photons transport through ultra-high molecular weight polyethylene based composite containing tungsten and boron carbide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.M. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kuznetsov, S.A. [Russian State Technological University “MATI”, Moscow 121552 (Russian Federation); Volkov, A.E.; Terekhin, P.N.; Dmitriev, S.V. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Tcherdyntsev, V.V.; Gorshenkov, M.V. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Boykov, A.A., E-mail: kink03@gmail.com [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation)

    2014-02-15

    Highlights: • The developed method for predicting X-ray properties of the polymer. • Higher content of the fillers results in an increase of mechanical properties. • X-ray defensive properties of the samples were investigated experimentally. -- Abstract: Polymers are a base for creating of composite materials with high mechanical and chemical properties. Using the heavy metals as filler in these composites can give them X-ray protective properties. These materials have high deactivation rates and can be used to create Personal Protective Equipment (PPE) used in aggressive environments. It was proposed a model for calculation of X-ray protection properties of the polymer-based nanocomposite materials with ultra-high molecular weight polyethylene (UHMWPE) matrix, filled with tungsten and boron carbide particles. X-ray protective properties were calculated in a wide range of filler content using the developed model. Results of calculations allow selecting most effective compounds of X-ray protective UHMWPE based composites.

  3. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  4. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone Based Thermoplastic Polyurethane

    Directory of Open Access Journals (Sweden)

    Vitalija BETINGYTĖ

    2012-09-01

    Full Text Available In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3 filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone-based polyurethane (rTPU were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease tensile stress and deformation of rTPU, but improve its mechanical properties at elevated temperatures (up to 65 °C. rTPU melt flow index increases due to chain scission during the recycling and filler mixing with mill. Therefore, destruction temperature of rTPU is 20 °C lower than that of TPU. The CaCO3 does not change shape memory properties independently of filler type and transition from secondary shape to the primary shape at 70 °C temperature is completed within 17 s for both filled and unfilled rTPU. The investigation of hydrolytic degradation shows that CaCO3 only slightly increases degradation rate of rTPU.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2433

  5. Physical-mechanical properties of Bis-EMA based root canal sealer with different fillers addition

    Directory of Open Access Journals (Sweden)

    Marcela Oliveira de Souza

    2015-01-01

    Full Text Available Aim: To evaluate influence of three different filler particles on an experimental Bisphenol A ethoxylated dimethacrylate (Bis-EMA based root filling material. Materials and Methods: Resin-based endodontic sealers were produced using Bis-EMA, camphorquinone, ethyl 4-dimethylaminobenzoate (EDAB, N, N-dihydroxyethyl-p-toluidine (DHEPT, butylated hydroxytoluene (BHT, and benzoyl peroxide. The experimental groups were formulated adding 10, 20, 30, 40, and 50% of calcium tungstate (CaWO 4 , ytterbium trifluoride(YbF 3 , and tantalum oxide(Ta 2 O 5 . Flow, thickness, and radiopacity tests were conducted in accordance with ISO 6876. Sorption and solubility (SL tests were conducted in accordance with ISO 4049, pH was measured with a pH meter, and degree of conversion (DC was evaluated with Fourier transform infrared spectroscopy (FTIR. For radiopacity, two-way analysis of variance (ANOVA and Tukey′s multiple comparison test was performed. For DC analysis, one-way ANOVA and Tukey′s multiple comparison test was performed. All statistical analyses were performed with a significance level of 5%. Results: All groups showed lower flow with increased filler concentration. All groups showed film thickness values lower than 50μm, as ISO recommends, except CaWO 4 50% group (76.7μm. pH values varied from 5.95 (± 0.07 in YbF 3 40% group to 6.90 (± 0.07 in Ta 2 O 5 40% group. In the radiopacity test, YbF 3 30%, Ta 2 O 5 40%, and Ta 2 O 5 50% groups showed no statistical significant difference to 3mmAl. Ta 2 O 5 and YbF 3 groups in 10, 20, and 30% concentrations presented sorption and SL values as ISOrecommendation. Addition ofTa 2 O 5 and CaWO 4 decreased DC after 14 days. YbF 3 addition showed no difference in DC from control group. Conclusion: YbF 3 filler addition promoted higher properties compared to CaWO 4 and Ta 2 O 5 on Bis-EMA based root canal sealer.

  6. Effect of fillers and fire retardant compounds on hydroxy terminated polybutadiene based insulators

    Directory of Open Access Journals (Sweden)

    S. D. Kakade

    2001-04-01

    Full Text Available A series of polyurethane compositions have been formulated using hydroxy-terminated polybutadiene as polymeric binder and carbon black as a major filler. Various binder-to-filler ratios of the formulations were evaluated to get calendered sheets. The formulations have been characterised for pot-life and rollability and the calendered sheets for mechanical and thermal properties, bUm rate, glass transition temperature, shore hardness and density . The different fillers tried were varieties of carbon black as a major filler; metal oxides, silicates and organic compounds; and fire retardants, such as zinc borate, sodium metaborate, ammonium dihydrogen phosphate and antimony trioxide. The structure and morphology of the fillers have been correlated with the properties. The optimised composition has been evaluated in an end-burning motor, as an insulator for case-bonded application, using a typical composite propellant. The results of interface bonding between the propellant and the insulator have also been presented.

  7. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  8. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    Science.gov (United States)

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties.

  9. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  10. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-11-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  11. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    Science.gov (United States)

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  12. Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Fabricio Mezzomo COLLARES

    2013-12-01

    Full Text Available Objective: To verify the influence of radiopaque fillers on an epoxy resin-based sealer. Material and Methods: Experimental sealers were formulated by adding 20%, 40%, 60%, 80%, 100% and 120% of calcium tungstate, ytterbium trifluoride or barium sulphate by weight to an epoxy-resin-base. Setting time, flow, film thickness, radiopacity, sorption, solubility, pH and push-out bond strength were evaluated. Results: The setting time ranged from 373 to 612.66 min, the flow varied from 13.81±0.49 to 22.49±0.37 mm, and the film thickness ranged from 16.67±5.77 to 33.33±11.54 µm. The lowest pH was 5.47±0.53, and the highest was 6.99±0.03. Radiopacity varied from 0.38±0.04 to 2.57±0.21 mmAl and increased with the amount of filler. Calcium tungstate sealers had a higher sorption and solubility than other sealers. There was no significant difference in the push-out bond strength among the fillers at the 120% concentration. CONCLUSION: The inorganic fillers evaluated and their concentrations affect the physicochemical properties of an epoxy resin-based root canal sealer.

  13. Ajout de phosphogypse à des mortiers à base de cendres volantes et filler calcaire Addition of phosphogypsum to blended mortars based on fly ash and limestone filler

    OpenAIRE

    Alami Talbi M.; Raoui A.; Diouri A.; Kamali-Bernard S.

    2012-01-01

    L’objectif de ce travail est d’étudier la possibilité de la valorisation du phosphogypse dans les matériaux de construction vue sa grande disponibilité comme sous-produit de l’industrie des phosphates. Nous étudions l’effet de l’ajout du phosphogypse sur un mélange de clinker, cendres volantes et filler calcaire. Les échantillons sont préparés par l’ajout de 10% de phosphogypse et de 30% de cendres volantes aux mélanges constitués du clinker et du filler calcaire. Les mélanges sont hydratés e...

  14. Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite%Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite

    Institute of Scientific and Technical Information of China (English)

    Rudi Kurnianto; Z. Nawawi; H. Ahmad; N. Hozumi; M. Nagao

    2011-01-01

    tree channel will be eroded by internal flashover (IFO) and become thicker. MgO filler could still restrain the IFO at the small diameter; however there will be a maximum diameter above which the effect of MgO would be very small. Lastly, it is confirmed that the MgO filler itself excels to suppress the tree degradation instead of the voltage application changes. The polymer nanocomposite appears to be more resistive to treeing degradation than their base material.

  15. Comparative evaluation of dental resin composites based on micron- and submicron-sized monomodal glass filler particles.

    Science.gov (United States)

    Valente, Lisia L; Peralta, Sonia L; Ogliari, Fabrício A; Cavalcante, Larissa M; Moraes, Rafael R

    2013-11-01

    A model resin composite containing a novel monomodal inorganic filler system based on submicron-sized Ba-Si-Al glass particles (NanoFine NF180; Schott) was formulated and compared with an experimental composite containing micron-sized particles (UltraFine UF1.0; Schott). The filler particles were characterized using X-ray microanalysis and granulometry, while the composites were characterized in terms of filler-resin morphology, radiopacity, degree of CC conversion, hardness, flexural strength/modulus, work-of-fracture, surface roughness and gloss (before and after simulated toothbrushing abrasion), and bulk compressive creep. The composites were formulated from the same photoactivated dimethacrylate co-monomer, incorporating mass fractions of 75% micron- and 78% submicron-sized particles. Quantitative data were analyzed at a significance level of pcomposites were similar in radiopacity, flexural strength, work-of-fracture, and creep. The submicron composite was harder but had lower flexural modulus and CC conversion. No significant differences in roughness were observed before brushing, although the submicron composite had higher gloss. Brushing increased roughness and decreased gloss on both materials, but the submicron composite retained higher gloss after brushing. The monomodal submicron glass filler system demonstrated potential for use in restorative dental composites, particularly due to improved esthetic properties. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Self-monitoring electrically conductive asphalt-based composite containing carbon fillers

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; LIU Xiao-ming; YE Qun-shan; LI Ning

    2006-01-01

    A new novel function materials,structure self-monitoring asphalt-based composite was introduced. The results show that the output resistance of electrically conductive asphalt-based composites would change under cyclic loading and vehicle loading action. The resistance change of conductive asphalt-based composites was aroused by the variation of its interior structure. When the fatigue failure was studied,the larger cracks cut the continuous electrically conductive path and the electron is difficult to overcome the potential barrier of gap. In the early period,the slight deformation and microcrack may be recovered due to the viscoelasticity character of asphalt,which leads to some cracks close again,the output resistance changes a little. But with the shear process performs continuously,the cracks become larger and larger,which would cut the conductive path and block off the transition of electrons,and if the cracks are large enough,the pitch-matrix composites containing carbon fillers will lose electrically conductive function. When the rutting failure was studied,the flowage of conductive substance results in the decrease of substance due to electrically conducting and conductive path decreasing. The decrease of electron volume contribute to electrically conducting and large stone aggregate prevent the electron from transiting. In a word,the variation of output resistance is aroused by the variation of interior structure completely.

  17. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  18. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    Science.gov (United States)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  19. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jicai FENG; Heng ZHOU

    2005-01-01

    Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 k J/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

  20. Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO{sub 2} filler

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Vanchiappan [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)], E-mail: aravind_van@yahoo.com; Vickraman, P. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)], E-mail: vrsvickraman@yahoo.com

    2009-05-15

    This paper describes the preparation and characterization of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) based nanocomposite polymer electrolyte (NCPE). For the first of its kind lithium fluoroalkylphosphate (LiPF{sub 3}(CF{sub 3}CF{sub 2}){sub 3}) was incorporated as electrolyte salt in the polymer skeleton. Ethylene carbonate and diethyl carbonate mixture (1:1, wt/wt) was used as a plasticizing agent and SiO{sub 2} nanoparticle as filler. The NCPE membranes were characterized by a.c. impedance, Scanning electron microscope, Differential scanning calorimetry, Fourier transform infrared and fluorescence studies. An electrolyte with 2.5 wt% SiO{sub 2} exhibited a conductivity of 1.16 mS cm{sup -1} at ambient temperature. It was found that filler contents above 2.5 wt% rendered the membranes less conducting. Activation energy and percentage of crystallinity has also been calculated.

  1. Ajout de phosphogypse à des mortiers à base de cendres volantes et filler calcaire Addition of phosphogypsum to blended mortars based on fly ash and limestone filler

    Directory of Open Access Journals (Sweden)

    Alami Talbi M.

    2012-09-01

    Full Text Available L’objectif de ce travail est d’étudier la possibilité de la valorisation du phosphogypse dans les matériaux de construction vue sa grande disponibilité comme sous-produit de l’industrie des phosphates. Nous étudions l’effet de l’ajout du phosphogypse sur un mélange de clinker, cendres volantes et filler calcaire. Les échantillons sont préparés par l’ajout de 10% de phosphogypse et de 30% de cendres volantes aux mélanges constitués du clinker et du filler calcaire. Les mélanges sont hydratés et caractérisés par diffraction des rayons X et spectroscopie infrarouge. Des phases cristallines se développent dès le 3ème jour, et on remarque que les phases les plus fréquentes sont : la Portlandite Ca(OH2, la Calcite CaCO3, l’ettringite Ca6Al2(SO43(OH12 26H2O, Ca5(SiO42(OH2 et le gypse CaSO4, 2H2O mais leur pourcentages varient selon les mélanges. La mesure de la durée de prise des mortiers montre que le début et la fin de la prise sont généralement retardés proportionnellement à l’ajout des cendres volantes et du phosphogypse. La microstructure des matériaux a également été étudiée par la mesure de la perméabilité apparente, les résultats montrent que l’ajout du phosphogypse a contribué à une diminution de la perméabilité des échantillons par contre les cendres volantes ont un effet contraire. La résistance à la compression des mortiers montre des résultats concordants, les résistances augmentent avec la diminution de la perméabilité. The objective of this paper is to study the possibility of valorization of phosphogypsum in building materials because his large availability as a by-product of the phosphate industry. We study the effect of adding phosphogypsum on a mixture of clinker, fly ash and limestone filler. The samples were prepared by adding 10% of phosphogypsum and 30% of fly ash to mixtures consisting of clinker and limestone filler. The mixtures are hydrated and characterized by X

  2. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers.

    Science.gov (United States)

    Thorat, Sanjay B; Diaspro, Alberto; Salerno, Marco

    2014-03-01

    The study aims at demonstrating the feasibility of a novel type of coupling-agent-free resin composite based on nano-porous fillers. The fillers were obtained by ball-milling anodic alumina membranes. Composites were prepared with standard resin at maximum loading of 50% by weight. The resin matrix penetration into the pores was verified visually by scanning electron microscopy and mechanically by atomic force microscopy in force modulation mode. The dynamic flexural modulus at 1Hz was measured by dynamic mechanical analysis. Silver nanoparticles were also synthesized in the pores and their release was investigated with inductive coupled plasma optical emission spectrometry. A storage modulus of 5GPa was measured, similar to the ∼6GPa ones of two coupling-agent-based dental restorative composites used for comparison, which is a promising starting point, additionally showing better one-year equivalent ageing as compared to both commercial materials. Loading the pores with silver nanoparticles was demonstrated as well as their subsequent release in a model system. The alumina micro-particles with interconnected nano-pores allow mechanical interlocking between fillers and matrix without the need for chemical bonding. This material is also promising for being made bio-active, after pore filling with different agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  4. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  5. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers.

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Dasari, Aravind; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-07-10

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young's modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  6. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  7. DUAL BASES FOR A NEW FAMILY OF GENERALIZED BALL BASES

    Institute of Scientific and Technical Information of China (English)

    Hong-yiWu

    2004-01-01

    This paper presents the dual bases for a new family of generalized Ball curves with a position parameter K, which includes the Bezier curve, generalized Said-Ball curve and some intermediate curves. Using the dual bases, the relative Marsden identity, conversion formulas of bases and control points of various curves are obtained.

  8. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  9. The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Fillers as Superhydrophobic Coatings.

    Science.gov (United States)

    Marsi, N.; Rus, A. Z. M.

    2017-08-01

    This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.

  10. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    OpenAIRE

    Kwang Liang Koh; Xianbai Ji; Aravind Dasari; Xuehong Lu; Soo Khim Lau; Zhong Chen

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading...

  11. New Manufacturing Method for Paper filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  12. Reinforcement of Aluminum Oxide Filler on the Flexural Strength of Different Types of Denture Base Resins: An In vitro Study.

    Science.gov (United States)

    Dhole, Rohit I; Srivatsa, G; Shetty, Rohit; Huddar, Dayanand; Sankeshwari, Banashree; Chopade, Swapnil

    2017-04-01

    Acrylic resins have been used extensively for the fabrication of denture bases because of their aesthetic qualities, ease of manipulation and repairability. Flexural fatigue of the denture base has been shown to be a factor in the clinical failure of polymethyl methacrylate resin dentures. Also, the fracture can result from impact, fatigue or degradation of the base material. Hence, there is a need to increase the strength of denture base resins. To evaluate the effect of reinforcing alumina oxide filler on the flexural strength of different acrylic resins. A total of 180 acrylic specimens were fabricated, which were divided into three groups self cure acrylic resin (SC), conventional heat cure resin (HC) and high strength heat cure resin (HI). Each group was divided into four subgroups i.e., control group and the specimens of the remaining three groups were reinforced with aluminum oxide (Al2O3) powder by 5%, 10% and 15% by weight. Specimens were stored in distilled water for one week; flexural strength was tested by universal testing machine. Results were analysed by one-way analysis of variance and post-hoc Tukey paired group comparison tests. Flexural strength of SC increased by 9%, 13% and 19%, Flexural strength of HC increased by 8%, 15% and 19% and that of HI increased by 21%, 26% and 29% compared to control group by adding 5%,10% and 15% of alumina filler (p-value lead to more clinical success.

  13. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  14. Infrared Brazing Ti50Ni50 and Invar Using Ag-Based Filler Foils

    Science.gov (United States)

    Shiue, R. K.; Chang, Y. H.; Wu, S. K.

    2013-10-01

    Infrared brazing Ti50Ni50 and Invar using BAg-8 and Cusil-ABA foils was investigated. The Ag-Cu eutectic matrix dominates both brazed joints. The maximum shear strengths of the brazed joints using BAg-8 and Cusil-ABA fillers are 158 and 249 MPa. Failure of interfacial Fe2Ti/Ni3Ti reaction layers is responsible for the BAg-8 joint. In contrast, the Cusil-ABA brazed joint is fractured along the interfacial Fe2Ti intermetallic compound. Both fractographs are characterized with cleavage dominated fracture.

  15. Influence of the filler content on the free nanohole volume in epoxy-based composites

    Directory of Open Access Journals (Sweden)

    S. Tognana

    2013-02-01

    Full Text Available A study on free nanohole volumes in particulate epoxy matrix composites as a function of the aluminum particles content is presented. Specifically, the influence of the filler content in the epoxy matrix on the nanohole volume is analyzed in terms of the mechanical and morphological properties of the composites fabricated. Nanoholes data were measured using positron annihilation lifetime spectroscopy recently published by the authors. Applying the Park-Earmme micromechanical model, these data are interpreted in terms of the thermal stresses generated during the curing process applied during fabrication. Some input parameters of the model were experimentally obtained. In order to obtain a satisfactory description of the evolution of the free nanohole volume in the whole range of filler contents, a contribution due to the matrix-particle interphases is taken into account in the micromechanical model. To this aim, specific information on the interphases was obtained using atomic force microscopy (AFM, scanning electron microscopy (SEM, differencital scanning calorimetry (DSC and a free-constraint analysis of the positron lifetime data.

  16. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys

    Directory of Open Access Journals (Sweden)

    Bingqing Chen

    2014-08-01

    Full Text Available Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc (GTA welding technology with Ti–Nb and Ti–Ni–Nb filler alloys. The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy. The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa. For both fillers, the weak links of the dissimilar joints were the weld/In718 interfaces. The presence of TiNi, TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint. And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.

  17. Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction

    Science.gov (United States)

    Scholten, William; Hartl, Darren; Turner, Travis

    2013-01-01

    Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.

  18. Mechanism of interaction relation between the rare-earth element Ce and impurity elements Pb and Bi in Ag-based filler metal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.

  19. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  20. Development of a SMA-Based, Slat-Gap Filler for Airframe Noise Reduction

    Science.gov (United States)

    Turner, Travis L.; Long, David L.

    2015-01-01

    Noise produced by unsteady flow around aircraft structures, termed airframe noise, is an important source of aircraft noise during the approach and landing phases of flight. Conventional leading-edge-slat devices for high lift on typical transport aircraft are a prominent source of airframe noise. Many concepts for slat noise reduction have been investigated. Slat-cove fillers have emerged as an attractive solution, but they maintain the gap flow, leaving some noise production mechanisms unabated, and thus represent a nonoptimal solution. Drooped-leading-edge (DLE) concepts have been proposed as "optimal" because the gap flow is eliminated. The deployed leading edge device is not distinct and separate from the main wing in DLE concepts and the high-lift performance suffers at high angles of attack (alpha) as a consequence. Elusive high-alpha performance and excessive weight penalty have stymied DLE development. The fact that high-lift performance of DLE systems is only affected at high alpha suggests another concept that simultaneously achieves the high-lift of the baseline airfoil and the noise reduction of DLE concepts. The concept involves utilizing a conventional leading-edge slat device and a deformable structure that is deployed from the leading edge of the main wing and closes the gap between the slat and main wing, termed a slat-gap filler (SGF). The deployable structure consists of a portion of the skin of the main wing and it is driven in conjunction with the slat during deployment and retraction. Benchtop models have been developed to assess the feasibility and to study important parameters. Computational models have assisted in the bench-top model design and provided valuable insight in the parameter space as well as the feasibility.

  1. Brazing of Be with CuCrZr-bronze using copper-based filler metal STEMET

    Directory of Open Access Journals (Sweden)

    B.A. Kalin

    2016-12-01

    Optimization of the composition of the Cu–Ni–Sn–P system filler metals and comparative tests of filler metals of various compositions have been carried out in this paper to reduce the brazing temperature of beryllium with CuCrZr. Alloys of the following compositions Cu–6.4Ni–9.2Sn–6.3P (STEMET 1105 and Cu–9.1Ni–3.6Sn–8.0P (STEMET 1101 were made in the form of rapidly quenched ribbons with a thickness of 50µm and a width of 50mm. They were used to perform furnace brazing by Joule heating (with a rate of 15K/min of beryllium with CuCrZr (Be/CuCrZr at temperatures of 650, 700 and 750°C for 15min. Metallographic investigations of the zone of brazing and mechanical shear tests of joints before and after the heat treatment at 350°C for 30h have been conducted. It was found that the joints of Be/CuCrZr brazed at 650°C using STEMET 1105 (τs=230MPa and at 750°C using STEMET 1101 (τs=260MPa had the best shear strength properties. However, there is a significant decrease of the microhardness of CuCrZr from 1570 to 1140MPa at 750°C, which indicates a significant loss of its strength. The results obtained suggest that the brazing of beryllium with CuCrZr using STEMET 1105 at 650–700°C will not adversely affect the CuCrZr.

  2. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    Science.gov (United States)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  3. Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers

    Science.gov (United States)

    Burmistr, M. V.; Boiko, V. S.; Lipko, E. O.; Gerasimenko, K. O.; Gomza, Yu. P.; Vesnin, R. L.; Chernyayev, A. V.; Ananchenko, B. A.; Kovalenko, V. L.

    2014-05-01

    Novel polymer composite materials (PCM) based on resole phenol-formaldehyde resins modified with polyamide and reinforced with a combination of organic and inorganic fibrous fillers have been developed. PCM are characterized by a Charpy impact strength of up to 250 kJ/m2, an ultimate strength in static bending of up to 468 MPa, an ultimate strength in compression of up to 178 MPa, a Martens thermal stability of up to 300 °C, a friction coefficient of up to 0.12, and mass wear of up to 0.76 mg/(cm2 · km). They can be used for the fabrication of products intended for antifriction and constructional purposes.

  4. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Merolli, Antonio [Department of Orthopaedic Surgery, The Catholic University in Rome, Complesso Columbus, via Moscati 31, 00168 Rome (Italy); Nicolais, Luigi; Ambrosio, Luigi [Institute of Composite and Biomedical Materials, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80130 Napoli (Italy); Santin, Matteo [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4 GJ (United Kingdom)

    2010-02-15

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  5. Deformable surface modeling based on dual subdivision

    Institute of Scientific and Technical Information of China (English)

    WANG Huawei; SUN Hanqiu; QIN Kaihuai

    2005-01-01

    Based on dual Doo-Sabin subdivision and the corresponding parameterization, a modeling technique of deformable surfaces is presented in this paper. In the proposed model, all the dynamic parameters are computed in a unified way for both non-defective and defective subdivision matrices, and central differences are used to discretize the Lagrangian dynamics equation instead of backward differences. Moreover, a local scheme is developed to solve the dynamics equation approximately, thus the order of the linear equation is reduced greatly. Therefore, the proposed model is more efficient and faster than the existing dynamic models. It can be used for deformable surface design, interactive surface editing, medical imaging and simulation.

  6. Novel nano-particles as fillers for an experimental resin-based restorative material.

    Science.gov (United States)

    Rüttermann, S; Wandrey, C; Raab, W H-M; Janda, R

    2008-11-01

    The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.

  7. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  8. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  9. Synthesized mesoporous silica and calcium aluminate cement fillers increased the fluoride recharge and lactic acid neutralizing ability of a resin-based pit and fissure sealant.

    Science.gov (United States)

    Surintanasarn, Atikom; Siralertmukul, Krisana; Thamrongananskul, Niyom

    2017-07-12

    This study evaluated the effect of different types of filler in a resin-based pit and fissure sealant on fluoride release, recharge, and lactic acid neutralization. Resin-based sealant was incorporated with 5% w/w of the following fillers: calcium aluminate cement (CAC), synthesized mesoporous silica (SI), a CAC and SI mixture (CAC+SI), glass-ionomer powder (GIC), and acetic acid-treated GIC (GICA). Sealant without filler served as control. The samples were immersed in deionized water or a lactic acid solution and the concentration of fluoride in the water, before and after fluoride recharge, and the lactic acid pH change, respectively, were determined. The CAC+SI group demonstrated the highest fluoride release after being recharged with fluoride gel. The CAC+SI group also demonstrated increased lactic acid pH. These findings suggest that a resin-based sealant containing synthesized mesoporous silica and calcium aluminate cement may enhance remineralization due to fluoride release and higher pH.

  10. Improving the performances of Nafion™-based membranes for microbial fuel cells with silica-based, organically-functionalized mesostructured fillers

    Science.gov (United States)

    Angioni, Simone; Millia, Luca; Bruni, Gianna; Tealdi, Cristina; Mustarelli, Piercarlo; Quartarone, Eliana

    2016-12-01

    Microbial Fuel Cells (MFCs) can be conveniently used for wastewater treatment and bioelectricity production. Their efficiency is strongly influenced by the physico-chemical properties of the ion-conducting membrane. In this work we prepare Nafion™-based composite membranes by using mesoscale SBA-15 silica, and organic-inorganic fillers obtained by functionalizing SBA-15 with SO3H groups. The proposed membranes are tested as alternative separators in MFCs for applications in wastewater treatment and their performances compared to those of standard Nafion™ 117. Prolonged (3 months) MFC operation shows that the composite membrane with 5 wt% of SBA-15 functionalized with 10 mol% of SO3H gives maximum power density of 380 mW m-3, namely three times better than that of Nafion™ after 90 days of operation. The same membrane offers a very effective COD removal after 14 days (more than 95%), an impressive coulombic efficiency of 34%, and very high resistance to biofouling. We conclude that the use of silica-based SO3H functionalized fillers is a powerful strategy to improve the performances of Nafion™ membranes in MFCs.

  11. The influence of filler on the properties of elastomeric materials based on poly(ethylene-co-propylene-co-2-ehylidene-5-norbornene rubber

    Directory of Open Access Journals (Sweden)

    Budinski-Simendić Jaroslava

    2006-01-01

    Full Text Available Crosslinked samples based on poly(ethylene-co-propylene-co-2-ehylidene5-norbornene EPDM rubber, carbon black as active filler and natural chalk as inactive filler were cured with sulphur. The content of carbon black was varied from 100 to 200 pph. The content of chalk was varied from 0 to 100 pph. The content of paraffin oil was also varied in some samples. The compounds were prepared by mixing ingredients on a laboratory two-roll mill. Vulcanizates were prepared by curing at 180°C. Various methods were used for the physical and mechanical characterizations. The dynamic mechanical properties of the elastomers were measured in the temperature range from -120 to 80°C.

  12. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers

    Science.gov (United States)

    Zhou, Yongcun; Wang, Lu; Zhang, Hu; Bai, Yuanyuan; Niu, Yujuan; Wang, Hong

    2012-07-01

    A kind of polymer based composites was prepared by embedding the fillers of core-shell Ag@SiO2 nanoparticles into the polyimide (PI) matrix. The obtained Ag@SiO2/PI (50% vf of fillers) composites show remarkably improved high thermal conductivity and low relative permittivity. The maximum value of the thermal conductivity of composites is 7.88 W/(mK) and the relative permittivity and dielectric loss are about 11.7 and 0.015 at 1 MHz, respectively. Compared with self-passivated nanometer Al* particles composites, core-shell Ag@SiO2 nano-composite is beneficial to increase the thermal conductivity and reduce the permittivity of the composites. The relative mechanism was studied and discussed.

  13. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g(-1) and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K(+) and PF6(-) into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate Denture Base Material Doped with Inorganic Filler

    Directory of Open Access Journals (Sweden)

    Grzegorz Chladek

    2016-04-01

    Full Text Available The colonization of poly(methyl methacrylate (PMMA denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w. The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.

  15. A screening method based on UV-Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices.

    Science.gov (United States)

    Boggia, Raffaella; Casolino, Maria Chiara; Hysenaj, Vilma; Oliveri, Paolo; Zunin, Paola

    2013-10-15

    Consumer demand for pomegranate juice has considerably grown, during the last years, for its potential health benefits. Since it is an expensive functional food, cheaper fruit juices addition (i.e., grape and apple juices) or its simple dilution, or polyphenols subtraction are deceptively used. At present, time-consuming analyses are used to control the quality of this product. Furthermore these analyses are expensive and require well-trained analysts. Thus, the purpose of this study was to propose a high-speed and easy-to-use shortcut. Based on UV-VIS spectroscopy and chemometrics, a screening method is proposed to quickly screening some common fillers of pomegranate juice that could decrease the antiradical scavenging capacity of pure products. The analytical method was applied to laboratory prepared juices, to commercial juices and to representative experimental mixtures at different levels of water and filler juices. The outcomes were evaluated by means of multivariate exploratory analysis. The results indicate that the proposed strategy can be a useful screening tool to assess addition of filler juices and water to pomegranate juices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development of a SMA-Based Slat-Cove Filler for Reduction of Aeroacoustic Noise Associated With Transport-Class Aircraft Wings

    Science.gov (United States)

    Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.

    2013-01-01

    Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.

  17. design and implementation of a microcontroller based dual axis ...

    African Journals Online (AJOL)

    user

    DESIGN AND IMPLEMENTATION OF A MICROCONTROLLER BASED. DUAL AXIS .... Output mechanical transducer (Servo Motor). 2.1 Power .... Fig 5: Servo Motor Algorithm. Figure 6: .... Optimization and Performance Evaluation of a Single.

  18. Ferromagnetic composites with polymer matrix consisted of nanocrystalline Fe-based filler

    Energy Technology Data Exchange (ETDEWEB)

    Nowosielski, Ryszard; Gramatyka, Paweł; Sakiewicz, Piotr; Babilas, Rafał, E-mail: rafal.babilas@polsl.pl

    2015-08-01

    Objective: The paper intends to present structural and magnetic behavior of ferromagnetic composites consisted of nanocrystalline powders obtained by annealing and milling of Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} metallic glasses. Methods: The as-cast ribbons were subsequently milled using a high-energy ball mill. The prepared powders were separated into fractions with a particle mean diameter range of 200–500 µm, 75–200 µm and 25–75 µm and then annealed to obtain the nanocrystalline powder materials. The powder particles were mixed and consolidated with a polymer to obtain composites in the form of the toroidal cores. The following experimental techniques were used: scanning and transmission electron microscopy, X-ray diffraction and vibration sample magnetometry. Results: The analysis of magnetic properties of the powders and the composites prepared from the powders revealed that the preparation process caused significant decrease in magnetic properties in a relation to ribbons in as-cast state. Conclusion: The structure and magnetic properties of the examined materials could be improved by means of a right choice of milling time as well as a thermal treatment and by a decrease of the demagnetization effect. Practice implications: The amorphous and nanocrystalline powders obtained by a milling of metallic glasses are an alternative to solid alloys and make it possible to obtain the ferromagnetic nanocomposites with controlled magnetic properties. - Highlights: • Soft magnetic composites consisting nanocrystalline powders were obtained. • Amorphous Fe{sub 78}Si{sub 9}B{sub 13} and Fe{sub 73,5}Cu{sub 1}Nb{sub 3}Si{sub 13,5}B{sub 9} ribbons were milled. • Powders particles were consolidated with polymer to obtain toroidal composites. • Magnetic properties could be formed by milling and annealing parameters. • Polymer nanocomposites with Fe-based powders are an alternative to solid alloys.

  19. Digital ridgelet reconstruction based on local dual frame

    Institute of Scientific and Technical Information of China (English)

    BAI Jian; FENG Xiangchu

    2005-01-01

    A global dual frame (GDF) representation for the digital ridgelet reconstruction algorithm is discussed and a novel concept of local dual frame (LDF) is presented. Based on the properties of LDF, we propose a new digital ridgelet reconstruction algorithm. The method reduces the redundancy in the digital ridgelet reconstruction while keeping the characteristics of low computation cost. When applying it to the image compression and denoising, good results are obtained.

  20. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    Science.gov (United States)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  1. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    Science.gov (United States)

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement.

  2. Evidence-based recommendations for negative pressure wound therapy: treatment variables (pressure levels, wound filler and contact layer)--steps towards an international consensus.

    Science.gov (United States)

    Birke-Sorensen, H; Malmsjo, M; Rome, P; Hudson, D; Krug, E; Berg, L; Bruhin, A; Caravaggi, C; Chariker, M; Depoorter, M; Dowsett, C; Dunn, R; Duteille, F; Ferreira, F; Francos Martínez, J M; Grudzien, G; Ichioka, S; Ingemansson, R; Jeffery, S; Lee, C; Vig, S; Runkel, N; Martin, R; Smith, J

    2011-09-01

    Negative pressure wound therapy (NPWT) is becoming a commonplace treatment in many clinical settings. New devices and dressings are being introduced. Despite widespread adoption, there remains uncertainty regarding several aspects of NPWT use. To respond to these gaps, a global expert panel was convened to develop evidence-based recommendations describing the use of NPWT. In a previous communication, we have reviewed the evidence base for the use of NPWT within trauma and reconstructive surgery. In this communication, we present results of the assessment of evidence relating to the different NPWT treatment variables: different wound fillers (principally foam and gauze); when to use a wound contact layer; different pressure settings; and the impact of NPWT on bacterial bioburden. Evidence-based recommendations were obtained by a systematic review of the literature, grading of evidence and drafting of the recommendations by a global expert panel. Evidence and recommendations were graded according to the Scottish Intercollegiate Guidelines Network (SIGN) classification system. In general, there is relatively weak evidence on which to base recommendations for any one NPWT treatment variable over another. Overall, 14 recommendations were developed: five for the choice of wound filler and wound contact layer, four for choice of pressure setting and five for use of NPWT in infected wounds. With respect to bioburden, evidence suggests that reduction of bacteria in wounds is not a major mode of action of NPWT.

  3. United States based agricultural {open_quotes}waste products{close_quotes} as fillers in a polypropylene homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, R.E.; Rowell, R.M.; Caulfield, D.F. [Forest Products Lab., Madison, WI (United States)] [and others

    1995-11-01

    With the advent of modern coupling agents (MAPP or maleic anhydride grafted polypropylene), the potential use of various types of renewable, sustainable agricultural byproducts as fillers in thermoplastics is explored. Over 7.7 billion pounds of fillers were used in the plastics industry in 1993. With sharp price increases in commodity thermoplastics (i.e. approximately 25% in 94`), the amount of fillers in thermoplastic materials will increase throughout the 90`s. Various types of agricultural fibers are evaluated for mechanical properties vs. 50% wood flour and 40% talc filled polypropylene (PP). The fibers included in this study are: kenaf core, oat straw, wheat straw, oat hulls, wood flour (pine), corncob, hard corncob, rice hulls, peanut hulls, corn fiber, soybean hull, residue, and jojoba seed meal. Composite interfaces were modified with MAPP to improve the mechanical properties through increased adhesion between the hydrophilic and polar fibers with the hydrophobic and non-polar matrix. The agro-waste composites had compositions of 50% agro-waste/48% PP/2% MAPP. All of the agricultural waste by-products were granulated through a Wiley mill with a 30 mesh screen and compounded in a high intensity shear-thermo kinetic mixer. The resultant blends were injection molded into ASTM standard samples and tested for tensile, flexural, and impact properties. This paper reports on the mechanical properties of the twelve resultant composites and compares them to wood flour and talc-filled polypropylene composites. The mechanical properties of kenaf core, oat straw, wheat straw, and oat hulls compare favorably to the wood flour and talc-filled PP, which are both commercially available and used in the automotive and furniture markets.

  4. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.

    Science.gov (United States)

    Wu, Chang-Chin; Yang, Kai-Chiang; Yang, Shu-Hua; Lin, Min-Huei; Kuo, Tzong-Fu; Lin, Feng-Huei

    2012-04-01

    While many different filler materials have been applied in vertebral augmentation procedures, none is perfect in all biomechanical and biological characteristics. To minimize possible shortages, we synthesized a new biodegradable, injectable, and premixed composite made from poly(propylene fumarate) (PPF) and biphasic α-tricalcium phosphate (α-TCP)/hydroxyapatite (HAP) ceramics powder and evaluated the material properties of the compound in vitro. We mixed the PPF cross-linked by N-vinyl pyrrolidinone and biphasic α-TCP/HAP powder in different ratios with benzoyl peroxide as an initiator. The setting time and temperature were recorded, although they could be manipulated by modulating the concentrations of hydroquinone and N,N-dimethyl-p-toluidine. Degradation, cytocompatibility, mechanical properties, and radiopacity were analyzed after the composites were cured by a cylindrical shape. We also compared the study materials with poly(methyl methacrylate) (PMMA) and PPF with pure HAP particles. Results showed that lower temperature during curing process (38-44°C), sufficient initial mechanical compressive fracture strength (61.1±3.7MPa), and gradual degradation were observed in the newly developed bone filler. Radiopacity in Hounsfield units was similar to PMMA as determined by computed tomography scan. Both pH value variation and cytotoxicity were within biological tolerable limits based on the biocompatibility tests. Mixtures with 70% α-TCP/HAP powder were superior to other groups. This study indicated that a composite of PPF and biphasic α-TCP/HAP powder is a promising, premixed, injectable biodegradable filler and that a mixture containing 70% α-TCP/HAP exhibits the best properties.

  5. Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.

    2017-09-01

    Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity  >100 S cm‑1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.

  6. Novel hydrogels based on carboxyl pullulan and collagen crosslinking with 1, 4-butanediol diglycidylether for use as a dermal filler: initial in vitro and in vivo investigations.

    Science.gov (United States)

    Li, Xian; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi; Liu, Yannan; XiaoxuanMa

    2015-12-01

    Novel hydrogels based on carboxyl pullulan (PC) and human-like collagen (HLC) crosslinking with 1,4-butanediol diglycidyl ether (BDDE) are promising soft fillers for tissue engineering due to their highly tunable properties. Recent studies, however, have shown that incorporating hyaluronic acid and BDDE results in hydrogels with a microporous structure, a large pore size and high porosity, which reduce cell adhesion and enhance degradation in vivo. To improve biocompatibility and prevent biodegradation, the use of PC to replace hyaluronic acid in the fabrication of PC/BDDE (PCB) and PC/BDDE/HLC (PCBH) hydrogels was investigated. Preparation of gels with PC is a promising strategy due to the high reactivity, superb selectivity, and mild reaction conditions of PC. In particular, the Schiff base reaction of HLC and PC produces the novel functional group -RCONHR' in PCBH hydrogels. Twenty-four weeks after subcutaneous injection of either PCB or PCBH hydrogel in mice, the surrounding tissue inflammation, enzymatic response and cell attachment were better compared to hyaluronic acid-based hydrogels. However, the biocompatibility, cytocompatibility and non-biodegradability of PCBH were milder than those of the PCB hydrogels both in vivo and in vitro. These results show that the proposed use of PC and HLC for the fabrication of hydrogels is a promising strategy for generating soft filler for tissue engineering.

  7. IMAGING AND MTI PROCESSING BASED ON DUAL-FREQUENCIES DUAL-APERTURES SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Li Daojing; Wu Yirong

    2009-01-01

    Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper. SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode I, and MTI is completed by the Mode II. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.

  8. New Filler Material for Reference Free Part Encapsulation Fixture

    Institute of Scientific and Technical Information of China (English)

    LI Bei-zhi; YANG Jian-guo; ZHOU Hu

    2002-01-01

    Reference free part encapsulation (RFPE) is a nontraditional universal fixturing technique. In this paper,new filler material-a lower melting point alloy for RFPE technique is introduced. Based on experiment, the shrinlkage and expansion rate, the effect of filler on workpiece drift and the effect of filler thickness on cutting distortion are studied. The alloy has a good mechanical and physical performance and the need of RFPE fixturing can be perfectly satisfied. The result shows that if the formula and process parameters of filler material are properly selected, it can obviously improve the quality of the workpiece, enhance the machining efficiency and reduce the manufacturing cost.

  9. Web bases for sl(3) are not dual canonical

    CERN Document Server

    Khovanov, M; Khovanov, Michael; Kuperberg, Greg

    1997-01-01

    We compare two natural bases for the invariant space of a tensor product of irreducible representations of A2, or sl(3). One basis is the web basis, defined from a skein theory called the combinatorial A2 spider. The other basis is the dual canonical basis, the dual of the basis defined by Lusztig and Kashiwara. For sl(2) or A1, the web bases have been discovered many times and were recently shown to be dual canonical by Frenkel and Khovanov. We prove that for sl(3), the two bases eventually diverge even though they agree in many small cases. The first disagreement comes in the invariant space Inv((V^+ tensor V^+ tensor V^- tensor V^-)^{tensor 3)), where V^+ and V^- are the two 3-dimensional representations of sl(3); if the tensor factors are listed in the indicated order, only 511 of the 512 invariant basis vectors coincide.

  10. Affine Riesz bases and the dual function

    Science.gov (United States)

    Terekhin, P. A.

    2016-09-01

    This paper is concerned with systems of functions on the unit interval which are generated by dyadic dilations and integer translations of a given function. Similar systems have a wide range of applications in the theory of wavelets, in nonlinear, and in particular, in greedy approximations, in the representation of functions by series, in problems in numerical analysis, and so on. Conditions, and in some particular cases, criteria for the generating function are given for the system to be Besselian, to form a Riesz basis or to be an orthonormal system, and separately, to be complete. For this purpose, the concept of the dual function of the generating function of a system is introduced and studied. Some of the conditions given below are easy to verify in practice, as is demonstrated by examples. Bibliography: 25 titles.

  11. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    Science.gov (United States)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  12. Evaluation of the influence of the polymer-filler interaction on compounds based on epoxidized elastomeric matrix and precipitated silica

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2006-06-01

    Full Text Available The introduction of epoxy groups into the main chain of elastomers has emerged as a promising alternative, considering the monitoring of polymer-filler interaction leading to changes in the properties of vulcanizates. The epoxidation reaction (in situ was chosen to modify elastomers, such as polybutadiene (BR and copolymer of styrene-butadiene-rubber (SBR, because it is a simple, easily controlled reaction, even considering the small epoxidation degree. The modification degree of the polymeric chain was studied with FT-IR and ¹H-NMR. The shift of the Tg to high temperatures with the increase of the epoxy group in the polymer chain was monitored through differential scanning calorimetry (DSC. An analysis of the dynamic modulus of the material in relation to its dependence on the amplitude and temperature was carried out. The interaction between epoxidized elastomeric matrix and silica as filler was extremely improved, even in the presence of very low content of epoxy groups into the polymer chain.

  13. The Empirical Study on Chinese Style Dual System Basing on Foxconn Training Base Program

    Institute of Scientific and Technical Information of China (English)

    Guo Nan

    2012-01-01

      So far many existing papers have made study on dual system.While most scholars take the opinion that dual system can give obviously positive effect to skilled talent training, some theorists argue that the precondition of dual system performs excellently is dual system should be localized according to the reality of a country or a district.This paper analyzes dual system practice in China from an example of Foxconn Training Base,the conclusion is that in Foxconn Training Base Program,dual system has been localized successfully and evolved into trian-gle system,and this program management pattern can be used in other areas of China as a mature,standard Chinese dual system pattern for skil ed talent training.

  14. The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation.

    LENUS (Irish Health Repository)

    Hahnel, Sebastian

    2012-04-01

    To explore experimental RBCs derived from a successful commercially available RBC (Grandio) to investigate resin monomer blend and filler parameters (volume fraction, density and diameter) on RBC performance.

  15. Uzawa Type Algorithm Based on Dual Mixed Variational Formulation

    Institute of Scientific and Technical Information of China (English)

    王光辉; 王烈衡

    2002-01-01

    Based on the dual mixed variational formulation with three variants (stress,displacement, displacement on contact boundary ) and the unilateral beaming problem of finite element discretization, an Uzawa type iterative algorithm is presented. The convergence of this iterative algorithm is proved, and then the efficiency of the algorithm is tested by a numerical example.

  16. A displacement sensor of dual-light based on FPGA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dual-light displacement sensor is presented to obtain a higher accuracy compared with the single. The structure and principle of the system are also introduced, and the hardware and software are brought in too. The function of the system is feasible through the experiments and simulating the data process based on FPGA.

  17. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  18. Normal Bases and Their Dual-Bases over Finite Fields

    Institute of Scientific and Technical Information of China (English)

    Qun Ying LIAO; Qi SUN

    2006-01-01

    In this paper, we prove the following results: 1) A normal basis N over a finite field is equivalent to its dual basis if and only if the multiplication table of N is symmetric; 2) The normal basis N is self-dual if and only if its multiplication table is symmetric and Tr(α2) = 1, where α generates N; 3) An optimal normal basis N is self-dual if and only if AT is a type-Ⅰ optimal normal basis with q = n = 2 or N is a type-Ⅱ optimal normal basis.

  19. In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries

    Science.gov (United States)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Sheng; Li, Xiaoyun; Deng, Huayang

    Gel polymer electrolyte films based on thermoplastic polyurethane (TPU)/poly(vinylidene fluoride) (PVdF) with and without in situ ceramic fillers (SiO 2 and TiO 2) are prepared by electrospinning 9 wt% polymer solution at room temperature. The electrospun TPU-PVdF blending membrane with 3% in situ TiO 2 shows a highest ionic conductivity of 4.8 × 10 -3 S cm -1 with electrochemical stability up to 5.4 V versus Li +/Li at room temperature and has a high tensile strength (8.7 ± 0.3 MPa) and % elongation at break (110.3 ± 0.2). With the superior electrochemical and mechanical performance, it is very suitable for application in polymer lithium ion batteries.

  20. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire%双光束激光填丝焊工艺对铝合金焊接气孔率的影响

    Institute of Scientific and Technical Information of China (English)

    雷正龙; 李颖; 陈彦宾; 孙忠绍; 张益坤

    2013-01-01

    以LF6铝合金为材料,CO2激光为热源,开展了双光束激光填丝焊气孔特性分析.与单光束激光填丝焊及双光束自熔焊相比,双光束激光填丝焊能够抑制气孔的产生,尤其是并行双光束激光焊抑制气孔效果更明显.在此基础上进一步分析了保护气体成分和激光能量对焊接气孔率的影响.结果表明,采用氦气保护时,等离子体对激光的屏蔽作用小,能够稳定焊接过程;激光功率过大或者过小都会导致匙孔的不稳定,造成焊缝气孔率增加.%The characterizations of porosity in dual-beam laser welding with filler wire of LF6 aluminum alloys were studied. Compared with the single beam laser welding with filler wire and the dual-beam laser self-fusible welding, the dual-beam laser welding with filler wire can restrain the porosity formation. Especially , the dual-beam laser welding with parallel arrangement has a better effect on inhibition of porosity. Furthermore, the effects of shielding gas component and laser energy on porosity formation ratio were analyzed. The results show that, when the helium is used as the shielding gas, the area of plasma decreases as well as the shielding effect of the plasma on laser deceases, and the welding process become more stable. At the same time, the laser power must be proper, and both too high and too low laser power make the porosity formation ratio enlarged.

  1. Robust Collaborative Optimization Method Based on Dual-response Surface

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; FAN Wenhui; CHANG Tianqing; YUAN Yuming

    2009-01-01

    A novel method for robust collaborative design of complex products based on dual-response surface (DRS-RCO) is proposed to solve multidisciplinary design optimization (MDO) problems under uncertainty. Collaborative optimization (CO) which decomposes the whole system into a double-level nonlinear optimization problem is widely Accepted as an efficient method to solve MDO problems. In order to improve the quality of complex product in design process, robust collaborative optimization (RCO) is developed to solve those problems under uncertain conditions. RCO does opfmiTation on the linear sum of mean and standard deviation of objective function and gets an optimal solution with high robustnmess. Response surfaces method is an important way to do approximation in robust design. DRS-RCO is an improved RCO method in which dual-response surface replaces system uncertainty analysis module of CO. The dual-response surface is the approximate model of mean and standard deviation of objective function respectively. In DRS-RCO, All the information of subsystems is included in dual-response surfaces. As an additional item, the standard deviation of objective function is added to the subsystem optimization. This item guarantee both the mean and standard deviation of this subsystem is reaching the minima at the same time. Finally, a test problem with two coupled subsystems is conducted to verify the feasibility and effectiveness of DRS-RCO.

  2. Dual, use-based definition of "system"

    CSIR Research Space (South Africa)

    Gonçalves, DP

    2015-09-01

    Full Text Available The standard definition (ISO 15288, 2008) of the concept of a system is not complete and is the definition of a closed system. Such a definition is inadequate for systems engineering. A use-based definition is proposed which spans the open...

  3. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  4. Effect of thermal aging to microstructure of the interface of low alloy Steel and Ni-based alloy filler metal of dissimilar weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hoon; Kim, Jong Jin; Choi, Sang Il; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-10-15

    Dissimilar Metal Welds (DMWs) is generally applied to nuclear power plants for manufacturing and machining in structural components such as reactor pressure vessels and pressurizer nozzles. Alloy 152 is used frequently as filler metal in the manufacture of the DMW in light water reactors to join the low alloy steel pressure vessel nozzles and steam generator nozzles to nickel-based wrought alloy or austenitic stainless steel components. However, in recent years cracking phenomena has been observed in the welded joints. Additionally, the number of long-term aged nuclear power plants is increasing. Concerns have been raised to the integrity and reliability in the joint transition zone due to the high susceptibility of the heat affected zone (HAZ) and the fusion boundary (FB) to stress corrosion cracking in combination with thermal aging. Since the material microstructure and chemical composition are key parameters affecting the stress corrosion cracking, improving the understanding of stress corrosion cracking at the FB region requires fundamental understanding of the unique microstructure of the FB region in DMW. Despite the potential degradation and consequent risk in the DMW, there is still a lack of the fundamental understanding of microstructure in the FB region, in particular the region containing unidentified band structures near the FB. As the life of nuclear power plants becomes long cycle, concerns have been raised to the integrity and reliability in the region after getting thermal aging effect. The long term exposure of this kind of material could experience the thermal aging which can form the chromium carbides near the FB by promoting the diffusion of C content at the service temperature. Therefore, the current study is aiming at the investigation of the thermal effect on the interface between Alloy 152 filler metal and A533 Gr. B. The used tools are Vickers hardness tester and Scanning Electron Microscope (SEM)

  5. Behavior-based dual dynamic agent architecture

    Institute of Scientific and Technical Information of China (English)

    仵博; 吴敏; 曹卫华

    2003-01-01

    The objective of the architecture is to make agent promptly and adaptively accomplish tasks in the real-time and dynamic environment. The architecture is composed of elementary level behavior layer and high level be-havior layer. In the elementary level behavior layer, the reactive architecture is introduced to make agent promptlyreact to events; in the high level behavior layer, the deliberation architecture is used to enhance the intelligence ofthe agent. A confidence degree concept is proposed to combine the two layers of the architecture. An agent decisionmaking process is also presented, which is based on the architecture. The results of experiment in RoboSoccer simu-lation team show that the proposed architecture and the decision process are successful.

  6. Adaptive Dual-Threshold Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    侯舒娟; 梅文博; 张志明

    2003-01-01

    In order to solve the problems of local-maximum modulus extraction and threshold selection in the edge detection of finite-resolution digital images, a new wavelet transform based adaptive dual-threshold edge detection algorithm is proposed. The local-maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual-threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self-adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise-tampered images.

  7. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    Science.gov (United States)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  8. Study on a novel Sn-electroplated silver brazing filler metal

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2017-08-01

    Novel Sn-electroplated Ag brazing filler metal with a high tin content was prepared by combining the plating and thermal diffusion method. The BAg45CuZn alloy was used as a base filler metal, and a Sn layer was electroplated on it. Then the H62 brass was brazed with the Sn-plated brazing filler metal containing 6.2 wt% of Sn. The results showed that the microstructure of the brazed joints with the Sn-plated filler mainly consisted of the Ag phase, Cu phase, CuZn phase and Cu5Zn8 phase. The tensile strength of the joints brazed with the Sn-plated filler metal was 326 MPa, which was higher than that of the joints with the base filler metal. Fracture analysis showed that the fractures of the joints brazed by the Sn-plated filler metal was mainly ductile fracture mixed with a small quantity of brittle fracture.

  9. [Rhinoplasty and dermal fillers].

    Science.gov (United States)

    Jallut, Y; Nguyen, P S

    2014-12-01

    The use of fillers for camouflage after surgical rhinoplasty or during medical rhinoplasty process represent an attractive technique which allows to avoid or to delay surgical time often dreaded by the patients. This technique apparently quite simple, must be applied carefully in order to avoid possible complications that can sometimes be very serious. Through their seven years of experience, the authors have selected absorbable type of products: hyaluronic acid or calcium hydroxylapatite, both approved by ANSM. Preference is given to microcannulas (27G) over needles and injection techniques through multiple tunnels fitted with small fragmented boluses. Due to possible Tyndall effect and skin necrosis risk, a one-shot injection with a lot of product should be avoided. Calcium hydroxyapaptite is preferred for the dorsum area while hyaluronic acid is recommended for the tip. The authors also relate the major encountered complications and describe the appropriated treatments. Nevertheless the strict application of the described technique represents the best way to prevent adverse complications.

  10. Peculiarities of Shape Recovery in Polymer Composites with Compacting Filler

    Directory of Open Access Journals (Sweden)

    V. A. Beloshenko

    2011-01-01

    Full Text Available Peculiarities of the shape memory effect development in composites based on the epoxy polymer and various fillers, such as thermoexpanded graphite, aerosils, metallized graphite, and basalt flakes, have been investigated. It has been determined that straining followed by the shape recovery of composites is accompanied by changes in their volume. Extent and character of the changes depend on the ability of fillers to compaction under pressure, deformation scheme, adsorption ability of the filler. It is shown that the combined deformation consisting of compression and stretching of specimens in different sequence gives structural states for which the longitudinal strain-transverse strain ratio can take zero, positive, or negative values.

  11. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, J; Klueppel, M, E-mail: Manfred.Klueppel@DIKautschuk.de [Deutsches Institut fuer Kautschuktechnologie e V, Eupener Strasse 33, D-30519 Hannover (Germany)

    2011-01-26

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  12. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Science.gov (United States)

    Fritzsche, J.; Klüppel, M.

    2011-01-01

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  13. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  14. Dual-beam laser autofocusing system based on liquid lens

    Science.gov (United States)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme "Time-sharing focus, fast conversion" is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  15. Dual effects of guide-based guidance on pedestrian evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk; Lee, Eric Wai Ming; Shi, Meng

    2017-06-15

    This study investigates the effects of guide-based guidance on the pedestrian evacuation under limited visibility via the simulations based on an extended social force model. The results show that the effects of guides on the pedestrian evacuation under limited visibility are dual, and related to the neighbor density within the visual field. On the one hand, in many cases, the effects of guides are positive, particularly when the neighbor density within the visual field is moderate; in this case, a few guides can already assist the evacuation effectively and efficiently. However, when the neighbor density within the visual field is particularly small or large, the effects of guides may be adverse and make the evacuation time longer. Our results not only provide a new insight into the effects of guides on the pedestrian evacuation under limited visibility, but also give some practical suggestions as to how to assign guides to assist the evacuation under different evacuation conditions. - Highlights: • Extended social force model is used to simulate guided pedestrian evacuation. • Effects of guides on pedestrian evacuation under limited visibility are dual. • Effects of guides on pedestrian evacuation under limited visibility are related to neighbor density within visual field.

  16. Microstructural and rheological analysis of fillers and asphalt mastics

    Science.gov (United States)

    Geber, R.; Simon, A.; Kocserha, I.; Buzimov, A.

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (ddolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics.

  17. Dielectric properties of inorganic fillers filled epoxy thin film

    Energy Technology Data Exchange (ETDEWEB)

    Norshamira, A., E-mail: myra.arshad@gmail.com; Mariatti, M., E-mail: mariatti@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  18. Effect of parameters on interface of the brazed ZrO2 ceramic and Ti-6Al-4V joint using Ti-based amorphous filler

    Institute of Scientific and Technical Information of China (English)

    Yuhua LIU; Jiandong HU; Yaping ZHANG; Zuoxing GUO; Yue YANG

    2012-01-01

    A commercially available Ti47Zr28Cu14Ni11 (at.pct) amorphous filler foil was used to join ZrO2 ceramic and Ti-6Al-4V alloy.According to experimental observations,the interface microstructure accounts for the mechanical properties of the joints.The effects of brazing conditions and parameters on the joint properties were investigated.The joint shear strength showed the highest value of about 108 MPa and did not monotonously increase with the brazing time increasing.It was shown that decreasing of brazing cooling rate and appropriate filler foil thickness gave higher joint strength.

  19. Multivariate Self-Dual Morphological Operators Based on Extremum Constraint

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2015-01-01

    Full Text Available Self-dual morphological operators (SDMO do not rely on whether one starts the sequence with erosion or dilation; they treat the image foreground and background identically. However, it is difficult to extend SDMO to multichannel images. Based on the self-duality property of traditional morphological operators and the theory of extremum constraint, this paper gives a complete characterization for the construction of multivariate SDMO. We introduce a pair of symmetric vector orderings (SVO to construct multivariate dual morphological operators. Furthermore, utilizing extremum constraint to optimize multivariate morphological operators, we construct multivariate SDMO. Finally, we illustrate the importance and effectiveness of the multivariate SDMO by applications of noise removal and segmentation performance. The experimental results show that the proposed multivariate SDMO achieves better results, and they suppress noises more efficiently without losing image details compared with other filtering methods. Moreover, the proposed multivariate SDMO is also shown to have the best segmentation performance after the filtered images via watershed transformation.

  20. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  1. Dual detection biosensor based on porous silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simion, Monica, E-mail: moni304ro@yahoo.com; Kusko, Mihaela; Mihalache, Iuliana; Brăgaru, Adina

    2013-11-20

    Due to the high surface-to-volume ratio (hundreds of m{sup 2}/cm{sup 3}) porous silicon became during the last years a good candidate material as substrate for biosensor application. Moreover, the versatility of surface chemistry allows different functionalization approaches and large number of molecules to be captured on well-defined areas. This paper reports a dual detection method for protein recognition processes developed on different nanostructured porous silicon (PS) substrates, based on using two complementary spectroscopic techniques: fluorescence and electrochemical impedance. The structures were tested for biomolecular recognition – biotin–strepavidin couples – in order to achieve an optimum surface for protein's immobilizations. Comparative analyses of the attachment degree and preservation of the biomolecules activity on the porous silicon surfaces and silicon slides are also described.

  2. Technical Considerations for Filler and Neuromodulator Refinements

    Science.gov (United States)

    Wilson, Anthony J.; Chang, Brian L.; Percec, Ivona

    2016-01-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005–2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration–approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that “product customization” is safe and provides natural results with excellent patient outcomes. PMID:28018778

  3. Technical Considerations for Filler and Neuromodulator Refinements.

    Science.gov (United States)

    Montes, José Raúl; Wilson, Anthony J; Chang, Brian L; Percec, Ivona

    2016-12-01

    Background: The toolbox for cosmetic practitioners is growing at an unprecedented rate. There are novel products every year and expanding off-label indications for neurotoxin and soft-tissue filler applications. Consequently, aesthetic physicians are increasingly challenged by the task of selecting the most appropriate products and techniques to achieve optimal patient outcomes. Methods: We employed a PubMed literature search of facial injectables from the past 10 years (2005-2015), with emphasis on those articles embracing evidence-based medicine. We evaluated the scientific background of every product and the physicochemical properties that make each one ideal for specific indications. The 2 senior authors provide commentary regarding their clinical experience with specific technical refinements of neuromodulators and soft-tissue fillers. Results: Neurotoxins and fillers are characterized by unique physical characteristics that distinguish each product. This results in subtle but important differences in their clinical applications. Specific indications and recommendations for the use of the various neurotoxins and soft-tissue fillers are reviewed. The discussion highlights refinements in combination treatments and product physical modifications, according to specific treatment zones. Conclusions: The field of facial aesthetics has evolved dramatically, mostly secondary to our increased understanding of 3-dimensional structural volume restoration. Our work reviews Food and Drug Administration-approved injectables. In addition, we describe how to modify products to fulfill specific indications such as treatment of the mid face, décolletage, hands, and periorbital regions. Although we cannot directly evaluate the duration or exact physical properties of blended products, we argue that "product customization" is safe and provides natural results with excellent patient outcomes.

  4. Wear of nanofilled dental composites at varying filler concentrations.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. © 2014 Wiley Periodicals, Inc.

  5. Autonomous sensor-based dual-arm satellite grappling

    Science.gov (United States)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  6. Coronary revascularization treatment based on dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dikkers, R.; Willems, T.P.; Jonge, G.J. de; Zaag-Loonen, H.J. van der; Ooijen, P.M.A. van; Oudkerk, M. [University of Groningen, Department of Radiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands); Piers, L.H.; Tio, R.A.; Zijlstra, F. [University of Groningen, Department of Cardiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands)

    2008-09-15

    Therapy advice based on dual-source computed tomography (DSCT) in comparison with coronary angiography (CAG) was investigated and the results evaluated after 1-year follow-up. Thirty-three consecutive patients (mean age 61.9 years) underwent DSCT and CAG and were evaluated independently. In an expert reading (the ''gold standard''), CAG and DSCT examinations were evaluated simultaneously by an experienced radiologist and cardiologist. Based on the presence of significant stenosis and current guidelines, therapy advice was given by all readers blinded from the results of other readings and clinical information. Patients were treated based on a multidisciplinary team evaluation including all clinical information. In comparison with the gold standard, CAG had a higher specificity (91%) and positive predictive value (PPV) (95%) compared with DSCT (82% and 91%, respectively). DSCT had a higher sensitivity (96%) and negative predictive value (NPV) (89%) compared with CAG (91% and 83%, respectively). The DSCT-based therapy advice did not lead to any patient being denied the revascularization they needed according to the multidisciplinary team evaluation. During follow-up, two patients needed additional revascularization. The high NPV for DSCT for revascularization assessment indicates that DSCT could be safely used to select patients benefiting from medical therapy only. (orig.)

  7. Dictionary-based image denoising for dual energy computed tomography

    Science.gov (United States)

    Mechlem, Korbinian; Allner, Sebastian; Mei, Kai; Pfeiffer, Franz; Noël, Peter B.

    2016-03-01

    Compared to conventional computed tomography (CT), dual energy CT allows for improved material decomposition by conducting measurements at two distinct energy spectra. Since radiation exposure is a major concern in clinical CT, there is a need for tools to reduce the noise level in images while preserving diagnostic information. One way to achieve this goal is the application of image-based denoising algorithms after an analytical reconstruction has been performed. We have developed a modified dictionary denoising algorithm for dual energy CT aimed at exploiting the high spatial correlation between between images obtained from different energy spectra. Both the low-and high energy image are partitioned into small patches which are subsequently normalized. Combined patches with improved signal-to-noise ratio are formed by a weighted addition of corresponding normalized patches from both images. Assuming that corresponding low-and high energy image patches are related by a linear transformation, the signal in both patches is added coherently while noise is neglected. Conventional dictionary denoising is then performed on the combined patches. Compared to conventional dictionary denoising and bilateral filtering, our algorithm achieved superior performance in terms of qualitative and quantitative image quality measures. We demonstrate, in simulation studies, that this approach can produce 2d-histograms of the high- and low-energy reconstruction which are characterized by significantly improved material features and separation. Moreover, in comparison to other approaches that attempt denoising without simultaneously using both energy signals, superior similarity to the ground truth can be found with our proposed algorithm.

  8. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  9. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers.

    Science.gov (United States)

    Brostow, Witold; Lobland, Haley E Hagg; Hnatchuk, Nathalie; Perez, Jose M

    2017-03-16

    Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic-with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  10. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    Science.gov (United States)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  11. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    Science.gov (United States)

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one.

  12. Brazing of Ti2AlNb Based Alloy with Amorphous Ti-Cu-Zr-Ni Filler

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; HUANG Yongjiang; WANG Guochao; SHEN Jun; CHEN Zhihao

    2015-01-01

    Amorphous Ti-Cu-Zr-Nifi ller foils with low melting point of 1 133 K were synthesized using a melt-spinning method in argon atmosphere. A Ti2AlNb based alloy was brazed at 1 153-1 223 K for 600-3 000 s. The effects of brazing temperature (Tb) and time (tb) on the shear strength of the joints were investigated. The results showed that the joint strength was signifi cantly affected by the reaction layer thickness. The optimum brazing parameters can be determined as follows:Tb=1 173 K, and tb=600 s. The maximum tensile strength of the joint obtained can reach 260 MPa. Furthermore, the activation energyQand the growth velocityA0 of the reaction layer in the brazed joints were calculated to be 161.742 kJ/mol and 0.213 m2/s, respectively. The growth of the reaction layer (y) could be expressed by the expression:y2 =0.213exp(−19 454/Tb)tb.

  13. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    Science.gov (United States)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  14. An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores

    Science.gov (United States)

    Zhou, Yongcun; Wang, Hong

    2013-04-01

    We demonstrate a capability in combining two kinds of nanosize and microsize particles of core-shell Al@Al2O3@SiO2 with aluminum cores to form multilayer coating structures as fillers in polyimide matrix for electronic applications. The core-shell Al@Al2O3@SiO2 structure can effectively adjust the relative permittivity (about 12 @1 MHz) of the composite while keeping lower dielectric loss (0.015 @1 MHz) compared to that uncoated aluminum particles. The combination of "macro" and "micro" coating can significantly improve the dielectric properties of the composites. This work provides a useful method to modify the fillers for polymer matrix nanocomposite materials.

  15. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    Directory of Open Access Journals (Sweden)

    Yunxia Chen

    2017-04-01

    Full Text Available The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability.

  16. Some Characterization Results based on Conditional Expectation of function of Dual Generalized Order Statistics

    Directory of Open Access Journals (Sweden)

    Md Izhar Khan

    2012-11-01

    Full Text Available  Two families of probability distributions are characterized through the conditional expectations of dual generalized order statistics ( , conditioned on a non-adjacent dual generalized order statistics. Also a result based on the unconditional expectation and a conditional expectation of  is used to characterize family of distributions. Further, some of its deductions are also discussed.

  17. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  18. Effect of Filler and Heat Treatment on the Physical and Mechanical Properties of the Brazed Joint between Carbide Tip and Steel

    Science.gov (United States)

    Winardi, Y.; Triyono; Wijayanta, A. T.

    2017-02-01

    In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.

  19. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  20. Comparative study of filler influence on polylactide photooxidation

    Directory of Open Access Journals (Sweden)

    S. Bocchini

    2013-05-01

    Full Text Available Polylactide (PLA based nanocomposites of organically modified montmorillonite and micro-talc based microcomposites were prepared with different compositions and were UV-light irradiated under artificial accelerated conditions representative of solar irradiation. The chemical modifications resulting from photo-oxidation were followed by infrared (IR and ultraviolet (UV-visible spectroscopies. The infrared analysis of PLA photooxidation shows the formation of a band at 1847 cm–1 due to the formation of anhydrides. The filler addition provokes an increase of anhydride formation rate dependent on filler nature, amount and dispersion degree on the matrix. The main factors that influence oxidation rate are the total extension of polymer/filler interfacial area and the presence of transition metal impurities of clays.

  1. 纳米粘土/炭黑双相填料对天然橡胶性能的影响%The Effects of Nanoclay/Carbon Black Dual Fillers on the Properties of Natural Rubber

    Institute of Scientific and Technical Information of China (English)

    刘春亮; 李莉

    2012-01-01

    以有机纳米粘土替代部分炭黑,在材料内部引入形状各向异性的纳米片层,制备天然橡胶/炭黑/纳米粘土复合材料,研究了粘土含量对复合材料静态力学性能、动态力学性能、热稳定性、老化性及拉伸疲劳性能的影响。结果表明,以少量有机纳米粘土(2 phr~6 phr)替代部分炭黑可提高天然橡胶的硫化效率,增强复合材料的静态力学性能,降低动态损耗因子,提高复合材料的热稳定性、耐热空气老化性能及拉伸疲劳性能。与纯炭黑试样相比,复合材料拉伸强度最高提高91%,拉伸疲劳寿命提高31%,达55万次。%Organic nanoclay(NC) with highly geometry anisotropic was introduced into natural rubber(NR) by replacing the same amount of carbon black(CB) to prepare NR/CB/NC nano-composites.The static mechanical properties,dynamic mechanical properties,thermal stability,aging resistance and tensile fatigue performance of the composites with different NC/CB ratios were investigated.The results show that NC/CB hybrid filler could not only improve the curing efficiency and the static mechanical properties of the composites,but also enhance the thermal stability and aging resistance as well as the tensile fatigue performance of the composite.Compared with CB25 sample,the tensile strength and the tensile fatigue of the composite with 2phr NC increase by 72% and by 31%,respectively.

  2. Advanced material separation technique based on dual energy CT scanning

    Science.gov (United States)

    Zamyatin, Alexander A.; Natarajan, Anusha; Zou, Yu

    2009-02-01

    We propose a method for material separation using dual energy data. Our method is suitable to separation of three or more materials. In this work we describe our method and show results of numerical simulation and with real dual-energy data of a head phantom. The proposed method of constructing the material separation map consists of the following steps: Data-domain dual energy decomposition - Vector plot - Density plot - Clustering - Color assignment. Density plots are introduced to allow automatic cluster separation. We use special image processing methods, including Gaussian decomposition, to improve the accuracy of material separation. We also propose using the HSL color model for better visualization and to bring a new dimension in material separation display. We study applications of bone removal and virtual contrast removal. Evaluation shows improved accuracy compared to standard methods.

  3. THE QUANTUM – MECHANICAL MODEL OF FORMING CONTACT AREAS IN COMPOSITE MATERIALS WITH SPHERICAL FILLER

    Directory of Open Access Journals (Sweden)

    E. V. Suhovaya

    2011-01-01

    Full Text Available The structure and properties of the composites having Fe-C-B-Р binders alloyed with molybdenum and strengthened by the W-C quickly-cooled filler were investigated in this work. The model based on quantum mechanics principles explaining the dependencies of contact interaction zones width on filler diameter was suggested.

  4. Dual Band High Efficiency Power Amplifier Based on CRLH Lines

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-12-01

    Full Text Available In this paper we propose the use of Composite Right/Left Hand (CRLH and Extended Composite Right/Left Hand (ECRLH transmission lines for the design of dual band high efficiency power amplifiers working in CE class. The harmonic termination can be synthesized using the meta-lines is particularly suitable for CE class amplifiers, which have a termination not as sensitive to the third harmonic as F class amplifier. This paper presents the design procedure and the design equations. The nonlinear phase response of a CRLH and ECRLH transmission line has been utilized to design arbitrary dual-band amplifiers.

  5. The dual symmetry for plane and point based structures

    DEFF Research Database (Denmark)

    Wester, Ture

    2002-01-01

    Artiklen redegør for konceptet for konstruktionsdualitet, som er de regler der gælder for dualtransformationer mellem normalkraft-baserede gitter- og forskydningskraft-baserede skivevirkning, endvidere redegøres for de morfologiske sammenhænge som forbinder punkt-til-plan duale geometriske familier...

  6. Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao, Xiaohui; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.k [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ryu, Ho-Suk; Ahn, Hyo-Jun; Kim, Ki-Won [School of Nano and Advanced Materials Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2010-01-25

    In view of the safety concerns and the requirements of high energy density lithium batteries, the room temperature ionic liquids (RTILs) are being investigated as suitable candidates to substitute organic electrolytes in polymer electrolytes. In this article, we report synthesis, characterization, and electrochemical properties of nanocomposite polymer electrolytes (NCPEs) comprising of a RTIL [n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)] and nano-sized ceramic fillers (SiO{sub 2}, Al{sub 2}O{sub 3} or BaTiO{sub 3}) hosted in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] membranes. The addition of BMITFSI and ceramic fillers in polymer electrolytes results in high ionic conductivity at room temperature. The cells prepared with BMITFSI and different NCPEs show good interfacial stability and oxidation stability at >5.5 V with the highest value of 6.0 V for the NCPE incorporating BaTiO{sub 3}. The cell with the NCPE containing BaTiO{sub 3} delivers high initial discharge capacity of 165.8 mA h g{sup -1}, which corresponds to 97.5% utilization of active material under the test conditions, and showed the least % capacity fade after prolonged cycling.

  7. Gauge theory of supergravity based only on a self-dual spin connection

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, J.A.; Socorro, J.; Obregon, O. [Area of Superstrings, Escuela de Ciencias Fisico-Matematicas de la Universidad Michoacana de San Nicolas de Hidalgo, P.O. Box 749, 58000, Morelia, Michoacan (Mexico)]|[Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150, Leon, Gto. (Mexico)]|[Depto. de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340, D.F., Mexico (Mexico)

    1996-05-01

    A gauge theory of supergravity is constructed based only on the supersymmetric self-dual spin connection associated to the supergroup OSp(1{vert_bar}4). We show that Jacobson{close_quote}s supergravity action arises naturally from our proposed action. It is formulated by taking the self-dual part of the MacDowell-Mansouri gauge theory of supergravity. In this sense, our quadratic action in the supersymmetric self-dual curvature tensor provides a relation between these two important previous extensions of supergravity. {copyright} {ital 1996 The American Physical Society.}

  8. An Effective Electrical Throughput from PANI Supplement ZnS Nanorods and PDMS-Based Flexible Piezoelectric Nanogenerator for Power up Portable Electronic Devices: An Alternative of MWCNT Filler.

    Science.gov (United States)

    Sultana, Ayesha; Alam, Md Mehebub; Garain, Samiran; Sinha, Tridib Kumar; Middya, Tapas Ranjan; Mandal, Dipankar

    2015-09-02

    We demonstrate the requirement of electrical poling can be avoided in flexible piezoelectric nanogenerators (FPNGs) made of low-temperature hydrothermally grown wurtzite zinc sulfide nanorods (ZnS-NRs) blended with polydimethylsiloxane (PDMS). It has been found that conductive fillers, such as polyaniline (PANI) and multiwall carbon nanotubes (MWCNTs), can subsequently improve the overall performance of FPNG. A large electrical throughput (open circuit voltage ∼35 V with power density ∼2.43 μW/cm(3)) from PANI supplement added nanogenerator (PZP-FPNG) indicates that it is an effective means to replace the MWCNTs filler. The time constant (τ) estimated from the transient response of the capacitor charging curves signifying that the FPNGs are very much capable to charge the capacitors in very short time span (e.g., 3 V is accomplished in 50 s) and thus expected to be perfectly suitable in portable, wearable and flexible electronics devices. We demonstrate that FPNG can instantly lit up several commercial Light Emitting Diodes (LEDs) (15 red, 25 green, and 55 blue, individually) and power up several portable electronic gadgets, for example, wrist watch, calculator, and LCD screen. Thus, a realization of potential use of PANI in low-temperature-synthesized ZnS-NRs comprising piezoelectric based nanogenerator fabrication is experimentally verified so as to acquire a potential impact in sustainable energy applications. Beside this, wireless piezoelectric signal detection possibility is also worked out where a concept of self-powered smart sensor is introduced.

  9. Comparison of strapdown inertial navigation algorithm based on rotation vector and dual quaternion

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenhuan; Chen Xijun; Zeng Qingshuang

    2013-01-01

    For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame.By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution,the accuracy advantage of the gravitational velocity based on dual quaternion is addressed.In view of the idea of the attitude and velocity algorithm based on dual quaternion,an improved navigation algorithm is proposed,which is as much as the rotation vector algorithm in computational complexity.According to this method,the attitude quaternion does not require compensating as the navigation frame rotates.In order to verify the correctness of the theoretical analysis,simulations are carried out utilizing the software,and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.

  10. Dual Key Speech Encryption Algorithm Based Underdetermined BSS

    Directory of Open Access Journals (Sweden)

    Huan Zhao

    2014-01-01

    Full Text Available When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality.

  11. Dual key speech encryption algorithm based underdetermined BSS.

    Science.gov (United States)

    Zhao, Huan; He, Shaofang; Chen, Zuo; Zhang, Xixiang

    2014-01-01

    When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality.

  12. Sifat fisik hidroksiapatit sintesis kalsit sebagai bahan pengisi pada sealer saluran akar resin epoxy (Physical properties of calcite synthesized hydroxyapatite as the filler of epoxy-resin-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Ema Mulyawati

    2013-12-01

    Full Text Available Background: The filler addition to resin based sealers will enhance the physical properties of the polymer. Because of its biological properties, the synthetic hydroxyapatite (HA has been proposed as filler for dental material such as composite resin. The calcite synthesized HA is the HA produced of calcite minerals that came from many Indonesian mining. Purpose: The aim of study was to determine the effect of different concentration of calcite synthesized HA as the filler of the epoxy-resin-based root canal sealer on the physical properties such as its contact angle, the film thickness and the microhardness. Methods: The crystal of the calcite synthesized hydroxyapatite with the size between 77.721-88.710 nm and the ratio of Ca/P 1.6886 were synthesized at Ceramic Laboratory, Mechanical Engineering, using wet method of hydrothermal microwave. The powders of the epoxy- resin were prepared by added the synthesized hydroxyapatite crystal in 5 different weight ratios (e.g.: HA-10%, HA-20%, HA-30%, HA-40% and HA-50%. Each of these was mixed with the paste of 3:1 ratio using spatula on a glass plate until homogen and then measuring the contact angle and the film thickness. Microhardness test was conducted after the mixture of experimental sealer was stored for 24 hrs at 37 oC to reach perfect polymerization. Results: All of contact angles were <90o and were not significantly different to each other (p= 0.510. All groups had a film thickness in accordance with ISO 6876 (<50 um and with no statistical difference (p= 0.858. In the HA of 10%, 20%, 30% seen that the microhardness were increased, while in the HA-50% was decreased and in the HA-40% has the same microhardness to the control groups (HA-0%. Conclusion: Calcite synthesized HA as the filler did not affect contact angle and film thickness of the sealer. Microhardness of the epoxy-resin based sealer could be increased using maximum 30% of the calcite synthesized HA as the filler.Latar belakang

  13. Power Split Based Dual Hemispherical Continuously Variable Transmission

    Directory of Open Access Journals (Sweden)

    Douwe Dresscher

    2017-04-01

    Full Text Available In this work, we present a new continuously variable transmission concept: the Dual-Hemi Continuously Variable Transmission (CVT. It is designed to have properties we believe are required to apply continuously variable transmissions in robotics to their full potential. These properties are a transformation range that includes both positive and negative ratios, back-drivability under all conditions, kinematically decoupled reconfiguration, high efficiency of the transmission, and a reconfiguration mechanism requiring little work for changing the transmission ratio. The design of the Dual-Hemi CVT and a prototype realisation are discussed in detail. We show that the Dual-Hemi CVT has the aforementioned desired properties. Experiments show that the efficiency of the CVT is above 90% for a large part of the range of operation of the CVT. Significant stiction in the transmission, combined with a relatively low bandwidth for changing the transmission ratio, may cause problems when applying the DH-CVT as part of an actuator in a control loop.

  14. Polarization-insensitive fiber optical parametric amplifier based on polarization diversity technique with dual parallel pumps

    Institute of Scientific and Technical Information of China (English)

    YIN Lu; SANG Xin-zhu; ZHANG Qi; XIN Xiang-jun; YU Chong-xiu; Da-xiong

    2011-01-01

    By analyzing the principle of dual-pump parametric amplification and the polarization dependent gain of fiber optical parametric amplifier (FOPA), a polarization-insensitive FOPA based on polarization-diversity technique with dual parallel pumps is presented. The performances of polarization-insensitivity, gain and BER are theoretically analyzed and numerically simulated by comparing the proposed scheme with parallel pump solution and orthogonal pump solution. The presented solution can reduce the complexity of state of polarization (SoP) of pumps.

  15. Effect of Additional Elements of Al-Si Filler Alloy on Flowability and Clearance Fillability

    Science.gov (United States)

    Edo, Masakazu; Yoshino, Michihide; Kuroda, Shuu

    Aluminum alloys are widely used for automotive heat exchangers manufactured by brazing processes. All joint gaps must be filled with Al-Si filler metal to prevent the leak of refrigerant. Recently, brazing of heat exchanger components has become difficult due to the decrease in the thickness of the brazing sheets. Since the fluidity of Al-Si molten metal is very high, the flow of molten filler metal sometimes causes dissolution of the base metal or defect of joints. In this study, we investigated the effect of additional elements (such as Mn, Fe, Ti and Zr) of Al-Si filler metal on the flowability and clearance fillability using our original evaluation model. The results indicated that the addition of Mn or Ti improved the clearance fillability significantly. We clarified the mechanism that additional elements change the properties of molten filler metal, by measuring the viscosity of each filler metal and observing the solidified microstructure.

  16. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    Energy Technology Data Exchange (ETDEWEB)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D. [IFF-Forschungszentrum Juelich, 52425 Juelich (Germany); Urban, V. [ESRF, BP220, 38043 Grenoble Cedex (France); IPNS, Argonne 60439-4814 (United States); Kohlbrecher, J. [PSI, 5232 Villigen (Switzerland); Straube, E. [University of Halle, FB Physik, 06099 Halle (Germany)

    2002-07-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  17. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  18. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  19. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  20. A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-02-01

    Full Text Available Traditional Wireless Power Transfer (WPT systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc. due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.

  1. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  2. Research Progress of Cu-base Brazing Filler Metals for Brazing Silicon Nitride Ceramics%钎焊氮化硅陶瓷的 Cu 基钎料的研究进展

    Institute of Scientific and Technical Information of China (English)

    栗慧

    2014-01-01

    陶瓷连接技术是结构陶瓷实用化的有效手段,焊料成分对连接体的性能具有决定性作用。文章主要从焊料成分的角度,重点总结了钎焊Si3 N4陶瓷的Cu基钎焊材料的发展现状。%Joining technology of silicon nitride based materials is the most effective means for practical application.The chemical composition of adhesive has significant influence on the joining strength.The re-cent development in brazing of Si3 N4 ceramics Cu-base brazing fillers is emphatically reviewed in this paper from the point of chemical composition.

  3. Design of dual DC motor control system based on DSP

    Science.gov (United States)

    Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping

    2017-08-01

    Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.

  4. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization

    NARCIS (Netherlands)

    Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M.

    2014-01-01

    Filler-to-rubber interaction is a key parameter in the reinforcement of rubber. This paper presents an investigation into filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber (NR) in the presence and absence of a silane coupling agent. Using a special network visual

  5. Design and Fabrication of Novel Dual-Base Negative-Differential Resistance Heterojunction Bipolar Transistor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on planar Si dual-base transistor conception, a novel mesa dual-base heterojunction bipolar transistor (HBT) is designed and fabricated. Molecule beam extension, selective wet chemical etching, common contact photolithography and metal lift-off technique are adopted in the process. The device has particular and distinct voltage-controlled negative differential resistance (NDR) and photo-controlled NDR. The highest peak-to-vally current rate of the voltage-controlled NDR is larger than 148 and the peak current varies with the increase of collector voltage. The device features high speed and high frequency characteristics derived from HBT and intrinsic bistability and self-latching characteristics due to NDR. A single dual-base HBT can be seen as an integration of NDR device, HBT and photoconductive device. Compared with common HBT,the groove is the key factor producing NDR.

  6. 7 CFR 58.914 - Fillers.

    Science.gov (United States)

    2010-01-01

    ... gravity and vacuum type fillers shall be of sanitary design and all product contact surfaces, if metal... Standards for Plastic, and Rubber and Rubber-Like Materials. Fillers shall be designed so that they in no... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION,...

  7. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable...

  8. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    at 28 days from about 35 MPa down to about 13 MPa. The cementing efficiency factor of the chalk filler was found to be in the range 0.21 - 0.42. The chalk filler performed equally well with a grey and a white cement; the latter opens the possibility to produce white SCC more cost effectively....

  9. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  10. 7 CFR 58.514 - Container fillers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging...

  11. Characterization of carbon silica hybrid fillers obtained by pyrolysis of waste green tires by the STEM–EDX method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hartomy, Omar A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491 (Saudi Arabia); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Al Said, Said A. Farha [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491 (Saudi Arabia); Dishovsky, Nikolay, E-mail: dishov@uctm.edu [Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria); Ward, Michael B. [LEMAS, Institute for Materials Research, SPEME, University of Leeds, LS2 9JT (United Kingdom); Mihaylov, Mihail; Ivanov, Milcho [Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2015-03-15

    Dual phase carbon–silica hybrid fillers obtained by pyrolysis-cum-water vapor of waste green tires have been characterized by energy dispersive X-ray spectroscopy in a scanning transmission electron microscope, silicate analysis, weight analysis, atomic absorption spectroscopy and by inductively coupled plasma–optical emission spectroscopy. The results achieved have shown that the location and distribution of the phases in the carbon silica hybrid fillers as well as their most essential characteristics are influenced by the pyrolysis conditions. The carbon phase of the filler thus obtained is located predominantly in the space among silica aggregates which have already been existing while it has been formed by elastomer destruction in the course of pyrolysis. The presence of ZnS also has been found in the hybrid fillers investigated. - Highlights: • Dual phase fillers obtained by pyrolysis of waste green tires have been characterized. • The STEM–EDX method was used for characterization. • The phase distributions in the fillers are influenced by the pyrolysis conditions.

  12. A novel 3D sandwich structure of hybrid graphite nanosheets and silver nanowires as fillers for improved thermal conductivity

    Science.gov (United States)

    Zhuang, Xiao; Zhou, Yongcun; Liu, Feng

    2017-01-01

    We explored a novel 3D sandwich structure of fillers in the polymer matrix to enhance thermal conductivity. A variety of fillers in the polymer matrix play a significant role in the physical properties of the composite. Fillers containing particle and line structures are popular, and enhance the thermal and electrical conductivities. Therefore, filler-based matrix network improves conductivity. We propose a sandwich structure consisting of hybrid graphite nanosheets (two dimensions), and silver nanowires (AgNWs) (one dimension), to create a 3D sandwich structure of polyimide matrix with improved thermal conductivity. Surface treatment of graphite and silver nanowires were conducted to reduce the dielectric constant of the composite. We designed the filler of 20 wt% resulting in a high thermal conductivity of 3.21 W m‑1 K‑1 with 15% C@SiO2 and 5% AgNWs@SiO2 filler loading. The novel combination and structure markedly enhanced the thermal conductivity of the composite.

  13. Effect of stainless steel chemical composition on brazing ability of filler metal

    Science.gov (United States)

    Miyazawa, Yasuyuki; Ohta, Kei; Nishiyama, Akira

    2014-08-01

    Many kinds of stainless steel have been used in the engineering field. So it is necessary to investigate the effect of SUS chemical compositions on the brazing ability of filler metal. In this study, SUS315J containing Cr, Ni, Si, Cu, and Mo was employed as a base metal. Excellent spreading ability of the molten nickel-based brazing filler on SUS315J was obtained as compared with that on SUS316. Copper and silicon influenced the significant spreading ability of the filler.

  14. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  15. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  16. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Directory of Open Access Journals (Sweden)

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  17. Polymer surface modification and characterization of particulate calcium carbonate fillers

    Energy Technology Data Exchange (ETDEWEB)

    Shui Miao

    2003-12-30

    The efficacy of the surface treatment of particulate fillers depends on the chemical character of the components, on the method and conditions of the treatment, and on the amount of the treating agent. Here, the ultra-fine calcium carbonate is surface treated with 1, 2, 3 and 4 wt.% polyacrylic acid (PAA) synthesized by ourselves, which has strong ionic interaction and is an efficient surface modifier. The PAA coated filler is submitted to the measurement of the surface bonded amount, bonding efficacy, X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography. Maximum efficacy is expected at the monolayer coverage of the surface, which is about 0.6 wt.% according to the calculation based on the way they are aligned and is basically in agreement with the 'substrate overlayer' model based on the mole ratio of C{sup 286} and C{sup 290} taking no account of the possible underestimation because of the inaccuracy or because of the CH{sub x} contamination present originally on the CaCO{sub 3}. The initial decrease of the mole ratio of C{sup 290}/O and C{sup 290}/Ca with the surface bonded PAA may indicate that the bonding interaction between the polymer and the filler surface is the leaving of one molecular carbon dioxide. The IGC measurement shows that there is a considerable surface tension falling in the case of the PAA modified filler compared with the reference. An abnormal high surface energy in the case of filler treated with 4% PAA is observed.

  18. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    Science.gov (United States)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  19. Influence of the nature of surface-active substances on rheology of high-filled pastelike compositions on a base on liquid diene rubber and disperse filler

    Directory of Open Access Journals (Sweden)

    Alexander B. Surovtcev

    2014-12-01

    Full Text Available Results of researches on reception of pastelike high-filled compositions and estimation of their rheological properties with use cone – plate rheometer are presented. Liquid diene rubber with end hydroxyl groups (as binding, surfaceactive substance (PEAHENS and disperse filler are entered into structure of compositions. The estimation of sedimentation firmness of compositions and their fluidity in the range of pressure of shift 1 – 30 кPа and temperatures from 30 to 50°С is executed. By results of an estimation of influence of concentration dependence of PEAHENS on a viscosity indicator it is shown that its introduction in a pastelike composition at level 0.5 mas. % is expedient. For considered in work low polar liquid diene rubber more effective decrease in viscosity of a pastelike composition provide polyoxypropylene, especially on the average an interval of pressure of shift which basically can be used in practice. Slightly concede them titanorganic derivatives of oligomer polyoxypropylene. The greatest effect of decrease in viscosity for compositions will reach at use oligomer polyoxypropylene with molecular weight 480, in this case viscosity of a composition is at level of 10 Pa ⋅ s for rather wide interval of pressure of shift.

  20. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers.

    Science.gov (United States)

    Kim, Mingyeong; Lee, Lyungyu; Jung, Yongju; Kim, Seok

    2013-12-01

    In this paper, composite polymer electrolytes were prepared by a blend of poly(ethylene oxide) (PEO) and poly(acrylonitrile) (PAN) as a polymer matrix, ethylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of nano-sized Al2O3. The composite films were prepared by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was investigated using X-ray diffraction (XRD) and AC impedance method, respectively. The morphology of composite polymer electrolyte film was analyzed by SEM method. From the experimental results, by increasing the Al2O3 content, the crystallinity of PEO was reduced, and the ionic conductivity was increased. In particular, by a doping of 15 wt.% Al2O3 in PEO/PAN polymer blend, the CPEs showed the superior ionic conductivity. However, when Al2O3 content exceeds 15 wt.%, the ionic conductivity was decreased. From the surface morphology, it was concluded that the ionic conductivity was decreased because the CPEs showed a heterogenous morphology due to immiscibility or aggregation of the ceramic filler within the polymer matrix.

  1. Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Science.gov (United States)

    Schumacher, J.; Otero, Toribio F.; Pascual, Victor H.

    2017-04-01

    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.

  2. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu;

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  3. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  4. Instantaneous Gradient Based Dual Mode Feed-Forward Neural Network Blind Equalization Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2013-01-01

    Full Text Available To further improve the performance of feed-forward neural network blind equalization based on Constant Modulus Algorithm (CMA cost function, an instantaneous gradient based dual mode between Modified Constant Modulus Algorithm (MCMA and Decision Directed (DD algorithm was proposed. The neural network weights change quantity of the adjacent iterative process is defined as instantaneous gradient. After the network converges, the weights of neural network to achieve a stable energy state and the instantaneous gradient would be zero. Therefore dual mode algorithm can be realized by criterion which set according to the instantaneous gradient. Computer simulation results show that the dual mode feed-forward neural network blind equalization algorithm proposed in this study improves the convergence rate and convergence precision effectively, at the same time, has good restart and tracking ability under channel burst interference condition.

  5. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, J.S.; Abidi, M.A.

    1998-06-01

    A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.

  6. The effect of coupling agents on silicate-based nanofillers/carbon black dual filler systems on the properties of a natural rubber/butadiene rubber compound

    NARCIS (Netherlands)

    Poikelispää, M.; Das, A.; Dierkes, W.K.; Vuorinen, J.

    2015-01-01

    Nanofillers have been introduced a few years ago, but their application in elastomers is still a challenge. With the existing rubber processing equipment and constraints of rubber mixing, dispersion of nanofillers is difficult. The processability and performance of compounds containing plate- or tub

  7. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  8. Degradation kinetics of ethylene-octene copolymer/wood flour biocomposites in dependence to filler content

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Popov, A. A.

    2017-06-01

    This article is focused on thermal oxidative degradation and biodegradation in soil of biocomposites based on ethylene-octene copolymer (EOC), filled by wood flour (from 30 to 70% wt.), in dependence to the filler content. The study of oxidative degradation of composites was carried out at two temperatures (80 and 130°C respectively). The induction period and the rates of oxidation were determined. It was concluded that as filler content raises, the induction period increases. It can be explained by the higher specific area of composites in comparison with pure EOC. However, high filled composites (60 and 70 % of the filler) are oxidized with a huge induction period because polyphenols in the filler inhibit the oxidation process. Biodegradation test under laboratory conditions was carried out to investigate the biodegradability of the material. Composites with lower filler content have lower weight loss rate. Small particles are capsulated by polymer and are isolated from moisture and microorganisms. On the other hand, at a high filling of the composite small particles stick together and act as large ones. Such filler agglomerates are connected with each other and allow microorganisms to penetrate into the composite. It was concluded as filler content raises the mass loss increases.

  9. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  10. Self-Dual Integral Normal Bases and Galois Module Structure

    CERN Document Server

    Pickett, Erik Jarl

    2010-01-01

    Let $N/F$ be an odd degree Galois extension of number fields with Galois group $G$ and rings of integers ${\\mathfrak O}_N$ and ${\\mathfrak O}_F=\\bo$ respectively. Let $\\mathcal{A}$ be the unique fractional ${\\mathfrak O}_N$-ideal with square equal to the inverse different of $N/F$. Erez has shown that $\\mathcal{A}$ is a locally free ${\\mathfrak O}[G]$-module if and only if $N/F$ is a so called weakly ramified extension. There have been a number of results regarding the freeness of $\\mathcal{A}$ as a $\\Z[G]$-module, however this question remains open. In this paper we prove that $\\mathcal{A}$ is free as a $\\Z[G]$-module assuming that $N/F$ is weakly ramified and under the hypothesis that for every prime $\\wp$ of ${\\mathfrak O}$ which ramifies wildly in $N/F$, the decomposition group is abelian, the ramification group is cyclic and $\\wp$ is unramified in $F/\\Q$. We make crucial use of a construction due to the first named author which uses Dwork's exponential power series to describe self-dual integral normal b...

  11. Cosmetic Fillers: Perspectives on the Industry.

    Science.gov (United States)

    Basta, Steven L

    2015-11-01

    The cosmetic filler industry has evolved substantially over the last 30 years. The market is characterized by multiple fillers and a competitive dynamic among major aesthetics companies. Marketing in the United States and Europe has been different owing to regulatory constraints. Differences have led to more rapid growth in the European market. The US market has evolved owing to growth of major companies with multiple product portfolios and leverage in consumer promotion and aesthetics office marketing owing to scale. The evolution of the filler market will include new materials, injection techniques, and facilitation devices, and new areas of injection.

  12. Fillers for the improvement in acne scars

    Directory of Open Access Journals (Sweden)

    Wollina U

    2015-09-01

    Full Text Available Uwe Wollina,1 Alberto Goldman2 1Department of Dermatology and Allergology, Academic Teaching Hospital, Dresden-Friedrichstadt, Dresden, Germany; 2Clinica Goldman, Porto Alegre, Rio Grande do Sul, Brazil Abstract: Acne is a common inflammatory disease. Scarring is an unwanted end point of acne. Both atrophic and hypertrophic scar types occur. Soft-tissue augmentation aims to improve atrophic scars. In this review, we will focus on the use of dermal fillers for acne scar improvement. Therefore, various filler types are characterized, and available data on their use in acne scar improvement are analyzed. Keywords: acne, scars, dermal fillers, injection, extracellular matrix

  13. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers.

    Science.gov (United States)

    Li, Yu-An; Tai, Nyan-Hwa; Chen, Swe-Kai; Tsai, Tsung-Yen

    2011-08-23

    This work demonstrates the processing and characterization of the transparent and highly electrically conductive film using few-walled carbon nanotubes (FWCNTs) decorated with Pd nanoparticles as fillers. The approach included functionalizing the FWCNTs, immersing them in an aqueous solution of palladate salts, and subsequently subjecting them to a reduction reaction in H(2). Field-emission scanning electron microscopy and transmission electron microscopy images showed that the functionalized FWCNTs (f-FWCNTs) were decorated with uniform and homogeneous Pd nanoparticles with an average diameter of 5 nm. A shift of the G-band to a higher frequency in the Raman spectra of the Pd-decorated f-FWCNTs (Pd@f-FWCNTs) illustrates that the p-type doping effect was enhanced. X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed that PdCl(2) was the primary decoration compound on the f-FWCNTs prior to the reduction reaction and that Pd nanoparticles were the only decorated nanoparticles after H(2) reduction. The contact resistance between the metallic materials and the semiconducting CNTs in FWCNTs, controlled by the Schottky barrier, was significantly decreased compared to the pristine FWCNTs. The decrease in contact resistance is attributed to the 0.26 eV increase of the work function of the Pd@f-FWCNTs. Extremely low sheet resistance of 274 ohm/sq of the poly(ethylene terephthalate) substrates coated with Pd@f-FWCNTs was attained, which was 1/25 the resistance exhibited by those coated with FWCNTs, whereas the same optical transmittance of 81.65% at a wavelength of 550 nm was maintained. © 2011 American Chemical Society

  14. Nanomaterial-based biosensors using dual transducing elements for solution phase detection.

    Science.gov (United States)

    Li, Ning; Su, Xiaodi; Lu, Yi

    2015-05-07

    Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.

  15. Investigation of the corrosion performance of different braze fillers fused onto stainless steel type 1.4401 (UNS S31600)

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.; Eklund, T.; Persson, O. [Alfa Laval Corporate AB, Tumba (Sweden)

    2004-07-01

    Corrosion measurements were performed on a new iron based braze filler, AlfaNova{sup 1} developed by Alfa Laval. The braze filler was fused onto stainless steel type EN 1.4401 (UNS S31600). The susceptibility to general corrosion, intergranular corrosion and pitting corrosion was evaluated by gravimetrical and electrochemical methods as well as metallographical examination of the samples. Different sample configurations were utilised, which simulate the geometry of a braze joint in a plate heat exchange. The results were compared with a selection of commercial nickel-based braze fillers. It was shown that the newly developed iron-based braze filler had similar corrosion resistance as the commercially available nickel-based fillers. It was seen that the precipitation of intermetallic phases due to melting point depressants had a governing effect on the corrosion resistance of the braze joint. (orig.)

  16. Polarization splitter based on dual core liquid crystal-filled holey fiber

    Science.gov (United States)

    Wang, Er-Lei; Jiang, Hai-Ming; Xie, Kang; Chen, Chun; Hu, Zhi-Jia

    2016-09-01

    Through filling the liquid crystal into the air holes of a dual-core holey fiber with a simple structure, the transmission mechanism of the fiber is changed from total internal reflection to photonic bandgap (PBG), and a polarization splitter based on the liquid crystal-filled dual-core PBG holey fiber is investigated. The results demonstrate that, by setting appropriate geometrical parameters, the polarization splitter possesses a short length of 890.5 μm, and its wide bandwidth of ˜150 nm almost covers all the S, C, and L communication bands. Besides, it has an excellent electro-interference-resistance property and certain sensitivity to temperature.

  17. An Image Fusion Method Based on NSCT and Dual-channel PCNN Model

    OpenAIRE

    Nianyi Wang; Yide Ma; Weilan Wang; Shijie Zhou

    2014-01-01

    NSCT is one of useful multiscale geometric analysis tools, which takes full advantage of geometric regularity of image intrinsic structures. The dual-channel PCNN is a simplified PCNN model, which can process multiple images by a single PCNN. This saves time in the process of image fusion and cuts down computational complexity. In this paper, we present a new image fusion scheme based on NSCT and dual-channel PCNN. Firstly, the fusion rules of subband coefficients of NSCT are discussed. For t...

  18. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    Science.gov (United States)

    Chen, Cheng; Zhao, Ling-Juan; Qiu, Ji-Fang; Liu, Yang; Wang, Wei; Lou, Cai-Yun

    2012-09-01

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.

  19. Genetic and Environmental Bases of Reading and Spelling: A Unified Genetic Dual Route Model

    Science.gov (United States)

    Bates, Timothy C.; Castles, Anne; Luciano, Michelle; Wright, Margaret J.; Coltheart, Max; Martin, Nicholas G.

    2007-01-01

    We develop and test a dual-route model of genetic effects on reading aloud and spelling, based on irregular and non-word reading and spelling performance assessed in 1382 monozygotic and dizygotic twins. As in earlier research, most of the variance in reading was due to genetic effects. However, there were three more specific conclusions: the…

  20. Dual-frequency eddy-current NDE based on high-T{sub c} rf SQUID

    Energy Technology Data Exchange (ETDEWEB)

    He, D.F.; Yoshizawa, M

    2002-12-15

    We developed a dual-frequency eddy-current NDE system based on High-T{sub c} RF superconducting quantum interference devices. This method could be used to decrease the unwanted signals caused by the variance of lift-off, to estimate the depth of crack flaw or to detect the thickness of metal structures by choosing appropriate excitation frequencies.

  1. A dual framework for lower bounds of the quadratic assignment|problem based on linearization

    DEFF Research Database (Denmark)

    Karisch, Stefan E.; Cela, E.; Clausen, Jens;

    1999-01-01

    A dual framework allowing the comparison of various bounds for the quadratic assignment problem (QAP) based on linearization, e.g. the bounds of Adams and Johnson, Carraresi and Malucelli, and Hahn and Grant, is presented. We discuss the differences of these bounds and propose a new and more...

  2. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi;

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  3. Safety and efficacy of a raltegravir-based dual antiretroviral therapy in clinical practice

    Directory of Open Access Journals (Sweden)

    G Cenderello

    2012-11-01

    Full Text Available Background: HAART has revolutionized HIV disease management and increased life expectancy for most HIV-infected individuals on treatment. A nucleoside/tide reverse transcriptase (NRTI inhibitor backbone is a recommended component of standard first-line HAART. Nevertheless, NRTI-sparing alternatives are warranted in order to reduce long-term toxicities in many patients (pts. Aim of the study was to evaluate safety of raltegravir-based dual antiretroviral therapy (DUAL in a clinical practice setting. Methods: All pts on DUAL regimen followed at our outpatient HIV service on May 31st 2012 were recruited. Their clinical files were retrospectively studied. Collected data included: demographics, CDC staging, reason to DUAL switching, cholesterol (total and HDL, creatinine, CK, CD4+ count and HIV RNA were recorded at switch and every six months after for the first year. Change in CD4 count after the switch was evaluated by Student t-test. Results: The cohort included 55 pts (27 M; mean age was 54 years (38–72. HIV infection was acquired through: injective drug abuse (25, unprotected homosexual (24 and heterosexual (16 intercourse. CDC staging was: A=16, B=26, C=13. Mean previous treatment regimens were 4. At time of study pts had been on DUAL regimen for 23 months. They had been switched to DUAL therapy for: drug resistance (14; 25.5% (DRR or drug toxicity (41; 74.5%. The most frequently associated drug was darunavir/rtv (19; 34.5%, followed by atazanavir (13; 23.6%; 5 were unboosted; lopinavir/rtv (12; 21.8%, and NVP (11; 20%. DRR pts presented at baseline a mean viral load of 40,153 copies of HIV-RNA/ml; after at 12 months all but 3 showed undetectable (<40 copies viral load and a mean CD4 gain of 142 cells/ml. Pts switched to DUAL for toxicity presented persistent undetectable viral load and a mean CD4+gain of 94 cells/ml. The observed CD4+ increase in both groups (DRR and toxicity presented a statistical significance (p<0.01. Total and HDL

  4. Correction of tear trough deformity with novel porcine collagen dermal filler (Dermicol-P35).

    Science.gov (United States)

    Goldberg, David J

    2009-01-01

    Deformity of the tear trough region, which can occur during the aging process, can result in dark shadows under the eyes and a fatigued appearance. Augmentation of the tear trough is challenging because of the thin skin and lack of fat in the region. Adding volume to the tear trough region with a dermal filler is a nonsurgical procedure with minimal discomfort to the patient. Dermicol-P35 (Evolence; Ortho Dermatologics, Skillman, NJ) is a new, ribose crosslinked, highly purified, porcine-based collagen filler that does not require prior skin testing and has shown improved persistence compared with bovine collagen-based dermal fillers. In this article, we present the clinical outcomes of patients who have received treatment with a novel ribose crosslinked porcine collagen dermal filler for the correction of tear trough deformity.

  5. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it [University of Rome La Sapienza Dep. of Chemical and Material Engineering (Italy); Santulli, Carlo [University of Camerino, School of Architecture and Design (Italy)

    2016-05-18

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  6. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Science.gov (United States)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  7. Some Aggregation Operators Based on Einstein Operations under Interval-Valued Dual Hesitant Fuzzy Setting and Their Application

    Directory of Open Access Journals (Sweden)

    Wenkai Zhang

    2014-01-01

    Full Text Available We investigate the multiple attribute decision making (MADM problems in which attribute values take the form of interval-valued dual hesitant fuzzy information. Firstly, some operational laws for interval-valued dual hesitation fuzzy elements (IVDHFEs based on Einstein operations are developed. Then we develop some aggregation operators based on Einstein operations: the interval-valued dual hesitant fuzzy Einstein weighted averaging (IVDHFEWA operator, interval-valued dual hesitant fuzzy Einstein ordered weighted averaging (IVDHFEOWA operator, interval-valued dual hesitant fuzzy Einstein hybrid averaging (IVDHFEHA operator, interval-valued dual hesitant fuzzy Einstein weighted geometric (IVDHFEWG operator, interval-valued dual hesitant fuzzy Einstein ordered weighted geometric (IVDHFEOWG operator, and interval-valued dual hesitant fuzzy Einstein hybrid geometric (IVDHFEHG operator. Furthermore, we discuss some desirable properties of these operators, and investigate the relationship between the developed operators and the existing ones. Based on the IVDHFEWA operator, an approach to MADM problems is proposed under the interval-valued dual hesitant fuzzy environment. Finally, a numerical example is given to show the application of the developed method, and a comparison analysis is conducted to demonstrate the effectiveness of the proposed approach.

  8. Thermal pretreatment of silica composite filler materials

    OpenAIRE

    Wan, Quan; Ramsey, Christopher; Baran, George

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent s...

  9. Investigation of Thermostability of a Composite Resistive Material with Nanodimensional Carbon Fillers

    Science.gov (United States)

    Malinovskaya, T. D.; Vlasov, V. A.; Volokitin, G. G.; Melentyev, S. V.

    2014-06-01

    Thermostability of resistive materials based on polyurethane used as heat-liberating elements in the design of heating elements of thermoactive formworks is investigated. The application of polyurethane as a binder provides solid contact of polymer molecules with nanodimensional carbon fillers and their uniform distribution in a composite material. The influence of thermal treatment and dispersed fillers on the stability of electrophysical and thermophysical properties of carbon-filled polyurethane coatings is established.

  10. Use of Fillers, Pigments and Additives in Fouling-Release Coatings: a Literature Review

    OpenAIRE

    Tamaev, Nail; Kiil, Søren; Noguer, Albert Camós; Olsen, Stefan Møller

    2015-01-01

    Polydimethylsiloxane (PDMS)-based fouling-release coatings represent a non-toxic alternative in the area of marine protection. Many researches and testing procedures are dedicated to the challenge of exploring of effective, reliable and high-performance constituents of the coatings ‒ fillers, pigments and additives ‒ in order to achieve the desired and long-lasting fouling-release properties.Primarily, coating formulations are prepared on the basis of PDMS with inorganic fillers such as fumed...

  11. A preliminary study on filler metals for vacuum brazing of Al/Ti

    Institute of Scientific and Technical Information of China (English)

    朱颖; 赵鹏飞; 康慧; 胡刚; 曲平

    2002-01-01

    In this paper, nine new filler metals contained Sn and Ga based on Al-11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.

  12. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  13. Improved AFEM algorithm for bioluminescence tomography based on dual-mesh alternation strategy

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Heng Zhao; Xiaochao Qu; Yanbin Hou; Xueli Chen; Duofang Chen; Xiaowei He; Qitan Zhang; Jimin Liang

    2012-01-01

    Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues.In this letter,a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for bioluminescence tomography.By comprehensively considering the error estimation of the finite element method solution on each mesh,two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process.Combined with the constantly adjusted permissible region in the adaptive process,the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.%Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues. In this letter, a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for biolumi-nescence tomography. By comprehensively considering the error estimation of the finite element method solution on each mesh, two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process. Combined with the constantly adjusted permissible region in the adaptive process, the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.

  14. Visibly transparent and radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, Lutz [University of California, Los Angeles, Department of Chemical Engineering (United States)], E-mail: lutz@seas.ucla.edu; Krumeich, Frank [Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences (Switzerland); Burtscher, Peter; Moszner, Norbert [Ivoclar Vivadent AG (Liechtenstein)

    2006-08-15

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  15. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  16. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  17. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Science.gov (United States)

    Mädler, Lutz; Krumeich, Frank; Burtscher, Peter; Moszner, Norbert

    2006-08-01

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  18. Laser brazing with filler wire for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaosong; Li Liqun; Chen Yanbin; Zhou Shanbao

    2005-01-01

    The process properties and interface behavior of CO2 laser brazing with automatic wire feed for galvanized steel sheets were investigated , in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicalar α solid solution was found on the filler metal side.

  19. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform

    OpenAIRE

    ARTEAGA SIERRA, FRANCISCO RODRIGO; Milián Enrique, Carles; I. Torres-Gómez; M. Torres-Cisneros; Moltó, Germán; Ferrando Cogollos, Albert

    2014-01-01

    © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on t...

  20. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    Science.gov (United States)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  1. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  2. Tunable dual-band negative refractive index in ferrite-based metamaterials.

    Science.gov (United States)

    Bi, Ke; Zhou, Ji; Zhao, Hongjie; Liu, Xiaoming; Lan, Chuwen

    2013-05-06

    A tunable dual-band ferrite-based metamaterial has been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance (FMR) frequency which can be influenced by the dimension of the ferrites. Due to having two negative permeability frequency regions around the two FMR frequencies, the metamaterials consisting of metallic wires and ferrite rods with different sizes possess two passbands in the transmission spectra. The microwave transmission properties of the ferrite-based metamaterials can be not only tuned by the applied magnetic field, but also adjusted by the dimension of the ferrite rods. A good agreement between experimental and simulated results is demonstrated, which confirms that the tunable dual-band ferrite-based metamaterials can be used for cloaks, antennas and absorbers.

  3. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection.

    Science.gov (United States)

    Kan, Xianwen; Zhang, Tingting; Zhong, Min; Lu, Xiaojing

    2016-03-15

    A dual-signal strategy was developed in the present work for quercetin (QR) electrochemical recognition and detection. Mercapto-β-cyclodextrin (HS-β-CD) self-assembled on gold nanoparticles and multi-walled carbon nanotubes modified electrode surface to fabricate an electrochemical sensor. Scanning electron microscope, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the preparation process of the sensor. Hydroquinone (HQ) was chosen as an electrochemical marker for QR detection due to its small molecular size for the formation of inclusion with HS-β-CD. The results of UV-vis and differential pulse voltammetry demonstrate that the added QR can replace the included HQ in CD cavities, resulting in the dual-signal in electrochemical experiments composed of the decrease of oxidized current of HQ and the increase of oxidized current of QR. Compared with the sensor for QR detection in the absence of HQ, the sensor based dual-signal strategy exhibited a higher sensitivity with a wider detection range from 5.0 × 10(-9) to 7.0 × 10(-6)mol/L. With good selectivity, reproducibility, and stability, the sensor was applied for real samples detection with satisfactory results. The proposed dual-signal strategy can be readily extended to the selective recognition and sensitive detection of other molecules.

  4. Suitability of sago starch as a base for dual-modification

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The quality and physicochemical properties of native sago starch were studied in order to evaluate the suitability of sago starch as a base for dual-modification, hydroxypropylation and crosslinking. The properties of starch derivatives obtained from dual-modification are different depending upon the kind of starch bases used and their basic properties. Therefore, the properties of several starches including waxy maize, waxy barley, tapioca, wheat, corn and rice and properties of their derivatives were investigated comparatively. The data obtained elucidates that the swelling power of a starch base is the most important factor which influences the dual-modification. The native sago starch had higher swelling power and bigger average granule size when compared to that of other starch bases. Its gelatinization temperature was in the same range as that of waxy maize while its pasting characteristic was similar to that of tapioca starch. It can be inferred that sago starch is suitable as a starch base for hydroxypropylation and crosslinking.

  5. Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites

    Science.gov (United States)

    Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B.

    2011-01-01

    Nonpercolated composites based on polyurethane (PU) filled with low concentrations copper (Cu) powders of varying sizes were studied as electrostrictive materials for mechanical energy harvesting. The dispersion of the fillers within the polymeric matrix was investigated by scanning electron microscopy, and results showed a relatively homogeneous dispersion for the microsized fillers and the existence of agglomerates for their nanosized counterparts. Differential scanning calorimetry measurements displayed that there occurred no interaction between the polymeric matrix and the microsized fillers whereas the nanosized fillers slightly enhanced the glass transition of the soft segments of PU and significantly affected the recrystallization temperature. The dependence of the dielectric properties of the composites as a function of the filler volume fraction and filler size was investigated over a broad range of frequencies, showing an increase in the permittivity when fillers were used. This increase was more pronounced for the composites containing nanosized fillers. The measurement of the harvested current and of the harvested power also demonstrated an enhancement of the energy harvesting capability when nanofillers were employed. From the experimental data, it appeared that the electrostrictive coefficient Q was not proportional to the inverse ratio of the permittivity and the Young modulus for the studied composites. Finally, analytical modeling of the harvested current and of the harvested energy offered an accurate description of the experimental data.

  6. Dual-reflector omnidirectional antenna for MMDS base stations

    OpenAIRE

    Kim, Oleksiy S.

    1999-01-01

    Multichannel Multipoint Distribution System (MMDS) along with cable net represent the most convenient way to distribute TV and radio signals over a small area. Asynchronous access to the Inter-net can also be realized via MMDS. MMDS base-stations, covering a circle area, employ antennas, that produce omnidirectional radiation patterns in the azimuth plane. Common methods of achieving a uniform azimuth distribution are using arrays of surface slots on a circular or coaxial waveguide, arrays of...

  7. Computational study of filler microstructure and effective property relations in dielectric composites

    Science.gov (United States)

    Wang, Yu U.; Tan, Daniel Q.

    2011-05-01

    Phase field modeling and computer simulation is employed to study the relations between filler microstructures and effective properties of dielectric composites. The model solves electrostatic equations in terms of polarization vector field in reciprocal space using a fast Fourier transform technique and parallel computing algorithm. Composites composed of linear constituent phases of different dielectric constants are considered. Interphase boundary conditions are automatically taken into account without explicitly tracking interphase interfaces in the composites. Various factors associated with filler microstructures are systematically investigated, including dielectric constant mismatch between fillers and matrix, particle size, shape, orientation, volume fraction, and spatial arrangement as well as directional alignment. Heterogeneous distributions of polarization, charge density, and local electric field are calculated for each composite microstructure, based on which effective dielectric constant and dielectric anisotropy of the composites are determined. It is found that electrostatic interactions among high-dielectric-constant fillers embedded in low-dielectric-constant matrix play critical roles in determining the composite properties, which sensitively depend on filler arrangement and, especially, directional alignment into fibrous microstructures (chains). Such microstructurally engineered composites, whose fillers are not randomly dispersed, exhibit strong dielectric anisotropy despite all constituent components being isotropic.

  8. Study on the Functionality of Nano-Precipitated Calcium Carbonate as Filler in Thermoplastics

    Science.gov (United States)

    Basilia, Blessie A.; Panganiban, Marian Elaine G.; Collado, Archilles Allen V. C.; Pesigan, Michael Oliver D.; de Yro, Persia Ada

    This research aims to investigate the functionality of nano-precipitated calcium carbonate (NPCC) as filler in thermoplastic resins based on property enhancement. Three types of thermoplastics were used: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC). The resins were evaluated by determining the effect of different NPCC loading on the chemical structure, thermal and mechanical properties of thermoplastics. Results showed that there was an interfacial bonding with the NPCC surface and the thermoplastics. Change in absorption peak and area were predominant in the PVC filled composite. There was a decreased in crystallinity of the PE and PP with the addition of filler. Tremendous increase on the tensile and impact strength was exhibited by the NPCC filled PVC composites while PE and PP composites maintained a slight increase in their mechanical properties. Nano-sized filler was proven to improve the mechanical properties of thermoplastics compared with micron-sized filler because nano-sized filler has larger interfacial area between the filler and the polymer matrix.

  9. Sparsity-based Image Error Concealment via Adaptive Dual Dictionary Learning and Regularization.

    Science.gov (United States)

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Wang, Shiqi; Zhao, Debin; Gao, Huijun

    2016-10-31

    In this paper, we propose a novel sparsity-based image error concealment (EC) algorithm through Adaptive Dual dictionary Learning and Regularization (ADLR). We define two feature spaces: the observed space and the latent space, corresponding to the available regions and the missing regions of image under test, respectively. We learn adaptive and complete dictionaries individually for each space, where the training data are collected via an adaptive template matching mechanism. Based on the piecewise stationarity of natural images, a local correlation model is learned to bridge the sparse representations of the aforementioned dual spaces, allowing us to transfer the knowledge of the available regions to the missing regions for EC purpose. Eventually, the EC task is formulated as a unified optimization problem, where the sparsity of both spaces and the learned correlation model are incorporated. Experimental results show that the proposed method outperforms the state-of-the-art techniques in terms of both objective and perceptual metrics.

  10. Receding Horizon-Based Dual Control Strategy for Pinpoint Planetary Landing

    Science.gov (United States)

    Cui, Ping-Yuan; Gao, Ai; Cui, Hu-Tao

    A receding horizon-based dual control strategy for a planetary landing mission is developed. This strategy introduces the receding horizon framework to solve the nonlinear dynamic path planning problem with the state constraint, which makes up for the defects of the typical polynomial guidance law when it is used in landing on a planet with irregular gravity. Furthermore, the trade-off between efficient control and reliable estimation is considered. The cost incurred by the system uncertainty is incorporated into the performance index. Furthermore a linear feedback control law is provided with the quadratic performance index considering the dual features, which takes advantage of the nonlinear coupling between observability and trajectory to overcome the lack of observability and achieve better estimation performance. By stochastically optimizing the landing trajectory obtained from the receding horizon based convex programming method, the overall performance of the guidance, navigation and control (GNC) system for landing on planets is improved.

  11. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  12. Realization of Distribution Network Feeder Terminal Unit Based on Dual-DSP

    Directory of Open Access Journals (Sweden)

    Fanrong Wang

    2012-07-01

    Full Text Available This study presents the design proposal of distribution network monitoring unit based on dual-DSP. A detailed description of the hardware structure about the device is introduced which including signal scheduling, SPI communication, the serial human-computer communication and network communication. Also the study describes the software process about the master and slave DSPs. Then the analog precision test and the protection response test are carried out. The result shows that the design proposal is correct.

  13. Parallel Performance of MPI Sorting Algorithms on Dual-Core Processor Windows-Based Systems

    CERN Document Server

    Elnashar, Alaa Ismail

    2011-01-01

    Message Passing Interface (MPI) is widely used to implement parallel programs. Although Windowsbased architectures provide the facilities of parallel execution and multi-threading, little attention has been focused on using MPI on these platforms. In this paper we use the dual core Window-based platform to study the effect of parallel processes number and also the number of cores on the performance of three MPI parallel implementations for some sorting algorithms.

  14. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    OpenAIRE

    Alvaro Díaz-Badillo; María de Lourdes Muñoz; Gerardo Perez-Ramirez; Victor Altuzar; Juan Burgueño; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Alejandro Cisneros; Joel Navarrete-Espinosa; Feliciano Sanchez-Sinencio

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybrid...

  15. Dual objective active suspension system based on a novel nonlinear disturbance compensator

    Science.gov (United States)

    Deshpande, Vaijayanti S.; Shendge, P. D.; Phadke, S. B.

    2016-09-01

    This paper proposes an active suspension system to fulfil the dual objective of improving ride comfort while trying to keep the suspension deflection within the limits of the rattle space. The scheme is based on a novel nonlinear disturbance compensator which employs a nonlinear function of the suspension deflection. The scheme is analysed and validated by simulation and experimentation on a laboratory setup. The performance is compared with a passive suspension system for a variety of road profiles.

  16. A New Multi-tree and Dual Index based Firewall Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Cuixia Ni

    2013-05-01

    Full Text Available Using statistical analysis strategy, a large-scale firewall log files is analyzed and two main characteristics, the protocol field and the IP address field, is extracted in this paper. Based on the extracted features and the characteristics of multi-tree and dual-index strategy, we design a better firewall optimization algorithm. Compared with the Stochastic Distribution Multibit-trie (SDMTrie algorithm, our proposed algorithm can greatly decrease the preprocessing time and improve the searching and filtering process.

  17. An encoding-based dual distance tree high-dimensional index

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yi; ZHUANG YueTing; WU Fei

    2008-01-01

    The paper proposes a novel symmetrical encoding-based index structure,which is called EDD-tree (for encoding-based dual distance tree),to support fast k-nearest neighbor (k-NN) search in high-dimensional spaces.In the EDD-tree,all data points are first grouped into clusters by a k-means clustering algorithm.Then the uniform ID number of each data point is obtained by a dual-distance-driven encoding scheme,in which each cluster sphere is partitioned twice according to the dual distances of start- and centroid-distance.Finally,the uniform ID number and the centroid-distance of each data point are combined to get a uniform index key,the latter is then indexed through a partition-based B+-tree.Thus,given a query point,its k-NN search in high-dimensional spaces can be transformed into search in a single dimensional space with the aid of the EDD-tree index.Extensive performance studies are conducted to evaluate the effectiveness and efficiency of our proposed scheme,and the results demonstrate that this method outperforms the state-of-the-art high-dimensional search techniques such as the X-tree,VA-file,iDistance and NB-tree,especially when the query radius is not very large.

  18. MoS2 based dual input logic AND gate

    Science.gov (United States)

    Martinez, Luis M.; Pinto, Nicholas J.; Naylor, Carl H.; Johnson, A. T. Charlie

    2016-12-01

    Crystalline monolayers of CVD MoS2 are used as the active semiconducting channel in a split-gate field effect transistor. The device demonstrates logic AND functionality that is controlled by independently addressing each gate terminal with ±10V. When +10V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The ON/OFF ratio of the device was ˜ 35 and the charge mobility using silicon nitride as the gate dielectric was 1.2cm2/V-s and 0.1cm2/V-s in the ON and OFF states respectively. Clear discrimination between the two states was observed when a simple circuit containing a load resistor was used to test the device logic AND functionality at 10Hz. One advantage is that split gate technology can reduce the number of devices required in complex circuits, leading to compact electronics and large scale integration based on intrinsic 2-D semiconducting materials.

  19. Three-dimensional display based on dual parallax barriers with uniform resolution.

    Science.gov (United States)

    Lv, Guo-Jiao; Wang, Jun; Zhao, Wu-Xiang; Wang, Qiong-Hua

    2013-08-20

    The 3D display based on a parallax barrier is a low-cost autostereoscopic display. However, the vertical and horizontal resolution of the 3D images displayed on it will be seriously nonuniform as this display has a large number of views. It will worsen the display quality; therefore, a 3D display that consists of a 2D display panel and dual parallax barriers is proposed. With a 2D display panel, the proposed 3D display provides the synthetic images with square pixel units in which the arrangement of pixels can make the 3D image have uniform resolution. With the dual parallax barriers, the proposed 3D display shows the pixels in square pixel units for different horizontal views. Therefore, this display has uniform resolution of 3D images. A four-view prototype of the proposed 3D display is developed, and it provides uniform 3D resolution in the vertical and horizontal directions.

  20. Dual-band microstrip patch antenna based on metamaterial refractive surface

    Science.gov (United States)

    Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi

    2017-06-01

    In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.

  1. A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter

    Science.gov (United States)

    Xin, Tian; Xiangxin, Liu; Wenhong, Li

    2010-07-01

    This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 μm CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.

  2. A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Tian Xin; Liu Xiangxin; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-07-15

    This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 {mu}m CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.

  3. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2014-01-01

    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  4. Compact Dual-band Bandpass Filter Based on HMSIW and DS-CSRR

    Science.gov (United States)

    Kang, Hong Yi; Song, Jing Pan; Li, Jiao; Wei, Feng

    2017-07-01

    A compact dual-band bandpass filter (BPF) based on a half-mode substrate integrated waveguide (HMSIW) and double-side complementary split-ring resonators (DS-CSRR) is investigated in this paper. The proposed DS-CSRR consists of two complementary split-ring resonators (CSRRs) with different sizes. One is etched on the top surface of HMSIW, the other is on the ground. By changing the parameters of DS-CSRR, both the center frequencies and the bandwidths can be controlled independently, respectively. In order to validate its practicability, a dual-band BPF centered at 3.5 GHz/5.2 GHz is designed and demonstrated. The simulated and measured results are in good agreement with each other.

  5. Smoother and Bayesian filter based semi-codeless tracking of dual-frequency GPS signals

    Institute of Scientific and Technical Information of China (English)

    LIAO Bingyu; YUAN Hong; LIN Baojun

    2006-01-01

    To precisely determine the integrated orbit of the Chinese manned spacecraft mission,a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W·D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.

  6. Performance evaluation of dual-frequency driving plate ultrasonic motor based on an analytical model.

    Science.gov (United States)

    Pang, Yafei; Yang, Ming; Chen, Xuying; He, Wei; Li, Shiyang; Li, Chaodong

    2011-08-01

    An analytical model is presented to explain the effects of dual-frequency drive on the plate ultrasonic motor in this paper. The experimental prototype is a plate ultrasonic motor using single-phase asymmetric excitation, which can work under a single vibration or multiple vibration modes. Based on the linear superposition of vibrations with two different excitation frequencies, an analytical model is established using the classic Coulomb friction model, and the non-load rotation speed and maximum stall torque are deduced. Moreover, some crucial parameters such as preload and dead-zone in dual-frequency superposition model are identified or modified automatically by searching for the maximum correlation coefficient between simulation and experimental data using single-frequency drive. It is found that simulation and experiment results agree well when no excitation frequency component is at resonance.

  7. Study of dual wavelength composite output of solid state laser based on adjustment of resonator parameters

    Science.gov (United States)

    Wang, Lei; Nie, Jinsong; Wang, Xi; Hu, Yuze

    2016-10-01

    The 1064nm fundamental wave (FW) and the 532nm second harmonic wave (SHW) of Nd:YAG laser have been widely applied in many fields. In some military applications requiring interference in both visible and near-infrared spectrum range, the de-identification interference technology based on the dual wavelength composite output of FW and SHW offers an effective way of making the device or equipment miniaturized and low cost. In this paper, the application of 1064nm and 532nm dual-wavelength composite output technology in military electro-optical countermeasure is studied. A certain resonator configuration that can achieve composite laser output with high power, high beam quality and high repetition rate is proposed. Considering the thermal lens effect, the stability of this certain resonator is analyzed based on the theory of cavity transfer matrix. It shows that with the increase of thermal effect, the intracavity fundamental mode volume decreased, resulting the peak fluctuation of cavity stability parameter. To explore the impact the resonator parameters does to characteristics and output ratio of composite laser, the solid-state laser's dual-wavelength composite output models in both continuous and pulsed condition are established by theory of steady state equation and rate equation. Throughout theoretical simulation and analysis, the optimal KTP length and best FW transmissivity are obtained. The experiment is then carried out to verify the correctness of theoretical calculation result.

  8. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  9. Dual-mode immunoassay based on shape code and infrared absorption fingerprint signals of silica nanorods.

    Science.gov (United States)

    Zhao, Pengfei; Ni, Ran; Wang, Kexin; Hong, Xia; Ding, Yadan; Cong, Tie; Liu, Junping; Zhao, Huiying

    2017-07-01

    Silica nanorods were synthesized through a simple one-pot emulsion-droplet-based growth method, in which tetraethylorthosilicate (TEOS) was used as the silica source, ammonia as the catalyst, and polyvinylpyrrolidone (PVP) as the structure-directing agent and stabilizer. By controlling hydrolysis and condensation in the reaction process, we regulated the aspect ratios and the infrared (IR) absorption fingerprint signals (the transverse optical and the longitudinal optical phonon modes) of the silica nanorods. Based on this, a dual-mode immunoassay was performed for detecting model target analyte, human IgG. The shape code of the silica nanorods was used for simple, rapid qualitative, and sensitive semi-quantitative immunoassay by using a conventional optical microscope. The characteristic IR absorption fingerprint signals of the silica nanorods allowed for reliable quantitative immunoassay with good selectivity and high specificity. The detection limit and the linear range were found out to be 0.5 pM and 1 pM-10 nM, respectively. We expect that such dual-mode immunoassay could be applied for the detection of other analytes, such as protein, nucleic acids, bacteria, viruses, explosives, toxins, and so on. Graphical abstract A simple dual-mode immunoassay was performed using the shape code and infrared absorption fingerprint signals of silica nanorods as detection signals.

  10. Analysis of single band and dual band graphene based patch antenna for terahertz region

    Science.gov (United States)

    George, Jemima Nissiyah; Madhan, M. Ganesh

    2017-10-01

    A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.

  11. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  12. High Accuracy Microwave Frequency Measurement Based on Single-Drive Dual-Parallel Mach-Zehnder Modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method.......A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method....

  13. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  14. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a Grid platform

    CERN Document Server

    Arteaga-Sierra, F R; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-01-01

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  15. Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance.

    Science.gov (United States)

    Liang, Jinxing; Zhang, Jing; Zhou, Wenxiang; Ueda, Toshitsugu

    2017-05-16

    When the quartz crystal microbalance (QCM) is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM.

  16. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    Science.gov (United States)

    Juanting, Zhang; Changde, He; Hui, Zhang; Yuping, Li; Yongping, Zhang; Chunhui, Du; Wendong, Zhang

    2014-06-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole.

  17. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  18. Terahertz-wave differential detection based on simultaneous dual-wavelength up-conversion

    Directory of Open Access Journals (Sweden)

    Yuma Takida

    2017-03-01

    Full Text Available We report a terahertz (THz-wave differential detection based on simultaneous dual-wavelength up-conversion in a nonlinear optical MgO:LiNbO3 crystal with optical and electronic THz-wave sources. The broadband parametric gain and noncollinear phase-matching of MgO:LiNbO3 provide efficient conversion from superposed THz waves to spatially distributed near-infrared (NIR beams to function as a dispersive THz-wave spectrometer without any additional dispersive element. We show that the μW-level THz waves from two independent sources, a 0.78-THz injection-seeded THz-wave parametric generator (is-TPG and a 1.14-THz resonant tunneling diode (RTD, are simultaneously up-converted to two NIR waves and then detected with two NIR photodetectors. By applying a balanced detection scheme to this dual-frequency detection, we demonstrate THz-wave differential imaging of maltose and polyethylene pellets in the transmission geometry. This dual-wavelength detection is applicable to more than three frequencies and broadband THz-wave radiation for real-time THz-wave spectroscopic detection and imaging.

  19. An Image Fusion Method Based on NSCT and Dual-channel PCNN Model

    Directory of Open Access Journals (Sweden)

    Nianyi Wang

    2014-02-01

    Full Text Available NSCT is one of useful multiscale geometric analysis tools, which takes full advantage of geometric regularity of image intrinsic structures. The dual-channel PCNN is a simplified PCNN model, which can process multiple images by a single PCNN. This saves time in the process of image fusion and cuts down computational complexity. In this paper, we present a new image fusion scheme based on NSCT and dual-channel PCNN. Firstly, the fusion rules of subband coefficients of NSCT are discussed. For the fusion rule of low frequency coefficients, the maximum selection rule (MSR is used. Then, for the fusion rule of high frequency coefficients, spatial frequency (SF of each high frequency subband is considered as the gradient features of images to motivate dual-channel PCNN networks and generate pulse of neurons. At last, fused image is obtained by using the inverse NSCT transform. In order to show that the proposed method can deal with image fusion, we used two pairs of images as our experimental subjects. The proposed method is compared with other five methods. The performance of various methods is mathematically evaluated by using four image quality evaluation criteria. Experimental comparisons conducted on different fusion methods prove the effectiveness of the proposed fusion method

  20. A serial dual-electrode detector based on electrogenerated bromine for capillary electrophoresis.

    Science.gov (United States)

    Du, Fuying; Cao, Shunan; Fung, Ying-Sing

    2014-12-01

    A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

  1. Polarization multiplexed dual-loop optoelectronic oscillator based on stimulated Brillouin scattering

    Science.gov (United States)

    Han, Xiuyou; Ma, Liang; Shao, Yuchen; Ye, Qing; Gu, Yiying; Zhao, Mingshan

    2017-01-01

    A polarization multiplexed dual-loop optoelectronic oscillator (OEO) based on stimulated Brillouin scattering (SBS) is theoretically analyzed and experimentally demonstrated. The narrow bandwidth of SBS gain spectrum is utilized to implement the phase modulation to intensity modulation conversion and select the oscillation mode of the OEO. The polarization multiplexed dual-loop is constructed to suppress the side modes with Vernier effect. The output frequency of the OEO can be tuned by changing the frequency of the signal or the pump light wave. With the polarization multiplexed dual-loop the side-mode suppression ratio (SMSR) of 45 dB is achieved at 10 GHz. The generated oscillation frequency is tuned from 4 GHz to 16 GHz by changing the frequency of the signal light wave. The phase noise decreases with the power increase of the signal light wave when it is under the threshold of SBS. By adjusting the polarization state of the light wave, the influence of the power distribution between the long loop and the short loop on the phase noise of the OEO is investigated. The results show that more power in the long loop is helpful to suppress the near end phase noise.

  2. Stochastic dual-plane on-axis digital holography based on Mach-Zehnder interferometer

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2016-09-01

    For traditional dual-plane on-axis digital holography, the robustness is lower because it is difficult to maintain the stability of the phase difference between the object beam and the reference beam, and it may be invalid when the objects are on the surface of a medium with uneven thickness. An improved dual-plane digital holographic method based on Mach-Zehnder interferometer is presented to address these problems. Two holograms are recorded at two different planes separated by a small distance. Then, the zero-order image and conjugated image are eliminated by Fourier domain processing. In order to enhance the robustness of the system, the object is illuminated by a stochastic beam that is a speckle wave produced by a diffuser. Simulated and experimental results are shown to demonstrate that the proposed method has greater robustness than the traditional dual-plane on-axis digital holography and it can be used to imaging on the irregular surface of a transparent medium.

  3. The effect of different crystal conditions of filler metal on vacuum brazing of TiAl alloy and 42CrMo

    Institute of Scientific and Technical Information of China (English)

    Zhu Ying; Zhang Mo; Wang Guojian; Li Wenyi; Kang Hui; Qu Ping

    2007-01-01

    Ti-based filler metals made by transient solidification and normal crystallization were selected for the vacuum brazing of the TiAl alloy and 42CrMo under different processing parameters. The results show that the tensile strength of the joint of transient solidified filler metal is higher than that of normal crystallized filler metal under the same processing parameters. By the analysis of scanning electron microscope(SEM) and X-ray diffracting (XRD) , it is found that the higher strength maybe caused by the generating of TiAl , TiNi and TiCu at the interface of joint made by transient solidified filler metal.

  4. Filler functionality in edible solid foams

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2016-01-01

    We review the functionality of particulate ingredients in edible brittle foams, such as expanded starchy snacks. In food science and industry there is not a complete awareness of the full functionality of these filler ingredients, which can be fibers, proteins, starch granules and whole grains. B

  5. Influence of different fillers on the properties of an experimental vinyl polysiloxane

    Directory of Open Access Journals (Sweden)

    Débora Könzgen MEINCKE

    2016-01-01

    Full Text Available Abstract The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i incorporation of fillers in different concentrations: (a 20 wt% fillers, and (b 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE, and pure aluminum hydroxide 40% (PAH groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength were observed when it was added to the composition of acrylic polymer (AP and fiberglass (FG in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  6. [Synthesis of a nano-antibacterial inorganic filler containing a quaternary ammonium salt with long chain alkyl and its effect on dental resin composites].

    Science.gov (United States)

    Junling, Wu; Kaiyun, Zhou; Ting, Zhu; Chuanjian, Zhou

    2014-10-01

    This study aimed to synthesize a novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl and to report the antibacterial property of dental resin composites. A novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl was synthesized based on previous research. The antibacterial property of the filler was measured. The surface of the novel nano-antibacterial inorganic filler was modified by a coupling agent to achieve a good interfacial bonding between the filler and the resin matrix. Infrared spectrum analysis was carried out. The modified novel nano-antibacterial inorganic fillers were then incorporated into the dental resin matrix. The dispersion of the fillers was observed and compared with those incorporated into Tetric N-Ceram, a commercial resin composite, under a scanning electron microscope. Streptococcus mutans was used in testing the antibacterial property of the dental resin composites. A quaternary ammonium salt with a long chain alkyl was successfully grafted onto the surface of nano-silica particles. The novel nano-antibacterial inorganic filler that contains quaternary ammonium salt with a long chain alkyl showed stronger antibacterial efficacy than the antibacterial inorganic filler that contains quaternary ammonium salt with a short chain alkyl. The modified novel antibacterial inorganic fillers displayed a homogeneous dispersion in the resin composite bulk and combined closely with the resin matrix, similar to the Tetric N-Ceram. The resin composites that contain novel antibacterial inorganic fillers showed stronger antibacterial effect on Streptococcus mutans compared with the control group. The novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl showed a strong antibacterial property. It also exhibited good compatibility with the dental resin matrix after undergoing coupling treatment.

  7. Atomic Force Microscopy of Structural-Mechanical Properties of Polyethylene Reinforced by Silicate Needle-Shaped Filler

    Directory of Open Access Journals (Sweden)

    Ilya A. Morozov

    2016-01-01

    Full Text Available The paper presents the results of experimental studies of polyethylene-based composites reinforced with silicate needle-shaped filler (palygorskite of different mass fraction (0, 5, 10, and 15%. These composites are less flammable and fire toxic than unfilled polyethylene. The structure (size, shape, and agglomeration of filler and local mechanical properties of composites in nonstretched and elongated states were investigated by AFM. In stretched samples palygorskite takes a wavy shape, and at extremely high elongation the filler is orthogonal to the axis of tension. The smooth surfaces of the samples, required for AFM, were prepared using the heating/cooling procedure.

  8. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties.

    Science.gov (United States)

    Oral, Onur; Lassila, Lippo V; Kumbuloglu, Ovul; Vallittu, Pekka K

    2014-05-01

    The aim of this study was to investigate the effect of silanization of biostable and bioactive glass fillers in a polymer matrix on some of the physical properties of the composite. The water absorption, solubility, flexural strength, flexural modulus and toughness of different particulate filler composite resins were studied in vitro. Five different specimen groups were analyzed: A glass-free control, a non-silanized bioactive glass, a silanized bioactive glass, a non-silanized biostable glass and a silanized biostable glass groups. All of these five groups were further divided into sub-groups of dry and water-stored materials, both of them containing groups with 3wt%, 6wt%, 9wt% or 12wt% of glass particles (n=8 per group). The silanization of the glass particles was carried out with 2% of gamma-3-methacryloxyproyltrimethoxysilane (MPS). For the water absorption and solubility tests, the test specimens were stored in water for 60 days, and the percentages of weight change were statistically analyzed. Flexural strength, flexural modulus and toughness values were tested with a three-point bending test and statistically analyzed. Higher solubility values were observed in non-silanized glass in proportion to the percentage of glass particles. Silanization, on the other hand, decreased the solubility values of both types of glass particles and polymer. While 12wt% non-silanized bioactive glass specimens showed -0.98wt% solubility, 12wt% silanized biostable glass specimens were observed to have only -0.34wt% solubility. The three-point bending results of the dry specimens showed that flexural strength, toughness and flexural modulus decreased in proportion to the increase of glass fillers. The control group presented the highest results (106.6MPa for flexural strength, 335.7kPA for toughness, 3.23GPa for flexural modulus), whereas for flexural strength and toughness, 12wt% of non-silanized biostable glass filler groups presented the lowest (70.3MPa for flexural strength

  9. Effect of filler wire on the joint properties of AZ31 magnesium alloys using CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun

    2007-01-01

    Laser welding with filler wire of AZ31 magnesium alloys is investigated using a CO2 laser experimental system. The effect of three different filler wires on the joint properties is researched. The results show that the weld appearance can be effectively improved when using laser welding with filler wire. The microhardness and tensile strength of joints are almost the same as those of the base metal when ER AZ31 or ER AZ61 wire is adopted. However, when the filler wire of ER 5356 aluminum alloy is used, the mechanical properties of joints become worse. For ER AZ31 and ER AZ61 filler wires, the microstructure of weld zone shows small dendrite grains. In comparison, for ER 5356 filler wire, the weld shows a structure of snowy dendrites and many intermetallic compounds and eutectic phases distribute in the dendrites. These intermetallic constituents with low melting point increase the tendency of hot crack and result in fragile joint properties. Therefore, ER AZ31 and ER AZ61 wire are more suitable filler material than ER 5356 for CO2 laser welding of AZ31 magnesium alloys.

  10. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH{sub 2}) + B composite filler

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yangwu, E-mail: yangwu.mao@gmail.com [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Si [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China); Zhang, Yizhong [Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Guo, Beibei; Ma, Zhibin; Deng, Quanrong [Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei Province, Wuhan Institute of Technology, Wuhan 430073 (China)

    2015-11-15

    Highlights: • TiB whiskers are synthesized in situ in the filler layer of graphite/copper joints. • Boron content has a considerable effect on the strength and microstructure of joints. • TiB whiskers could serve as reinforcements, contributing to the improvement of joints. - Abstract: Joining of carbon materials to copper will benefit the fabrication of plasma facing components for fusion applications. Graphite/Cu joints have been prepared by brazing with (Cu-50TiH{sub 2}) + B composite filler in a vacuum. The effect of boron content in the composite filler on the mechanical property and microstructure of brazed graphite/Cu joints has been investigated. The average shear strength of joints increases with boron content raising from 0 to 15 vol%. The maximum average shear strength of 19.8 MPa was obtained with boron content of 15 vol%. Then, the strength of joints decreases with boron content higher than 15 vol%. The microstructure analysis of joints brazed with (Cu-50TiH{sub 2}) + 15 vol% B filler indicates that TiB whiskers have been in situ synthesized in the filler layer. The filler layer is mainly composed of Cu based solid solution and Ti-Cu intermetallic compounds with TiB whiskers distributed inside. The distribution of TiB whiskers in the filler layer could serve as reinforcements, contributing to the improvement of graphite/Cu joints.

  11. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  12. fs/ns dual-pulse LIBS analytic survey for copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy)], E-mail: santagata@pz.imip.cnr.it; Teghil, R. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Albano, G.; Spera, D.; Villani, P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Parisi, G.P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); Galasso, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy)

    2007-12-15

    The quantitative analytic capability of a fs/ns dual-pulse Laser-Induced Breakdown Spectroscopy technique, based on the orthogonal reheating of a fs-laser ablation plume by a ns-laser pulse, is presented. In this work, it is shown how the effect played by the delay times between the two laser beams can vary the analytical response of this dual-pulse LIBS configuration. In order to address this task, the Sn, Pb and Zn calibration curves of five certified copper-based samples have been investigated. These calibration curves have been obtained, in air at atmospheric pressure, by integrating the emission data collected in two different inter-pulse delay zones, one in the delay interval of 1-41 {mu}s, the other within the range of 46-196 {mu}s. For drawing the species calibration curves, the emission intensities of the considered Pb(I), Sn(I) and Zn(I) electronic transitions have been normalized with a non-resonant Cu(I) emission line. The experimental results have shown that, by varying the inter-pulse delay between the two laser beams, complementary analytical results can be induced. By considering at once all data acquired within the inter-pulse delay time of 1-196 {mu}s, this hypothesis has been strengthened. The calibration curves obtained in this way are characterized by excellent linear regression coefficients (0.988-0.999) despite of the large Sn, Pb and Zn compositional variation of the targets employed. The results presented reveal, for the first time, that, by taking into account the role played by the inter-pulse delay time between the two laser beams, the fs/ns dual-pulse LIBS configuration here used can be improved and provide very good opportunities for performing quantitative analysis of copper-based alloys.

  13. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    Science.gov (United States)

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  14. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Noor Hasmiza Harun

    2014-11-01

    Full Text Available As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB. Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB. A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA. To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  15. A dual-ended readout PET detector module based on GAPDs with large-area microcells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Lim, Hyun Keong [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-07-15

    The use of a dual-ended readout PET detector module based on Geiger-mode avalanche photodiodes (GAPDs) with large-area microcells was proposed to obtain high photon detection efficiency (PDE) and overcome energy non-linearity problems. A simulation study was performed and experimental measurement were taken for the single- and dual-ended PET detector modules consisting of the two types of GAPDs with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcells. A Monte Carlo simulation was conducted to predict the number of incident photons impinging on the GAPD entrance surface to estimate the light collection efficiency (LCE) and energy linearity performance. A depth of interaction (DOI) ratio histogram was also obtained. An experimental study was performed to acquire the spectra of different energy {gamma}-rays, and the energy linearity was evaluated by analyzing the photo-peak channels. The simulation results showed that the LCE and energy linearity of the dual-ended PET detector modules were considerably improved compared to the single-ended one, with 100 x 100 {mu}m{sup 2} microcell GAPDs. We also estimated that the proposed method can provide accurate (3-4 mm) and uniform DOI resolution. In the experimental measurement, the 511 keV photo-peak channels of the dual-ended PET detector modules were increased 26% and 71% compared to the single-ended one, with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The coefficients of determination (R{sup 2}) were increased from 0.97 to 0.99 and from 0.86 to 0.93 with 50 x 50 {mu}m{sup 2} and 100 x 100 {mu}m{sup 2} microcell GAPDs, respectively. The results of this study demonstrate that the dual-ended readout scheme using GAPDs with large-area microcells provides high LCE and DOI information with minimized energy non-linearity. This will enable investigators to configure PET detector modules with high sensitivity and resolution.

  16. Numerical simulation of filler metal droplets spreading in laser brazing

    Science.gov (United States)

    Chen, Yanbin; Feng, Xiaosong; Li, Liqun

    2007-11-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry, and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot. The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  17. Numerical simulation of filler metal droplets spreading in laser brazing

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Xiaosong Feng; Liqun Li

    2007-01-01

    A finite element model was constructed using a commercial software Fidap to analyze the Cu-base filler metal droplet spreading process in laser brazing, in which the temperature distribution, droplet geometry,and fluid flow velocity were calculated. Marangoni and buoyancy convection and gravity force were considered, and the effects of laser power and spot size on the spreading process were evaluated. Special attention was focused on the free surface of the droplet, which determines the profile of the brazing spot.The simulated results indicate that surface tension is the dominant flow driving force and laser spot size determines the droplet spreading domain.

  18. About the indentation of a rigid punch with concave base into half plane, taking into account the influence of filler in cavity

    Directory of Open Access Journals (Sweden)

    Amirjanyan H.A.

    2012-03-01

    Full Text Available The contact problem of elasticity theory about the indentation of a rigid punch with concave base into elastic half plane is considered. It is supposed that the cavity between punch and boundary of half plane is filled with air or ideal incompressible liquid. The problem was solved by the method of a discrete singularities. The distribution of contact stresses, the pressure inside cavity and the length of contact area were obtained.

  19. Output regulation for linear singular systems using dual-observer based compensators

    Science.gov (United States)

    Deutscher, Joachim

    2013-05-01

    In this article, the output regulation problem is solved for singular systems by using dual observer-based compensators. This has the advantage that output regulation can be achieved under weak conditions. Namely, different from previous approaches, an implementable compensator can be directly determined in form of a classical state space model without a transformation into Weierstrass-Kronecker canonical form. Furthermore, the impulse controllability and observability of the singular system is not required and the output to be controlled needs not be measurable. The results of the article are demonstrated by means of a simple mechanical system.

  20. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    OpenAIRE

    Eric Zhang; Stacey Huang; Qixing Ji; Michael Silvernagel; Yin Wang; Bess Ward; Daniel Sigman; Gerard Wysocki

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White...

  1. Compressed data separation via dual frames based split-analysis with Weibull matrices

    Institute of Scientific and Technical Information of China (English)

    CAI Yun; LI Song

    2013-01-01

    In this paper, we consider data separation problem, where the original signal is composed of two distinct subcomponents, via dual frames based Split-analysis approach. We show that the two distinct subcomponents, which are sparse in two diff erent general frames respectively, can be exactly recovered with high probability, when the measurement matrix is a Weibull random matrix (not Gaussian) and the two frames satisfy a mutual coherence property. Our result may be significant for analysing Split-analysis model for data separation.

  2. A DUAL RESERVATION CDMA-BASED MAC PROTOCOL WITH POWER CONTROL FOR AD HOC NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Jia Min; Chen Huimin; Yuan Yuhua

    2007-01-01

    This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel, broadcast channel and several data channels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol, the results show that the proposed mechanism improves the average throughput and limits the transmission delay efficiently.

  3. The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fabiula Danielli Bastos de; Scuracchio, Carlos Henrique, E-mail: fabiuladesousa@gmail.com [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2014-11-15

    AFM has been recognized as one of the most powerful tools for the analysis of surface morphologies because it creates three-dimensional images at angstrom and nano scale. This technique has been exhaustively used in the analyses of dispersion of nanometric components in nanocomposites and in polymer blends, because of the easiness of sample preparation and lower equipment maintenance costs compared to electron microscopy. In this review, contributions using AFM are described, with emphasis on the dispersion of nanofillers in polymeric matrices. It is aimed to show the importance of technical analysis for nanocomposites and polymer blends based on elastomers. (author)

  4. Phosphogypsum Utilization Part III: as Adhesive Filler and Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aim of this work is to make use of phosphogypsum (PG) waste material, which is produced in phosphoric acid and phosphate fertilizer manufactures. A number of wood adhesive formulations based on polyvinyl acetate (PVAc) polymer and phosphogypsum as a filler have been prepared, using different percentages of phusphogypsum, ranging between 5~20 wt pct. The prepared formulations wore tested for adhesion strength and compared with both natural and pure gypsum fillers. The results indicate that PG improves the adhesion strenth when 5 wt pct added, and that may be due to filling the porous surface of wood with the fine particles of PG, as well as coating the particles of the filler (PG) with PVAc units. Also, a number of formulations based on urea-formaldehyde polymer have been prepared using phosphogypsum as an active filler in the ratio of 40~75 wt pct to prepare composite materials used for some decoration purposes and construction. Mechanical, physical, and thermal properties of these formulations were studied. Also, the activation energy was calculated. The results indicate that PG without acid hardener can be used for preparation of composite materials based on urea-formaldehyde between 40~63.64 wt pct for construction purposes in the humid atmosphere, while between 63.64~75 wt pct for decoration purposes. The improvement of the physical, mechanical and thermal properties of the composite material may be attributed to the simultaneous hydration hardening action of phosphogypsum and the presence of 0.8% P2O5. These effects act as an active hardener for urea-formaldehyde resin and accelerate the cross-linking and network formation reinforced by the fine dusty inorganic particles of PG. The advantage of this method is to prepare composite material gypsum-urea-formaldehyde, which achieves the utilization of large amount of PG, reducing the price of the main product phosphate, minimizing the pollution and producing new materials which possess high thermal

  5. Three-dimensional measurement of bubble volume based on dual perspective imaging

    Science.gov (United States)

    Xue, Ting; Zhang, Shao-jie; Wu, Bin

    2017-01-01

    This paper presents a new three-dimensional (3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle, bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging, it can effectively reduce the loss of bubble feature information. In the experiment, the 3D volume reconstruction of bubbles from dual perspective images is conducted, and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed, which indicates that bubble achieves periodic rotation and deformation in the rising process.

  6. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    Science.gov (United States)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  7. Inverse kinematics of a heavy duty manipulator with 6-DOF based on dual quaternion

    Institute of Scientific and Technical Information of China (English)

    王恒升; 占德友; 黄平伦; 陈伟锋

    2015-01-01

    An iterative method is introduced successfully to solve the inverse kinematics of a 6-DOF manipulator of a tunnel drilling rig based on dual quaternion, which is difficult to get the solution by Denavit-Hartenberg (D-H) based methods. By the intuitive expression of dual quaternion to the orientation of rigid body, the coordinate frames assigned to each joint are established all in the same orientation, which does not need to use the D-H procedure. The compact and simple form of kinematic equations, consisting of position equations and orientation equations, is also the consequence of dual quaternion calculations. The iterative process is basically of two steps which are related to solving the position equations and orientation equations correspondingly. First, assume an initial value of the iterative variable; then, the position equations can be solved because of the reduced number of unknown variables in the position equations and the orientation equations can be solved by applying the solution from the position equations, which obtains an updated value for the iterative variable; finally, repeat the procedure by using the updated iterative variable to the position equations till the prescribed accuracy is obtained. The method proposed has a clear geometric meaning, and the algorithm is simple and direct. Simulation for 100 poses of the end frame shows that the average running time of inverse kinematics calculation for each demanded pose of end-effector is 7.2 ms on an ordinary laptop, which is good enough for practical use. The iteration counts 2−4 cycles generally, which is a quick convergence. The method proposed here has been successfully used in the project of automating a hydraulic rig.

  8. Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method

    KAUST Repository

    Wang, Yi

    2017-09-12

    Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).

  9. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M. E. (Marilyn E.); Wrobleski, Debra A.; Orler, E. B. (E. Bruce); Houlton, R. J. (Robert J.); Chitanvis, K. E. (Kiran E.); Brown, G. W. (Geoffrey W.); Hanson, D. E. (David E.)

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  10. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  11. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers.

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-12-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field.Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  12. Dual-Mode Dual-Band Microstrip Bandpass Filter Based on Fourth Iteration T-Square Fractal and Shorting Pin

    Directory of Open Access Journals (Sweden)

    E. S. Ahmed

    2012-06-01

    Full Text Available A new class of dual mode microstrip fractal resonator is proposed and developed for miniaturization of the dual band bandpass filter. The perimeter of the proposed resonator is increased by employing fourth iteration T-square fractal shape. Consequently the lower resonant frequency of the filter is decreased without increasing the usable space. The self similarity of the usable structure enables it to produce the two degenerate modes which are coupled using the proper perturbation technique. The shorting pin is placed at the null in the surface current distribution at the center of the resonator. This shorting pin is coactively coupled to the resonant circuit of the resonator, effectively coupled to the lower degenerate mode and reduces the lower edge band resonant frequency. By adjusting the resonator dimensions and the size of the shorting pin, the resonant frequency and the out-of-band rejection around the transmission bands can be controlled to meet the design requirements. The simulated response of the designed filter has two transmission bands, the first band is from 2.34-3.65 GHz with resonant frequencies at 2.47GHz and 3.55GHz, the second band is from 4.37-5.324GHz with resonant frequencies at 4.5GHz and 5.13GHz. In the pass bands, the group delay is less than 0.65 ns. The proposed filter can be applied to WLAN (2.4 GHz and 5.2 GHz and WiMAX (3.5 GHz and Bluetooth and ZigBee (4.9 GHz.

  13. Acceleration of percolation for cementitious sensors using conductive paint filler

    Science.gov (United States)

    Pinto, Irvin Jude Joseph

    Structural health monitoring has emerged as an important branch of civil engineering in recent times, with the need to automatically monitor structural performance over time to ensure structural integrity. More recently, the advent of smart sensing materials has given this field a major boost. Research has shown that smart sensing materials fabricated with conductive filler at a concentration close to the percolation threshold results in high sensitivity to strain due to the piezoresistive effect. Of particular interest to this research are cementitious sensors fabricated using carbon black fillers. Carbon black is considered because of its widespread availability and low cost over other conductive fillers such as carbon nanotubes and carbon nanofibers. A challenge in the fabrication of these sensors is that cementitious materials require a significant amount of carbon black to percolate, resulting in a loss in mechanical properties. This research investigates a new method to accelerate percolation of the materials, enabling cementitious sensors with fewer carbon black particles. A carbon black-based conductive paint that allows earlier percolation by facilitating conducting networks in cementitious sensors is used. The conductive paint consists of a block copolymer, SEBS (styrene-co-ethylene-co-butylene-co-styrene), filled with carbon black particles. The percolation thresholds of sensors fabricated both with and without conductive paint are, as well as their strain sensing characteristics and compressive strength. The study found that SEBS could successfully reduce the percolation threshold by 42%, and that samples with SEBS showed better electrical responses in dynamic conditions. Despite showing lower compressive strength, cementitious sensors fabricated with this novel conductive paint show promise for real time health monitoring applications.

  14. Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Sanda Boca

    2015-12-01

    Full Text Available Chemiresistors are a class of sensitive electrical devices capable of detecting (biochemicals by simply monitoring electrical resistance. Sensing based on surface enhanced Raman scattering (SERS represents a radically different approach, in which molecules are optically detected according to their vibrational spectroscopic fingerprint. Despite different concepts are involved, one can find in the literature examples from both categories reporting sensors made of gold nanoparticles. The same building blocks appear because both sensor classes share a common principle: nanometric interparticle gaps are needed, for electron tunneling in chemiresistors, and for enhancing electromagnetic fields by plasmon coupling in SERS-based sensors. By exploiting such nano-gaps in self-assembled films of gold nanoparticles, we demonstrate the proof of concept of a dual electrical/optical sensor, with both chemiresistive and SERS capabilities. The proposed device is realized by self-assembling 15 nm gold nanoparticles into few micrometers-wide strips across commercially available interdigitated electrodes. The dual-mode operation of the device is demonstrated by the detection of a biologically relevant model analyte, 4-mercaptophenyl boronic acid.

  15. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser.

    Science.gov (United States)

    Luo, Zhengqian; Zhou, Min; Weng, Jian; Huang, Guoming; Xu, Huiying; Ye, Chenchun; Cai, Zhiping

    2010-11-01

    We demonstrate a compact Q-switched dual-wavelength erbium-doped fiber (EDF) laser based on graphene as a saturable absorber (SA). By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Also benefiting from the strong third-order optical nonlinearity of graphene to suppress the mode competition of EDF, a stable dual-wavelength Q-switching operation has been achieved using a two-reflection peak fiber Bragg grating as the external cavity mirror. The Q-switched EDF laser has a low pump threshold of 6.5 mW at 974 nm and a wide range of pulse-repetition rate from 3.3 to 65.9 kHz. The pulse duration and the pulse energy have been characterized. This is, to the best of our knowledge, the first demonstration of a graphene-based Q-switched laser.

  16. Dual-nanomaterial based electrode for voltammetric stripping of trace Fe(II) in coastal waters.

    Science.gov (United States)

    Lin, Mingyue; Pan, Dawei; Zhu, Yun; Hu, Xueping; Han, Haitao; Wang, ChenChen

    2016-07-01

    In this work, a dual-nanomaterial based electrode was established for selective and sensitive detection of trace Fe(II) in the presence of complexing agent (2,2'-bipyridyl). Titanium carbide nanoparticles (TiCNPs) were used as the growth-template for the formation of three-dimensional platinum nanoflowers (PtNFs) due to their unique cubic structures. Nafion was employed as the conducting matrix to help TiCNPs better attached onto the surface of the electrode and slow down the crystal rate of PtNFs during electrodeposition, which resulted in flower structure and more active surface of PtNFs. Taking advantage of synergistic effects of TiCNPs and Nafion as well as the catalytic amplifying effect of PtNFs, the excellent anodic signal responses for the voltammetric stripping determination of Fe(II) were obtained. The linear range of Fe(II) on this dual-nanomaterial based electrode was from 1nmolL(-1) to 6μmolL(-1) with the lowest detectable concentration of 0.1nmolL(-1) and a detection limit of 0.03nmolL(-1). Additionally, the effect of several experimental parameters, such as concentration and pH value of buffer solution, concentration of modifier and ligand, deposition potential and time of electrochemical determination, and scan rate were studied for analytical applications. The fabricated sensor had been successfully applied for the sensitive determination of trace Fe(II) in coastal waters.

  17. Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler

    Directory of Open Access Journals (Sweden)

    Zhenhao Tang

    2017-01-01

    Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.

  18. On the Dual-Decomposition-Based Resource and Power Allocation with Sleeping Strategy for Heterogeneous Networks

    KAUST Repository

    Alsharoa, Ahmad M.

    2015-05-01

    In this paper, the problem of radio and power resource management in long term evolution heterogeneous networks (LTE HetNets) is investigated. The goal is to minimize the total power consumption of the network while satisfying the user quality of service determined by each target data rate. We study the model where one macrocell base station is placed in the cell center, and multiple small cell base stations and femtocell access points are distributed around it. The dual decomposition technique is adopted to jointly optimize the power and carrier allocation in the downlink direction in addition to the selection of turned off small cell base stations. Our numerical results investigate the performance of the proposed scheme versus different system parameters and show an important saving in terms of total power consumption. © 2015 IEEE.

  19. Fast Compressed Sensing MRI Based on Complex Double-Density Dual-Tree Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Shanshan Chen

    2017-01-01

    Full Text Available Compressed sensing (CS has been applied to accelerate magnetic resonance imaging (MRI for many years. Due to the lack of translation invariance of the wavelet basis, undersampled MRI reconstruction based on discrete wavelet transform may result in serious artifacts. In this paper, we propose a CS-based reconstruction scheme, which combines complex double-density dual-tree discrete wavelet transform (CDDDT-DWT with fast iterative shrinkage/soft thresholding algorithm (FISTA to efficiently reduce such visual artifacts. The CDDDT-DWT has the characteristics of shift invariance, high degree, and a good directional selectivity. In addition, FISTA has an excellent convergence rate, and the design of FISTA is simple. Compared with conventional CS-based reconstruction methods, the experimental results demonstrate that this novel approach achieves higher peak signal-to-noise ratio (PSNR, larger signal-to-noise ratio (SNR, better structural similarity index (SSIM, and lower relative error.

  20. Dermal fillers for tissue augmentation: an overview

    Directory of Open Access Journals (Sweden)

    Zeplin, Philip H.

    2014-06-01

    Full Text Available [english] Treatments with dermal fillers for tissue augmentation constitute the majority of all non-surgical procedures in plastic surgery. Newly developed products get launched and the market grows continuously, but the “ideal” substance has yet not been found. The substances used these days are high molecular compounds. They have substantial differences in their physicochemical properties and are suspended in complex matrices. This overview describes the latest history of dermal fillers and the commonly used substances of different origin and formalizes the need for the development of systematic procedures of standardized pre-clinical tests with subsequent certification as well as the establishment of interdisciplinary clinical guidelines to ensure custumer’s safety.

  1. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  2. Multiple Attribute Decision Making Based on Generalized Aggregation Operators under Dual Hesitant Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Chunyong Wang

    2014-01-01

    Full Text Available We investigate the multiple attribute decision making (MADM problems with dual hesitant fuzzy information. We first introduce some basic concepts and operations on dual hesitant fuzzy sets. Then, we develop some generalized dual hesitant fuzzy aggregation operators which encompass some existing operators as their particular cases and discuss their basic properties. Next, we apply the generalized dual hesitant fuzzy Choquet ordered aggregation (GDHFCOA operator to deal with multiple attribute decision making problems under dual hesitant fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.

  3. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  4. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    Science.gov (United States)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  5. Performance of ferrite fillers on electrical behavior of polymer nanocomposite electrolyte

    Science.gov (United States)

    Pandey, Kamlesh; Mauli Dwivedi, Mrigank; Singh, Markandey; Agrawal, S. L.

    2011-04-01

    Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al-Zn ferrite, Mg-Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO-7NH4SCN]: X ferrite (where X = 2% in Al-Zn ferrite, 1% Mg-Zn ferrite, and 1% Zn ferrite) system.

  6. Evaluation of dermal fillers with noncontact optical coherence elastography

    Science.gov (United States)

    Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.

    2017-02-01

    Over 2 million dermal filler procedures are performed each year in the USA alone, and this figure is only expected to increase as the aging population continues to grow. Dermal filler treatments can last from a few months to years depending on the type of filler and its placement. Although adverse reactions are rare, they can be quite severe due to ischemic events and filler migration. Previously, techniques such as ultrasound or magnetic resonance imaging have been used to evaluate the filler injections. However, these techniques are not practical for real-time filler injection guidance due to limitations such as the physical presence of the transducer. In this work, we propose the use of optical coherence tomography (OCT) for image-guided dermal filler injections due to the high spatial and temporal resolution of OCT. In addition, we utilize a noncontact optical coherence elastography (OCE) technique, to evaluate the efficacy of the dermal filler injection. A grid of air-pulse OCE measurements was taken, and the dynamic response of the skin to the air-pulse was translated to the Young's modulus and shear viscosity. Our results show that OCT was able to visualize the dermal filler injection process, and that OCE was able to localize the dermal filler injection sites. Combined with functional techniques such as optical microangiography, and recent advanced in OCT hardware, OCT may be able to provide real-time injection guidance in 3D by visualizing blood vessels to prevent ischemic events.

  7. Tandem demodulation lock-in amplifier based on digital signal processor for dual-modulated spectroscopy.

    Science.gov (United States)

    Qin, Jianhuan; Huang, Zhiming; Ge, Yujian; Hou, Yun; Chu, Junhao

    2009-03-01

    Dual-modulated spectroscopy is one of the most powerful methods in the measurement of modulation spectroscopy. Here we develop a tandem lock-in amplifier (LIA) based on digital signal processor to implement a novel algorithm of tandem demodulation. The theoretical analysis of demodulation algorithm is presented, and the implementation of this tandem LIA is described in detail. Compared to the traditional demodulating way with two LIAs in cascade, this tandem LIA eliminates the extra quantization error of redundant analog-to-digital and digital-to-analog conversions and removes the limitation to the time constant in the commercial LIA, hence lowers the requirement of frequency ratio in dual-modulated spectroscopy. The applications are given as examples in the photoreflectance (PR) measurements of GaAs (100) thin film and GaSb bulk material, respectively, at the different optical energy regions. The experimental results indicate that this tandem is well capable of PR spectra measurement with good PR lineshapes and reasonable signal noise ratio. A brief comparison of GaAs PR results between tandem LIA and two LIAs is made to prove the efficiency and advantages of the tandem LIA.

  8. Silicon-chip-based mid-infrared dual-comb spectroscopy

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Picqué, Nathalie; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 $\\mu$m to 4.1 $\\mu$m in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the co...

  9. Torsional Vibration Semiactive Control of Drivetrain Based on Magnetorheological Fluid Dual Mass Flywheel

    Directory of Open Access Journals (Sweden)

    Qing-hua Zu

    2015-01-01

    Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.

  10. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers.

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H

    2013-11-04

    We report a novel scheme of generating broadly tunable femtosecond mid-IR pulses based on difference frequency mixing the outputs from dual photonic crystal fibers (PCF). With a 1.3 W, 1035 nm, 300 fs and 40 MHz Yb fiber chirped pulse amplifier as the laser source, a PCF with single zero dispersion wavelength (ZDW) at the laser wavelength is employed to spectrally broaden a portion of the laser pulses. Facilitated by self-phase modulation, its output spectrum possesses two dominant outermost peaks that can be extended to 970 nm and 1092 nm. A different PCF with two closely spaced ZDWs around the laser wavelength is used to generate the intense Stokes pulses between 1240 - 1260 nm. Frequency mixing the dual PCFs outputs in an AgGaS(2) crystal results in mid-IR pulses broadly tunable from 4.2 μm to 9 μm with a maximum average power of 640 µW at 4.5 μm, corresponding to 16 pJ of pulse energy.

  11. Optimization of a fiber grating film sensor based on dual peak resonance

    Institute of Scientific and Technical Information of China (English)

    GU Zheng-tian; Xu Yan-ping; DENG Chuan-lu

    2008-01-01

    Based on the dual peak resonance of long-period fider grating(LPFG),a novel film sensor is presented.in which films sensitive to the surrounding gases are coated on the cladding of the fiber grating region,and the intervals of the dual peak resonant wavelengths change with the film refractive index.According to the coupled-mode theory,a triple-clad numerical model is developed to analyze the relation between the sensitivity S and the thin film optical parameters(the film thickness h3 and the refractive index n3and the fiber grating parameters (the grating period A and the coreindex modulation (o)).By using optimization method,the optimal film optical parameters and the grating structure parameters are obtained.Numerical simulation shows that the sensitivity of this scheme to refractive index of the films is predicted to be more than 10-7.The theomtic analysis provides straightforward foundation for the aetual highly sensitive fdm sensors.

  12. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    Science.gov (United States)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  13. Dual-gated tunable absorption in graphene-based hyperbolic metamaterial

    Directory of Open Access Journals (Sweden)

    Renxia Ning

    2015-06-01

    Full Text Available The use of a dual-gated tunable absorber in graphene-based hyperbolic metamaterial (GHMM in the near-infrared frequency range was investigated. The horizontal and vertical parts for relative permittivity of GHMM, which consists of monolayer graphene and conventional dielectric, were tuned using the chemical potential. To obtain a large absorption, GHMM was placed on top of a stacked structure containing dielectric and graphene layers and a copper reflector was placed at the bottom. The dual-gated absorber had multiband absorption, which was tuned using the chemical potential of graphene and GHMM. This study focuses on the variation of the absorption with change in the chemical potential and dielectric thickness. The results show that multiband absorption could be attained when chemical potential and dielectric thickness was changed. Broadband absorption could be generated when the frequency ranged from 215 THz to 250 THz. This phenomenon may be valuable for a variety of important applications including optical communication technology and near-infrared stealth communication.

  14. Neural stem cell-based dual suicide gene delivery for metastatic brain tumors.

    Science.gov (United States)

    Wang, C; Natsume, A; Lee, H J; Motomura, K; Nishimira, Y; Ohno, M; Ito, M; Kinjo, S; Momota, H; Iwami, K; Ohka, F; Wakabayashi, T; Kim, S U

    2012-11-01

    In our previous works, we demonstrated that human neural stem cells (NSCs) transduced with the cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on glioma and medulloblastoma cells after administration of the prodrug 5-fluorocytosine (5-FC). In addition, herpes simplex virus thymidine kinase (TK) is a widely studied enzyme used for suicide gene strategies, for which the prodrug is ganciclovir (GCV). To apply this strategy to brain metastasis treatment, we established here a human NSC line (F3.CD-TK) expressing the dual suicide genes CD and TK. We examined whether F3.CD-TK cells intensified the antitumor effect on lung cancer brain metastases. In vitro studies showed that F3.CD-TK cells exerted a marked bystander effect on human lung cancer cells after treatment with 5-FC and GCV. In a novel experimental brain metastases model, intravenously administered F3 cells migrated near lung cancer metastatic lesions, which were induced by the injection of lung cancer cells via the intracarotid artery. More importantly, F3.CD-TK cells in the presence of prodrugs 5-FC and GCV decreased tumor size and considerably prolonged animal survival. The results of the present study indicate that the dual suicide gene-engineered, NSC-based treatment strategy might offer a new promising therapeutic modality for brain metastases.

  15. Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics.

    Science.gov (United States)

    Wang, Ziqian; Song, Ting; Feng, Yingang; Guo, Zongwei; Fan, Yudan; Xu, Wenjie; Liu, Lu; Wang, Anhui; Zhang, Zhichao

    2016-04-14

    No α-helical mimetic that exhibits Bcl-2/MDM2 dual inhibition has been rationally designed due to the different helicities of the α-helixes at their binding interfaces. Herein, we extracted a one-turn α-helix-mimicking ortho-triarene unit from o-phenylene foldamers. Linking benzamide substrates with a rotatable C-N bond, we constructed a novel semirigid pyramid-like scaffold that could support its two-turn α-helix mimicry without aromatic stacking interactions and could adopt the different dihedral angles of the key residues of p53 and BH3-only peptides. On the basis of this universal scaffold, a series of substituent groups were installed to capture the key residues of both p53TAD and BimBH3 and balance the differences of the bulks between them. Identified by FP, ITC, and NMR spectroscopy, a compound 6e (zq-1) that directly binds to Mcl-1, Bcl-2, and MDM2 with balanced submicromolar affinities was obtained. Cell-based experiments demonstrated its antitumor ability through Bcl-2/MDM2 dual inhibition simultaneously.

  16. Measurement of a discontinuous object based on a dual-frequency grating

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; Cai Xin-Hua; Yao Chun-Mei

    2009-01-01

    The dual-frequency grating measurement theory is proposed in order to carry out the measurement of a discontinuous object. Firstly, the reason why frequency spectra are produced by low frequency gratings and high frequency gratings in the field of frequency is analysed, and the relationship between the wrapped-phase and the unwrappingphase is discussed. Secondly, a method to combine the advantages of the two kinds of gratings is proposed: one stripe is produced in the mutation part of the object measured by a suitable low frequency grating designed by MATLAB, then the phase produced by the low frequency grating need not be unfolded. The integer series of stripes is produced by a high frequency grating designed by MATLAB based on the frequency ratio of the two kinds of gratings and the high frequency wrapped-phase, and the high frequency unwrapping-phase is then obtained. In order to verify the correctness of the theoretical analysis, a steep discontinuous object of 600×600 pixels and 10.00 mm in height is simulated and a discontinuous object of ladder shape which is 32.00 mm in height is used in experiment. Both the simulation and the experiment can restore the discontinuous object height accurately by using the dual-frequency grating measurement theory.

  17. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.

  18. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.

    Science.gov (United States)

    Ribezzi-Crivellari, M; Huguet, J M; Ritort, F

    2013-04-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  19. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  20. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    Directory of Open Access Journals (Sweden)

    Lie-Ming Li

    2015-03-01

    Full Text Available We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students’ understanding of physics concepts, develop students’ problem-solving abilities through instructor-student interactions, and identify students’ misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  1. Dual Comb Unit High-g Accelerometer Based on CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Mehrdad Mottaghi

    2009-04-01

    Full Text Available In this paper a capacitive based high-g accelerometer with superior level of sensitivity is presented. It takes advantage of dual comb unit configuration and surface micromachining fabrication process. All aspects of mechanical design such as sensor structure, modal analysis, energy dissipations, dynamic response and stresses in moving structure as well as anchors are described. Electrical circuit based on CMOS technology and its output signal is presented. Fabrication process and packaging are also discussed. The proposed sensor can endure impact loads up to 120,000 g (g = 9.81 m.s-2 and achieves 16.75 µV.g-1 sensitivity with 5 V bridge excitation voltage. Main resonant frequency of structure is found to be 42.4 kHz. Intended applications of suggested sensor include military and aerospace industries as well as field of impact engineering.

  2. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    Science.gov (United States)

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-06-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  3. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    Science.gov (United States)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  4. Dual tree complex wavelet transform based denoising of optical microscopy images.

    Science.gov (United States)

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.

  5. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    Science.gov (United States)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  6. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking.

    Science.gov (United States)

    Prior, E; de Dios, C; Criado, R; Ortsiefer, M; Meissner, P; Acedo, P

    2016-09-01

    The present experimental work studies the dynamics of dual-polarization optical frequency combs (OFCs) based on gain switching (GS) vertical-cavity surface-emitting laser (VCSEL) diodes under optical injection locking (OIL). This study presents two main results. First, we have obtained an overall comb formed by two orthogonally polarized sub-combs with comparable span and power. The overall comb shows enhanced optical span and flatness and high coherence between its modes. The second result is that we have been able to control the polarization state of the overall comb by tuning the polarization state of the injected light by locking the same single teeth of the comb. This produces an overall comb with single polarization that is parallel or orthogonal. These are novel findings that provide for the development of efficient and compact OFCs based on GS VCSEL sources with versatile polarization dynamics.

  7. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector

    Science.gov (United States)

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-01

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  8. Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization

    CERN Document Server

    Tracey, Brian H

    2014-01-01

    Recent years have seen growing interest in exploiting dual- and multi-energy measurements in computed tomography (CT) in order to characterize material properties as well as object shape. Material characterization is performed by decomposing the scene into constitutive basis functions, such as Compton scatter and photoelectric absorption functions. While well motivated physically, the joint recovery of the spatial distribution of photoelectric and Compton properties is severely complicated by the fact that the data are several orders of magnitude more sensitive to Compton scatter coefficients than to photoelectric absorption, so small errors in Compton estimates can create large artifacts in the photoelectric estimate. To address these issues, we propose a model-based iterative approach which uses patch-based regularization terms to stabilize inversion of photoelectric coefficients, and solve the resulting problem though use of computationally attractive Alternating Direction Method of Multipliers (ADMM) solu...

  9. Attenuation-based characterization of coronary atherosclerotic plaque: Comparison of dual source and dual energy CT with single-source CT and histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Thomas, E-mail: Thomas.Henzler@umm.de [Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Porubsky, Stefan [Department of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Kayed, Hany [Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Harder, Nils [Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Department of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Krissak, U. Radko; Meyer, Mathias [Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Sueselbeck, Tim [1st Department of Medicine University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Marx, Alexander [Department of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Michaely, Henrik [Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Schoepf, U. Joseph [Department of Radiology and Radiological Science, Medical University of South Carolina, 169 Ashley Avenue, Charleston (United States)

    2011-10-15

    Objective: To compare different CT acquisition techniques regarding for attenuation-based characterization of coronary atherosclerotic plaques using histopathology as the standard of reference. Materials and methods: In a post mortem study 17 human hearts were studied with dual-source CT (DSCT) and dual energy CT (DECT) mode on a DSCT as well as with 16-slice single-source CT (SSCT). At autopsy, atherosclerotic lesions were cut at 5 {mu}m sections. Histopathologic classification of the plaques according to the American Heart Association (AHA) criteria was performed by two pathologists. Attenuation values of all plaques were measured in DSCT, DECT and SSCT studies, respectively and classified based on attenuation according to modified AHA criteria. Results: 58 coronary plaques were identified at autopsy. Regardless of the CT technique only 52/58 plaques were found at CT (sensitivity = 89.6%). There was no significant difference between the mean attenuation values of different plaque types between DSCT, DECT, and SSCT: type IV: 11 HU/8 HU/19 HU; type Va: 44 HU/45 HU/52 HU; type Vb: 1088 HU/966 HU/1079 HU). The sensitivity for correct classification varied depending on the plaque type (type II = 0%, type III = 0%, type IV = 43%, type Va = 58%, Vb = 97%). Conclusion: Independent of the used acquisition technique, SSCT, DSCT and DECT show similar results for attenuation-based characterization of atherosclerotic coronary plaques.

  10. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  11. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  12. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  13. Thermal Conductivity of Polymer/Nano-filler Blends

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  14. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Science.gov (United States)

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  15. Synthesis of nanodispersed filler for polymer composite materials of thermostatic purpose

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-10-01

    Full Text Available The paper presents data on the synthesis of nanosized filler for nonpolar polymer matrix. Aqueous solution of sodium methylsiliconate with empirical formula CH3–Si(OH2ONa was used as the base component for the synthesis of nanosized filler. The production process of filler consists of several stages, these are the main ones: synthesizing of gel that was obtained in gel formation from sol colloidal solution – transformation of free-dispersed system (sol into connected-dispersed one; gel precipitation by centrifugation and washing from ion Na+; gel drying at temperature of 100оC to obtain a powder filler; dispersion in the mill to the particle size of 0,1–1 microns. To destroy globules and diminish particle size to nanoscale level the obtained material was exposed to dispersion in planetary mill with further sonication (22 Hz. To study the obtained filler X-ray, differential thermal and microscopic methods have been used. For quantification of colloidal component (nanoparticles in the suspension the centrifugation method was used at high speeds. It has been determined that the content of nanoparticles (up to 200 nm in the obtained substance is about 10%. Damping edge angle of the obtained material is 110–120оC, that shows high hydrophobic properties of the synthesized powder. The obtained material possesses high dispersiveness, hydrophobicity and silicone frame resistant to the temperature range up to 531оC (there are no significant chemical transformations except dealkylation and dehydration reactions. Thermal degradation of the synthesized filler distinctly observed at the temperaturemore than 531оC.

  16. Design and Simulation of Dual Inverter Based Energy Storage Systems for Wind Energy Systems Using MATLAB/SIMULINK

    Directory of Open Access Journals (Sweden)

    Harika G,

    2014-04-01

    Full Text Available This paper proposes the design and simulation of dual inverter based Energy Storage Systems(ESS for wind energy systems. A dual inverter consists of MAIN inverter which is connected to grid side and an auxiliary inverter for which an energy storage system is interfaced. Typical grid connected wind energy systems includes wind turbine, PMSG, DC-DC converters, three phase dual inverter ,energy storage system and related power electronic devices. The detailed model of design and simulation of dual inverter based Wind energy system starts with wind turbine coupled PMSG which is connected to three phase diode rectifier and Boost converter which in-turn connected to a dual inverter which is used to deliver the wind energy to grid and also to store the energy in energy storage systems during surplus periods. Also Short term power fluctuations are mitigated and harmonics are reduced. Maximum Power point Tracking (MPPT method, Energy storage system interfacing is also studied. The overall system model is designed and simulated by using MATLAB/SIMULINK.

  17. Testing a Dual Process Model of Gender-Based Violence: A Laboratory Examination.

    Science.gov (United States)

    Berke, Danielle S; Zeichner, Amos

    2016-01-01

    The dire impact of gender-based violence on society compels development of models comprehensive enough to capture the diversity of its forms. Research has established hostile sexism (HS) as a robust predictor of gender-based violence. However, to date, research has yet to link men's benevolent sexism (BS) to physical aggression toward women, despite correlations between BS and HS and between BS and victim blaming. One model, the opposing process model of benevolent sexism (Sibley & Perry, 2010), suggests that, for men, BS acts indirectly through HS to predict acceptance of hierarchy-enhancing social policy as an expression of a preference for in-group dominance (i. e., social dominance orientation [SDO]). The extent to which this model applies to gender-based violence remains untested. Therefore, in this study, 168 undergraduate men in a U. S. university participated in a competitive reaction time task, during which they had the option to shock an ostensible female opponent as a measure of gender-based violence. Results of multiple-mediation path analyses indicated dual pathways potentiating gender-based violence and highlight SDO as a particularly potent mechanism of this violence. Findings are discussed in terms of group dynamics and norm-based violence prevention.

  18. Continuous-wave four-wave mixing with linear growth based on electromagnetically dual induced transparency

    Institute of Scientific and Technical Information of China (English)

    Jiahua Li(李家华); Wenxing Yang(杨文星); Jucun Peng(彭菊村)

    2004-01-01

    Using Schrodinger-Maxwell formalism, we propose and analyze a continuous-wave four-wave mixing (FWM) scheme for the generation of coherent light in a six-level atomic system based on electromagnetically dual induced transparency. We derive the corresponding explicit analytical expressions for the generated mixing field. We find that the scheme greatly enhances FWM production efficiency and is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference by choosing the proper decay rate in the second electromagnetically induced transparency (EIT) process.In addition, such an optical process also provides possibilities for producing short-wave-length coherent radiation at low pump intensities.

  19. Multiband Slot-Based Dual Composite Right/Left-Handed Transmission Line

    Directory of Open Access Journals (Sweden)

    E. Abdo-Sanchez

    2012-10-01

    Full Text Available A dual Composite Right-/Left-Handed Transmission Line (CRLH TL implementation that presents multiband behaviour is proposed in this contribution. The artificial TL is realized by loading a host microstrip line with alternate rectangular stubs and slots. The required series and shunt immittances are respectively provided by the slot and the stub. Due to the distributed nature of these immittances, the resultant phase response presents theoretically infinite RH and LH alternate bands, thus being appropriate for multiband applications. The design methodology is described with the help of a proposed TLs-based equivalent circuit and highlights the simplicity for balance condition. Full wave simulated results of the dispersion characteristics and frequency response of a unit-cell and a three-cells structure are presented.

  20. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Science.gov (United States)

    Li, Guochang; Chen, George; Li, Shengtao

    2016-08-01

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  1. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2016-10-01

    Full Text Available A refractive index sensor based on dual-core photonic crystal fiber (PCF with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM. Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  2. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    Science.gov (United States)

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  3. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  4. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  5. Optical image hiding based on dual-channel simultaneous phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Li, Jiaosheng; Zhong, Liyun; Zhang, Qinnan; Zhou, Yunfei; Xiong, Jiaxiang; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    We propose an optical image hiding method based on dual-channel simultaneous phase-shifting interferometry (DCSPSI) and compressive sensing (CS) in all-optical domain. In the DCSPSI architecture, a secret image is firstly embedded in the host image without destroying the original host's form, and a pair of interferograms with the phase shifts of π/2 is simultaneously generated by the polarization components and captured by two CCDs. Then, the holograms are further compressed sampling to the less data by CS. The proposed strategy will provide a useful solution for the real-time optical image security transmission and largely reducing data volume of interferogram. The experimental result demonstrates the validity and feasibility of the proposed method.

  6. Dual Turbo MIMO-OFDM Channel Estimation Based on Puncher Technique via UWA Channels

    Directory of Open Access Journals (Sweden)

    Gang Qiao

    2013-02-01

    Full Text Available In this study, various techniques of UWA (Underwater Acoustic, UWA channel estimation for underwater MIMO-OFDM system are studied. Dual turbo channel estimation algorithm based on channel puncture technique is proposed. In order to judge the criteria of channel compensation, difference between the raw received signal and the re-coded information signal is carried out. The uncertain sub-channels are punched by using channel puncture technique and replaced by the responses estimated by MMSE (Minimum Mean Square Error, MMSE or OMP (Orthogonal Matching Pursuit, OMP algorithms. Compared with the conventional existing algorithms, the proposed algorithm can effectively reduce the occupancy of pilots, offer confined error propagation and significantly increase the stability of the system with Monte Caro simulation. The results of in-tank-experiment further indorse the reliable performance with improved efficiency of 1.51 bits/s/Hz.

  7. A dual working mode mobile robot system based on visual guiding and visual servoing

    Institute of Scientific and Technical Information of China (English)

    Peng Yizhun; Yuan Kui; Zou Wei; Hu Huosheng

    2007-01-01

    A dual operational modes mobile robot system based on visual guiding and visual servo control is presented.This system consists of a mobile robot with a two-axis manipulator and a tele-operation station.In the visual guiding mode,for the robot works in an open loop visual servo control mode,the manipulating burden of the operator is reduced largely.In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator.With the help of the operator,the difficult problems of finding and handling a target in a complicated environment by the robot Can be solved easily.

  8. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution

    Science.gov (United States)

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN-, the sensor displayed very large blue-shift in both fluorescence (80 nm) and absorption (120 nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN- ion was studied using 1H NMR and mass spectrometry.

  9. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    Science.gov (United States)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  10. A 10 MHz ripple-based on-time controlled buck converter with dual ripple compensation

    Institute of Scientific and Technical Information of China (English)

    Lü Danzhu; Yu Jiale; Hong Zhiliang

    2013-01-01

    A 10 MHz ripple-based on-time controlled buck converter is presented.A novel low-cost dual ripple compensation,which consists of coupling capacitor compensation and passive equivalent series resistance compensation,is proposed to achieve a fast load transient response and robust stability simultaneously.Implemented in a 2P4M 0.35 μm CMOS process,the converter achieves fix-frequency output with a ripple of below 10 mV and an overshoot of 10 mV at 400 mA step load transient response.With width optimization of the power transistors in an ultra-heavy load and PFM control in a light load,the efficiency stays at over 83% for a load range from 20 mA to 1.5 A and the peak efficiency reaches 90.16%.

  11. Compressed Sensing-Based MRI Reconstruction Using Complex Double-Density Dual-Tree DWT

    Directory of Open Access Journals (Sweden)

    Zangen Zhu

    2013-01-01

    Full Text Available Undersampling k-space data is an efficient way to speed up the magnetic resonance imaging (MRI process. As a newly developed mathematical framework of signal sampling and recovery, compressed sensing (CS allows signal acquisition using fewer samples than what is specified by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in reducing data acquisition time in MRI. In traditional compressed sensing MRI methods, an image is reconstructed by enforcing its sparse representation with respect to a basis, usually wavelet transform or total variation. In this paper, we propose an improved compressed sensing-based reconstruction method using the complex double-density dual-tree discrete wavelet transform. Our experiments demonstrate that this method can reduce aliasing artifacts and achieve higher peak signal-to-noise ratio (PSNR and structural similarity (SSIM index.

  12. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator

    Science.gov (United States)

    Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang

    2017-01-01

    A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.

  13. Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gangwar

    2013-01-01

    Full Text Available The measured characteristics in C/X bands, including material properties of a dual segment cylindrical dielectric resonator antenna (CDRA fabricated from glass-ceramic material based on B2O3–La2O3–MgO glass and La(Mg0.5Ti0.5O3 ceramic, are reported. The sintering characteristic of the ceramic in presence of glass is determined from contact angle measurement and DTA. The return loss and input impedance versus frequency characteristics and radiation patterns of CDRA at its resonant frequency of 6.31 GHz are studied. The measured results for resonant frequency and return loss bandwidth of the CDRA are also compared with corresponding theoretical ones.

  14. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  15. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Changes in pulp web properties by addition of natural filler

    Science.gov (United States)

    Kamaludin, Nurul Hasanah; Ghazali, Arniza; Daud, Wan Rosli Wan; Ghazali, Salmi

    2012-09-01

    Development of the desired pulp-based products eco-properties are governed by factors like choice and suitability of raw material, the design and operation of pulping process and choice of additives. Fines recovered during refining discharge of an alkaline peroxide pulping system were collected based on their retention on varying mesh-sizes screens. Analysis shows that 12% of the 400-mesh fines added to the web enhances paper tensile strength by 100%. This defines the usefulness of fibrillar particles whose cell wall collapsibility increases the web density by increasing bonding ability and thus, strength of pulp-based products such as paper. The study acknowledges fines functioning as natural filler in pulp network and collection of fines from the refining discharge was found to reduce 70% turbidity and this improvement will help reduce the costs pertinent to generation of whitewater from the pulping system.

  17. Nanodisperse metalloorganosiloksanovy fillers of polymers

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-08-01

    Full Text Available Synthesis of the highly dispersed hydrophobic metaloligomers that are compatible with polymers in order to obtain high performance homogeneous radiation protective polymer composites with the given properties is still of importance. The most perspective way is to use reactive organosiloxanes and to produce metal oligomers based on them. The method of synthesis of nanodispersed oligomer of lead polyalkylsiliconates by a chemical deposition of water solutions of lead ions according to zol-gel process that runs with participation of sodium alkylsiliconates has been developed. Interaction reaction between sodium ethylsiliconate and lead ions in aqueous solution proceeds as the mechanism of replacement of sodium ions in silanol group Si–ONa of sodium alkylsiliconate with lead ion. Finally there is a formation of ring structures, and cross-linking of oligomer molecules takes place while to the number of the siloxane ties is increasing. The microstructure of hydrophobic lead polyethylsiliconate that has amorphous and crystal nature with dense packaging of metal oligomer molecular chains is considered. There is a polyreaction between hydroxyl ОН-groups of metal oligomer and lead oxyhydroxide, i.e. lead oxyhydroxide serves as an adsorbent on which the metal oligomer is chemically absorbed thus giving hydrophobic properties to the product. An opportunity to carry out directional modification of an excipient in the course of collateral synthesis of metal oligomer and a lead excipient, i.e. to receive hydrophobic filled metaloligomer in the homogeneous environment is as a result reached. High deficiency of lead polyethylsilica is caused by steric effects because of the larger sizes of hydrocarbon ethyl (C2H5 radicals. The molecular mass of the unit of oligomer is about 600. Oligomer has a chain structure which siloxane chain may contain silanol groups (≡Si–OH. The partial structure and a molecular mass of the synthesized metal oligomer are given in

  18. Stochastic gradient algorithm for a dual-rate Box-Jenkins model based on auxiliary model and FIR model

    Institute of Scientific and Technical Information of China (English)

    Jing CHEN; Rui-feng DING

    2014-01-01

    Based on the work in Ding and Ding (2008), we develop a modifi ed stochastic gradient (SG) parameter estimation algorithm for a dual-rate Box-Jenkins model by using an auxiliary model. We simplify the complex dual-rate Box-Jenkins model to two fi nite impulse response (FIR) models, present an auxiliary model to estimate the missing outputs and the unknown noise variables, and compute all the unknown parameters of the system with colored noises. Simulation results indicate that the proposed method is effective.

  19. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  20. Dual-wavelength speckle-based SI-POF sensor for frequency detection and localization of remote vibrations

    Science.gov (United States)

    Pinzón, P. J.; Montero, D. S.; Tapetado, A.; Torres, J. C.; Vázquez, C.

    2016-05-01

    A novel speckle-based method for sensing frequency vibration is demonstrated in a reflective configuration. By employing a visible dual-wavelength approach it is also possible to determine the relative spatial location of the vibrations along a plastic optical fiber lead of 8 m in a distributed scheme.

  1. A Dual-Function All-in-Fiber Device Based on Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Eskildsen, Lars; Weirich, Johannes;

    2008-01-01

    A dual-function all-in-fiber device based on negative dielectric liquid crystal photonic bandgap fibers is presented. This device can work both as an electrically tunable waveplate in the range 1520nm-1580nm, and as a polarimeter at 1310nm....

  2. Pyrene-based dual-mode fluorescence switches and logic gates that function in solution and film.

    Science.gov (United States)

    Zhou, Weidong; Li, Yongjun; Li, Yuliang; Liu, Huibiao; Wang, Shu; Li, Cuihong; Yuan, Mingjian; Liu, Xiaofeng; Zhu, Daoben

    2006-07-17

    A dual-mode fluorescence switch controlled by external inputs such as protons and metal ions is described, and each state corresponds to a specific fluorescent emission peak. Based on the reversible changes of the fluorescence emission of the switch responding to different external stimuli, the corresponding integrated logic gates and communication networks have been constructed in solid film or in solution.

  3. Optimized Carrier Based Multilevel Generated Modified Dual Three-Phase Open-Winding Inverter for Medium Power Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper presents a novel carrier based multilevel modulation for modified dual three-phase open-winding inverter applicable for low-voltage/high-current applications. A standard three-phase voltage source inverter (VSI) is connected across the open-winding of both ends of the motor. Each VSI i...

  4. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  5. Pulmonary embolism detection using localized vessel-based features in dual energy CT

    Science.gov (United States)

    Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2015-03-01

    Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.

  6. Standard guidelines for the use of dermal fillers

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2008-03-01

    Full Text Available Currently used fillers vary greatly in their sources, efficacy duration and site of deposition; detailed knowledge of these properties is essential for administering them. Indications for fillers include facial lines (wrinkles, folds, lip enhancement, facial deformities, depressed scars, periocular melanoses, sunken eyes, dermatological diseases-angular cheilitis, scleroderma, AIDS lipoatrophy, earlobe plumping, earring ptosis, hand, neck, dιcolletι rejuvenation. Physicians′ qualifications : Any qualified dermatologist may use fillers after receiving adequate training in the field. This may be obtained either during postgraduation or at any workshop dedicated to the subject of fillers. The physicians should have a thorough knowledge of the anatomy of the area designated to receive an injection of fillers and the aesthetic principles involved. They should also have a thorough knowledge of the chemical nature of the material of the filler, its longevity, injection techniques, and any possible side effects. Facility: Fillers can be administered in the dermatologist′s minor procedure room. Preoperative counseling and informed consent: Detailed counseling with respect to the treatment, desired effects, and longevity of the filler should be discussed with the patient. Patients should be given brochures to study and adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. A consent form should include the type of filler, longevity expected and possible postoperative complications. Preoperative photography should be carried out. Choice of the filler depends on the site, type of defect, results needed, and the physician′s experience. Injection technique and volume depend on the filler and the physician′s preference, as outlined in these guidelines.

  7. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-01

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group.

  8. Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.

    Science.gov (United States)

    Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash

    2015-11-01

    In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.

  9. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    Science.gov (United States)

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  10. Cross-linguistic evidence for storage costs in filler-gap dependencies with wh-adjuncts

    Directory of Open Access Journals (Sweden)

    Artur eStepanov

    2015-09-01

    Full Text Available This study investigates processing of interrogative filler-gap dependencies in which the filler integration site or gap is not directly subcategorized by the verb. This is the case when the wh-filler is a structural adjunct such as how or when rather than subject or object. Two self-paced reading experiments in English and Slovenian provide converging cross-linguistic evidence that wh-adjuncts elicit a kind of memory storage cost similar to that previously shown in the literature for wh-arguments. Experiment 1 investigates the storage costs elicited by the adjunct when in Slovenian, and Experiment 2 the storage costs elicited by how quickly and why in English. The results support the class of theories of storage costs based on the metric in terms of incomplete phrase structure rules or incomplete syntactic head predictions. We also demonstrate that the endpoint of the storage cost for a wh-adjunct filler provides valuable processing evidence for its base structural position, the identification of which remains a murky issue in current grammatical research.

  11. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    Science.gov (United States)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  12. A Dual-Organic-Transistor-Based Tactile-Perception System with Signal-Processing Functionality.

    Science.gov (United States)

    Zang, Yaping; Shen, Hongguang; Huang, Dazhen; Di, Chong-An; Zhu, Daoben

    2017-02-22

    Organic-device-based tactile-perception systems can open up new opportunities for the next generation of intelligent products. To meet the critical requirements of artificial perception systems, the efficient construction of organic smart elements with integrated sensing and signal processing functionalities is highly desired, but remains a challenge. This study presents a dual-organic-transistor-based tactile-perception element (DOT-TPE) with biomimetic functionality by the construction of organic synaptic transistors with integrated sensing transistors. The unique geometry of the DOT-TPE permits instantaneous sensing of pressure stimuli and synapse-like processing of an electric signal in a single element. More importantly, these organic-transistor-based tactile-perception elements can be built into arrays to serve as bionic tactile-perception systems. The combined biomimetic functionality of tactile-perception systems, together with their promising features of flexibility and large-area fabrication, makes this work represent a step forward toward novel e-skin devices for artificial intelligence.

  13. Solution based zinc tin oxide TFTs: the dual role of the organic solvent

    Science.gov (United States)

    Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-02-01

    Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV  =  -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.

  14. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  15. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    Science.gov (United States)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  16. 7 CFR 58.229 - Filler and packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  17. Selecting fillers on emotional appearance improves lineup identification accuracy.

    Science.gov (United States)

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy.

  18. Preparation of diatomite-based porous adsorption filler and adsorption on Pb2+%硅藻土基多孔吸附填料的制备及其对Pb2+的吸附

    Institute of Scientific and Technical Information of China (English)

    朱健; 王韬远; 王平; 雷明婧; 李科林

    2012-01-01

    Diatomite-based porous adsorption filler (DBPAF) was prepared by the addition of superfine carbon, sintered additive and binder into the diatomite through a established process in which these materials above were mixed, stirred and granulated with a particular ratio. In this paper, the effects of sintering temperature, carbon dose and diatomite particle size on the porosity characteristic of DBPAF were studied. Micro-morphology and phase composition of DBPAF were observed and analyzed by SEM and XRD. Further more, DBPAF's maneuverability, adsorption property and relative adsorption mechanism of Pb2+ were studied by dynamic and static adsorption experiment, respectively. As the results indicated, the optimal value of sintering temperature, carbon addition and diatomite particle size were 900~1000℃, 7.0%, 2.40μm, respectively. The maneuverability of DBPAF was significantly improved compared with natural diatomite and the porosity characteristic of DBPAF, whose the main phase was cristobalite, also obtained a certain degree of improvement. The results also illustrated that the optimum rate of temperature increase should be 2-5℃/min to ensure the pores distributing uniformly in DBPAF. In other side, the adsorption capacity of DBPAF increased by 78.0% compared with natural diatomite. Elementary mechanism studies implied that the key procedure of adsorption on Pb2+ of DBPAF was the chemical reaction happened in the channels of DBPAF where Pb2+ and active groups might react mutually. Further, the kinetic mode of Pb2+ adsorption on DBPAF followed Pseudo-second-order.%以硅藻土为主要原料,添加超细碳粉、烧结助剂和粘结剂,按一定比例混合、搅拌、造粒,在设定程序下煅烧,制备了硅藻土基多孔吸附填料(DBPAF),探讨了烧成温度、造孔剂添加量、硅藻土粉体粒径对DBPAF孔隙特征的影响,运用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对DBPAF的微观形貌和物相组成进行了观察和分析,采

  19. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  20. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  1. Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends

    Science.gov (United States)

    Noordermeer, J. W. M.; Datta, R. N.; Dierkes, W. K.; Guo, R.; Mathew, T.; Talma, A. G.; Tiwari, M.; van Ooij, W.

    Plasma polymerization is a technique for modifying the surface characteristics of fillers and curatives for rubber from essentially polar to nonpolar. Acetylene, thiophene, and pyrrole are employed to modify silica and carbon black reinforcing fillers. Silica is easy to modify because its surface contains siloxane and silanol species. On carbon black, only a limited amount of plasma deposition takes place, due to its nonreactive nature. Oxidized gas blacks, with larger oxygen functionality, and particularly carbon black left over from fullerene production, show substantial plasma deposition. Also, carbon/silica dual-phase fillers react well because the silica content is reactive. Elemental sulfur, the well-known vulcanization agent for rubbers, can also be modified reasonably well.

  2. EFFECT OF RICE HUSKS AS FILLER IN POLYMER MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    K. Hardinnawirda

    2012-06-01

    Full Text Available In this study, rice husk-filled polyester composites were produced with rice husks (RH as the filler and unsaturated polyester resin (UPR as the matrix. Several percentages of filler loadings were used (10, 15, 20 and 25 wt % in order to gain insights into the effect of filler content on the mechanical properties and water intake of the composites. The tensile strength of the RH-filled UPR composites was found to decrease as the filler loading increased; however, as it reached 25 wt %, the strength showed a moderate increase. The Young’s modulus showed a remarkable increase for 15 wt % of RH but decreased as the RH percentage increased further to 25 wt %. A water absorption test was conducted and the results showed that the composites absorb more water as the percentage weight of RH increased, which is attributed to the ability of the RH filler to absorb water.

  3. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    Science.gov (United States)

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  4. Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ross Pablo

    2017-03-01

    Full Text Available Micro and nanocomposites of hydroxyl terminated polybutadiene (HTPB-based polyurethanes (NPU were obtained using five mineral fillers and Cloisite 20A nanoclay, respectively. Samples were prepared by the reaction of HTPB polyol and toluene diisocyanate (TDI, and the chain was further extended with glyceryl monoricinoleate to produce the final elastomeric polyurethanes. Mechanical and thermal properties were studied, showing that mineral fillers (20%w/w significantly increased tensile strength, in particular nanoclay (at 5% w/w. When nanoclay-polymer dispersion was modified with a silane and hydantoin-bond promoter, elongation at break was significantly increased with respect to NPU with C20A. Thermal properties measured by differential scanning calorimetry (DSC were not significantly affected in any case. The molecular structure of prepared micro and nanocomposites was confirmed by Fourier transform infrared (FTIR spectroscopy and Raman spectroscopy. Interaction of fillers with polymer chains is discussed, considering the role of silanes in compatibilization of hydrophilic mineral fillers and hydrophobic polymer. The functionalization of nanoclay with HMDS silane was confirmed using FTIR. Microstructure of NPU with C20A nanoclay was confirmed by Atomic Force Microscopy (AFM.

  5. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    Science.gov (United States)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed β-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the β-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin α-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  6. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    Science.gov (United States)

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  7. An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth

    Institute of Scientific and Technical Information of China (English)

    SHAO Yong-Bo; ZHAO Ling-Juan; YU Hong-Yan; QIU Ji-Fang; QIU Ying-Ping; PAN Jiao-Qing; WANG Bao-Jun; ZHU Hong-Liang; WANG Wei

    2011-01-01

    A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550nm is fabricated.The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio.Moreover,the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).The electroabsorption modulator (EAM) is highly desirable as an external electro-optical modulator due to its high speed,low cost and capability of integration with other optical component such as DFB lasers,DBR lasers or semiconductor optical amplifiers.[1-4]So far,EAMs are typically fabricated by using lumped electrodes[1-4] and travelling-wave electrodes.[5-15]%A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).

  8. Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model.

    Science.gov (United States)

    Zhang, Ruoqiao; Thibault, Jean-Baptiste; Bouman, Charles A; Sauer, Ken D; Hsieh, Jiang

    2014-01-01

    Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.

  9. Range prediction for tissue mixtures based on dual-energy CT

    CERN Document Server

    Möhler, Christian; Richter, Christian; Greilich, Steffen

    2016-01-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient's CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV/u and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is ...

  10. Dual paraboloid reflector and light pipe based systems for projection displays

    Science.gov (United States)

    Li, Kenneth; Sillyman, Sheldon; Inatsugu, Seiji

    2005-04-01

    With the pressure to reduce cost for mass-market introduction of microdisplay-based rear projection television (MD-RPTV), the image panel and the related optical components have to be reduced in size and novel optical arrangements have to be created to achieve the target price. One major issue always had been the need for more light. Traditional reflector systems, including elliptical and parabolic reflectors, perform well in most cases, but are inefficient for smaller etendue values corresponding to smaller image panels. The common remedy is to make lamps with shorter and shorter arcs to increase the coupling efficiency, but the corresponding lifetime of the lamps are reduced and most of the time, these short arc lamps can only operate at low power, thus limiting the total output of the illuminating system. This paper summarizes the progress in the last few years related to the dual Paraboloid reflector (DPR) system and the associated components including polarization recovery systems and light pipe based projection engines.

  11. A high-precision, distributed geodetic strainmeter based on dual coaxial cable Bragg gratings

    Science.gov (United States)

    Fu, J.; Wei, T.; Wei, M.; Shen, Y.

    2014-12-01

    Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as GPS, InSAR, borehole and laser strainmeters, are costly and limited in their temporal or spatial resolution. Here we present a new type of strainmeter based on coaxial cable Bragg grating (CCBG) sensing technology that provides high-precision, distributed strain measurements at a moderate cost. The coaxial-cable-based strainmeter is designed to cover a long distance (~ km) under harsh environmental conditions such as extreme temperatures. To minimize the environmental noises, two CCBGs are introduced into the geodetic strainmeter: one is used to measure the strain applied on it, and the other acts as a reference only to detect the environmental noises. The environmental noises are removed using the inputs from the strained CCBG and the reference CCBG in a frequency mixer. The test results show that the geodetic strainmeter with dual CCBGs has micron-strain accuracy in the lab.

  12. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis.

    Science.gov (United States)

    Ahmad, Ejaj; Zia, Qamar; Fatima, Munazza Tamkeen; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    The development of prophylactic anti-candidal vaccine comprising the Candida albicans cytosolic proteins (Cp) as antigen and plasma beads (PB) prepared from plasma as sustained delivery system, is described. The immune-prophylactic potential of various PBs-based dual antigen delivery systems, co-entrapping Cp pre-entrapped in PLGA microspheres were tested in the murine model. Induction of cell mediated immunity was measured by assaying DTH and NO production as well as in vitro proliferation of lymphocytes derived from the immunized animals. Expression of surface markers on APCs (CD80, CD86) and T-cells (CD4+, CD8+) was also evaluated. Humoral immune response was studied by measuring circulating anti-Cp antibodies and their subclasses. When the prophylactic efficacy of the vaccines was tested in mice challenged with virulent C. albicans, the PB-based formulation (PB-PLGA-Cp vaccine) was found to be most effective in the generation of desirable immune response, in terms of suppression of fungal load and facilitating the survival of the immunized animals.

  13. A DWT based Dual Image Watermarking Technique for Authenticity and Watermark Protection

    Directory of Open Access Journals (Sweden)

    Shikha Tripathi

    2010-12-01

    Full Text Available In this paper we propose a DWT based dual watermarking technique wherein both blind and non-blind algorithms are used for the copyright protection of the cover/host image and the watermark respectively. We use the concept of embedding two watermarks into the cover image by actually embedding only one, to authenticate the source image and protect the watermark simultaneously. Here the DWT coefficients of the primary watermark (logo are modified using another smaller secondary binary image (sign and the midfrequency coefficients of the cover/host image. Since the watermark has some features of host image embedded in it, the security is increased two-fold and it also protects the watermark from any misuse or copy attack. For this purpose a new pseudorandom generator based on the mathematical constant π has been developed and used successfully in various stages of the algorithm. We have also proposed a new approach of applying pseudo-randomness in selecting the watermark pixel values for embedding in the cover image. In all the existing techniques the randomness is incorporated in selecting the location to embed the watermark. This makes the embedding process more unpredictable. The cover image which is watermarked with the signed-logo is subjected to various attacks like cropping, rotation, JPEG compression, scaling and noising. From the results it has been found that it is very robust and has good invisibility as well

  14. Range prediction for tissue mixtures based on dual-energy CT

    Science.gov (United States)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  15. Wool Base determination using dual energy X-ray absorptiometry (DEXA)

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Chris [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand)]. E-mail: c.kroger@gns.cri.nz; Murray Bartle, C. [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand); West, John G. [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand); Rensburg, Brendon van [New Zealand Wool Testing Authority Ltd., Napier (New Zealand)

    2006-12-15

    An industry grade dual energy X-ray absorptiometry (DEXA) scanner was calibrated for Wool Base determination. The calibration used 201 Crossbred and Merino wool samples, and a further 72 samples to validate the calibration. The prediction correlation had the smallest residual standard deviation (RSD) when the independently measured mean fibre diameter (MFD) was included in the multiple regression analysis. Best results were achieved when separate calibrations were used for individual wool breeds. The RSD for the Merino calibration set of 44 samples was 1.88, when the MFD was included in the regression, and 2.1 without. The RSD for 144 Crossbred samples was 1.73 including the MFD, and 2.59 without. The validation trial with 46 Crossbred and 24 Merino wool samples resulted in RSD of 2.35 and 2.23, respectively. An excellent DEXA repeatability was achieved at a standard deviation of {approx}0.2%. Improvement of the calibration is expected from concurrent laboratory testing and scanning. The research shows the promising potential for DEXA as a tool to determine Wool Base.

  16. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    Directory of Open Access Journals (Sweden)

    Eric Zhang

    2015-10-01

    Full Text Available We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αLmin of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  17. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    Science.gov (United States)

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-10-14

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  18. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Crespo, A. J. C.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O.

    2015-02-01

    DualSPHysics is a hardware accelerated Smoothed Particle Hydrodynamics code developed to solve free-surface flow problems. DualSPHysics is an open-source code developed and released under the terms of GNU General Public License (GPLv3). Along with the source code, a complete documentation that makes easy the compilation and execution of the source files is also distributed. The code has been shown to be efficient and reliable. The parallel power computing of Graphics Computing Units (GPUs) is used to accelerate DualSPHysics by up to two orders of magnitude compared to the performance of the serial version.

  19. Effect of Biomass Waste Filler on the Dielectric Properties of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Yew Been Seok

    2016-07-01

    Full Text Available The effect of biomass waste fillers, namely coconut shell (CS and sugarcane bagasse (SCB on the dielectric properties of polymer composite was investigated. The aim of this study is to investigate the potential of CS and SCB to be used as conductive filler (natural source of carbon in the polymer composite. The purpose of the conductive filler is to increase the dielectric properties of the polymer composite. The carbon composition the CS and SCB was determine through carbon, hydrogen, nitrogen and sulphur (CHNS elemental analysis whereas the structural morphology of CS and SCB particles was examined by using scanning electron microscope. Room temperature open-ended coaxial line method was used to determine the dielectric constant and dielectric loss factor over broad band frequency range of 200 MHz-20 GHz. Based on this study, the results found that CS and SCB contain 48% and 44% of carbon, which is potentially useful to be used as conductive elements in the polymer composite. From SEM morphology, presence of irregular shape particles (size ≈ 200 μm and macroporous structure (size ≈ 2.5 μm were detected on CS and SCB. For dielectric properties measurement, it was measured that the average dielectric constant (ε' is 3.062 and 3.007 whereas the average dielectric loss factor (ε" is 0.282 and 0.273 respectively for CS/polymer and SCB/polymer composites. The presence of the biomass waste fillers have improved the dielectric properties of the polymer based composite (ε' = 2.920, ε" = 0.231. However, the increased in the dielectric properties is not highly significant, i.e. up to 4.86 % increase in ε' and 20% increase in ε". The biomass waste filler reinforced polymer composites show typical dielectric relaxation characteristic at frequency of 10 GHz - 20 GHz and could be used as conducting polymer composite for suppressing EMI at high frequency range.

  20. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  1. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base

    Science.gov (United States)

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for "in-the-field" measurement.

  2. 基于Android平台的双网双待的研究与设计%RESEARCH AND DESIGN OF DUAL-NET DUAL-STANDBY BASED ON ANDROID

    Institute of Scientific and Technical Information of China (English)

    童承凤; 胡庆

    2012-01-01

    为实现Android平台上的双网双待功能,研究Android平台的系统架构以及Android framework层上已经实现的双卡处理机制.提出一种在无线接口层(RIL)上依样建立一套新的RIL Driver处理机制,从而将双卡分别进行处理的方法.实现基于Android系统平台的GSM和CDMA双网双待机制,对Android系统平台和主要的Phone应用模块进行了详细的分析.结果表明,在Android系统原有架构基础上进行双网双待设计,具有简单、易扩展的优点,且更好地满足广大Android手机用户的需求.%To implement Dual-Net Dual-Standby function based on Android platform, the authors have studied the system architecture of Android platform and the achieved mechanism of dual card processing on framework layer. According to the sample, they propose a method that establishes a new RIL Driver processing mechanism in framework layer which allows separate processing of the dual cards. They have implemented the Dual-Net Dual-Standby mechanism of GSM and CDMA based on the Android system platform,and given a detailed analysis of Android system platform and the chief phone application module. The result shows that ,on the original basis structure of the Android system, the design of Dual-Net Dual-Standby has the advantages of simplicity and extensibility so that it better meets the needs of the majority of Android mobile phone users.

  3. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  4. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers.

    Science.gov (United States)

    Ikemura, Kunio; Tay, Franklin R; Endo, Takeshi; Pashley, David H

    2008-05-01

    This paper reviews our recent studies on fluoride-releasing adhesives and the related studies in this field based on information from original research papers, reviews, and patent literatures. A revolutionary PRG (pre-reacted glass ionomer) filler technology--where fillers were prepared by the acid-base reaction of a fluoroaluminosilicate glass with polyalkenoic acid in water, was newly developed, and a new category as "Giomer" was introduced into the market. On fluoride release capability, SIMS examination revealed in vitro fluoride ion uptake by dentin substrate from the PRG fillers in dental adhesive. On bonding durability, it was found that the improved durability of resin-dentin bonds might be achieved not only via the strengthened dentin due to fluoride ion uptake from the PRG-Ca fillers, but also due to retention of relatively insoluble 4-AETCa formed around remnant apatite crystallites within the hybrid layer in 4-AET-containing self-etching adhesives. On ultramorphological study of the resin-dentin interface, TEM images of the PRG-Ca fillers revealed that the dehydrated hydrogel was barely distinguishable from normal glass fillers, if not for the concurrent presence of remnant, incompletely reacted glass cores. In conclusion, it was expected that uptake of fluoride ions with cariostatic effect from PRG-Ca fillers would endow dentin substrates with the benefit of secondary caries prevention, together with an effective and durable adhesion to dentin.

  5. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Institute of Scientific and Technical Information of China (English)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of-99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  6. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  7. A dual-emissive ionic liquid based on an anionic platinum(II) complex

    OpenAIRE

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashia, Atsushi; Kato, Masako

    2015-01-01

    An ionic liquid fabricated froman anionic cyclometalated platinum(II) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  8. A dual-emissive ionic liquid based on an anionic platinum(ii) complex.

    Science.gov (United States)

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashi, Atsushi; Kato, Masako

    2015-09-07

    An ionic liquid fabricated from an anionic cyclometalated platinum(ii) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  9. Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation.

    Science.gov (United States)

    Kao, Sheng-Yuan; Lu, Hsin-Che; Kung, Chung-Wei; Chen, Hsin-Wei; Chang, Ting-Hsiang; Ho, Kuo-Chuan

    2016-02-17

    Vinyl benzyl viologen (VBV) was synthesized and utilized to obtain all-in-one thermally cured electrochromic devices (ECDs). The vinyl moiety of VBV monomer could react with methyl methacrylate (MMA) to yield bulky VBV/poly(methyl methacrylate) (PMMA) chains and even cross-linked network without the assistance of additional cross-linker. Both the bulky VBV/PMMA chains and the resulting polymer network can hinder the aggregation of the viologens and reduce the possibility of dimerization, rendering enhanced cycling stability. Large transmittance changes (ΔT) over 60% at both 570 and 615 nm were achieved when the VBV-based ECD was switched from 0 V to a low potential bias of 0.5 V. Ultimately, the dual functional of VBV molecules, serving simultaneously as a promising electrochromic material and a cross-linker, is fully utilized in the proposed electrochromic system, making its fabrication process much easier. Negligible decays in ΔT at both wavelengths were observed for the cured ECD after being subjected to 1000 repetitive cycles, while 17.1% and 22.0% decays were noticed at 570 and 615 nm, respectively, for the noncured ECD. In addition, the low voltage-driven feature of the VBV-based ECD enables it to be incorporated with phenyl viologen (PV), further expanding the absorption range of the ECD. Panchromatic characteristic of the proposed PV/VBV-based ECD was demonstrated while exhibiting ΔT over 60% at both wavelengths. Only 5.3% and 6.9% decays, corresponding at 570 and 615 nm, respectively, were observed in the PV/VBV-based ECD after 10 000 continuous cycles at bleaching/coloring voltages of 0/0.5 V with an interval of 10 s for both bleaching and coloring processes.

  10. Characteristic Modules of Dual Extensions and Gr(o)bner Bases

    Institute of Scientific and Technical Information of China (English)

    Yun Ge XU; Long Cai LI

    2004-01-01

    Let C be a finite dimensional directed algebra over an algebraically closed field k and A = A(C) the dual extension of C. The characteristic modules of A are constructed explicitly for a class of directed algebras, which generalizes the results of Xi. Furthermore, it is shown that the characteristic modules of dual extensions of a certain class of directed algebras admit the left Grobner basis theory in the sense of E. L. Green.

  11. Closed-Form Performance Analysis of Dual Polarization Based MIMO System in Shadowed-Rician Fading LMS Channels

    Directory of Open Access Journals (Sweden)

    Suresh Kumar Jindal

    2015-04-01

    Full Text Available In this paper, the problem of dual polarization based MIMO Processing in Shadowed-Rician (SR fading land mobile satellite (LMS channels is studied. It is shown in literature that polarization is used as a interference rejection method; and, most of the existing analytical results are not in closed-form. In this paper, we derive the closed-form expressions of the moment generating (MGF function of the received signal-to-noise ratio of the MRC based receiver in SR fading LMS channels. Then we provide closed-form expressions of the symbol error rate (SER by using MGF approach. The analytical diversity order and capacity of the considered scheme is also derived. It is shown by by derived closed-form capacity expression that the capacity of the considered dual polarization based scheme is improved; and it is found very useful in practical satellite communication systems.

  12. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  13. Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles

    Science.gov (United States)

    Guo, Longhua; Xu, Shaohua; Ma, Xiaoming; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2016-09-01

    Colorimetric enzyme-linked immunosorbent assay utilizing 3‧-3-5‧-5-tetramethylbenzidine(TMB) as the chromogenic substrate has been widely used in the hospital for the detection of all kinds of disease biomarkers. Herein, we demonstrate a strategy to change this single-color display into dual-color responses to improve the accuracy of visual inspection. Our investigation firstly reveals that oxidation state of 3‧-3-5‧-5-tetramethylbenzidine (TMB2+) can quantitatively etch gold nanoparticles. Therefore, the incorporation of gold nanoparticles into a commercial TMB-based ELISA kit could generate dual-color responses: the solution color varied gradually from wine red (absorption peak located at ~530 nm) to colorless, and then from colorless to yellow (absorption peak located at ~450 nm) with the increase amount of targets. These dual-color responses effectively improved the sensitivity as well as the accuracy of visual inspection. For example, the proposed dual-color plasmonic ELISA is demonstrated for the detection of prostate-specific antigen (PSA) in human serum with a visual limit of detection (LOD) as low as 0.0093 ng/mL.

  14. Dual hairpin-like molecular beacon based on coralyne-adenosine interaction for sensing melamine in dairy products.

    Science.gov (United States)

    Wang, Guangfeng; Zhu, Yanhong; Chen, Ling; Zhang, Xiaojun

    2014-11-01

    This study presents a novel dual hairpin-like molecular beacon (MB) for the selective and sensitive detection of melamine (MA) based on the conjugation of MA and thymine. In this protocol, the coordination between coralyne and adenosine (A) leaded a dual hairpin-like MB and the fluorophore-quencher pair is close proximity resulting in the fluorescence quenching. With the addition of MA, it conjugated with thymine in the loop part of dual hairpin-like MB by triple H-bonds, triggering the dissociation of the dual hairpin-like MB. The resulting spatial separation of the fluorophore from quencher induced the enhancement in fluorescence emission. Under the optimized conditions, the sensor exhibited a wide linear range of 8×10(-9)-1.6×10(-5) M (R(2)=0.9969) towards MA, with a low detection limit of 5 nM, approximately 4000 times lower than the Drug Administration and the US Food estimated MA safety limit. The real milk samples were also investigated with a satisfying result.

  15. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  16. Biocompatible thermoresponsive PEGMA nanoparticles crosslinked with cleavable disulfide-based crosslinker for dual drug release.

    Science.gov (United States)

    Ulasan, Mehmet; Yavuz, Emine; Bagriacik, Emin Umit; Cengeloglu, Yunus; Yavuz, Mustafa Selman

    2015-01-01

    Smart materials have been attracting much attention because of their stimuli responsive nature. We have synthesized biocompatible thermoresponsive crosslinked poly(ethylene glycol) methyl ether methacrylate (PEGMA)-co-vinyl pyrrolidone nanoparticles (PEGMA NPs) using disulfide-based crosslinker by surfactant-free emulsion polymerization method. Particle characterization studies were carried out by dynamic light scattering, and scanning electron microscopy. Polymerization kinetics, effect of crosslinker and initiator concentrations on both average hydrodynamic diameter and polydispersity index were investigated. Hydrodynamic diameters of thermoresponsive PEGMA NPs were decreased from 210 nm to 90 nm upon heating over the lowest critical solution temperature (LCST). Disulfide crosslinked PEGMA NPs were demonstrated as a dual delivery system. Rhodamine B, a model of small-sized drug molecule, and poly(ethylene glycol) (PEG)-alizarin yellow, a model of large drug molecule, were loaded into PEGMA NPs where LCST of these NPs was tuned to 37°C, the body temperature. The rhodamine B was released from PEGMA NPs upon heating to 39°C. Then, PEG-alizarin content was released by subsequent degradation of nanoparticles using dithiothreitol (DTT), which reduces disulfide bonds to thiols. Furthermore, cytotoxicity studies of PEGMA NPs were carried out in 3T3 cells, which resulted in no toxic effect on the cells.

  17. Model based design of an intercooled dual stage sliding vane rotary compressor system

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Contaldi, Giulio; Murgia, Stefano

    2015-08-01

    Energy saving is currently one of the most important driving factors for innovation all over the world. With reference to global electricity consumptions, electrical energy for compressed air production accounts for 4-5%. Among the rotary compressor technologies, Sliding Vane Rotary Compressors (SVRC) are characterized by noteworthy specific energy consumptions and demonstrated an unforeseen energy saving potential thanks to some intrinsic features specifically related to this kind of machines. The paper presents a further reduction strategy to lower energy consumptions in compressed air systems using SVRCs that relies on the combination of the recent use of a pressure swirled oil injection technology and a dual stage intercooling. The synergy between technologies already mature approaches to the lowest energy consumption and candidates SVRCs as superior machines in the energy context. The saving potential compared to the technology at the state of the art was evaluated thanks to a comprehensive mathematical modeling of the two compressor sections and the intercooling heat exchanger and fan. Results showed a reduction of the electrical power required to drive the compressor system up to 9.5%. The overall approach represents a model-based design for a new machine which is under development.

  18. An FMM based on dual tree traversal for many-core architectures

    KAUST Repository

    Yokota, Rio

    2013-09-01

    The present work attempts to integrate the independent efforts in the fast N-body community to create the fastest N-body library for many-core and heterogenous architectures. Focus is placed on low accuracy optimizations, in response to the recent interest to use FMM as a preconditioner for sparse linear solvers. A direct comparison with other state-of-the-art fast N-body codes demonstrates that orders of magnitude increase in performance can be achieved by careful selection of the optimal algorithm and low-level optimization of the code. The current N-body solver uses a fast multipole method with an efficient strategy for finding the list of cell-cell interactions by a dual tree traversal. A task-based threading model is used to maximize thread-level parallelism and intra-node load-balancing. In order to extract the full potential of the SIMD units on the latest CPUs, the inner kernels are optimized using AVX instructions.

  19. A 3.16-7 GHz transformer-based dual-band CMOS VCO

    Science.gov (United States)

    Zhu, Li; Zhigong, Wang; Zhiqun, Li; Qin, Li; Faen, Liu

    2015-03-01

    A dual-band, wide tuning range voltage-controlled oscillator that uses transformer-based fourth-order (LC) resonator with a compact common-centric layout is presented. Compared with the traditional wide band (VCO), it can double frequency tuning range without degrading phase noise performance. The relationship between the coupling coefficient of the transformer, selection of frequency bands, and the quality factor at each band is investigated. The transformer used in the resonator is a circular asymmetric concentric topology. Compared with conventional octagon spirals, the proposed circular asymmetric concentric transformer results in a higher quality-factor, and hence a lower oscillator phase noise. The VCO is designed and fabricated in a 0.18-μm CMOS technology and has 75% wide tuning range of 3.16-7.01 GHz. Depending on the oscillation frequency, the VCO current consumption is adjusted from 4.9 to 6.3 mA. The measured phase noises at 1 MHz offset from carrier frequencies of 3.1, 4.5, 5.1, and 6.6 GHz are -122.5, -113.3, -110.1, and -116.8 dBc/Hz, respectively. The chip area, including the pads, is 1.2 × 0.62 mm2 and the supply voltage is 1.8 V. Project supported by the National High Technology Research and Development Program of China (No. 2011AA10305) and the National Natural Science Foundation of China (No. 60901012).

  20. Mono/dual-polarization refractive-index biosensors with enhanced sensitivity based on annular photonic crystals

    CERN Document Server

    Jiang, Liyong; Zhang, We; Li, Xiangyin

    2014-01-01

    To promote the development of two-dimensional (2D) photonic crystals (PCs) based refractive-index (RI) biosensors, there is an urgent requirement of an effective approach to improve the RI sensitivity of 2D PCs (usually less than 500 nm/RIU). In this work, the photonic band gap (PBG) feature and the corresponding RI sensitivity of the air-ring type 2D annular PCs (APCs) have been studied in detail. Such type of 2D PCs can easily and apparently improve the RI sensitivity in comparison with conventional air-hole type 2D PCs that have been widely studied in previous works. This is because the APCs can naturally exhibit suppressed up edge of PBG that can strongly affect the final RI sensitivity. In general, an enhanced sensing performance of as high as up to 2-3 times RI sensitivity can be obtained from pure 2D APCs. Such high RI sensitivity is also available in three typical waveguides developed from pure 2D APCs. Furthermore, a new conception of dual-polarization RI biosensors has been proposed by defining the ...

  1. Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels

    Science.gov (United States)

    Huang, Sheng; He, ChunFeng; Zhao, YiXi

    2016-03-01

    Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.

  2. Class-Based Weighted Fair Queuing Scheduling on Dual-Priority Delta Networks

    Directory of Open Access Journals (Sweden)

    D. C. Vasiliadis

    2012-01-01

    Full Text Available Contemporary networks accommodate handling of multiple priorities, aiming to provide suitable QoS levels to different traffic classes. In the presence of multiple priorities, a scheduling algorithm is employed to select each time the next packet to transmit over the data link. Class-based Weighted Fair Queuing (CBWFQ scheduling and its variations is widely used as a scheduling technique, since it is easy to implement and prevents the low-priority queues from being completely neglected during periods of high-priority traffic. By using this scheduling, low-priority queues have the opportunity to transmit packets even though the high-priority queues are not empty. In this work, the modeling, analysis and performance evaluation of a single-buffered, dual-priority multistage interconnection network (MIN operating under the CBWFQ scheduling policy is presented. Performance evaluation is conducted through simulation, and the performance measures obtained can be valuable assets for MIN designers, in order to minimize the overall deployment costs and delivering efficient systems.

  3. Design of dual Beam multi-wavelength UV-visible absorbance detectors based on CCD

    Institute of Scientific and Technical Information of China (English)

    SHEN Shuang; TANG Zhen-an; LI Tong

    2006-01-01

    @@ Because the general multi-wavelength UV-Visible absorbance detector cannot avoid the noise and drift resulting from the intensity fluctuation of the light source,a dual beam multi-wavelength UV-Visible detector based on CCD was designed.The ray of light source is divided into a signal ray and a reference ray by the beam splitter after it passes through the chopper.The signal ray shines into the sample cell.The signal ray passing through the sample cell falls onto a concave mirror which focuses it onto a slot that is imaged on one portion of CCD by a concave grating.The reference ray is imaged on the other portion of CCD by the concave grating after the slot.The signal spectrum,the reference spectrum and the dark current of CCD can be measured on the same CCD under the cooperation of the optical system and accessorial circuits.The real-time compensation for the signal spectrum by using the reference spectrum and the dark current of CCD can effectively depress the noise and drift of the detector.The short-term noise is 10-5AU and the drift is 10-4AU/h.

  4. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  5. RED- DTB:A Dual Token Bucket Based Queue Management Algorithm

    Institute of Scientific and Technical Information of China (English)

    Yin Jian-hua; Cao Yang; Ling Jun; Huang Tian-xi

    2003-01-01

    Improving the Quality of Service (QoS) of Internet traffic is wide-ly recognized as a critical issue for the next-generation networks. In this paper,we present a new algorithm for the active queue management, namely RED-DTB. This buffer control technique is used to enforce approximate fairness among a large number of concurrent Internet flows. Like RED (Random Early Detection) algorithm, the RED-DTB mechanism can be deployed to actively re-spond to the gateway congestion, keep the gateway in a healthy state, and pro-tect the fragile flows from being stolen band width by greedy ones. The algo-rithm is based on the so-called Dual Token Bucket (DTB) pattern. That is, onthe one hand, every flow is rate-limited by its own token bucket, to ensure thatit can not consume more than its fair share of bandwidth; On the other hand,to make some compensations to less aggressive flows, such as connections with larger round trip time or smaller sending window, and to gain a relatively high-er system utilization coefficient, all flows, depending on their individual behav-ior, may have a chance to fetch tokens from the public token bucket when theyrun out of their own share of tokens. The algorithm is analyzed and evaluatedby simulations, and is proved to be effective in protecting the gateway bufferand controlling the fair allocation of bandwidth among flows.

  6. RED-DTB: A Dual Token Bucket Based Queue Management Algorithm

    Institute of Scientific and Technical Information of China (English)

    YinJian-hua; CaoYang; LingJun; HuangTian-xi

    2003-01-01

    Improving the Quality of Service (QoS) of Internet traffic is widely recognized as a critical issue for the next-generation networks. In this paper,we present a new algorithm for the active queue management, namely RED-DTB. This buffer control technique is used to enforce approximate fairness among a large number of concurrent Internet flows. Like RED (Random Early Detection) algorithm, the RED-DTB mechanism can be deployed to actively respond to the gateway congestion, keep the gateway in a healthy state, and protect the fragile flows from being stolen bandwidth by greedy ones. The algorithm is based on the so-called Dual Token Bucket (DTB) pattern. That is, on the one hand, every flow is rate-limited by its own token bucket, to ensure that it can not consume more than its fair share of bandwidth; On the other hand,to make some compensations to less aggressive flows, such as connections with larger round trip time or smaller sending window, and to gain a relatively higher system utilization coefficient, all flows, depending on their individual behavior, may have a chance to fetch tokens from the public token bucket when they run out of their own share of tokens. The algorithm is analyzed and evaluated by simulations, and is proved to be effective in protecting the gateway buffer and controlling the fair allocation of bandwidth among flows.

  7. Dual Space Analyzing Based on Symmetry Properties for Phonons of Si Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    QIN Guo-Yi; REN Shang-Fen; ZHANG Zhi-Yong

    2002-01-01

    Phonon modes in spherical Si quantum dots (QDs) with up to 7.9 nm in diameter are calculated by using the projection operators of the group theory into valence force field model. The phonons of dot modes in each of five irreducible representations (symmetries) are classified by using a dual space analysis method. It is found that the bulk-like modes with localization radius much smaller than the dot's radius have clearly pronounced bulk specific-κdefinite bulk band (one in six modes). In Si dots of all sizes, each specific bulk-like dot mode has specific symmetry.TO dot modes and bulk-like X-derived TA and LA dot modes red-shift in frequency with decreasing dot size. There is almost not LO/TO mixing for bulk-like modes. As for the surface-like modes localized at the periphery of the dot,their eigenmodes have not a dominant bulk specific-κ point parentage or a dominant BZ parentage around some special point. They are a superposition of many bulk bands with κ from all over the bulk BZ. They have much significant mode mixing than the bulk-like phonons. The classification of dot modes based on the symmetry of group theory will bring advantageous to the discussion of Ramam spectrum, electron-phonon interaction and other phonon-assisted effects in QDs.

  8. Automated liver sampling using a gradient dual-echo Dixon-based technique.

    Science.gov (United States)

    Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T

    2012-05-01

    Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  9. Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber

    Science.gov (United States)

    Yan, Xin; Liang, Lan-Ju; Ding, Xin; Yao, Jian-Quan

    2017-02-01

    A high-sensitivity sensing technique was demonstrated based on a flexible terahertz dual-band metamaterial absorber. The absorber has two perfect absorption peaks, one with a fundamental resonance (f1) of the structure and another with a high-order resonance (f2) originating from the interactions of adjacent unit cells. The quality factor (Q) and figure of merit of f2 are 6 and 14 times larger than that of f1, respectively. For the solid analyte, the changes in resonance frequency are monitored upon variation of analyte thickness and index; a linear relation between the amplitude absorption with the analyte thickness is achieved for f2. The sensitivity (S) is 31.2% refractive index units (RIU-1) for f2 and 13.7% RIU-1 for f1. For the aqueous solutions, the amplitude of absorption decreases linearly with increasing the dielectric constant for the ethanol-water mixture of f1. These results show that the designed absorber cannot only identify a solid analyte but also characterize aqueous solutions through the frequency shift and amplitude absorption. Therefore, the proposed absorber is promising for future applications in high-sensitivity monitoring biomolecular, chemical, ecological water systems, and aqueous biosystems.

  10. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL

    Science.gov (United States)

    Delaunay, Pierre-Yves; Nosho, Brett Z.; Gurga, Alexander R.; Terterian, Sevag; Rajavel, Rajesh D.

    2017-02-01

    Recent advances in superlattice-based infrared detectors have rendered this material system a solid alternative to HgCdTe for dual-band sensing applications. In particular, superlattices are attractive from a manufacturing perspective as the epitaxial wafers can be grown with a high degree of lateral uniformity, low macroscopic defect densities (processed over the last two years. To assess the FPA performance, noise equivalent temperature difference (NETD) measurements were conducted at 80K, f/4.21 and using a blackbody range of 22°C to 32°C. For the MWIR band, the NETD was 27.44 mK with a 3x median NETD operability of 99.40%. For the LWIR band, the median NETD was 27.62 mK with a 3x median operability of 99.09%. Over the course of the VISTA program, HRL fabricated over 30 FPAs with similar NETDs and operabilities in excess of 99% for both bands, demonstrating the manufacturability and high uniformity of III-V superlattices. We will also present additional characterization results including blinkers, spatial stability, modulation transfer function and thermal cycles reliability.

  11. A fluorescence ratiometric sensor for hypochlorite based on a novel dual-fluorophore response approach.

    Science.gov (United States)

    Long, Lingliang; Zhang, Dongdong; Li, Xiufen; Zhang, Jinfang; Zhang, Chi; Zhou, Liping

    2013-05-02

    A fluorescence ratiometric sensor for OCl(-) has been developed based on a novel dual fluorophore response approach. The sensor molecule contains a coumarin fluorophore and a rhodamine fluorophore, and the two fluorophores are directly linked to an OCl(-) recognition group. The structure of the sensor was characterized by ESI-MS, NMR, and X-ray crystallographic analysis. Upon treatment with OCl(-), both fluorophores in the sensor responded simultaneously at two separate optical windows, with large enhancement of the fluorescence ratio (I578/I501) from 0.01 to 39.55. The fluorescence ratios for the sensor showed a good linearity with the concentration of OCl(-) in the range of 0.2-40 μM and the detection limits is 0.024 μM (SN(-1)=3). Investigation of reaction products indicated that the sensor reaction with OCl(-) produced two new fluorescent molecules, which were responsible for the fluorescence changes in two optical windows. In addition, the sensor showed high selectivity to OCl(-) over other reactive oxygen species, reactive nitrogen species, cations, and anions. The sensor has also been successfully applied to detection of OCl(-) in natural water samples with satisfactory recovery.

  12. Phase-unwrapping approach based on dual-frequency analog structured light

    Science.gov (United States)

    Wang, Beiyi; Yu, Xiaoyang; Wu, Haibin; Zhang, Jixun; Meng, Xiaoliang

    2017-01-01

    Among the structured light 3-D measurement approaches, the multi-period analog encoded structured light (AESL) has advantages such as high resolution and high sampling rate owing to its point-to-point calculation method. However, phase unwrapping is always a problem when employing the multi-period AESL. Therefore, we propose a novel phase unwrapping approach based on dual-frequency AESL. We demonstrate the principle of the proposed phase unwrapping approach through theoretical analysis and the applicable condition for the proposed approach is determined through error analysis. We perform experiments using the proposed and classical heterodyne approaches and compare the results. The experimental results for the standard plane show that the average value of the root mean square error with the heterodyne approach is 1.08 mm, and that with the proposed approach is 0.62 mm, which is a reduction by 43%. Further, the experimental results for the complicated surfaces show that the reconstructed object obtained using the proposed approach is fine and smooth, and the detailed features are clearly displayed. The experiments verify both the accuracy and the suitability of the proposed approach.

  13. Pharmacophore-based design and discovery of (-)-meptazinol carbamates as dual modulators of cholinesterase and amyloidogenesis.

    Science.gov (United States)

    Xie, Qiong; Zheng, Zhaoxi; Shao, Biyun; Fu, Wei; Xia, Zheng; Li, Wei; Sun, Jian; Zheng, Wei; Zhang, Weiwei; Sheng, Wei; Zhang, Qihong; Chen, Hongzhuan; Wang, Hao; Qiu, Zhuibai

    2017-12-01

    Multifunctional carbamate-type acetylcholinesterase (AChE) inhibitors with anti-amyloidogenic properties like phenserine are potential therapeutic agents for Alzheimer's disease (AD). We reported here the design of new carbamates using pharmacophore model strategy to modulate both cholinesterase and amyloidogenesis. A five-feature pharmacophore model was generated based on 25 carbamate-type training set compounds. (-)-Meptazinol carbamates that superimposed well upon the model were designed and synthesized, which exhibited nanomolar AChE inhibitory potency and good anti-amyloidogenic properties in in vitro test. The phenylcarbamate 43 was highly potent (IC50 31.6 nM) and slightly selective for AChE, and showed low acute toxicity. In enzyme kinetics assay, 43 exhibited uncompetitive inhibition and reacted by pseudo-irreversible mechanism. 43 also showed amyloid-β (Aβ) lowering effects (51.9% decrease of Aβ42) superior to phenserine (31% decrease of total Aβ) in SH-SY5Y-APP695 cells at 50 µM. The dual actions of 43 on cholinergic and amyloidogenic pathways indicated potential uses as symptomatic and disease-modifying agents.

  14. Applying Convolution-Based Processing Methods To A Dual-Channel, Large Array Artificial Olfactory Mucosa

    Science.gov (United States)

    Taylor, J. E.; Che Harun, F. K.; Covington, J. A.; Gardner, J. W.

    2009-05-01

    Our understanding of the human olfactory system, particularly with respect to the phenomenon of nasal chromatography, has led us to develop a new generation of novel odour-sensitive instruments (or electronic noses). This novel instrument is in need of new approaches to data processing so that the information rich signals can be fully exploited; here, we apply a novel time-series based technique for processing such data. The dual-channel, large array artificial olfactory mucosa consists of 3 arrays of 300 sensors each. The sensors are divided into 24 groups, with each group made from a particular type of polymer. The first array is connected to the other two arrays by a pair of retentive columns. One channel is coated with Carbowax 20 M, and the other with OV-1. This configuration partly mimics the nasal chromatography effect, and partly augments it by utilizing not only polar (mucus layer) but also non-polar (artificial) coatings. Such a device presents several challenges to multi-variate data processing: a large, redundant dataset, spatio-temporal output, and small sample space. By applying a novel convolution approach to this problem, it has been demonstrated that these problems can be overcome. The artificial mucosa signals have been classified using a probabilistic neural network and gave an accuracy of 85%. Even better results should be possible through the selection of other sensors with lower correlation.

  15. NLOS Signal Detection Based on Single Orthogonal Dual-Polarized GNSS Antenna

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2017-01-01

    Full Text Available Nowadays users have a high demand for the accuracy of position and velocity, but errors caused by non-line-of-sight (NLOS signals cannot be removed effectively. Since the GNSS signal is right-hand circular polarized (RHCP, the axial ratio of the strong NLOS signal is larger than that of the Line-of-Sight (LOS signal. Based on the difference of the axial ratio, a method for NLOS signal detection using single orthogonal dual-polarized antenna is proposed. The antenna has two channels to receive two orthogonal linear polarized components of the incoming signals. Parallel cross-cancellation is used to remove the LOS signal while maintaining most of the NLOS signals from the receiving signals. The residual NLOS signals are then detected by conventional GNSS digital processor in real time without any prior knowledge of their characteristics. The proposed method makes use of the polarization and spatial information and can detect long delay NLOS signal by miniature and inexpensive receiver GNSS. The effectiveness of the proposed method is confirmed by simulation data.

  16. Transverse load sensing based on a dual-frequency optoelectronic oscillator.

    Science.gov (United States)

    Kong, Fanqi; Li, Wangzhe; Yao, Jianping

    2013-07-15

    We propose and experimentally demonstrate a fiber-optic sensor implemented based on a dual-frequency optoelectronic oscillator (OEO) for transverse load sensing. In the OEO loop, a phase-shifted fiber Bragg grating (PS-FBG) is employed to which a transverse load is applied to introduce a birefringence to create two orthogonally polarized notches, which leads to the generation of two oscillating frequencies. The beat frequency between the two oscillating frequencies is a function of the load force applied to the PS-FBG. The proposed sensor is experimentally demonstrated. The sensitivity and the minimal detectable load are measured to be as high as ~9.73 GHz/(N/mm) and 2.06×10(-4) N/mm, respectively. The high-frequency purity and stability of the generated microwave signal by the OEO permit extremely reliable and high-accuracy measurement. The frequency interrogation allows the system to operate at an ultra-high speed. In addition, the sensing signal is insensitive to the variations of both the environmental temperature and the optical carrier wavelength.

  17. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V; Coffee, K; Gard, E; Fergenson, D; Ramani, S; Steele, P

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. The last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.

  18. 基于反硝化脱氮的硫铁复合填料除磷机制%Phosphorus Removal Mechanism of Sulfur/Sponge Iron Composite Fillers Based on Denitrification

    Institute of Scientific and Technical Information of China (English)

    范军辉; 郝瑞霞; 李萌; 朱晓霞; 万京京

    2016-01-01

    In order to improve the phosphorus removal effect in the denitrification and phosphorus synchronous removal process by sulfur/ sponge iron composite fillers, the phosphorus removal effect by different fillers with the coupling microorganisms was studied to analyze the denitrifying phosphorus removal mechanism of the microbial coupling sulfur/ sponge iron composite fillers. The research result showed that the phosphorus removal ratio of sponge iron/ sulfur composite fillers was over 95% , which was increased by 30% as compared to only sponge iron filler. In addition, the effluent TP concentration was reduced to less than 0. 1 mg•L - 1 . The analysis of X-ray diffraction(XRD)and total iron concentration indicated that the main phosphorus removal system products which were produced in the corrosion and phosphorus removal process of sponge iron were FeOOH, FeS and Fe4 (PO4 ) 3 (OH) 3 deposits and dissolved iron ions; FeS and FeOOH which were the hydrolysis products of Fe2 + and Fe3 + converted PO3 -4 to Fe4 (PO4 ) 3 (OH) 3 by adsorption and deposition so that phosphorus removal could be achieved. After the reactor of microbial coupling sulfur/ sponge iron carbon composite fillers became stable, the removal efficiency of TN and TP could reach 90% and more than 83% , respectively; Corrosion of sponge iron and phosphorus removal process could also be promoted by biological iron and H + that was produced in the sulfur autotrophic denitrification process, the system could realize the combination of “heterotrophic synergy autotrophic” composite denitrification and chemical phosphorus removal, and efficient denitrifying denitrification synchronous phosphorus removal process could be achieved in the urban sewage treatment plant.%为提高硫铁复合填料反硝化脱氮同步除磷效果,对比研究了不同填料和耦合微生物后的除磷效果,分析了微生物耦合硫铁复合填料反硝化脱氮同步实现除磷的机制.结果表

  19. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  20. A dual-mode phase-shift modulation control scheme for voltage multiplier based X-ray power supply

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, S [School of Electrical and Electronics Engineering, University Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Besar, R; Venkataseshaiah, C, E-mail: shahidsidu@hotmail.co [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2010-05-15

    This paper proposes a dual-mode phase-shift modulation control scheme for series resonant inverter fed voltage multiplier (VM) based X-ray power supply. In this control scheme the outputs voltage of two parallel connected series resonant inverters are mixed before supplying to VM circuit. The output voltage of the power supply is controlled by varying the phase-shift between the output voltages of two inverters. In order to achieve quick rise of output voltage, the power supply is started with zero phase-shift and as the output voltage reaches 90% of the target voltage, the phase-shift is increased to a value which corresponds to target output voltage to prevent overshoot. The proposed control scheme has been shown to have good performance. Experimental results based on the scaled-down laboratory prototype are presented to validate the effectiveness of proposed dual-mode phase shift modulation control scheme.

  1. Explicit Construction of Self-Dual Integral Normal Bases for the Square-Root of the Inverse Different

    CERN Document Server

    Pickett, Erik Jarl

    2010-01-01

    Let $K$ be a finite extension of $\\Q_p$, let $L/K$ be a finite abelian Galois extension of odd degree and let $\\bo_L$ be the valuation ring of $L$. We define $A_{L/K}$ to be the unique fractional $\\bo_L$-ideal with square equal to the inverse different of $L/K$. For $p$ an odd prime and $L/\\Q_p$ contained in certain cyclotomic extensions, Erez has described integral normal bases for $A_{L/\\Q_p}$ that are self-dual with respect to the trace form. Assuming $K/\\Q_p$ to be unramified we generate odd abelian weakly ramified extensions of $K$ using Lubin-Tate formal groups. We then use Dwork's exponential power series to explicitly construct self-dual integral normal bases for the square-root of the inverse different in these extensions.

  2. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  3. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De

    2009-01-01

    BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...

  4. Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre

    Science.gov (United States)

    Stajanca, P.; Bugar, I.

    2016-11-01

    In this paper, we present a systematic numerical study of a novel ultrafast nonlinear switching concept based on soliton self-trapping in dual-core (DC) photonic crystal fibre (PCF). The geometrical parameters of highly-nonlinear (HN) DC microstructure are optimized with regard to desired linear and nonlinear propagation characteristics. The comparable magnitude of fibre coupling length and soliton period is identified as a key condition for presented switching concept. The optimized DC PCF design is subjected to detailed nonlinear numerical study. Complex temporal-spectral-spatial transformations of 100 fs hyperbolic secant pulse at 1550 nm in the DC PCF are studied numerically employing a model based on coupled generalized nonlinear Schrödinger equations solved by a split-step Fourier method. For the optimized DC structure, mutual interplay of solitonic and coupling processes gives rise to nonlinear switching of self-trapped soliton. The output channel (fibre core) for the generated soliton can be controlled via the input pulse energy. For vertical polarization, the optimal soliton switching with extinction ratio contrast of 32.4 dB at 10.75 mm propagation distance is achieved. Even better switching contrast of 34.8 dB can be achieved for horizontal polarization at optimal propagation distance of 10.25 mm. Besides energy-controlled soliton self-trapping switching, the fibre supports also nonlinear polarization switching with soliton switching contrast as high as 37.4 dB. The proposed fibre holds a high application potential allowing efficient ultrafast switching of sub-nanojoule pulses at over-Tb/s data rates requiring only about 1 cm fibre length.

  5. Curing Behavior and Viscoelasticity of Dual-Curable Adhesives Based on High-Reactivity Azo Initiator

    Science.gov (United States)

    Lee, Jong-Gyu; Shim, Gyu-Seong; Park, Ji-Won; Kim, Hyun-Joong; Moon, Sang-Eun; Kim, Young-Kwan; No, Dong-Hun; Kim, Jong-Hwan; Han, Kwan-Young

    2016-07-01

    We have investigated the curing behavior of dual-curable acrylic resin to solve problems associated with curing of adhesives in shaded areas during display manufacture. A low-temperature curing-type thermal initiator, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), with a 30°C half-life decomposition temperature was used in the investigation. Dual-curable adhesives were prepared according to the thermal initiator content and ultraviolet (UV) radiation dose. The effects of thermal initiator and UV irradiation on the curing behavior and viscoelasticity were investigated. Using Fourier-transform infrared spectroscopy and gel-fraction analysis, an evaluation was carried out to determine the degree of curing after dual UV/thermal curing. In addition, the real-time curing behavior was evaluated using thermogravimetric analysis, differential scanning calorimetry, and a UV/advanced rheometric expansion system. A lift-off test was carried out to verify the effects of dual curing on adhesion performance. Application of UV irradiation before thermal curing suppressed the thermal curing efficiency. Also, the network structure formed after dual curing with low UV dose showed higher crosslinking density. Therefore, the thermal initiator radical effectively influenced uncured areas with low curing temperature and initiator content without causing problems in UV-curable zones.

  6. Detection of dual-band infrared small target based on joint dynamic sparse representation

    Science.gov (United States)

    Zhou, Jinwei; Li, Jicheng; Shi, Zhiguang; Lu, Xiaowei; Ren, Dongwei

    2015-10-01

    Infrared small target detection is a crucial and yet still is a difficult issue in aeronautic and astronautic applications. Sparse representation is an important mathematic tool and has been used extensively in image processing in recent years. Joint sparse representation is applied in dual-band infrared dim target detection in this paper. Firstly, according to the characters of dim targets in dual-band infrared images, 2-dimension Gaussian intensity model was used to construct target dictionary, then the dictionary was classified into different sub-classes according to different positions of Gaussian function's center point in image block; The fact that dual-band small targets detection can use the same dictionary and the sparsity doesn't lie in atom-level but in sub-class level was utilized, hence the detection of targets in dual-band infrared images was converted to be a joint dynamic sparse representation problem. And the dynamic active sets were used to describe the sparse constraint of coefficients. Two modified sparsity concentration index (SCI) criteria was proposed to evaluate whether targets exist in the images. In experiments, it shows that the proposed algorithm can achieve better detecting performance and dual-band detection is much more robust to noise compared with single-band detection. Moreover, the proposed method can be expanded to multi-spectrum small target detection.

  7. Comparison and Combination of Dual-Energy- and Iterative-Based Metal Artefact Reduction on Hip Prosthesis and Dental Implants.

    Science.gov (United States)

    Bongers, Malte N; Schabel, Christoph; Thomas, Christoph; Raupach, Rainer; Notohamiprodjo, Mike; Nikolaou, Konstantin; Bamberg, Fabian

    2015-01-01

    To compare and combine dual-energy based and iterative metal artefact reduction on hip prosthesis and dental implants in CT. A total of 46 patients (women:50%,mean age:63±15years) with dental implants or hip prostheses (n = 30/20) were included and examined with a second-generation Dual Source Scanner. 120kV equivalent mixed-images were derived from reconstructions of the 100/Sn140kV source images using no metal artefact reduction (NOMAR) and iterative metal artefact reduction (IMAR). We then generated monoenergetic extrapolations at 130keV from source images without IMAR (DEMAR) or from source images with IMAR, (IMAR+DEMAR). The degree of metal artefact was quantified for NOMAR, IMAR, DEMAR and IMAR+DEMAR using a Fourier-based method and subjectively rated on a five point Likert scale by two independent readers. In subjects with hip prosthesis, DEMAR and IMAR resulted in significantly reduced artefacts compared to standard reconstructions (33% vs. 56%; for DEMAR and IMAR; respectively, pdental implants only IMAR showed a significant reduction of artefacts whereas DEMAR did not (71%, vs. 8% pprosthesis: 47%, dental implants 18%; both pdental implants, compared to a dual energy based method. The combination of DE-source images with IMAR and subsequent monoenergetic extrapolation provides an incremental benefit compared to both single methods.

  8. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  9. Microstructure and Mechanical Properties of 6063 Aluminum Alloy Brazed Joints with Al-Si-Cu-Ni-RE Filler Metal

    Science.gov (United States)

    Zhang, Guowei; Bao, Yefeng; Jiang, Yongfeng; Zhu, Hong

    2011-11-01

    A new low melting point filler metal, Al-Si-Cu-Ni-RE, was developed for the furnace brazing of aluminum alloy 6063. Flux-assisted brazing was conducted at 560 °C using the new filler metal and AlF3-CsF-KF flux. Microstructure of the brazed joints were studied by means of SEM, TEM, and EDS. Shear strength and micro-Vickers hardness of joints had been tested. Results show that sound joints could be obtained with the filler metal and the flux. Microstructure characterization of the brazed joint shows dendritic CuAl2 phase was distributed evenly and Si-phase was spheroidized and refined, which was embedded in CuAl2 dendrites with modification of rare-earth element. Shear strength test results show that the joints with Al-Si-Cu-Ni-RE filler metal achieved average shear strength of 62.5 MPa, 14.5% more than the shear strength of brazed joints with Chinese HL401 filler metal. The micro-Vickers hardness of joint after T6 treatment is about 83 HV. The hardness of the joints after just brazing and after solution treatment was higher than the hardness of the base metal.

  10. An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique

    Science.gov (United States)

    Zhang, Rui; Xin, Binjie

    2016-08-01

    Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.

  11. Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal

    Institute of Scientific and Technical Information of China (English)

    J. Cao; L.X. Zhang; H.Q. Wang; L.Z. Wu; C. Feng

    2011-01-01

    The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of Ag content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag-Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of Ag content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.

  12. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase.

    Science.gov (United States)

    Jeong, Myeong Seon; Kim, Eunha; Kang, Hyo Jin; Choi, Eun Joung; Cho, Alvin R; Chung, Sang J; Park, Seung Bum

    2012-07-04

    We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).

  13. Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.

    Science.gov (United States)

    Zong, Chenghua; Ai, Kelong; Zhang, Guo; Li, Hongwei; Lu, Lehui

    2011-04-15

    An effective dual-emission fluorescent silica nanoparticle-based probe has been constructed for rapid and ultrasensitive detection of Cu(2+). In this nanoprobe, a dye-doped silica core served as a reference signal, thus providing a built-in correction for environmental effects. A response dye was covalently grafted on the surface of the silica nanoparticles through a chelating reagent for Cu(2+). The fluorescence of the response dye could be selectively quenched in the presence of Cu(2+), accompanied by a visual orange-to-green color switch of the nanoprobe. The nanoprobe provided an effective platform for reliable detection of Cu(2+) with a detection limit as low as 10 nM, which is nearly 2 × 10(3) times lower than the maximum level (∼20 μM) of Cu(2+) in drinking water permitted by the U.S. Environmental Protection Agency (EPA). The high sensitivity was attributed to the strong chelation of Cu(2+) with polyethyleneimine (PEI) and a signal amplification effect. The nanoprobe constructed by this method was very stable, enabling the rapid detection of Cu(2+) in real water samples. Good linear correlations were obtained over the concentration range from 1 × 10(-7) to 8 × 10(-7) (R(2) = 0.99) with recoveries of 103.8-99.14% and 95.5-95.14% for industrial wastewater and lake water, respectively. Additionally, the long-wavelength emission of the response dye can avoid the interference of the autofluorescence of the biosystems, which facilitated their applications in monitoring Cu(2+) in cells. Furthermore, the nanoprobe showed a good reversibility; the fluorescence can be switched "off" and "on" by an addition of Cu(2+) and EDTA, respectively. © 2011 American Chemical Society

  14. Seismic signal analysis based on the dual-tree complex wavelet packet transform

    Institute of Scientific and Technical Information of China (English)

    谢周敏; 王恩福; 张国宏; 赵国存; 陈旭庚

    2004-01-01

    We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex waveletpacket transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuouswavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better "focalizing" function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algorithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, thedual-tree CWPT is a very efecfive method in analyzing seismic signals with non-linear phase.

  15. Use of Cellulose-Containing Fillers in Composites with Polypropylene

    Directory of Open Access Journals (Sweden)

    Marianna LAKA

    2011-07-01

    Full Text Available The composites, containing recycled polypropylene and fillers, obtained from different lignocellulosics by the thermocatalytic destruction method, were investigated. Birch sawdust, newsprint wastes, cotton residues and wood bleached sulphate pulp were used as raw materials for obtaining fillers. The indices of mechanical properties (tensile strength, modulus of elasticity, deformation at break, shear modulus, toughness, twisting moment of the composites' samples were determined. It has been found that the obtained composites have relatively good mechanical properties. Better results were obtained, using fillers from sawdust and wood pulp. After treating the fillers with rapeseed oil, their water vapour sorption and water retention value (WRV decreased. In this case, the strength of the composites was higher.http://dx.doi.org/10.5755/j01.ms.17.2.484

  16. Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect

    Science.gov (United States)

    Liu, Yang; Zhang, Ying Qiao; Jin, Xing Ri; Zhang, Shou; Lee, Young Pak

    2016-07-01

    We present a scheme for realizing a narrow-dual-band perfect absorber based on the plasmonic analogy of the electromagnetically induced reflection (EIR)-like effect. In our scheme, two short gold bars are excited strongly by incident plane wave serving as the bright mode. The middle gold bar is excited by two short gold bars. Due to the strong hybridization between the two short gold bars and the middle gold bar, two absorption peaks occur. The corresponding absorption rates are both over 99%. The quality factors of the two absorption peaks are 41.76 (198.47 THz) and 71.42 (207.79 THz), respectively, and the narrow-distance of the two absorption peaks is 9.32 THz. Therefore, they are narrow enough for the absorber to be a filter and a dual-band plasmonic sensor.

  17. Teaching dual-process diagnostic reasoning to doctor of nursing practice students: problem-based learning and the illness script.

    Science.gov (United States)

    Durham, Catherine O; Fowler, Terri; Kennedy, Sally

    2014-11-01

    Accelerating the development of diagnostic reasoning skills for nurse practitioner students is high on the wish list of many faculty. The purpose of this article is to describe how the teaching strategy of problem-based learning (PBL) that drills the hypothetico-deductive or analytic reasoning process when combined with an assignment that fosters pattern recognition (a nonanalytic process) teaches and reinforces the dual process of diagnostic reasoning. In an online Doctor of Nursing Practice program, four PBL cases that start with the same symptom unfold over 2 weeks. These four cases follow different paths as they unfold leading to different diagnoses. Culminating each PBL case, a unique assignment called an illness script was developed to foster the development of pattern recognition. When combined with hypothetico-deductive reasoning drilled during the PBL case, students experience the dual process approach to diagnostic reasoning used by clinicians.

  18. Single- and dual-wavelength switchable erbium-doped fiber ring laser based on intracavity polarization selective tilted fiber gratings.

    Science.gov (United States)

    Mou, Chengbo; Saffari, Pouneh; Fu, Hongyan; Zhou, Kaiming; Zhang, Lin; Bennion, Ian

    2009-06-20

    We propose and demonstrate a single- and dual-wavelength switchable erbium-doped fiber laser (EDFL) by utilizing intracavity polarization selective filters based on tilted fiber gratings (TFGs). In the cavity, one 45 degrees TFG functions as an in-fiber polarizer and the other 77 degrees TFG is used as a fiber polarization dependent loss (PDL) filter. The combined polarization effect from these two TFGs enables the laser to switch between the single- and the dual-wavelength operation with a single-polarization state at room temperature. The laser output at each wavelength shows an optical signal-to-noise ratio (OSNR) of >60 dB, a side mode suppression ratio (SMSR) of >50 dB, and a polarization extinction ratio of approximately 35 dB. The proposed EDFL can give stable output under laboratory conditions.

  19. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell

    Science.gov (United States)

    Kiss, István Z.; Munjal, Neil; Martin, R. Scott

    2009-01-01

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied. PMID:20160883

  20. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell.

    Science.gov (United States)

    Kiss, István Z; Munjal, Neil; Martin, R Scott

    2009-12-30

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied.

  1. Color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2017-06-01

    Full Text Available This paper puts forward a new color multi-focus image fusion algorithm based on fuzzy theory and dual-tree complex wavelet transform for the purpose of removing uncertainty when choosing sub-band coefficients in the smooth regions. Luminance component is the weighted average of the three color channels in the IHS color space and it is not sensitive to noise. According to the characteristics, luminance component was chosen as the measurement to calculate the focus degree. After separating the luminance component and spectrum component, Fisher classification and fuzzy theory were chosen as the fusion rules to conduct the choice of the coefficients after the dual-tree complex wavelet transform. So fusion color image could keep the natural color information as much as possible. This method could solve the problem of color distortion in the traditional algorithms. According to the simulation results, the proposed algorithm obtained better visual effects and objective quantitative indicators.

  2. High dynamic range microwave photonic down-conversion based on dual-parallel Mach-Zehnder modulator

    Science.gov (United States)

    Li, Hongli; Wang, Yunxin; Wang, Dayong; Rong, Lu; Jia, Yupeng; Li, Jingnan; Zhong, Xin; Yang, Dengcai; Zhou, Tao

    2016-10-01

    In order to enhance conversion efficiency and spurious free dynamic range of microwave photonic link, we present a microwave photonic down-conversion system based on an integrated dual-parallel Mach Zehnder modulator (DPMZM) and microwave photonic filter. The principle of frequency down conversion is analyzed. We demonstrate the conversion efficiency of system through theoretical derivation and simulation. The performance of the microwave photonic link is tested experimentally. It is found that the spurious free dynamic range of the proposed method is up to 102.5dB/Hz2/3 and the conversion efficiency is up to -22.01dB. The integrated dual-parallel Mach-Zehnder modulator link can serve as a good alternative to improve the conversion efficiency and spurious free dynamic range.

  3. ICP-AES法测定钴基合金及钴基钎料中La,Ce,Pr,Nd,Gd元素含量%Determination of La,Ce,Pr,Nd,Gd in Co-Based Filler Metals and Co-Based Alloy by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    高颂; 庞晓辉; 房丽娜; 张艳

    2011-01-01

    研究了钴基合金及钴基钎料样品溶解方法,采用盐酸、硝酸、氢氟酸溶解样品;选择待测元素灵敏度高、光谱干扰少的谱线为分析线,校准曲线溶液采用基体匹配消除了基体效应影响,实现了用电感耦合等离子体原子发射光谱法测定钴基合金及钴基钎料中La,Ce,Pr,Nd,Cd元素含量.并行了加入回收实验,回收率95%~110%,相对标准偏差小于4.86%.%A method for determination of La,Ce,Pr,Nd,Gd elements in Co-Based Filler Metals and Co-Based alloy by ICP-AES was proposed. The experiment of instrument parameters, sample dissolution, selection of analysis lines, the effect of matrix and coexist elements on the determination and the analysis results were carried out. The recovery rate is from 95% to 110% , the RSD are less than 4.86%.

  4. Natural Rubber-Filler Interactions: What Are the Parameters?

    Science.gov (United States)

    Chan, Alan Jenkin; Steenkeste, Karine; Canette, Alexis; Eloy, Marie; Brosson, Damien; Gaboriaud, Fabien; Fontaine-Aupart, Marie-Pierre

    2015-11-17

    Reinforcement of a polymer matrix through the incorporation of nanoparticles (fillers) is a common industrial practice that greatly enhances the mechanical properties of the composite material. The origin of such mechanical reinforcement has been linked to the interaction between the polymer and filler as well as the homogeneous dispersion of the filler within the polymer matrix. In natural rubber (NR) technology, knowledge of the conditions necessary to achieve more efficient NR-filler interactions is improving continuously. This study explores the important physicochemical parameters required to achieve NR-filler interactions under dilute aqueous conditions by varying both the properties of the filler (size, composition, surface activity, concentration) and the aqueous solution (ionic strength, ion valency). By combining fluorescence and electron microscopy methods, we show that NR and silica interact only in the presence of ions and that heteroaggregation is favored more than homoaggregation of silica-silica or NR-NR. The interaction kinetics increases with the ion valence, whereas the morphology of the heteroaggregates depends on the size of silica and the volume percent ratio (dry silica/dry NR). We observe dendritic structures using silica with a diameter (d) of 100 nm at a ∼20-50 vol % ratio, whereas we obtain raspberry-like structures using silica with d = 30 nm particles. We observe that in liquid the interaction is controlled by the hydrophilic bioshell, in contrast to dried conditions, where hydrophobic polymer dominates the interaction of NR with the fillers. A good correlation between the nanoscopic aggregation behavior and the macroscopic aggregation dynamics of the particles was observed. These results provide insight into improving the reinforcement of a polymer matrix using NR-filler films.

  5. Influence of silanization and filler fraction on aged dental composites.

    Science.gov (United States)

    Lin, C T; Lee, S Y; Keh, E S; Dong, D R; Huang, H M; Shih, Y H

    2000-11-01

    The effect of silanization and filler fraction on the mechanical properties of aged dental composites was investigated. Experimental composites (75/25 Bis-GMA/TEGDMA resin reinforced with 0, 12.6, 30.0, and 56.5 vol% 8 microm silanized/unsilanized BaSiO6) were fabricated into 4.7 mm diameter x 2.2 mm thick discs and 3.5 mm diameter x 7.3 mm thick discs for diametral tensile and compressive tests, respectively. The effect of immersion in 75% ethanol at 37 degrees C for 0-30 days on the diametral tensile strength (DTS) and compressive strength (CS) of the samples was evaluated and analysed by ANOVA and Tukey LSD test. The fracture interface between filler and resin matrix was then examined by scanning electron microscope. Results and subsequent statistical evidence from DTS (18.6+/-7.6 MPa, silanized versus 11.7+/-2.6 MPa, unsilanized) and CS (85.1+/-29.7 MPa, silanized versus 56.0+/-11.3 MPa, unsilanized) strongly implies that silanization may greatly enhance the mechanical properties of the resin composites. Furthermore, it also shows that both DTS and CS increased proportionally as the filler fraction of the composites increased. However, in the unsilanized groups, DTS decreased (up to 40%) as the filler fraction increased, and CS showed no relevance to the filler fraction at all. As for the influence of aging, it was found that both DTS and CS showed a significant decrease after immersion in 75% ethanol, and silanization heavily correlated with the filler fraction of aged-resin composites. Microscopic examination of the fractured samples showed that failure primarily occurred within the resin matrix per se for silanized composites and adjacent to the filler particles for unsilanized composites. All the evidence points to the conclusion that mechanical properties of aged-resin composites can be greatly influenced by silanization and the filler fraction.

  6. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek [Research Institute for Basic Science, Sogang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Chung, Yong-Ho; Yoon, Jinho [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development.

  7. Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al Si La Sr filler

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fei; Wang, Chun Ming; Wang, Ya Jun [Huazhong Univ. of Science and Technology, Wuhan (China); Xu, Dao Rong; Wu, S.C.; Sun, Qin De [Heifei Univ. of Technology, Hefei (China)

    2012-12-15

    It has been mainly studied in this paper on brazing of Cu to Al using Al.Si filler metal. The optimized scanning rate of 2.5 mm/s is first obtained through simulating the temperature field of Cu Al brazing process based on ANSYS software. Then the brazing of Cu C11000 to Al 3003 using Al.Si.La.Sr filler is carried out by torch brazing technology. It is found that the brazing seam region is mainly consisted of {alpha} Al solid solution and CuAl2 IMC. Further experimental results also show that the rare earth element La in filler metal can not only refine the grain, but also promote the dispersion of intermetallic compounds into the brazing seam, which significantly improves the brazing seam microstructure and mechanical properties of the joints.

  8. Transparent Gap Filler Solution over a DVB-RCS2 Satellite Platform in a Railway Scenario: Performance Evaluation Study

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2015-01-01

    Full Text Available In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path.

  9. Laser Brazing of Aluminum with a New Filler Wire AlZn13Si10Cu4

    Science.gov (United States)

    Tang, Z.; Seefeld, T.; Vollertsen, F.

    Laser brazing processes of aluminum with both single beam and double beam techniques were developed using a new AlZn13Si10Cu4 filler wire which has a lower solidification range comparing to normal AlSi12 filler wire and the base material. Brazing experiments on both bead on plate and flange joints showed that the new wire has a very good wettability on the aluminum samples. Comparing to the AlSi12 wire one needs a lower heat input (in some cases 73% less heat input) for joining the same samples with the new filler wire and reaches a high hardness value in the joint. In addition, brazing with double beam technique showed its potential to increase the joint quality.

  10. Mechanical and Morphological Properties of Nano Filler Polyester Composites

    Directory of Open Access Journals (Sweden)

    Bonnia Noor Najmi

    2016-01-01

    Full Text Available This research is focusing on mechanical and morphological properties of unsaturated polyester (UP reinforced with two different types of filler which is nano size clay Cloisite 30B (C30B and Carbon Black (CB. Samples were fabricated via hand lay-up and open molding technique. Percentages of Cloisite 30B & Carbon Black (CB used vary from 0, 2, 4, 6, 8 and 10 wt%. The mechanical properties were evaluated by impact, flexural and hardness testing. Result shows that the mechanical strength of C30B was better compare to CB filled composite. The combination of UP with C30B helps to improve the properties due to the high surface area of nanosize filler in the matrix. The result shows that increasing of filler content had increased mechanical properties of composites. Optimum percentage represent good mechanical properties are 4% for both fillers. SEM images showed that rough surface image indicate to agglomeration of filler in the matrix for CB sample and smooth surface image on C30B sample indicate to homogenous blending between filler and matrix polyester. SEM images proved that mechanical properties result indicate that C30B polyester composite is a good reinforcement compare to CB polyester composite.

  11. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  12. Evaluation of Hydrated Lime Filler in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Mohammed Abbas Hasan Al-Jumaily

    2008-01-01

    Full Text Available Mineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction of surface course pavement in Iraq in accordance with SCRB specifications was used .The materials used in this study included mineral aggregate materials (coarse and fine sizes were originally obtained from Najaf Sea quarries and two grades of asphalt cements produced from Daurah refinery which are D47 and D66 . The physical properties , stiffness modulus and chemical composition are evaluated for the recovered asphalt cement from prepared asphalt mixes containing various filler types .The paper results indicated that the addition of hydrated lime as mineral filler improved the permanent deformation characteristics and fatigue life and the use of hydrated lime will decrease the moisture susceptibility of the asphalt mixtures.

  13. METHOD BASED ON DUAL-QUADRATIC PROGRAMMING FOR FRAME STRUCTURAL OPTIMIZATION WITH LARGE SCALE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The optimality criteria (OC) method and mathematical programming (MP)were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.

  14. Analysis and design of DSP-based dual-loop controlled UPS inverters

    Institute of Scientific and Technical Information of China (English)

    吴燮华; 言超

    2003-01-01

    This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.

  15. Generic primal-dual interior point methods based on a new kernel function

    NARCIS (Netherlands)

    EL Ghami, M.; Roos, C.

    2008-01-01

    In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the c

  16. Reliable dual tensor model estimation in single and crossing fibers based on jeffreys prior

    NARCIS (Netherlands)

    J. Yang (Jianfei); D.H.J. Poot; M.W.A. Caan (Matthan); Su, T. (Tanja); C.B. Majoie (Charles); L.J. van Vliet (Lucas); F. Vos (Frans)

    2016-01-01

    textabstractPurpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD).

  17. Analysis and design of DSP-based dual-loop controlled UPS inverters

    Institute of Scientific and Technical Information of China (English)

    吴燮华; 言超

    2003-01-01

    This paper presents a novel digital dual-loop control scheme of the PWM(Pulse width modulate) inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.

  18. Students with Dual Diagnosis: Can School-Based Mental Health Services Play a Role?

    Science.gov (United States)

    Lambros, Katina; Kraemer, Bonnie; Wager, James Derek; Culver, Shirley; Angulo, Aidee; Saragosa, Marie

    2016-01-01

    This article describes and investigates initial findings from the Esperanza Mental Health Services (EMHS) Program, which is an intensive outpatient program that provides individual and group mental health services for students with "dual diagnosis" or developmental disabilities and co-occurring mental health problems. Previous research…

  19. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests.

  20. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    Science.gov (United States)

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.