WorldWideScience

Sample records for dual filler based

  1. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  2. Development of compatibilized SBR and EPR nanocomposites containing dual filler system

    International Nuclear Information System (INIS)

    Rajasekar, R.; Nayak, G.C.; Malas, A.; Das, C.K.

    2012-01-01

    Highlights: ► Nanoclay is dispersed in non-polar rubbers by utilizing a polar compatibilizer. ► Effect of dual fillers [nanoclay and carbon black] on the rubber properties. ► Comparison of the results of single and dual filler containing rubber compounds. -- Abstract: The study described in this paper is an analysis of the role of a compatibilizer for dispersing organically modified nanoclay in styrene butadiene rubber (SBR) and ethylene propylene rubber (EPR) matrices. The normal mixing of non-polar rubbers and organically modified nanoclay may not lead to improved distribution of the nanofiller in the rubbery matrix. Hence, a polar rubber such as epoxidized natural rubber (ENR) can be used as a compatibilizer for dispersing nanoclay in the non-polar rubber matrices. ENR–organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay used in this study is Cloisite 20A. The obtained ENR–nanoclay composites were incorporated in SBR and EPR matrices along with carbon black. The morphological studies proved the intercalation of nanoclay platelets in ENR and further incorporation of EC in SBR and EPR matrices leads to partial exfoliation of nanoclay platelets. A curing study demonstrated faster scorch time, cure time and increased maximum torque for the compatibilized SBR and EPR nanocomposites containing a dual filler system compared to the control. Dynamic mechanical thermal analysis showed increase in storage modulus for the SBR and EPR compounds containing dual fillers compared to rubber compounds containing pure and single filler. The same compounds show substantial improvement in mechanical properties. The tensile fractured surface of the rubber compounds containing single and dual filler observed by scanning electron microscopy, (SEM) showed highly rough and irregular fracture paths, which proved the physical interaction between filler and rubber.

  3. Mechanical properties and dual atmosphere tolerance of Ag-Al based braze

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yong; Choi, Jung-Pyung; Scott Weil, K. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2008-07-15

    In this paper, the effects of aluminum on the microstructure, mechanical properties, and high temperature dual atmosphere tolerance of silver and silver-copper oxide filler metals were investigated. It was found that joints brazed with binary Ag-Al braze foils containing more than 2 at% Al retained a metallic form of aluminum within the metallic braze filler matrix after brazing at 1000 C in air. The bend strengths of these joints decreased with increasing aluminum content due to the formation of interfacial aluminum oxide. However, the existence of metallic aluminum in the braze filler matrix appeared to enhance the high-temperature dual atmosphere tolerance of the silver-based braze filler, which displayed measurably less porosity after 1000h of exposure at 800 C in a dual reducing/oxidizing atmosphere environment than unalloyed silver. A series of binary and ternary braze pastes based on the Ag-Al(-Cu) system were also formulated as potential pSOFC (planar solid oxide fuel cell) sealants. Model alumina joints brazed with these pastes exhibited an increase in bend strength with increasing copper content. However, unlike the binary Ag-Al filler metals, the ternary compositions often retained no protective metallic aluminum after brazing. Thus, while the addition of copper improves filler metal wettability and, therefore, joint strength in the Ag-Al alloys, it appears to reduce the dual atmosphere tolerance of these filler metals. (author)

  4. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    Science.gov (United States)

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  5. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  6. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available The use of bio-based fillers as alternative replacement for synthetic fillers has been dictated by increasing ecological concerns as well as depleting petroleum resources. The other aspect is a growing need for eco-friendly, renewable...

  7. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  8. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  9. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  10. Wrinkle Fillers

    Science.gov (United States)

    ... your health care provider about their training and experience injecting dermal fillers in the face. Do not inject yourself with dermal fillers. Do not purchase dermal filler products online, because they could be ...

  11. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    Science.gov (United States)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  12. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers

    Science.gov (United States)

    Buczyński, Przemyslaw; Iwański, Marek

    2017-10-01

    The article presents the results of a cold recycled mix test with a foam bitumen including the addition of the inactive mineral filler as a dust of basalt. Basalt dust was derived from dedusting system by extraction of aggregates in the mine. Assessment of the impact of a basalt dust on the properties of a recycled base layer was carried out in terms of the amount of mineral filler (basalt) in the composition of the mineral mixture. This experiment involved a dosing of mineral filler in range from 5 to 20% with steps of 7.5% in the mineral mixture composition. The foamed bitumen was performed at optimum foaming process settings (ie. bitumen temperature, air pressure) and at 2.5% of the water content. The amount of a hydraulic binder as a Portland cement was 2.0%. The evaluation of rheological properties allowed to determine whether the addition of inactive mineral fillers can act as a stiffness modulus controller in the recycled base layer. The analysis of the rheological properties of a recycled base layer in terms of the amount of inactive fillers was performed in accordance with given standard EN 12697-26 Annex D. The study was carried out according to the direct tension-compression test methodology on cylindrical samples. The sample was subjected to the oscillatory sinusoidal strain ε0 < 25με. Studies carried out at a specific temperature set-points: - 7°C, 5°C, 13°C, 25°C and 40°C and at the frequency 0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and 20 Hz. The obtained results allow to conclude that the use of an inactive filler can reduce the stiffness of an appropriate designed mixes of the cold recycled foundation. In addition, the analysis of the relation E‧-E″ showed a similar behaviour of a recycled base, regardless of the amount of inactive fillers in the mix composition, at high temperatures/high frequency of induced load.

  13. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  14. Sifat filler kayu keruing terhadap vulkanisat karet

    Directory of Open Access Journals (Sweden)

    Herminiwati Herminiwati

    1999-12-01

    Full Text Available The purpose of this research was to investigate the properties of keruing wood filler in their application on vulacanized rubber of shoes soles. To know its suitability for rubber goods filler, the properties of keruing wood filler was investigated by comparing with carbon black N330. Keruing wood filler were made by carbonization process at temperature 450oC for one hour and activation process with NaCl 4% for twenty four hours, followed by pyrolisis at temperature 500oC for one hour. Filler were milled and sieved by 400 mesh siefter. The standard compound formula was prepared base on ASTM D 3192 with various filler level of keruing wood filler, carbon black N330 either separately formulated of combination. The research showed that using keruing wood filler in the amount of 30-70 phr could meet 75% the requirements of SNI. 12-0172-1987 : Canvas shoes for general purpose, where as carbon black N330 in the amount of 30-70 phr could meet 87,5% the requirements of SNI. 12-0172-1987. Combination of keruing wood filler and carbon black showed that keruing wood filler could substitute 25-57 phr of carbon black.

  15. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  16. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    International Nuclear Information System (INIS)

    Machovsky, Michal; Kuritka, Ivo; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-01-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites

  17. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Roes, A. L., E-mail: a.l.roes@uu.nl; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K. [Utrecht University, Copernicus Institute, Department of Science, Technology and Society (Netherlands)

    2010-08-15

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the 'functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  18. The effect of chemical composition and granulation of Fe - based fillers on properties of metal resinous composite

    International Nuclear Information System (INIS)

    Janecki, J.; Dasiewicz, J.; Pawelec, Z.

    2000-01-01

    In this paper the authors present metal-resinous composites with Fe based fillers of various element constitution and granulation. The analysis of influence of filler type on coefficient of linear thermal expansion of composite materials was performed. Friction and wear tests (composite-bronze and composite-steel pairs) were carried out. It was stated that the thinner granulation of main filler has a positive effect on coefficient of linear thermal expansion and friction/wear characteristics. The presence of copper, nickel and molybdenum in the filler is beneficial for some properties of the composite. (author)

  19. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  20. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    Science.gov (United States)

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-02-02

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Mechanical and electrical properties of a polyester resin reinforced with clay-based fillers

    Energy Technology Data Exchange (ETDEWEB)

    Buncianu, Dorel; Jadaneant, Mihai [UPT Timisoara, Timisoara (Romania); Tessier-Doyen, Nicolas; Absi, Joseph [Centre Européen de la Céramique, Limoges Cedex (France); Courreges, Fabien [Laboratoire XLIM, 123, Limoges Cedex (France)

    2017-03-15

    In this study, composite polymer-based materials were fabricated, in which a significant proportion of polyester resin was substituted by low-cost and environmentally-friendly clay-based raw materials. The main objective is to improve mechanical properties while maintaining a reasonable electrical insulating behavior. A homogenized distribution of fillers within the matrix compatible with the processing parameters was obtained up to a maximum added fraction of 20 vol%. Mechanical characterization using uniaxial traction tests and Charpy impact pendulum machine showed that stress-to-rupture can be enhanced of approximately 25 %. In addition, fracture energy was doubled for the best formulation. Dielectric constant was decreased and loss factor was slightly increased when electrical resistivity remained almost constant. In general, the composite materials with metakaolin fillers exhibited higher mechanical properties and greater electrical insulating behavior. Microstructural observation showed the presence of decohesive agglomerates of particles at the interface with the matrix. The mechanical properties were found to be more sensitive than electrical properties to the homogeneity of filler dispersion in the matrix.

  2. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  3. The development of argon arc brazing with Cu-based filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Sun Zhenchao; Li Pengyuan; Pan Chuanjie; Hou Binglin; Han Shilei; Pei Yinyin; Long Weimin

    2012-01-01

    Thermal anchor is the key component of ITER magnet supports to maintain the low temperature for the nor mal operation of superconducting coils. During the advanced research of ITER thermal anchor attachment, dozens of brazing filler and several kinds of brazing technique have been developed and investigated. The test result shows that Cu-based alloy have the preferable mechanical properties at both room temperature and liquid nitrogen temperatures (77 K) for high brazing temperature. And it has a good weldability to 316LN. The brazing temperature of Cu-based filler is over 1000℃, but heat input is relatively low for shallower heating depth of argon arc brazing. Lower heat input is good for the control of brazing deformation. It is no need to clean after brazing because for argon arc brazing there is no bra- zing flux used. Arc brazing with Cu-based filler was chosen as the principal method for the attachment of thermal anchor. (authors)

  4. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-04-01

    Full Text Available In this study, epoxy molding compounds (EMCs with aluminosilicate (AlS and aluminum oxide (AlO were fabricated as fillers by a twin-screw-extruder (TSE and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM. Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

  5. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  6. The development of brazing filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Lee, P.Y.; Sun, Z.C.; Pan, C.J.; Hou, B.L.; Han, S.L.; Pei, Y.Y.; Long, W.M.

    2011-01-01

    Magnet supports is one of the key components to sustain the ITER superconductor magnet coils, which operate at several K low temperature. Cooling of the supports is needed for maintaining temperature balance. It is suggested to use brazing connection to attach the thermal anchor to the support which made from SS 316LN plates. In this study, several kinds of brazing filler were developed as candidates, including Sn-Pb brazing filler, Ag-based and Cu-based brazing filler. The test result shows that Ag-based brazing filler has the best weldability with 316LN, but Cu-based alloy shows the best mechanical properties at both room temperature and 77 K. Even though the Sn-Pb alloy shows the lowest strength, it can be easily brazed due to the low brazing temperature. Detail of the brazing filler selection is suggested and discussed in this article.

  7. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  8. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Science.gov (United States)

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  9. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    Science.gov (United States)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  10. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  11. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  12. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  13. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  14. Polymer-filler interactions in polyether based thermoplastic polyureathane/silica nanocomposites

    OpenAIRE

    Heinz, Özge; Heinz, Ozge

    2013-01-01

    Thermoplastic polyurethaneureas (TPU) are a unique class of materials that are used in a broad range of applications due to their tailorable chemistry and morphology that allow engineering materials with targeted properties. The central theme of this dissertation is to develop an understanding on polymer-filler interfacial interactions and related reinforcing mechanism of silica nanoparticles in polyether based TPU/silica nanocomposites. Prior to our investigation on nanocomposite materials, ...

  15. Research progress of composite fillers

    Directory of Open Access Journals (Sweden)

    Yixuan ZHAO

    2015-08-01

    Full Text Available Using composite filler is a very potential way to braze dissimilar material, especially braze metals with ceramics. The composite filler which is added varieties of high temperature alloy, carbon fiber and ceramic particles has a suitable coefficient of thermal expansion. The application of composite filler can release the residual stress caused by mismatch of thermal expansion coefficient in the brazing joints and improve the overall performance significantly. According to the traditional classification method of composite materials, the composite filler is divided into micron-reinforced composite filler and nano-reinforced composite filler, of which the feature and research status are discussed in this text. According to the influence of different size reinforced phases on microstructure and mechanical property of the brazing joints, nano-reinforced composite filler has more uniform and better structure compared with micron-reinforced composite filler, and higher joint strengh can be obtained by using it. However, the reinforced mechanism is still an open question, and will become the key area of the future research work.

  16. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Science.gov (United States)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  17. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  18. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  19. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  20. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone Based Thermoplastic Polyurethane

    Directory of Open Access Journals (Sweden)

    Vitalija BETINGYTĖ

    2012-09-01

    Full Text Available In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3 filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone-based polyurethane (rTPU were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease tensile stress and deformation of rTPU, but improve its mechanical properties at elevated temperatures (up to 65 °C. rTPU melt flow index increases due to chain scission during the recycling and filler mixing with mill. Therefore, destruction temperature of rTPU is 20 °C lower than that of TPU. The CaCO3 does not change shape memory properties independently of filler type and transition from secondary shape to the primary shape at 70 °C temperature is completed within 17 s for both filled and unfilled rTPU. The investigation of hydrolytic degradation shows that CaCO3 only slightly increases degradation rate of rTPU.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2433

  1. The Kinetics of Reversible Hyaluronic Acid Filler Injection Treated With Hyaluronidase.

    Science.gov (United States)

    Juhász, Margit L W; Levin, Melissa K; Marmur, Ellen S

    2017-06-01

    Hyaluronidase is an enzyme capable of dissolution of hyaluronic acid (HA). There is a lack of evidence-based research defining time- and concentration-dependent reversal of HA filler using hyaluronidase. To explore the efficacy of different concentrations of hyaluronidase in digesting commercially available HA-based reversible fillers-Belotero Balance (BEL), Juvederm Ultra XC (JUVXC), Juvederm Ultra Plus (JUVX+), Juvederm Voluma XC (JUVV), Restylane-L (RESL), Restylane Silk (RESS), and Perlane/Restylane Lyft (RESLYFT). This was a blinded randomized study involving 15 participants. Participants received HA filler injection into their back, followed by no secondary injection, or injection with normal saline, 20 or 40 units of hyaluronidase. Using a 5-point palpation scale, the degradation of HA filler was monitored over 14 days. In the authors' study, there is a significant decrease in HA filler degradation using 20 and 40 units of hyaluronidase compared with no secondary injection or normal saline. There is no significant difference in HA filler dissolution when comparing 20 to 40 units of hyaluronidase. Lower concentrations of hyaluronidase may be just as effective as higher concentrations to degrade HA filler in situations where the reversal of cutaneous augmentation with HA filler arises.

  2. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    Science.gov (United States)

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  3. Microstructural and rheological analysis of fillers and asphalt mastics

    International Nuclear Information System (INIS)

    Geber, R; Simon, A; Kocserha, I; Buzimov, A

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics. (paper)

  4. Mechanical properties of epoxy/coconut shell filler particle composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Harimi, M.; Maleque, M.A.

    2003-01-01

    This paper presents the tensile and flexural properties of composites made from coconut shell filler particles and epoxy resin. The tensile and flexural tests of composites based on coconut shell filler particles at three different filler contents viz., 5%, 0% and 15%were carried out using universal tensile testing machine according to ASTM D 3039/D M-95a and ASTM D790-90 tensile respectively and their results were presented. Experimental results showed that tensile and flexural properties of the composites increased with the increase of the filler particle content. The composite materials demonstrate somewhat linear behavior and sharp structure for tensile and slight nonlinear behavior and sharp fracture of flexural testing. The relation between stress and percentage of filler for tensile and flexural tests were found to b linear with correlation factors of 0.9929 and 0.9973 respectively. Concerning the relation between the modulus and percentage of filler for tensile and flexural tests, it was found to be a quadratic relation with the same correlation factor approximated to 1. The same behavior was observed for the strain versus percentage of filler tensile and flexural tests, with the same correlation factor. (author)

  5. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  6. MODIFICATION OF PAPERMAKING GRADE FILLERS: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.

  7. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  8. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  9. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    Science.gov (United States)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  10. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  11. Facial soft-tissue fillers conference: assessing the state of the science.

    Science.gov (United States)

    Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A

    2011-04-01

    : The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.

  12. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  13. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    Science.gov (United States)

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. © 2015 Wiley Periodicals, Inc.

  14. Does filler database size influence identification accuracy?

    Science.gov (United States)

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  16. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  17. The impact of fillers on lineup performance.

    Science.gov (United States)

    Wetmore, Stacy A; McAdoo, Ryan M; Gronlund, Scott D; Neuschatz, Jeffrey S

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629-654, 2003), and explored the impact of the number of fillers (lineup size) and filler quality on simultaneous and sequential lineups (viewing lineups members in sequence), and compared both to showups. In limited situations, we found that filler siphoning can produce a simultaneous lineup performance advantage, but one that is insufficient in magnitude to explain empirical data. However, the magnitude of the empirical simultaneous lineup advantage can be approximated once criterial variability is added to the model. But this modification works by negatively impacting showups rather than promoting more filler siphoning. In sequential lineups, fillers were found to harm performance. Filler siphoning fails to clarify the relationship between simultaneous lineups and sequential lineups or showups. By incorporating constructs like filler siphoning and criterial variability into a computational model, and trying to approximate empirical data, we can sort through explanations of eyewitness decision-making, a prerequisite for policy recommendations.

  18. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  19. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  20. High filler concrete using fly ash : Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  1. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties.

    Science.gov (United States)

    Oral, Onur; Lassila, Lippo V; Kumbuloglu, Ovul; Vallittu, Pekka K

    2014-05-01

    The aim of this study was to investigate the effect of silanization of biostable and bioactive glass fillers in a polymer matrix on some of the physical properties of the composite. The water absorption, solubility, flexural strength, flexural modulus and toughness of different particulate filler composite resins were studied in vitro. Five different specimen groups were analyzed: A glass-free control, a non-silanized bioactive glass, a silanized bioactive glass, a non-silanized biostable glass and a silanized biostable glass groups. All of these five groups were further divided into sub-groups of dry and water-stored materials, both of them containing groups with 3wt%, 6wt%, 9wt% or 12wt% of glass particles (n=8 per group). The silanization of the glass particles was carried out with 2% of gamma-3-methacryloxyproyltrimethoxysilane (MPS). For the water absorption and solubility tests, the test specimens were stored in water for 60 days, and the percentages of weight change were statistically analyzed. Flexural strength, flexural modulus and toughness values were tested with a three-point bending test and statistically analyzed. Higher solubility values were observed in non-silanized glass in proportion to the percentage of glass particles. Silanization, on the other hand, decreased the solubility values of both types of glass particles and polymer. While 12wt% non-silanized bioactive glass specimens showed -0.98wt% solubility, 12wt% silanized biostable glass specimens were observed to have only -0.34wt% solubility. The three-point bending results of the dry specimens showed that flexural strength, toughness and flexural modulus decreased in proportion to the increase of glass fillers. The control group presented the highest results (106.6MPa for flexural strength, 335.7kPA for toughness, 3.23GPa for flexural modulus), whereas for flexural strength and toughness, 12wt% of non-silanized biostable glass filler groups presented the lowest (70.3MPa for flexural strength

  2. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    Science.gov (United States)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  3. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  4. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    International Nuclear Information System (INIS)

    Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Houlton, Robert J.; Chitanvis, Kiran E.; Brown, Geoffrey W.; Hanson, David E.

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  5. Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices

    Directory of Open Access Journals (Sweden)

    Isaac Isarn

    2018-03-01

    Full Text Available In this work, the effect of the addition of boron nitride (BN fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 μm agglomerates, allowed to increase this value until 1.75 W/K·m.

  6. Joint Workplan on Filler Investigations for DPCs.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  7. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  8. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  9. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  10. Standard guidelines for the use of dermal fillers

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2008-03-01

    Full Text Available Currently used fillers vary greatly in their sources, efficacy duration and site of deposition; detailed knowledge of these properties is essential for administering them. Indications for fillers include facial lines (wrinkles, folds, lip enhancement, facial deformities, depressed scars, periocular melanoses, sunken eyes, dermatological diseases-angular cheilitis, scleroderma, AIDS lipoatrophy, earlobe plumping, earring ptosis, hand, neck, dιcolletι rejuvenation. Physicians′ qualifications : Any qualified dermatologist may use fillers after receiving adequate training in the field. This may be obtained either during postgraduation or at any workshop dedicated to the subject of fillers. The physicians should have a thorough knowledge of the anatomy of the area designated to receive an injection of fillers and the aesthetic principles involved. They should also have a thorough knowledge of the chemical nature of the material of the filler, its longevity, injection techniques, and any possible side effects. Facility: Fillers can be administered in the dermatologist′s minor procedure room. Preoperative counseling and informed consent: Detailed counseling with respect to the treatment, desired effects, and longevity of the filler should be discussed with the patient. Patients should be given brochures to study and adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. A consent form should include the type of filler, longevity expected and possible postoperative complications. Preoperative photography should be carried out. Choice of the filler depends on the site, type of defect, results needed, and the physician′s experience. Injection technique and volume depend on the filler and the physician′s preference, as outlined in these guidelines.

  11. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of fillers on the alkali activated chamotte

    Science.gov (United States)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  13. Influence of the filler material on the pitting corrosion in welded duplex stainless

    International Nuclear Information System (INIS)

    Munez, C. J.; Utrilla, M. V.; Urena, A.; Otero, E.

    2007-01-01

    In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi). the microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relationα/γ. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP) and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties. (Author)

  14. Treatment of Soft Tissue Filler Complications: Expert Consensus Recommendations.

    Science.gov (United States)

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Moreno, Antonio; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2018-04-01

    Dermal fillers have been increasingly used in minimally invasive facial esthetic procedures. This widespread use has led to a rise in reports of associated complications. The aim of this expert consensus report is to describe potential adverse events associated with dermal fillers and to provide guidance on their treatment and avoidance. A multidisciplinary group of experts in esthetic treatments convened to discuss the management of the complications associated with dermal fillers use. A search was performed for English, French, and Spanish language articles in MEDLINE, the Cochrane Database, and Google Scholar using the search terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers" AND "Therapy". An initial document was drafted by the Coordinating Committee, and it was reviewed and modified by the experts, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the classification of filler complications according to the time of onset and about the clinical management of different complications including bruising, swelling, edema, infections, lumps and bumps, skin discoloration, and biofilm formation. Special attention was paid to vascular compromise and retinal artery occlusion. Clinicians should be fully aware of the signs and symptoms related to complications and be prepared to confidently treat them. Establishing action protocols for emergencies, with agents readily available in the office, would reduce the severity of adverse outcomes associated with injection of hyaluronic acid fillers in the cosmetic setting. This document seeks to lay down a set of recommendations and to identify key issues that may be useful for clinicians who are starting to use dermal fillers. Additionally, this document provides a better understanding about the diagnoses and management of complications if they do occur. This journal requires that authors assign a level of evidence to each

  15. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    Science.gov (United States)

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  16. Optimizing outcomes with polymethylmethacrylate fillers.

    Science.gov (United States)

    Gold, Michael H; Sadick, Neil S

    2018-03-30

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  17. The effects of fillers on polyurethane resin-based electrical insulators

    Directory of Open Access Journals (Sweden)

    Altafim Ruy Alberto Corrêa

    2003-01-01

    Full Text Available The increasingly widespread use of polymeric insulators in vehicle distributors and transmission systems has led to an ongoing quest for quality and low costs. This quest has, in turn, resulted in improved performance and cost benefits, brought about by the use of new polymeric and composite resins. Occasionally, however, while some properties are improved, others may show a loss of optimal performance. Therefore, to understand the behavior of fillers, such as carbon black, silica and mica added to castor oil-derived polyurethane resins, several thermal, mechanical and electrical tests were conducted on samples and insulators produced specifically for this purpose, using these new materials. The results of these tests clearly demonstrated that this type of resin and its composites can be used to manufacture indoor electrical insulators and that the fillers analyzed in this study improve or maintain the characteristics of the pure resins.

  18. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  19. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    International Nuclear Information System (INIS)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D.; Urban, V.; Kohlbrecher, J.; Straube, E.

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  20. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  1. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  2. Study of piezoelectric filler on the properties of PZT-PVDF composites

    Science.gov (United States)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  3. Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2014-06-01

    Full Text Available Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT and nano-graphite with high shape anisotropy (nanoG were melt blended with poly(1,4-cis-isoprene, as the only fillers or in combination with carbon black (CB, measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve.

  4. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  5. Intraoral approach: A newer technique for filler injection

    Directory of Open Access Journals (Sweden)

    Chytra V Anand

    2010-01-01

    Full Text Available Filler injections are the most common aesthetic procedures used for volume correction. Various techniques have been described in the use of fillers. This article reviews the available literature on a new technique using the intraoral approach for injection of fillers.

  6. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches.

    Science.gov (United States)

    Funt, David; Pavicic, Tatjana

    2015-01-01

    The ever-expanding range of dermal filler products for aesthetic soft tissue augmentation is of benefit for patients and physicians, but as indications and the number of procedures performed increase, the number of complications will likely also increase. To describe potential adverse events associated with dermal fillers and to provide structured and clear guidance on their treatment and avoidance. Reports of dermal filler complications in the medical literature were reviewed and, based on the publications retrieved and the authors' extensive experience, recommendations for avoiding and managing complications are provided. Different dermal fillers have widely varying properties, associated risks, and injection requirements. All dermal fillers have the potential to cause complications. Most are related to volume and technique, though some are associated with the material itself. The majority of adverse reactions are mild and transient, such as bruising and trauma-related edema. Serious adverse events are rare, and most are avoidable with proper planning and technique. For optimum outcomes, aesthetic physicians should have a detailed understanding of facial anatomy; the individual characteristics of available fillers; their indications, contraindications, benefits, and drawbacks; and ways to prevent and avoid potential complications.

  8. Effect of filler type on 3-body abrasion of dental composite

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-06-01

    Full Text Available Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6 and to compare it with the wear resistance of a composite based on commonly used Aluminium – Barium Silicate filler. Materials and Methods: This research was an interventional study done in Iran polymer institute. Five specimens were considered in each group. All ceramic IPS Empress® (Ivoclar- Vivadent ingots based on leucite crystals were ball milled, passed through an 800 sieve and used as filler. Experimental composites were prepared by mixing the silane- treated fillers with monomers (BisGMA and TEGDMA. Camphorquinone and amine were used as photoinitiator system. Degree of conversion of the light-cured and post-cured composites was measured using FTIR spectroscopy. The prepared pastes were inserted into plexy-glass mold and light cured (700 mw/cm2, 40 s. Then for maximum degree of conversion specimens were post- cured (120ºC, 5 hours. Three body abrasion wear testing was performed using a wear machine with 50 rpm rotational movement. In this machine, pumice (150 meshes was used as the third body. Weight loss of specimens in each group was measured by balance after each 50 hours. After wear testing SEM examination was made specimens in each group. The data were analyzed and compared using ANOVA and Tukey HSD tests (P<0.05. Tetric Ceram was tested as commercial composite. Results: There were significantly differences between three body abrasive wear of composites. The ranking from lowest to highest was as follows: leucite composite (19% < Tetric Ceram (22% < glass composite (28%. leucite composite showed the highest wear resistance value, propably due to the crystalliniy and hardness of filler. Conclusion

  9. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  10. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  11. The impact of fillers on lineup performance

    OpenAIRE

    Wetmore, Stacy A.; McAdoo, Ryan M.; Gronlund, Scott D.; Neuschatz, Jeffrey S.

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629...

  12. 7 CFR 58.514 - Container fillers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging Frozen...

  13. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  14. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  15. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    Utilisation of Danish chalk filler has been investigated as a means to produce self compacting concrete (SCC) at lower strength levels for service in non aggressive environments. Stable SCC mixtures were prepared at chalk filler contents up to 60% by volume of binder to yield compressive strengths...

  16. Effect of Al2O3 nano-filler on properties of glass-based seals for solid oxide fuel cells.

    Science.gov (United States)

    Lee, Dong Bok; Choi, Myong-Jae; Park, Sung; Lee, Jae Chun

    2013-01-01

    This study compares the viscosity and strength of three glass-based seals prepared with or without nano or micron-sized alumina powder used as filler material. Measurements of the viscosity and bending strength of the glass-based seals showed that addition of the nano-sized alumina powder to the glass increased both the high-temperature viscosity and the strength of the sintered glass matrix. Strength tests and observations of the microstructure of the fracture surface of the seal samples confirmed the strengthening of the glass network structure. Conversion of non-bridging oxygen to bridging oxygen is presumed to occur upon the addition of alumina to the glass sample. The strengthening of the alumina-glass composite seal was attributed to the alumina nano-filler and prolonged heat treatment at elevated temperatures.

  17. A systematic review of filler agents for aesthetic treatment of HIV facial lipoatrophy (FLA).

    Science.gov (United States)

    Jagdeo, Jared; Ho, Derek; Lo, Alex; Carruthers, Alastair

    2015-12-01

    HIV facial lipoatrophy (FLA) is characterized by facial volume loss. HIV FLA affects the facial contours of the cheeks, temples, and orbits, and is associated with social stigma. Although new highly active antiretroviral therapy medications are associated with less severe FLA, the prevalence of HIV FLA among treated individuals exceeds 50%. The goal of our systematic review is to examine published clinical studies involving the use of filler agents for aesthetic treatment of HIV FLA and to provide evidence-based recommendations based on published efficacy and safety data. A systematic review of the published literature was performed on July 1, 2015, on filler agents for aesthetic treatment of HIV FLA. Based on published studies, poly-L-lactic acid is the only filler agent with grade of recommendation: B. Other reviewed filler agents received grade of recommendation: C or D. Poly-L-lactic acid may be best for treatment over temples and cheeks, whereas calcium hydroxylapatite, with a Food and Drug Administration indication of subdermal implantation, may be best used deeply over bone for focal enhancement. Additional long-term randomized controlled trials are necessary to elucidate the advantages and disadvantages of fillers that have different biophysical properties, in conjunction with cost-effectiveness analysis, for treatment of HIV FLA. Published by Elsevier Inc.

  18. ZnO as a cheap and effective filler for high breakdown strength elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    . In this article, we explore the use of a cheap and abundant metal oxide filler, namely ZnO, as a filler in silicone-based dielectric elastomers. The electro-mechanical properties of the elastomer composites are investigated, and their performance is evaluated by means of figures of merit. Various commercial...

  19. Biogas of sanitary fillers

    International Nuclear Information System (INIS)

    Serrano Camacho, Ciro

    2007-01-01

    The author proposes a methodology for the preliminary estimation of the energetic potential and environmental improvement derivates of the implementation of these technologies that allows to make the first estimative of biogas generation of sanitary fillers with base in the results of the simulation of three predictive model: One Mexican, other denominated Scholl-Canyon of North American origin and the designed by the EPA. The three models use different versions and constants for a differential equation of degradation of first degree

  20. Reversible vs. nonreversible fillers in facial aesthetics: concerns and considerations.

    Science.gov (United States)

    Smith, Kevin Christopher

    2008-08-15

    Soft-tissue augmentation of the face is an increasingly popular cosmetic procedure. In recent years, the number of available filling agents has also increased dramatically, improving the range of options available to physicians and patients. Understanding the different characteristics, capabilities, risks, and limitations of the available dermal and subdermal fillers can help physicians improve patient outcomes and reduce the risk of complications. The most popular fillers are those made from cross-linked hyaluronic acid (HA). A major and unique advantage of HA fillers is that they can be quickly and easily reversed by the injection of hyaluronidase into areas in which elimination of the filler is desired, either because there is excess HA in the area or to accelerate the resolution of an adverse reaction to treatment or to the product. In general, a lower incidence of complications (especially late-occurring or long-lasting effects) has been reported with HA fillers compared with the semi-permanent and permanent fillers. The implantation of nonreversible fillers requires more and different expertise on the part of the physician than does injection of HA fillers, and may produce effects and complications that are more difficult or impossible to manage even by the use of corrective surgery. Most practitioners use HA fillers as the foundation of their filler practices because they have found that HA fillers produce excellent aesthetic outcomes with high patient satisfaction, and a low incidence and severity of complications. Only limited subsets of physicians and patients have been able to justify the higher complexity and risks associated with the use of nonreversible fillers.

  1. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De

    2009-01-01

    discomfort and pain. RESULTS All 20 patients experienced reduction or complete resolution, the latter increasing with repeated treatments. CONCLUSION Laser-assisted treatment offers a successful solution for patients who have been suffering from disfiguring nodules from injected fillersFoften for many years......BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...

  2. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers.

    Science.gov (United States)

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Takimi, Antonio Shigueaki; Collares, Fabrício Mezzomo; Sauro, Salvatore

    2016-09-01

    This study aimed to assess the degree of conversion, microhardness, solvent degradation, contact angle, surface free energy and bioactivity (e.g., mineral precipitation) of experimental resin-based materials containing, pure or triclosan-encapsulated, aluminosilicate-(halloysite) nanotubes. An experimental resin blend was prepared using bis-GMA/TEGDMA, 75/25wt% (control). Halloysite nanotubes (HNT) doped with or without triclosan (TCN) were first analyzed using transmission electron microscopy (TEM). HNT or HNT/TCN fillers were incorporated into the resin blend at different concentrations (5, 10, and 20wt%). Seven experimental resins were created and the degree of conversion, microhardness, solvent degradation and contact angle were assessed. Bioactive mineral precipitation induced by the experimental resins was evaluated through Raman spectroscopy and SEM-EDX. TEM showed a clear presence of TCN particles inside the tubular lumen and along the outer surfaces of the halloysite nanotubes. The degree of conversion, surface free energy, microhardness, and mineral deposition of polymers increased with higher amount of HNTs. Conversely, the higher the amount (20wt%) of TCN-loaded HNTs the lower the microhardness of the experimental resins. The incorporation of pure or TCN-loaded aluminosilicate-(halloysite) nanotubes into resin-based materials increase the bioactivity of such experimental restorative materials and promotes mineral deposition. Therefore, innovative resin-based materials containing functional halloysite-nanotube fillers may represent a valuable alternative for therapeutic minimally invasive treatments. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Optimization of cement composites with the use of fillers from the Chechen Republic fields

    Directory of Open Access Journals (Sweden)

    Balatkhanova Elita Mahmudovna

    Full Text Available The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

  4. Fillers as Signs of Distributional Learning

    Science.gov (United States)

    Taelman, Helena; Durieux, Gert; Gillis, Steven

    2009-01-01

    A longitudinal analysis is presented of the fillers of a Dutch-speaking child between 1;10 and 2;7. Our analysis corroborates familiar regularities reported in the literature: most fillers resemble articles in shape and distribution, and are affected by rhythmic and positional constraints. A novel finding is the impact of the lexical environment:…

  5. Selecting fillers on emotional appearance improves lineup identification accuracy.

    Science.gov (United States)

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Influence of different fillers on the properties of an experimental vinyl polysiloxane

    Directory of Open Access Journals (Sweden)

    Débora Könzgen MEINCKE

    2016-01-01

    Full Text Available Abstract The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i incorporation of fillers in different concentrations: (a 20 wt% fillers, and (b 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE, and pure aluminum hydroxide 40% (PAH groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength were observed when it was added to the composition of acrylic polymer (AP and fiberglass (FG in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  7. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    Science.gov (United States)

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  8. A case of cellulitis-like foreign body reaction after hyaluronic acid dermal filler injection

    Directory of Open Access Journals (Sweden)

    Yo Sup Shin

    2018-03-01

    Full Text Available A 58-year-old female presented with 3 weeks history of painful skin lesion on the right cheek. Diagnosis was cellulitis based on the clinical manifestation and laboratory test. However, skin lesion did not improve with antibiotics, and as a consequence, biopsy was performed. Based on histopathological findings and additional information of her previous history of intradermal filler injection, the lesion was diagnosed to be foreign body reaction. Previous reported cases of foreign body reaction induced by hyaluronic acid dermal filler typically manifested as nodular lesions, but cellulitis-like cutaneous manifestation has not been reported. Therefore, we report this interesting case of foreign body reaction after hyaluronic acid dermal filler injection.

  9. Influence of reactive fillers on concrete corrosion resistance

    Science.gov (United States)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  10. Use of filler materials to aid spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement

  11. Application of amorphous filler metals in production of fusion reactor high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Fedotov, V T [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Grigoriev, A E [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Sevriukov, O N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Pliushev, A N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Skuratov, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Polsky, V I [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Yakushin, V L [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Virgiliev, Yu S [State Research Institute of Graphite, Electrodnaya St. 2, 115524 Moscow (Russian Federation); Vasiliev, V L [TRINITI, Troitsk, 142092 Moscow District (Russian Federation); Tserevitinov, S S [TRINITI, Troitsk, 142092 Moscow District (Russian Federation)

    1995-03-01

    Amorphous ribbon-type filler metals represent a promising facility for fastening heterogeneous materials together. The advantage results from the homogeneity of element and phase compositions and the strictly specified geometrical dimensions of such fillers. Amorphous fillers Zr-Ti-Fe-Be, Zr-Ti-Ni-Cu and Ti-Zr-Ni-Cu and microcrystalline fillers Al-Si and Cu-Sn-Mn-In-Ni were produced by quenching at a rate of about 10{sup 6}Ks{sup -1}. Brazing of graphite with metals (Cu+MPG-6, Cu+RGT, Mo+MIG-1, V+MIG-1, V+RGT) was accomplished using ribbon-type fillers. Two types of metal-based samples were produced in the form of plates and rakes. The rakes were made by brazing three small graphite bars to the metal, the 2mm space between the bars being 0.25 of the bar height. The results of metallographic studies of the brazing zone and of tests on brazed structures treated by pulsed energy fluxes are discussed. (orig.).

  12. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  14. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable ag...

  15. Managing complications of fillers: Rare and not-so-rare

    Directory of Open Access Journals (Sweden)

    Eckart Haneke

    2015-01-01

    Full Text Available Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted.

  16. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  17. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  19. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  20. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  1. Epoxy composites based on inexpensive tire waste filler

    International Nuclear Information System (INIS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-01-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites

  2. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  4. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  5. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  6. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.

    Science.gov (United States)

    Bhanushali, Sushrut; Jason, Naveen Noah; Ghosh, Prakash; Ganesh, Anuradda; Simon, George P; Cheng, Wenlong

    2017-06-07

    Nanofluids are colloidal dispersions that exhibit enhanced thermal conductivity at low filler loadings and thus have been proposed for heat transfer applications. Here, we systematically investigate how particle shape determines the thermal conductivity of low-cost copper nanofluids using a range of distinct filler particle shapes: nanospheres, nanocubes, short nanowires, and long nanowires. To exclude the potential effects of surface capping ligands, all the filler particles are kept with uniform surface chemistry. We find that copper nanowires enhanced the thermal conductivity up to 40% at 0.25 vol % loadings; while the thermal conductivity was only 9.3% and 4.2% for the nanosphere- and nanocube-based nanofluids, respectively, at the same filler loading. This is consistent with a percolation mechanism in which a higher aspect ratio is beneficial for thermal conductivity enhancement. To overcome the surface oxidation of the copper nanomaterials and maintain the dispersion stability, we employed polyvinylpyrrolidone (PVP) as a dispersant and ascorbic acid as an antioxidant in the nanofluid formulations. The thermal performance of the optimized fluid formulations could be sustained for multiple heating-cooling cycles while retaining stability over 1000 h.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  8. Effect of three filler types on mechanical properties of dental composite

    Directory of Open Access Journals (Sweden)

    Pahlavan A.

    2005-06-01

    Full Text Available Statement of Problem: Despite the improvements achieved in the field of dental composites, their strength, longevity, and service life specially in high stress areas is not confirmed. Finding better fillers can be a promising step in this task. Purpose: The purpose of this study was to investigate the effect of the filler type on the mechanical properties of a new experimental dental composite and compare these with the properties of composite containing conventional glass filler. Materials and Methods: Experimental composites were prepared by mixing silane-treated fillers with monomers, composed of 70% Bis-GMA and 30% TEGDMA by weight. Fillers were different among the groups. Glass, leucite ceramic and lithium disilicate were prepared as different filler types. All three groups contained 73% wt filler. Comphorquinone and amines were chosen as photo initiator system. Post curing was done for all groups. Diametral tensile strength (DTS, flexural strength and flexural modulus were measured and compared among groups. Data were analyzed with SPSS package using one-way ANOVA test with P<0.05 as the limit of significance. Results: The results showed that the stronger ceramic fillers have positive effect on the flexural strength. Ceramic fillers increased the flexural strength significantly. No significant differences could be determined in DTS among the groups. Flexural modulus can be affected and increased by using ceramic fillers. Conclusion: Flexural strength is one of the most significant properties of restorative dental materials. The higher flexural strength and flexural modulus can be achieved by stronger ceramic fillers. Any further investigation in this field would be beneficial in the development of restorative dental materials.

  9. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  10. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  11. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  12. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Science.gov (United States)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  13. Complications caused by injection of dermal filler in Danish patients

    DEFF Research Database (Denmark)

    Uth, Charlotte Caspara; Elberg, Jens Jørgen; Zachariae, Claus

    2016-01-01

    Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number of complicati......Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number...

  14. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  15. Penile Girth Enhancement With Polymethylmethacrylate-Based Soft Tissue Fillers.

    Science.gov (United States)

    Casavantes, Luis; Lemperle, Gottfried; Morales, Palmira

    2016-09-01

    An unknown percentage of men will take every risk to develop a larger penis. Thus far, most injectables have caused serious problems. Polymethylmethacrylate (PMMA) microspheres have been injected as a wrinkle filler and volumizer with increasing safety since 1989. To report on a safe and permanently effective method to enhance penile girth and length with an approved dermal filler (ie, PMMA). Since 2007, the senior author has performed penile augmentation in 752 men mainly with Metacrill, a suspension of PMMA microspheres in carboxymethyl-cellulose. The data of 729 patients and 203 completed questionnaires were evaluated statistically. The overall satisfaction rate was 8.7 on a scale of 1 to 10. After one to three injection sessions, average girth increased by 3.5 cm, or 134% (10.2 to 13.7 cm = 134.31%). Penile length also increased by weight and stretching force of the implant from an average of 9.8 to 10.5 cm. Approximately half the patients perceived some irregularities of the implant, which caused no problems. Complications occurred in 0.4%, when PMMA nodules had to be surgically removed in three of the 24% of patients who had a non-circumcised penis. After 5 years of development, penile augmentation with PMMA microspheres appears to be a natural, safe, and permanently effective method. The only complication of nodule formation and other irregularities can be overcome by an improved injection technique and better postimplantation care. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  16. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  17. 14 CFR 25.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  18. 14 CFR 29.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  19. 14 CFR 27.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  20. Hyaluronic acid gel fillers in the management of facial aging

    Directory of Open Access Journals (Sweden)

    Fredric S Brandt

    2008-03-01

    Full Text Available Fredric S Brandt1, Alex Cazzaniga21Private Practice in Coral Gables, Florida, USA and Manhattan, NY, USA, and Dermatology Research Institute, Coral Gables, FL, USA; 2Dermatology Research Institute, Coral Gables, Florida, USAAbstract: Time affects facial aging by producing cellular and anatomical changes resulting in the consequential loss of soft tissue volume. With the advent of new technologies, the physician has the opportunity of addressing these changes with the utilization of dermal fillers. Hyaluronic acid (HA dermal fillers are the most popular, non-permanent injectable materials available to physicians today for the correction of soft tissue defects of the face. This material provides an effective, non invasive, non surgical alternative for correction of the contour defects of the face due to its enormous ability to bind water and easiness of implantation. HA dermal fillers are safe and effective. The baby-boomer generation, and their desire of turning back the clock while enjoying an active lifestyle, has expanded the popularity of these fillers. In the US, there are currently eight HA dermal fillers approved for commercialization by the Food and Drug Administration (FDA. This article reviews the innate properties of FDA-approved HA fillers and provides an insight on future HA products and their utilization for the management of the aging face.Keywords: hyaluronic acid, aging face, dermal filler, wrinkles, Restylane, Perlane, Juvéderm

  1. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites.

    Science.gov (United States)

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo; Pettinari, Claudio

    2017-07-28

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler's microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards.

  2. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent ...

    Indian Academy of Sciences (India)

    Biocomposites from polyhydroxybutyrate (PHB) and some bio-fillers such as lignin (L), alpha cellulose (AC) and cellulose nanofibrils (CNFs) were prepared to investigate the effect of the bio-fillers on the properties of PHB by a solvent casting method. The thermal properties by thermogravimetry analysis (TGA–DTG and ...

  3. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  4. A screening method based on UV-Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices.

    Science.gov (United States)

    Boggia, Raffaella; Casolino, Maria Chiara; Hysenaj, Vilma; Oliveri, Paolo; Zunin, Paola

    2013-10-15

    Consumer demand for pomegranate juice has considerably grown, during the last years, for its potential health benefits. Since it is an expensive functional food, cheaper fruit juices addition (i.e., grape and apple juices) or its simple dilution, or polyphenols subtraction are deceptively used. At present, time-consuming analyses are used to control the quality of this product. Furthermore these analyses are expensive and require well-trained analysts. Thus, the purpose of this study was to propose a high-speed and easy-to-use shortcut. Based on UV-VIS spectroscopy and chemometrics, a screening method is proposed to quickly screening some common fillers of pomegranate juice that could decrease the antiradical scavenging capacity of pure products. The analytical method was applied to laboratory prepared juices, to commercial juices and to representative experimental mixtures at different levels of water and filler juices. The outcomes were evaluated by means of multivariate exploratory analysis. The results indicate that the proposed strategy can be a useful screening tool to assess addition of filler juices and water to pomegranate juices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  6. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  7. 7 CFR 58.229 - Filler and packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry Milk...

  8. Vacuum brazing of aluminium metal matrix composite (55 vol.% SiC{sub p}/A356) using aluminium-based filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Jitai, E-mail: niujitai@163.com [Harbin Institute of Technology (China); Zhengzhou University (China); Luo, Xiangwei; Tian, Hao [Zhengzhou University (China); Brnic, Josip [University of Rijka (Croatia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The proper filler metal has been developed, especially for contents of Mg and Si. Black-Right-Pointing-Pointer The pressure device has been designed for specimen in vacuum brazing process. Black-Right-Pointing-Pointer The accurate measurement method for shear strength of lap joint has been found. Black-Right-Pointing-Pointer The brazing temperature of 560 Degree-Sign C has been optimised. Black-Right-Pointing-Pointer The micro-mechanism has been discussed for SiC{sub p}/Al composites' brazing joint. - Abstract: Aluminium matrix composites with high volume fractions of SiC particles, as the reinforcements, are potentially suitable materials for electronic packaging. These composites, due to their poor weldability, however, have very limited applications. The microstructure and shear strengths of the bonds made in 55 vol.% SiC{sub p}/A356 composite, using an aluminium based filler alloy containing Cu, Si, Mg and Ni, were investigated in this paper. The brazing temperature had a clear effect on the bond integrity, and the samples brazed at 560 Degree-Sign C demonstrated good bonding between the filler alloy and the SiC particles. The maximum shear strength achieved in this work was 102 MPa.

  9. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    these additives, the use of multiple titanium dioxides as filler potentially suits to special applications. In the present study, a series of TiO2 fillers were blended into LSRs, such as hydrophilic/ hydrophobic, micro/ nano scale, anatase/ rutile crystal, sphere/ core-shell structure. The results indicate...... of inorganic fillers. The property improvement of the filled LSRs depends on filler concentration, filler morphology, such as particle size and structure, the degree of dispersion and orientation in the matrix, and also the degree of adhesion with the polymer chains, as well as the properties of the inorganic...

  10. An investigation of tendon sheathing filler migration into concrete

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age

  11. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture

    KAUST Repository

    Sabetghadam, Anahid; Liu, Xinlei; Benzaqui, Marvin; Gkaniatsou, Effrosyni; Orsi, Angelica; Lozinska, Magdalena M.; Sicard, Clemence; Johnson, Timothy; Steunou, Nathalie; Wright, Paul A.; Serre, Christian; Gascon, Jorge; Kapteijn, Freek

    2018-01-01

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25wt% of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10%, while for Pebax they were enhanced to 25 and 18%, respectively. The observed differences in membrane performance in the separation of CO from N are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

  12. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture

    KAUST Repository

    Sabetghadam, Anahid

    2018-03-24

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25wt% of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10%, while for Pebax they were enhanced to 25 and 18%, respectively. The observed differences in membrane performance in the separation of CO from N are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

  13. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  14. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  15. Rotation of magnetic particles inside the polymer matrix of magnetoactive elastomers with a hard magnetic filler

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, G.V., E-mail: gstepanov@mail.ru [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, D.Yu. [TU Dresden, Magnetofluiddynamics, Measuring and Automation Technology, Dresden 01062 (Germany); Storozhenko, P.A. [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation)

    2017-06-01

    We propose the results of research on the magnetic properties of magnetoactive elastomers containing particles of a hard magnetic filler. According to our understanding, the mechanism of re-magnetizing of the composite is based on two competing processes, being the re-magnetizing of the magnetic filler and mechanical rotation of particles inside of the polymer matrix.

  16. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  17. Influence of inert fillers on shrinkage cracking of meta-kaolin geo-polymers

    International Nuclear Information System (INIS)

    Kuenzel, C.; Boccaccini, A.R.

    2012-01-01

    Geo-polymers contain a network of tetrahedral coordinated aluminate and silicate, and are potential materials to immobilize/encapsulate nuclear wastes. They can exhibit shrinkage cracking when water is removed by drying, and in order to use geo-polymers for waste encapsulation this effect needs to be investigated and controlled. In this study, six different fillers were mixed with meta-kaolin and sodium silicate solution at high pH to form geo-polymers, and the influence of filler addition on mechanical properties has been determined. The fillers used were Fe 2 O 3 , Al 2 O 3 , CaCO 3 , sand, glass and rubber and these do not react during geo-polymerisation reactions. Geo-polymers were prepared containing 30 weight percent of filler. The mechanical properties of the geo-polymers were influenced by the type of filler, with low density fillers increasing mortar viscosity. Geo-polymer samples containing fine filler particles exhibited shrinkage cracking on drying. This was not observed when coarser particles were added and these samples also had significantly improved mechanical properties. (authors)

  18. Effect of synthesized zinc stearate on the properties of natural rubber vulcanizates in the absence and presence of some fillers

    International Nuclear Information System (INIS)

    Helaly, F.M.; El Sabbagh, S.H.; El Kinawy, O.S.; El Sawy, S.M.

    2011-01-01

    Research highlights: → The mechanical properties of NR were enhanced through partial and complete replacement of zinc stearate. → The effect of adding different concentrations of zinc stearate on the physic-mechanical and SEM properties has been investigated. → Zinc stearate was found to play dual role, it reinforces the matrix blow its melting point and higher temperature it plasticizers the system. → Zinc stearate can be used as activator for sulfur vulcanization process of rubber instead of ZnO and stearic acid; in absence and presence of fillers. -- Abstract: Zinc stearate was synthesized by precipitation method through two steps; neutralization of stearic acid by sodium hydroxide then double decomposition using zinc sulphate to precipitate zinc stearate. Mass balances of the two steps were calculated and the physical properties of the prepared zinc stearate were measured and compared to standard. It was characterized and incorporated it into natural rubber in the absence and presence of some filler through mixing process of rubber. The vulcanization process was carried out at 142 o C. The rheological properties of natural rubber mixes were measured using oscillating disc rheometer. The plysico-mechanical properties of the vulcanizates were determined using tensile testing machine. It was found that, partial and complete replacement of synthesized zinc stearate instead of the conventional zinc oxide and stearic acid; enhanced the physico-mechanical properties of natural rubber. The measured reinforcing parameter value α f can be arranged according to the type of filler as follows: HAF>Hisil>CaCO 3 >Ca 3 (PO 4 ) 2 >BaSO 4 >Talc The highest value of α f represents the strength of filler and consequently the reinforcing effect of carbon black (HAF) filler while the lowest value of α f was observed for Talc which show moderate reinforcing effect of Talc. The scanning electron microscope study showed high surface homogenity and good dispersion of zinc

  19. Coarse-grained simulation of polymer-filler blends

    Science.gov (United States)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  20. Influence of Filler Pore Structure and Polymer on the Performance of MOF-based Mixed Matrix Membranes for CO2 Capture.

    Science.gov (United States)

    Sabetghadam, Anahid; Liu, Xinlei; Benzaqui, Marvin; Gkaniatsou, Effrosyni; Orsi, Angelica; Lozinska, Magdalena M; Sicard, Clemence; Johnson, Timothy; Steunou, Nathalie; Wright, Paul A; Serre, Christian; Gascon, Jorge; Kapteijn, Freek

    2018-03-24

    In order to gain insight into the influence of metal-organic framework (MOF) filler and polymer on membrane performance, eight different composites are studied by combining four MOFs and two polymers. MOF materials (NH2-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, while two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were deliberately selected as matrices. The best performing MOF-polymer composites were prepared by loading 25 wt.% of MIL-96(Al) as filler which improved the permeability and selectivity of 6FDA-DAM up to 32% and 10%, while for Pebax this enhancement was 25% and 18%, respectively. The observed differences in membrane performance in the separation of CO2 from N2 are explained on the basis of gas solubility, diffusivity properties and compatibility between the filler and polymer phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  2. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  3. Late-Onset Inflammatory Response to Hyaluronic Acid Dermal Fillers

    Directory of Open Access Journals (Sweden)

    Tahera Bhojani-Lynch, MRCOphth, CertLRS, MBCAM, DipCS

    2017-12-01

    Conclusion:. Late-onset inflammatory reactions to HA fillers may be self-limiting but are easily and rapidly treatable with oral steroids, and with hyaluronidase in the case of lumps. It is likely these reactions are due to a Type IV delayed hypersensitivity response. Delayed inflammation associated with HA fillers is nonbrand specific. However, the case where 2 different brands were injected during the same session, but only 1 brand triggered a hypersensitivity reaction, suggests that the technology used in the manufacturing process, and the subsequent differing products of degradation, may have an influence on potential allergic reactions to HA fillers.

  4. Recommendations for Filler Material Composition and Delivery Method for Bench-Scale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-01

    This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to provide further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.

  5. Use of hyaluronic acid fillers for the treatment of the aging face

    Directory of Open Access Journals (Sweden)

    Michael H Gold

    2007-10-01

    Full Text Available Michael H GoldGold Skin Care Center, Tennessee Clinical Research Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical School,Vanderbilt University Nursing School, Nashville, TN, USA; Huashan Hospital, Fudan University, Shanghai, ChinaAbstract: Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patients. The purpose of this manuscript is to review the characteristics of the HA fillers and to review each of the current products currently available for use in the US.Keywords: hyaluronic acid, fillers, soft tissue augmentation, expression lines, aging face, collagen

  6. Effect of Biomass Waste Filler on the Dielectric Properties of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Yew Been Seok

    2016-07-01

    Full Text Available The effect of biomass waste fillers, namely coconut shell (CS and sugarcane bagasse (SCB on the dielectric properties of polymer composite was investigated. The aim of this study is to investigate the potential of CS and SCB to be used as conductive filler (natural source of carbon in the polymer composite. The purpose of the conductive filler is to increase the dielectric properties of the polymer composite. The carbon composition the CS and SCB was determine through carbon, hydrogen, nitrogen and sulphur (CHNS elemental analysis whereas the structural morphology of CS and SCB particles was examined by using scanning electron microscope. Room temperature open-ended coaxial line method was used to determine the dielectric constant and dielectric loss factor over broad band frequency range of 200 MHz-20 GHz. Based on this study, the results found that CS and SCB contain 48% and 44% of carbon, which is potentially useful to be used as conductive elements in the polymer composite. From SEM morphology, presence of irregular shape particles (size ≈ 200 μm and macroporous structure (size ≈ 2.5 μm were detected on CS and SCB. For dielectric properties measurement, it was measured that the average dielectric constant (ε' is 3.062 and 3.007 whereas the average dielectric loss factor (ε" is 0.282 and 0.273 respectively for CS/polymer and SCB/polymer composites. The presence of the biomass waste fillers have improved the dielectric properties of the polymer based composite (ε' = 2.920, ε" = 0.231. However, the increased in the dielectric properties is not highly significant, i.e. up to 4.86 % increase in ε' and 20% increase in ε". The biomass waste filler reinforced polymer composites show typical dielectric relaxation characteristic at frequency of 10 GHz - 20 GHz and could be used as conducting polymer composite for suppressing EMI at high frequency range.

  7. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    Science.gov (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  8. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    Science.gov (United States)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  9. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate Denture Base Material Doped with Inorganic Filler

    Directory of Open Access Journals (Sweden)

    Grzegorz Chladek

    2016-04-01

    Full Text Available The colonization of poly(methyl methacrylate (PMMA denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w. The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.

  10. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  11. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  12. Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites

    International Nuclear Information System (INIS)

    Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Kasak, Peter; Krupa, Igor; Ali S A Al-Maadeed, Mariam

    2014-01-01

    The demand for developing oil detectors is ever increasing since the cleanup and recovery from oil spill usually take long time. Here we propose oil sensors made of polyaniline (PANI) filled poly(styrene–isoprene–styrene) (SIS) block copolymer composite films with good uniformity and dispersion. The changes in resistivity of the samples in presence of both oil and water media reveal the good sensing ability of SIS–PANI films towards oil in water (dual phase). The morphology and chemical composition of the developed products are characterized by scanning electron microscopy and Fourier transformation infrared spectroscopy. Swelling studies are performed to correlate the sensing response to the structural variations and based on it a mechanism is derived for the dual phase sensing. Contact angle measurements confirm the behavior further. The thermal properties and crystallinity of the composites are also addressed by the thermogravimetric and differential scanning calorimetric studies. The developed oil sensor material is able to withstand extreme temperature condition as well. - Highlights: • We model a dual phase sensor capable of detecting oil in water. • A mechanism is proposed to correlate sensing with diffusion. • In situ polymerization helps in the uniform distribution of filler. • Polymer composite sensor could be used as stickers on oil pipelines

  13. Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivuni, Kishor Kumar, E-mail: kishor_kumars@yahoo.com [Centre for Advanced Materials, Qatar University, Doha (Qatar); Ponnamma, Deepalekshmi [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Kasak, Peter; Krupa, Igor; Ali S A Al-Maadeed, Mariam [Centre for Advanced Materials, Qatar University, Doha (Qatar)

    2014-10-15

    The demand for developing oil detectors is ever increasing since the cleanup and recovery from oil spill usually take long time. Here we propose oil sensors made of polyaniline (PANI) filled poly(styrene–isoprene–styrene) (SIS) block copolymer composite films with good uniformity and dispersion. The changes in resistivity of the samples in presence of both oil and water media reveal the good sensing ability of SIS–PANI films towards oil in water (dual phase). The morphology and chemical composition of the developed products are characterized by scanning electron microscopy and Fourier transformation infrared spectroscopy. Swelling studies are performed to correlate the sensing response to the structural variations and based on it a mechanism is derived for the dual phase sensing. Contact angle measurements confirm the behavior further. The thermal properties and crystallinity of the composites are also addressed by the thermogravimetric and differential scanning calorimetric studies. The developed oil sensor material is able to withstand extreme temperature condition as well. - Highlights: • We model a dual phase sensor capable of detecting oil in water. • A mechanism is proposed to correlate sensing with diffusion. • In situ polymerization helps in the uniform distribution of filler. • Polymer composite sensor could be used as stickers on oil pipelines.

  14. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    Science.gov (United States)

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings.

  15. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    Science.gov (United States)

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Skin Necrosis with Oculomotor Nerve Palsy Due to a Hyaluronic Acid Filler Injection

    Directory of Open Access Journals (Sweden)

    Jae Il Lee

    2017-07-01

    Full Text Available Performing rhinoplasty using filler injections, which improve facial wrinkles or soft tissues, is relatively inexpensive. However, intravascular filler injections can cause severe complications, such as skin necrosis and visual loss. We describe a case of blepharoptosis and skin necrosis caused by augmentation rhinoplasty and we discuss the patient’s clinical progress. We describe the case of a 25-year-old female patient who experienced severe pain, blepharoptosis, and decreased visual acuity immediately after receiving a filler injection. Our case suggests that surgeons should be aware of nasal vascularity before performing an operation, and that they should avoid injecting fillers at a high pressure and/or in excessive amounts. Additionally, filler injections should be stopped if the patient complains of severe pain, and appropriate measures should be taken to prevent complications caused by intravascular filler injections.

  17. Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders

    Directory of Open Access Journals (Sweden)

    Cesare Sangiorgi

    2017-06-01

    Full Text Available There has been a significant increase in the demand for using recycled materials in construction because of the lack and limitation of available natural resources. A number of industrial and domestic waste products are being used in the replacement of traditional materials for road construction, and many studies have been carried out in recent years on the use of different recycled materials in substitution of conventional fillers in Asphalt Concretes (AC. The aim of this laboratory research is to analyze the physical characteristics of three different recycled fillers and compare them with those of a traditional limestone filler. The alternative fillers presented in this paper are: a waste bleaching clay that comes from two consecutive stages in the industrial process for decolouring vegetable oils and producing biogas (Ud filler, a dried mud waste from a tungsten mine (MW filler and a recycled glass powder (Gl filler. Results show significant differences between the fillers, and, in particular, Rigden Voids (RV seem to have the largest potential influence on the rheology of ACs.

  18. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  19. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    International Nuclear Information System (INIS)

    Merolli, Antonio; Nicolais, Luigi; Ambrosio, Luigi; Santin, Matteo

    2010-01-01

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  20. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Merolli, Antonio [Department of Orthopaedic Surgery, The Catholic University in Rome, Complesso Columbus, via Moscati 31, 00168 Rome (Italy); Nicolais, Luigi; Ambrosio, Luigi [Institute of Composite and Biomedical Materials, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80130 Napoli (Italy); Santin, Matteo [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4 GJ (United Kingdom)

    2010-02-15

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  1. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    Science.gov (United States)

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  2. [Ideas about registration for sodium hyaluronate facial derma fillers].

    Science.gov (United States)

    Zhao, Peng; Shi, Xinli; Liu, Wenbo; Lu, Hong

    2012-09-01

    To review the registration and technical data for sodium hyaluronate facial derma fillers. Recent literature concerning registration for sodium hyaluronate facial derma fillers was reviewed and analyzed. The aspects on registration for sodium hyaluronate facial derma fillers include nominating the product, dividing registration unit, filling in a registration application form, preparing the technical data, developing the standard, and developing a registration specification. The main difficulty in registration is how to prepare the research data of that product, so the manufacturers need to enhance their basic research ability and work out a scientific technique routing which could ensure the safety and effectiveness of the product, also help to set up the supportive documents to medical device registration.

  3. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Highlights: → Weld microstructure produced by RAFMS filler wires are free from delta ferrite. → Cooling rates of by weld thermal cycles influences the presence of delta ferrite. → Weld parameters modified with higher pre heat temperature and high heat input. → PWHT optimized based on correlation of hardness between base and weld metals. → Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in

  4. rice husk as filler rice husk as filler in the production of bricks using

    African Journals Online (AJOL)

    eobe

    block [1].The effect of palm fruit fibre in clay bricks was also investigated by Akinyele and Abdulraheem,. [2], they observed ... the Rice Husk ash at 8% improves the compressive ... that 5% mix of the material acts as a filler in concrete because ...

  5. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  6. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    Science.gov (United States)

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    Science.gov (United States)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  8. Avoiding and Treating Blindness From Fillers: A Review of the World Literature.

    Science.gov (United States)

    Beleznay, Katie; Carruthers, Jean D A; Humphrey, Shannon; Jones, Derek

    2015-10-01

    As the popularity of soft tissue fillers increases, so do the reports of adverse events. The most serious complications are vascular in nature and include blindness. To review the cases of blindness after filler injection, to highlight key aspects of the vascular anatomy, and to discuss prevention and management strategies. A literature review was performed to identify all the cases of vision changes from filler in the world literature. Ninety-eight cases of vision changes from filler were identified. The sites that were high risk for complications were the glabella (38.8%), nasal region (25.5%), nasolabial fold (13.3%), and forehead (12.2%). Autologous fat (47.9%) was the most common filler type to cause this complication, followed by hyaluronic acid (23.5%). The most common symptoms were immediate vision loss and pain. Most cases of vision loss did not recover. Central nervous system complications were seen in 23.5% of the cases. No treatments were found to be consistently successful in treating blindness. Although the risk of blindness from fillers is rare, it is critical for injecting physicians to have a firm knowledge of the vascular anatomy and to understand key prevention and management strategies.

  9. Magnetic and physical-mechanical properties of polymer composites with soft magnetic fillers

    International Nuclear Information System (INIS)

    Usakova, M.; Usak, E.; Olah, V.; Rekosova, J.

    2013-01-01

    In this paper the influence of soft magnetic ferrite fillers on magnetic and physical-mechanical properties of the prepared composite samples based in natural rubber matrix was studied. The soft magnetic ferrite materials with the chemical composition Mn_0_._3_7Zn_0_._5_7Fe_2_._0_6O_4 and Ni_0_._3_3Zn_0_._6_7Fe_2O_4 were used as magnetic filler in various concentrations. Further, the effect of thermo-oxidative ageing on the prepared composite materials was investigated. Magneto-rheological elastomers are solid analogues to magneto-rheological fluids. These materials are considered as smart materials comprising of micro- or submicro-sized magnetic particles dispersed in non-magnetic matrix. (authors)

  10. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  11. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  12. License application design selection feature report: Additive and fillers design feature 19

    International Nuclear Information System (INIS)

    Massari, J.R.

    1999-01-01

    The estimated additional total system life-cycle cost for each of the filler options in 1999 dollars is as follows: $923.4 million for the iron oxide option, $42.4 million to $966.4 million (depending on the extent of surface facility involvement required) for the partial iron shot fill option, $1,012 million for the complete iron shot fill option, and $134.7 million for the integral filler option (Appendix A). All of the filler options evaluated showed improvements in some aspects of pre- and post-closure waste package and repository performance. However, all of the options, except for the integral filler option, negatively impacted other areas of performance, required modification to surface facility design and operations, and invoked additional uncertainty. The iron oxide filler option will require further testing to measure thermal conductivity to ensure that peak cladding temperatures will not exceed the 350 C limit. The complete iron shot fill option may require structural improvements to the waste package design (use of partial shot fill may eliminate this concern). Both the iron shot and iron oxide options will also require further testing to confirm that the conceptual loading strategy will efficiently load a waste package in a timely manner. In addition, both shot and oxide options will require further testing to develop models for their potential to provide resistance to water flow, and, in the case of iron shot, act as an oxygen getter. Finally, uncertainty also exists as to whether the iron shot option will damage the cladding if sufficient corrosion of the shot occurs. Based on the results presented in this evaluation, the integral filler option appears to be the simplest and most cost efficient method for achieving modest improvements in pre- and post-closure performance. Since unqualified inputs were used in the development of this evaluation, they should be considered TBV (to be verified). This document will not directly support any construction

  13. Comparison of TT-F-1098 Solvent-Thinned Block Fillers with Water-Thinnable Block Fillers.

    Science.gov (United States)

    1985-03-01

    saved money , because the latex is less roller were visible. The appearance of the surface expensive than the epoxy it replaced. In both cases...a previous coating. A kit manu- The appearance of all the fillers was satisfactory. factured b, Paul N. Gardner Company, Inc., Lauder - Voids were

  14. Clinical Application of Earlobe Augmentation with Hyaluronic Acid Filler in the Chinese Population.

    Science.gov (United States)

    Qian, Wei; Zhang, Yan-Kun; Cao, Qian; Hou, Ying; Lv, Wei; Fan, Ju-Feng

    2017-02-01

    Larger earlobes, which are a symbol of "richness" in traditional Chinese culture, are favored by Chinese patients. The objective of this paper is to investigate the application of earlobe augmentation with hyaluronic acid (HA) filler injection and its clinical effects in the Chinese population. A total of 19 patients (38 ears) who received earlobe augmentation with HA filler injections between March 2013 and March 2015 were included. The clinical effects, duration, and complications of these cases were investigated. All patients who received earlobe HA injections showed immediate postoperative effects with obvious morphological improvement of their earlobes. The volume of HA filler injected into each ear was 0.3-0.5 ml. The duration of the effect was 6-9 months. Two of the 19 cases (3 ears) demonstrated mild bruising at the injection site, but the bruising completely disappeared within 7 days after the injection. No vascular embolism, infection, nodule, or granuloma complications were observed in the studied group. The application of earlobe augmentation with HA filler injection is a safe, effective, simple procedure for earlobe shaping. It has an easy clinical application with good clinical prospects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  15. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    Science.gov (United States)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  16. Volume correction in the aging hand: role of dermal fillers

    Directory of Open Access Journals (Sweden)

    Rivkin AZ

    2016-08-01

    Full Text Available Alexander Z Rivkin David Geffen/UCLA School of Medicine Los Angeles, CA, USA Abstract: The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. Keywords: dermal fillers, hands, volumization, hyaluronic acid, calcium hydroxylapatite

  17. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-01-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n_A"u"-"v) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_A"u"-"v represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n_A"u"-"v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  18. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xishan [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China); Xie, Zonghong [Northwestern Polytechnical University, School of Astronautics, Xi' an (China); Jing, Yongjuan [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Aeronautical Key Laboratory for Welding and Joining Technology, Beijing (China)

    2017-07-15

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell (n{sub A}{sup u-v}) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n{sub A}{sup u-v} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5 ∝ 45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2 ∝ 10 wt%. Thus, Ti-based filler metal with Zr content being 2 ∝ 10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n{sub A}{sup u-v} showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface. (orig.)

  19. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  20. Influencia de la adición del filler calizo sobre el fraguado del cemento

    Directory of Open Access Journals (Sweden)

    Menéndez, Ignacio

    1993-09-01

    Full Text Available The present paper deals about the infuence that addition of calcareous "filler" has on the set of portland cement which rates are from 0 up to 50% of filler.

    En el presente artículo se estudia la influencia que la adición de "filler" calizo ejerce sobre el fraguado del cemento portland, al que se le añaden porcentajes desde O al 50% en filler.

  1. Microstructure and properties of nickel base superalloy joints brazed with Ni-Cr-Co-B and BNi-1a filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, H. [Beijing Univ. of Aeronautics and Astronautics (China); Liu, W. [Dalian Railway Inst. (China). Welding Div.

    1995-12-31

    In this study, the kind and compositions of brittle phases formed in joints of a nickel-base superalloy brazed with the Ni-Cr-Co-B and BNi-1a (Ni-Cr-B-Si) filler metals were investigated. Their brittle-phase-free maximum brazing clearances (MBC) were characterized in dependence on the brazing conditions. The improvement on joint structures by post-braze heat treatment was also examined. (orig./MM)

  2. Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.

    Science.gov (United States)

    Shumaker, Peter R; England, Laura J; Dover, Jeffrey S; Ross, E Victor; Harford, Robert; Derienzo, Damian; Bogle, Melissa; Uebelhoer, Nathan; Jacoby, Mark; Pope, Karl

    2006-03-01

    Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. Cosmetic fillers are used to soften deep facial lines and wrinkles. Patients who have had dermal fillers implanted may also benefit from or are candidates for monopolar RF skin tightening. This study examined the effect of RF treatment on various dermal filler substances. This is the second part of a two-part study. A juvenile farm pig was injected with dermal fillers including cross-linked human collagen (Cosmoplast), polylactic acid (PLA) (Sculptra), liquid injectable silicone (Silikon 1000), calcium hydroxylapatite (CaHA) (Radiesse), and hyaluronic acid (Restylane). Skin injected with dermal fillers was RF-treated using a 1.5-cm2 treatment tip and treatment levels typically used in the clinical setting. Fillers were examined histologically 5 days, 2 weeks, or 1 month after treatment. Histological specimens were scored for inflammatory response, foreign body response, and fibrosis in order to assess the effect of treatment on early filler processes, such as inflammation and encapsulation. Each filler substance produced a characteristic inflammatory response. No immediate thermal effect of RF treatment was observed histologically. RF treatment resulted in statistically significant increases in the inflammatory, foreign body, and fibrotic responses associated with the filler substances. Monopolar RF treatment levels that are typically used in the clinical setting were employed in this animal study. RF treatment resulted in measurable and statistically significant histological changes associated with the various filler materials. Additional clinical and histological studies are required to determine the optimal timing of monopolar RF treatment and filler placement for maximal potential aesthetic outcome. 2006 Wiley-Liss, Inc.

  3. Modification of montmorillonite fillers by ionizing radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.; Mirkowski, K.

    2006-01-01

    The mineral fillers can be modified by using unsaturated compounds: styrene, methacrylic acid and maleic anhydride (MA), following by irradiation with high energy electron beam. In presented paper the authors have used this method to change properties of bentonite S pecjal , containing about 70% of pure montmorillonite. It has been shown that: (a) the particles obtained in this process can be good fillers for the production of composites; (b) maleic anhydride reacts via anhydride group with active ionic sites of bentonite, forming a salt-like compound. Irradiation with electron beam leads to the breakage of double bond in maleic anhydride and to the production of new organic phases

  4. Wear resistance of layers hard faced by the high-alloyed filler metal

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2016-10-01

    Full Text Available The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by high hardness and wear resistance. In experiments, the sliding speed and the normal loading were varied and the wear scar was monitored, based on which the volume of the worn material was calculated analytically. The contact duration time was monitored over the sliding path of 300 mm. The most intensive wear was established for the loading force of 100 N and the sliding speed of 1 m.s-1, though the significant wear was also noticed in conditions of the small loading and speed of 0.25 m.s-1, which was even greater that at larger speeds.

  5. Novel Double-Needle System That Can Prevent Intravascular Injection of Any Filler

    Directory of Open Access Journals (Sweden)

    Hsiang Huang, MD

    2017-09-01

    Full Text Available Summary:. A new type of needle system combines 2 parts, an inner needle and an outer needle. The inner needle is used for filler injection and the outer needle acts as a guiding needle that can observe blood reflow when inserting into the vessel lumen during injection process. This new needle system can be used for all kinds of filler, providing real time monitoring for physician and preventing intravascular injection of any filler.

  6. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  7. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: gsrini@igcar.gov.in [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2011-06-15

    Highlights: > Weld microstructure produced by RAFMS filler wires are free from delta ferrite. > Cooling rates of by weld thermal cycles influences the presence of delta ferrite. > Weld parameters modified with higher pre heat temperature and high heat input. > PWHT optimized based on correlation of hardness between base and weld metals. > Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in the weld

  8. Labia Majora Augmentation with Hyaluronic Acid Filler: Technique and Results.

    Science.gov (United States)

    Fasola, Elena; Gazzola, Riccardo

    2016-11-01

    External female genitalia lose elasticity and volume with age. In the literature several techniques address the redundancy of the labia minora, but only few reports describe the augmentation of labia majora with fat grafting. At present, no studies describe the augmentation of the labia majora with hyaluronic acid. This study aims to present our technique of infiltration of hyaluronic acid filler, analyzing effectiveness, patient satisfaction, and complications. We retrospectively analyzed 54 patients affected by hypotrophy of the labia majora; they were treated with hyaluronic acid filler between November 2010 and December 2014. The Global Aesthetic Improvement Scale (GAIS) filled out by the doctor and the patients was used to evaluate the results 12 months after the infiltration. Complications were recorded. A total of 31 patients affected by mild to moderate labia majora hypotrophy were treated with 19 mg/mL HA filler; 23 patients affected by severe labia majora hypotrophy were treated with 21 mg/mL HA filler. Among the first group of patients, one underwent a second infiltration 6 months later with 19 mg/mL HA filler (maximum 1 mL). A significant improvement (P labia majora is able to provide a significant rejuvenation with a simple outpatient procedure. We achieved significant improvements with one infiltration in all cases. The treatment is repeatable, has virtually no complications and it is reversible. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  9. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    Science.gov (United States)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  10. Basic principles of creating a new generation of high- temperature brazing filler alloys

    Science.gov (United States)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  11. The effect of mixing order of fillers on the physical properties of EPDM

    International Nuclear Information System (INIS)

    Gul, J.; Saleemi, A.R.

    2007-01-01

    In this research the effect of mixing order of fillers on the physical properties of EPDM (Ethylene Propylene Diene Monomer) vulcanizates was studied. EPDM was compounded with other ingredients i.e. fillers, process aid, curing package etc in order to get the needed physical properties for thermal insulation. All the factors, which could affect the physical properties of EPDM vulcanizates such as quality and quantity of raw materials, storage conditions of ingredients and vulcanizates, compounding and testing facilities, mixing time, process parameters etc were kept constant except mixing order of addition of filler to EPDM. Different batches of EPDM vulcanizates with different mixing order/sequence of filler to EPDM were prepared and tested for physical properties like density, hardness, tensile strength and elongation. It was concluded that mixing order of filler to EPDM affects tensile strength, elongation and hardness and does not affect density of the EPDM vulcanizate. (author)

  12. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2010-01-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  13. Nickel-chromium-silicon brazing filler metal

    Science.gov (United States)

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  14. Physical Metallurgy, Weldability, and in-Service Performance of Nickel-Chromium Filler Metals Used in Nuclear Power Systems

    Science.gov (United States)

    Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.

    Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.

  15. Fillers in the skin of color population.

    Science.gov (United States)

    Heath, Candrice R; Taylor, Susan C

    2011-05-01

    The skin of color population in the United States is rapidly growing and the cosmetic industry is responding to the demand for skin of color targeted treatments. The aging face in skin of color patients has a unique pattern that can be successfully augmented by dermal fillers. Though many subjects with skin of color were not included in the pre-market dermal filler clinical trials, some post-market studies have examined the safety and risks of adverse events in this population. The safety data from a selection of these studies was examined. Though pigmentary changes occurred, there have been no reports of keloid development. Developing a patient-specific care plan and instituting close follow up is emphasized.

  16. The basic science of dermal fillers: past and present Part II: adverse effects.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Meehan, Shane; Waldorf, Heidi A

    2012-09-01

    The ideal dermal filler should offer long-lasting aesthetic improvement with a minimal side-effect profile. It should be biocompatible and stable within the injection site, with the risk of only transient undesirable effects from injection alone. However, all dermal fillers can induce serious and potentially long-lasting adverse effects. In Part II of this paper, we review the most common adverse effects related to dermal filler use.

  17. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    International Nuclear Information System (INIS)

    Sicinski, M; Gozdek, T; Bielinski, D M; Kleczewska, J; Szymanowski, H; Piatkowska, A

    2015-01-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied. (paper)

  18. Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler

    Directory of Open Access Journals (Sweden)

    Yuli Darni

    2017-05-01

    Full Text Available This study evaluated the feasibility of bioplastics production by various ratio of sorghum starch and cellulose from red seaweed Eucheuma spinossum, and the use of glycerol as plasticizer and sorghum stalks as filler. Solid-liquid matrix transition should be far over the operating temperature of gelatinization and extracted at 95oC in order to avoid the loss of conductivity. The analyzed variables were starch and cellulose seaweed Eucheuma spinossum and the addition of variation of filler. Sorghum stalk could be expected to affect the mechanical and physical properties of bioplastics. A thin sheet of plastic (plastic film was obtained as a result that have been tested mechanically to obtain the best condition for the formulation of starch-cellulose 8.5:1.5 (g/g. From the result of morphological studies, the fillers in the mixture composites were more randomly in each product and the addition of filler can increase mechanical properties of bioplastics. Chemical modification had a major effect on the mechanical properties. The phenomena of degradation and thermoplasticization were visible at chemical changes that can be observed in FTIR spectrum test results.

  19. PROCESS TIME OPTIMIZATION IN DEPOSITOR AND FILLER

    Directory of Open Access Journals (Sweden)

    Jesús Iván Ruíz-Ibarra

    2017-07-01

    Full Text Available As in any industry, in soft drink manufacturing demand, customer service and production is of great importance that forces this production to have their equipment and production machines in optimal conditions for the product to be in the hands of the consumer without delays, therefore it is important to have the established times of each process, since the syrup is elaborated, packaged, distributed, until it is purchased by the consumer. After a chronometer analysis, the most common faults were detected in each analyzed process. In the filler machine the most frequent faults are: accumulation of bottles in the subsequent and previous processes to filling process, which in general the cause of the collection of bottles is due to failures in the other equipment of the production line. In the process of unloading the most common faults are: boxes jammed in bump and pusher (pushing boxes; boxes fallen in rollers and platforms transporter. According to observations in each machine, the actions to be followed are presented to solve the problems that arise. Also described the methodology to obtain results, to data analyze and decisions. Firstly an analysis of operations is done to know each machine, supported by the manuals of the machines and the operators themselves a study of times is done by chronometer to determine the standard time of the process where also they present the most common faults, then observations are made on the machines according to the determined sample size, thus obtaining the information necessary to take measurements and to make the study of optimization of the production processes. An analysis of the predetermined process times is also performed by the MTM methods and the MOST time analysis. The results of operators with MTM: Fault Filler = 0.846 minutes, Faultless Filler = 0.61 minutes, Fault Breaker = 0.74 minutes and Fault Flasher = 0.45 minutes. The results of MOST operators are: Fault Filler = 2.58 minutes, Filler Fails

  20. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  1. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler.

    Science.gov (United States)

    Yang, Xi; Yu, Xiaoyan; Naito, Kimiyoshi; Ding, Huili; Qu, Xiongwei; Zhang, Qingxin

    2018-05-01

    A new thermally conductive and electrically insulative polyimide were prepared by filling different amounts of hexagonal boron nitride (h-BN) particles, and the thermal conductivity of Polyimide (PI) composites were improved with the increasing h-BN content. Based on this, two methods were applied to improve thermal conductivity furtherly at limited filler loading in this paper. One is modifying the h-BN to improve interface interaction, another is fabricating a nano-micro hybrid filler with 2-D h-BN and 0-D nano-scale nanodiamond (ND) to build more effective conductive network. Both surface modification and hybrid system have a positive effect on thermal conductivity. The composites introducing 40 wt% hybrid filler (the weight ratio of ND/modified BN was 1/10) showed the highest thermal conductivity, being up to 0.98 W/(m K) (5.2 times that of PI). In addition, the composites exhibits excellent electrical insulation, thermal stability properties etc.

  2. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  3. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  4. Blindness caused by cosmetic filler injection: a review of cause and therapy.

    Science.gov (United States)

    Carruthers, Jean D A; Fagien, Steve; Rohrich, Rod J; Weinkle, Susan; Carruthers, Alastair

    2014-12-01

    Vascular occlusion causing blindness is a rare yet greatly feared complication of the use of facial aesthetic fillers. The authors performed a review of the aesthetic literature to ascertain the reported cases of blindness and the literature reporting variations in the vascular anatomy of the human face. The authors suggest a small but potentially helpful addition to the accepted management of the acute case. Cases of blindness, mostly irreversible, from aesthetic filler injections have been reported from Asia, Europe, and North America. Autologous fat appears to be the most frequent filler causing blindness. Some cases of partial visual recovery have been reported with hyaluronic acid and calcium hydroxylapatite fillers. The sudden profusion of new medical and nonmedical aesthetic filler injectors raises a new cause for alarm about patient safety. The published reports in the medical literature are made by experienced aesthetic surgeons and thus the actual incidence may be even higher. Also, newer injectors may not be aware of the variations in the pattern of facial vascular arborization. The authors present a summary of the relevant literature to date and a suggested helpful addition to the protocols for urgent management.

  5. Effect of using fly ash as alternative filler in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    Raja Mistry

    2016-09-01

    Full Text Available This study investigates the effect of using fly ash (FA in asphalt mixture as replacement of common filler. In view of the same, samples were prepared for different bitumen content (3.5−6.5% at 0.5% increments by using 2% hydrated lime (HL in control mix as well as varying percentage of FA ranging from 2 to 8% as alternative filler in modified mixes. The optimum bitumen content (OBC was then determined for all the mix by Marshall mix design. Experimental results indicated higher stability value with lower OBC for the mixture having 4% FA as optimum filler content in comparison with conventional mix and standard specification. So this study discuss the feasibility of using FA as alternative filler instead of HL in asphalt concrete mix by satisfying the standard specification.

  6. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  7. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  8. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  9. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  10. Effect of Mineral Filler Type and Particle Size on the Engineering Properties of Stone Mastic Asphalt Pavements

    Directory of Open Access Journals (Sweden)

    R Muniandy

    2013-12-01

    Full Text Available This study examines four types of industrial and by-product waste fillers, namely limestone dust (LSD, which was the reference filler; ceramic waste dust (CWD; coal fly ash (CFA, and steel slag mixture (SSD. The filler consisted of an aggregate (10% of total weight with three proportions: 100% passing 75μm, 50% passing 75μm/20μm, and 100% passing 20μm. Comprehensive laboratory tests were performed to determine the impact of different types and particle sizes of fillers on the engineering and mechanical properties of fine mastics and stone mastic asphalt mixture. The results indicate that the application of industrial by-products used as fillers improves the engineering properties of stone mastic asphalt mixtures. The increased stiffness due to the addition of the filler is represented by an increase in the softening point, viscosity, stability, and resilient modulus, as well as a decrease in penetration. The optimum asphalt content increased with the decrease in filler particle size for LSD and SSD, and decreased for CWD and CFA. It was also determined that the filler type and particle size has a significant effect on the mixture properties. Among these three proportions, the samples prepared with the filler size proportion of 50/50 gave the best value in terms of stability, Marshall quotient, and resilient modulus than the other filler size proportions.

  11. Effect of the filler on radiolysis of filled elastomers

    International Nuclear Information System (INIS)

    Komarov, S.A.; Erastov, A.Kh.; Kolesnikov, A.A.; Gostikina, A.V.; Mal'kov, A.M.; Korovkin, V.V.

    1987-01-01

    The effect of the type and concentration of filler (A-175 Aerosil, PM-75 technical carbon, BS-100 white black, kaolin, titanium oxide) on the radiation yield of elastomers of different chemical nature was studied. The extreme character of the dependence of the radiation yield of paramagnetic centers on the concentration of filler, common to the systems studied, was established; it was due to the features of the colloid chemical structure of the filled elastomers and particularly to processes of cross-linking of the filter

  12. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    Two types of filler from crushed sand were mixed with cement paste with constant superplasticizer dosage per mass of cement to investigate how their shape affects the rheology. The fillers were mylonitic quartz diorite and limestone produced using Vertical Shaft Impact (VSI) crusher and air...... was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  13. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...

  14. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  15. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    International Nuclear Information System (INIS)

    Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Wallace, Gordon G

    2016-01-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors. (paper)

  16. Effect of casting solvents and filler quantity on the preparation and physiochemical properties of PVC-bentonite based composite polymeric membranes

    International Nuclear Information System (INIS)

    Hamid, A.; Mukhtar, A.; Ghauri, M. S.; Ali, A.

    2013-01-01

    Two series of Composite Polymeric Membranes (CPMs) based on Poly (Vinyl Chloride) (PVC) and inorganic filler were prepared by solvent casting method, using Tetrahydrofuran (THF) and a mixture of THF and Dimethylsulfoxide (DMSO). The different percentages (5-35 %) of Bentonite clay (79-89 mesh, ASTM) filler were used. The physicochemical parameters of the CPMs i.e. degree of perpendicular swelling, liquid uptake (water, methanol and ethanol), density, ion adsorption capacity (IAC), porosities, electrical resistivity and conductivities were evaluated. The Type-B CPMs cast with THF and DMSO mixture have greater values of the above parameters except density than the Type-A CPMs cast with THF only. The CPMs having more filler show more liquid uptake. The uptake of Water, ethyl alcohol (EtOH), 5M methanol and methanol (MeOH) in Type-B CPMs was found 8-11, 10.12-12.83, 3.40-10.88 and 11.37-15.25 times more than Type-A CPMs. Proton ion adsorption capacity of Type-B CPMs was calculated 2.83 to 8.4 times more than Type-A CPMs. The porosity range of Type-A CPMs was observed 0.0377 to 0.093, 0.0227 to 0.0909, 0.02 to 0.0408 and 0.0476 to 0.1112; whereas porosity range in Type-B CPMs were noted 0.1955 to 0.4919, 0.1477 to 0.4835, 0.115 to 0.2554 and 0.1177 to 0.4447 in deionized water, EtOH, 5M MeOH and MeOH respectively. The conductivity of Type-B CPMs was 150-333 times greater than Type-A CPMs. These all characteristics were compared with pure Poly (Vinyl Chloride) membrane (prepared and studied by same method) cast with DMSO and without DMSO. (author)

  17. Effects of SiO 2 and TiO 2 fillers on thermal and dielectric properties ...

    Indian Academy of Sciences (India)

    The microstructures and distribution of fillers in the glass matrix have been analyzed by SEM images. It is observed that the fillers have partially dissolved in the glass at the firing temperature leaving some unreacted filler as residue which results in ceramic–glass microcomposites. In consideration of the desired properties of ...

  18. Host Tissue Interaction, Fate, and Risks of Degradable and Nondegradable Gel Fillers

    DEFF Research Database (Denmark)

    Christensen, Lise

    2009-01-01

    BACKGROUND A constantly increasing number of gel fillers for aesthetic and reconstructive purposes have been introduced during the last 20 years. Most of the new ones are modified versions of the original collagen and hyaluronic acid gels. They have been reconstructed, often by adding cross......-bindings to the polymer in order to obtain a more dense molecular structure, which will prolong degradation and filling effect of the gel. Other gel fillers contain particles of organic (poly-lactic acid) or inorganic (calcium hydroxylapatite) material, which have been used in human tissue for other purposes (degradable...... are based on experimental and clinical observations coupled with a search of the literature. RESULTS AND CONCLUSION Complications following homogenous hydrogels are caused by infection with bacteria, which have been inserted into the gel during injection. If not treated with relevant antibiotics (but...

  19. Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al Si La Sr filler

    International Nuclear Information System (INIS)

    Yan, Fei; Wang, Chun Ming; Wang, Ya Jun; Xu, Dao Rong; Wu, S.C.; Sun, Qin De

    2012-01-01

    It has been mainly studied in this paper on brazing of Cu to Al using Al.Si filler metal. The optimized scanning rate of 2.5 mm/s is first obtained through simulating the temperature field of Cu Al brazing process based on ANSYS software. Then the brazing of Cu C11000 to Al 3003 using Al.Si.La.Sr filler is carried out by torch brazing technology. It is found that the brazing seam region is mainly consisted of α Al solid solution and CuAl2 IMC. Further experimental results also show that the rare earth element La in filler metal can not only refine the grain, but also promote the dispersion of intermetallic compounds into the brazing seam, which significantly improves the brazing seam microstructure and mechanical properties of the joints

  20. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  1. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  2. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  3. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    International Nuclear Information System (INIS)

    Shahid U N, Mohamed; Deshpande, Abhijit P; Rao, C Lakshmana

    2015-01-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation. (paper)

  4. Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites

    Directory of Open Access Journals (Sweden)

    SONG Na

    2018-03-01

    Full Text Available The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3 and silicon carbide (SiC with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction graphene content compared to pure nylon-6(PA6. The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.

  5. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  6. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid).

    Science.gov (United States)

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C; Yang, Mingshu; Mitchell, James W

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  7. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  8. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  9. Delayed-onset complications of facial soft tissue augmentation with permanent fillers in 85 patients.

    Science.gov (United States)

    Kadouch, Jonathan A; Kadouch, Daniel J; Fortuin, Shai; van Rozelaar, Leo; Karim, Refaat B; Hoekzema, Rick

    2013-10-01

    To evaluate factors influencing the onset and type of adverse events in patients injected with permanent fillers in the face and to propose a therapeutic strategy for these complications. A prospectively attained series of 85 patients with delayed-onset complications after facial injection with permanent fillers underwent clinical follow-up and treatment of the complications. Lag times until onset and type of delayed-onset complication varied according to filler material. In 28% (n = 24) of the cases, patients reported the onset of complications after dental procedures, additional injections with fillers, or other invasive treatments in the facial area. Forty-eight (57%) patients required invasive treatment. Abscess formation was significantly more frequent in patients with human immunodeficiency virus infection and facial lipoatrophy (p = .001). The intrinsic characteristics of the injected filler and the immune status of the patient play important roles in the diversity of time of onset and type of delayed-onset adverse events observed. It seems that invasive facial or oral procedures in the vicinity of filler depots can provoke such complications. We propose a strategy for treating these complications and advise great caution when using permanent filling agents. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  10. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  11. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    International Nuclear Information System (INIS)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Scaffaro, R.; Rosselli, S.; Bruno, M.

    2014-01-01

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H 2 SO 4 /H 3 PO 4 and KMnO 4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors

  12. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, J.S.; Abidi, M.A.

    1998-06-01

    A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.

  13. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  14. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics

    Directory of Open Access Journals (Sweden)

    F. Cardone

    2015-12-01

    Full Text Available The rheological properties of the bituminous components (bitumen and bituminous mastic within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking. Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggregates. The purpose of this study is to investigate the effects of mineral fillers on the rheological behaviour of several polymer-modified bitumens (PMBs through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric were used to produce PMBs, and two fillers with different minerals (limestone and basalt were selected to obtain mastics. The dynamic shear rheometer (DSR and bending beam rheometer (BBR were used to characterize the rheological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combination of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical–chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.

  15. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid.

    Science.gov (United States)

    Sundaram, Hema; Voigts, Bob; Beer, Kenneth; Meland, Melissa

    2010-11-01

    Two types of soft tissue filler that are in common use are those formulated primarily with calcium hydroxylapatite (CaHA) and those with cross-linked hyaluronic acid (cross-linked HA). To provide physicians with a scientific rationale for determining which soft tissue fillers are most appropriate for volume replacement. Six cross-linked HA soft tissue fillers (Restylane and Perlane from Medicis, Scottsdale, AZ; Restylane SubQ from Q-Med, Uppsala, Sweden; and Juvéderm Ultra, Juvéderm Ultra Plus, and Juvéderm Voluma from Allergan, Pringy, France) and a soft tissue filler consisting of CaHA microspheres in a carrier gel containing carboxymethyl cellulose (Radiesse, BioForm Medical, Inc., San Mateo, CA). METHODS The viscosity and elasticity of each filler gel were quantified according to deformation oscillation measurements conducted using a Thermo Haake RS600 Rheometer (Newington, NH) using a plate and plate geometry with a 1.2-mm gap. All measurements were performed using a 35-mm titanium sensor at 30°C. Oscillation measurements were taken at 5 pascal tau (τ) over a frequency range of 0.1 to 10 Hz (interpolated at 0.7 Hz). Researchers chose the 0.7-Hz frequency because it elicited the most reproducible results and was considered physiologically relevant for stresses that are common to the skin. RESULTS The rheological measurements in this study support the concept that soft tissue fillers that are currently used can be divided into three groups. CONCLUSION Rheological evaluation enables the clinician to objectively classify soft tissue fillers, to select specific filler products based on scientific principles, and to reliably predict how these products will perform--lifting, supporting, and sculpting--after they are appropriately injected. © 2010 by the American Society for Dermatologic Surgery, Inc.

  16. Waste-wood-derived fillers for plastics

    Science.gov (United States)

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  17. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    low viscosities, which is favorable for loading of inorganic fillers [5]. In this study, commercially available fillers, such as fumed silica (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), copper calcium titanate (CaCu3Ti4O12, CCTO), multi-walled carbon nanotubes (MWCNTs) were added...

  18. IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING.

    Science.gov (United States)

    Bayard, David S; Schumitzky, Alan

    2010-03-01

    This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches.

  19. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    Science.gov (United States)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  20. Transparent Gap Filler Solution over a DVB-RCS2 Satellite Platform in a Railway Scenario: Performance Evaluation Study

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2015-01-01

    Full Text Available In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path.

  1. Preventing the Complications Associated with the Use of Dermal Fillers in Facial Aesthetic Procedures: An Expert Group Consensus Report.

    Science.gov (United States)

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2017-06-01

    The use of dermal fillers in minimally invasive facial aesthetic procedures has become increasingly popular of late, yet as the indications and the number of procedures performed increase, the number of complications is also likely to increase. Paying special attention to specific patient characteristics and to the technique used can do much to avoid these complications. Indeed, a well-trained physician can also minimize the impact of such problems when they do occur. A multidisciplinary group of experts in aesthetic treatments reviewed the main factors associated with the complications that arise when using dermal fillers. A search of English, French and Spanish language articles in PubMed was performed using the terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers". An initial document was drafted that reflected the complications identified and recommendations as to how they should be handled. This document was then reviewed and modified by the expert panel, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the preparation, the procedure and the post-procedural care. The panel considered it crucial to obtain an accurate medical history to prevent potential complications. An additional clinical assessment, including standardized photography, is also crucial to evaluate the outcomes and prevent potential complications. Furthermore, the state of the operating theatre, the patient's health status and the preparation of the skin are critical to prevent superficial soft tissue infections. Finally, selecting the appropriate technique, based on the physician's experience, as well as the characteristics of the patient and filler, helps to ensure successful outcomes and limits the complications. This consensus document provides key elements to help clinicians who are starting to use dermal fillers to employ standard procedures and to understand how best to prevent

  2. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  3. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Science.gov (United States)

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  4. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  5. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    Science.gov (United States)

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  6. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Kevin C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  7. Influence of fillers on mechanical properties of filled rubbers during ageing by irradiation

    International Nuclear Information System (INIS)

    Planes, Emilie

    2008-01-01

    The understanding of the evolution of mechanical properties and the prediction of the lifetime of material environment is a recurring problem. This question is very important to develop polymer formulations used for electrical cables in nuclear power plants. Thus it is important to know the evolution of materials when they are submitted to usual conditions in nuclear power plants. There are in literature some studies concerning the ageing by gamma irradiation of unfilled elastomer but the addition of fillers in the material can have consequences on the evolution of the mechanical properties during irradiation. Thus this work concerns the study of the ageing by gamma irradiation of filled rubbers and the identification of the role of fillers in the degradation mechanisms. The studied matrix, which commonly used for the type of application is EPDM. The fillers are: nano-scopic silica and aluminium trihydrate. Their surfaces have been treated in order to understand the role of filler-matrix interfaces during ageing. To evaluate the influence of fillers on the degradation mechanisms and on the evolution of the mechanical properties, the evolution during ageing of these materials filled or not has been studied for an ageing by irradiation: they have been physico-chemically, micro-structurally and mechanically characterized at various levels of ageing [fr

  8. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore

    2016-06-01

    The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in

  9. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    OpenAIRE

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here....

  10. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  11. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  12. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  13. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    Science.gov (United States)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

  14. The Effect of Fracture Filler Composition on the Parameters of Shear Deformation Regime

    Science.gov (United States)

    Pavlov, D.; Ostapchuk, A.; Batuhtin, I.

    2015-12-01

    Geomechanical models of different slip mode nucleation and transformation can be developed basing on laboratory experiments, in which regularities of shear deformation of gouge-filled faults are studied. It's known that the spectrum of possible slip modes is defined by both macroscopic deformation characteristics of the fault and mesoscale structure of fault filler. Small variations of structural parameters of the filler may lead to a radical change of slip mode [1, 2]. This study presents results of laboratory experiments investigating regularities of shear deformation of discontinuities filled with multicomponent granular material. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical "slider model" statement. A granite block slides under shear load on a granite substrate. The contact gap between rough surfaces was filled with a discrete material, which simulated the principal slip zone of a fault. The filler components were quartz sand, salt, glass beads, granite crumb, corundum, clay and pyrophyllite. An entire spectrum of possible slip modes was obtained - from stable slip to slow-slip events and to regular stick-slip with various coseismic displacements realized per one act of instability. Mixing several components in different proportions, it became possible to trace the gradual transition from stable slip to regular stick-slip, from slow-slip events to fast-slip events. Depending on specific filler component content, increasing the portion of one of the components may lead to both a linear and a non-linear change of slip event moment (a laboratory equivalent of the seismic moment). For different filler compositions durations of equal-moment events may differ by more than two orders of magnitude. The findings can be very useful for developing geomechnical models of nucleation and transformation of different slip modes observed at natural faults. The work was supported by

  15. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  16. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  17. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  19. Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

    Directory of Open Access Journals (Sweden)

    Ha Min Sung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  20. Influencia del filler calizo en las propiedades de los morteros a resistencia constante

    Directory of Open Access Journals (Sweden)

    Hernández, Francisco

    1994-03-01

    Full Text Available This article studies the effects produced by the lime filler on the Portugal cement used with additions in the production of mortars. The starting point is a Portland cement to which different ratios of lime filler, ranging from 0-50%, are added. The next step consists of preparing mortar specimens using standardized sand as aggregate, curing them up to the age of 28 days when they are put to flexo-tensile and compression tests. The mortar strength is fixed at the age of 28 days, making it coincide with the strength of a pattern cement mortar (cement without additions of the same age. Then the effects of the filler on the slump and the water cement relation are observed for fixed strength.

    En este artículo se estudian los efectos producidos por el "filler" calizo en el cemento portland al utilizar este cemento con adiciones, en la fabricación de morteros. Se parte de un cemento portland al que se le añaden proporciones de "filler" calizo desde O hasta el 50%, y se preparan probetas de mortero utilizando como árido arena normalizada, curándose a continuación hasta la edad de 28 días, fecha en la que se someten a rotura por flexotracción y compresión. La resistencia de los morteros se fija a la edad de 28 días, haciéndola coincidir con la de un mortero de cemento patrón (cemento sin adiciones a la misma edad, y se observan, a resistencia fija, los efectos del "filler" sobre el escurrimiento y relación agua/cemento.

  1. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  2. Characterization of granite and limestone powders for use as fillers in bituminous mastics dosage

    Directory of Open Access Journals (Sweden)

    BRENO BARRA

    2014-06-01

    Full Text Available This paper discusses the importance of studies on materials known as fillers from different mineral origins, used in asphalt mixes, specifically in the formulation of mastics. The research was carried out on samples of limestone and granite rock filler and asphalt binder (50/70. The samples were evaluated through semiquantitative chemical analyses by X-ray fluorescence, granulometry by low angle laser emission, scanning electron microscopy, softening point tests, penetration tests, and aggregate-asphalt binder and aggregate-mastic adhesion tests. The results highlighted convergent trends, indicating that the active behavior of the fillers in the mastic formulation is not related to the size of the particles, but rather to their form, surface texture, specific surface area and mineralogical nature, allowing the filler activity concept to be divided into two components: physical (hardening and chemical (adhesion.

  3. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  4. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  5. Glans Penis Augmentation Using Hyaluronic Acid Gel as an Injectable Filler

    OpenAIRE

    Moon, Du Geon; Kwak, Tae Il; Kim, Je Jong

    2015-01-01

    Glans penis augmentation (GPA) has received little attention from experts despite the existence of a subset of patients who may be dissatisfied with a small glans or poor tumescence of the glans during erection. Recently, GPA using an injectable filler or implantation of a graft or filler has been developed. Despite a demanding injection technique and inevitable uneven undulation of the glandular surface, GPA using injectable hyaluronic acid (HA) gel is a novel and useful therapy and an effec...

  6. Study on mechanical and physical properties of composite materials with recycled PET as fillers for paving block application

    Science.gov (United States)

    Wicaksono, Sigit Tri; Ardhyananta, Hosta; Rasyida, Amaliya

    2018-04-01

    Base on Sidoarjo's goverment data, there was more than 4000 metric ton perday of waste that has been accumulated during 2016. More than 10 percent from overall waste is plastics. In accordance with the Indonesia government regulation, "Indonesia clean from waste" by 2020 through 3R (Reduce, Reuse and Recycle) program, we have been focusing research on how to reduce the accumulation of the plastics waste in Sidoarjo by processing it become a new product. In this research, we have made the plastic waste of PET bottle as additional fillers or agregates of composite material for construction application as a paving block. The composition of PET plastic used as fillers is vary from 0, 10, 20, 30, 40 and 50% from total volume of agregates. The ratio of cement binder to sands agregate is 1:3. The specimens were characterized its mechanical and physical properties by using flexural testing, compressive testing, density and water absorbance measurement. The results show that the mechanical (flexural and compressive) properties of composite materials is increased significantly by increasing PET fillers up to 20%, however it was decreased when PET content more than 20%. But, both the density and water absobance of specimens are decreased by increasing of PET fillers.

  7. Biological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Yuk Fai Lui

    2017-09-01

    Full Text Available Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in terms of flexibility. In cases of bone defect treatments, a flexible soft filler can help to establish an intimate contact with surrounding bones to provide a stable bone-material interface for cell proliferation and ingrowth of tissue. In this study, a porous filler based on segmented polyurethane incorporated with poly l-lactic acid was synthesized by a phase inverse salt leaching method. The filler was put through in vitro and in vivo tests to evaluate its potential in acting as a bone graft substitute for critical-sized bone defects. In vitro results indicated there was a major improvement in biological response, including cell attachment, proliferation and alkaline phosphatase expression for osteoblast-like cells when seeded on the composite material compared to unmodified polyurethane. In vivo evaluation on a critical-sized defect model of New Zealand White (NZW rabbit indicated there was bone ingrowth along the defect area with the introduction of the new filler. A tight interface formed between bone and filler, with osteogenic cells proliferating on the surface. The result suggested polyurethane/poly l-lactic acid composite is a material with the potential to act as a bone graft substitute for orthopedics application.

  8. The basic science of dermal fillers: past and present Part I: background and mechanisms of action.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Waldorf, Heidi A

    2012-09-01

    Dermal fillers have provided a safe and effective means for aesthetic soft tissue augmentation, and have experienced a dramatic increase in popularity during the past 10 years. Much focus has been placed upon filler technique and patient outcomes. However, there is a relative lack of literature reviewing the basic science of dermal fillers, which is vital to a physician's understanding of how each product behaves in vivo. Part I of this article reviews the basic science and evolution of both historical and contemporary dermal fillers; Part II examines their adverse effects. We endeavor to provide the physician with a practical approach to choosing products that maximize both aesthetic outcome and safety.

  9. Evaluation of rice husk ash as filler in tread compounds

    International Nuclear Information System (INIS)

    Fernandes, M. R. S.; Furtado, C. R. G.; Sousa, A. M. F. de

    2014-01-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  10. Evaluation of rice husk ash as filler in tread compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com [Lanxess Elastômeros do Brasil S.A., Brasil and Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil); Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com [Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil)

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  11. High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design

    Science.gov (United States)

    2016-12-16

    construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph

  12. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  13. Improvement of the Early-Age Compressive Strength, Water Permeability, and Sulfuric Acid Resistance of Scoria-Based Mortars/Concrete Using Limestone Filler

    Directory of Open Access Journals (Sweden)

    Aref Al-Swaidani

    2017-01-01

    Full Text Available Natural pozzolan is being widely used as cement replacement. Despite the economic, ecological, and technical benefits of its adding, it is often associated with shortcomings such as the need of moist-curing for longer time and a lower early strength. This study is an attempt to investigate the effect of adding limestone filler on the compressive strength and durability of mortars/concrete containing scoria. Sixteen types of binders with different replacement levels of scoria (0, 10, 20, and 30% and limestone (0, 5, 10, and 15% were prepared. The development of the compressive strength of mortar/concrete specimens was investigated after 2, 7, 28, and 90 days’ curing. In addition, the acid resistance of the 28 days’ cured mortars was evaluated after 90 days’ exposure to 5% H2SO4. Concrete permeability was also evaluated after 2, 7, 28, and 90 days’ curing. Test results revealed that there was an increase in the early-age compressive strength and a decrease in water penetration depths with adding limestone filler. Contrary to expectation, the best acid resistance to 5% H2SO4 solution was noted in the mortars containing 15% limestone. Based on the results obtained, an empirical equation was derived to predict the compressive strength of mortars.

  14. Complications After Facial Injections With Permanent Fillers: Important Limitations and Considerations of MRI Evaluation

    NARCIS (Netherlands)

    Kadouch, Jonathan A.; Tutein Nolthenius, Charlotte J.; Kadouch, Daniel J.; van der Woude, Henk-Jan; Karim, Refaat B.; Hoekzema, Rick

    2014-01-01

    Background: Soft-tissue fillers have become more prevalent for facial augmentation in the last 2 decades, even though complications of permanent fillers can be challenging to treat. An investigative imaging tool could aid in assessing the nature and extent of these complications when clinical

  15. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  16. Evaluation on construction quality of pit filler material of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Shimbo, Hiroshi; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    The pit filler material of the underground cavern-type radioactive waste disposal facility, which is poured directly around the radioactive waste packages where high temperature environment is assumed by their decay heat, is concerned to be adversely affected on the filling behavior and its hardened properties. There also are specific issues that required quality of construction must be achieved by unmanned construction with remote operation, because the pit filler construction shall be done under radiation environment. In this paper, the mix proportion of filler material is deliberated with filling experiments simulating high temperature environment, and also the effect of temperature on hardened properties are confirmed with high temperature curing test. Subsequently, the feasibility of unmanned construction method of filler material by pumping, and by movable bucket, are comparatively discussed through a real size demonstration. (author)

  17. Lower Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    Science.gov (United States)

    Braz, André; Humphrey, Shannon; Weinkle, Susan; Yee, G Jackie; Remington, B Kent; Lorenc, Z Paul; Yoelin, Steve; Waldorf, Heidi A; Azizzadeh, Babak; Butterwick, Kimberly J; de Maio, Mauricio; Sadick, Neil; Trevidic, Patrick; Criollo-Lamilla, Gisella; Garcia, Philippe

    2015-11-01

    The use of injectable fillers enables facial sculpting through treatment of volume depletion and modeling of facial contours. Injectable fillers are among the most frequently performed minimally invasive cosmetic procedures.However, treatment of the lower third of the face can be challenging and requires expertise in facial anatomy. In this article, the authors provide a comprehensive review of the anatomy of the lower third of the face, highlighting danger zones. In addition, the authors describe their preferred approach and detailed technique used in the treatment of each specific area, namely the jawline, prejowl sulcus, melomental folds, and lips.

  18. Lymphedema Fat Graft: An Ideal Filler for Facial Rejuvenation

    Directory of Open Access Journals (Sweden)

    Fabio Nicoli

    2014-09-01

    Full Text Available Lymphedema is a chronic disorder characterized by lymph stasis in the subcutaneous tissue. Lymphatic fluid contains several components including hyaluronic acid and has many important properties. Over the past few years, significant research has been performed to identify an ideal tissue to implant as a filler. Because of its unique composition, fat harvested from the lymphedema tissue is an interesting topic for investigation and has significant potential for application as a filler, particularly in facial rejuvenation. Over a 36-month period, we treated and assessed 8 patients with lymphedematous limbs who concurrently underwent facial rejuvenation with lymphedema fat (LF. We conducted a pre- and post-operative satisfaction questionnaire survey and a histological assessment of the harvested LF fat. The overall mean general appearance score at an average of 6 months after the procedure was 7.2±0.5, demonstrating great improvement. Patients reported significant improvement in their skin texture with a reading of 8.5±0.7 and an improvement in their self-esteem. This study demonstrates that LF as an ideal autologous injectable filler is clinically applicable and easily available in patients with lymphedema. We recommend the further study and clinical use of this tissue as it exhibits important properties and qualities for future applications and research.

  19. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  20. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  1. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  2. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  3. The Influence of Unusual Materials as Prospective Fillers in the Hot Mix Asphalt

    Science.gov (United States)

    Cavalcate Ferrão, Wallace; Moizinho, Joel Carlos

    2017-10-01

    Among the factors that influence directly the durability of the asphaltic layer on pavements, the type and percentage of filler in the hot mix asphalt pavement (HMA) is a great player. The most traditional fillers, the Portland cement and the hydrated lime, are well known for resisting to weather variations and adding extra features to the hot mixtures. The glass powder, the cladding waste (gotten from clay bricks), the ashes of rice husks and laterite powder are proposed as substitutes to the traditional ones. The materials have been sieved and classified by fitting the powder on the filler grain size required by Brazilian Rules, eventually they have been tested with asphalt 50/70. The glass powder performed a Thermic Susceptibility Index (IST) of -0.69 for 5% in weight of filler and -0.75 for 10% in weight of filler, proving that this material satisfies the Brazilian specification DNIT-EM 095/2006; on the other hand, the laterite powder presented an IST of -0.61 for 5% and 0.32 for 10%. After executing the Softening Point, Penetration and Flash Point tests, it has been confirmed that the glass and laterite powder are recommended materials as potential substitutes to the Portland cement, however the first one performs better under balmy temperatures due to its negative IST; the cladding powder and the rice husks turns the mixtures too rigid and breakable on percentages close to 10%.

  4. Influence of heat conductivity on the performance of RTV SIR coatings with different fillers

    Energy Technology Data Exchange (ETDEWEB)

    Siderakis, K [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, GR-26110 Patras (Greece); Agoris, D [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Greece, GR-26500, Rion, Greece (Greece); Gubanski, S [High Voltage Laboratory, Department of Electric Power Engineering, Chalmers University of Technology, S-41296, Gothenburg (Sweden)

    2005-10-07

    Room temperature vulcanized silicone rubber (RTV SIR) coatings are employed in order to improve the pollution performance of high voltage ceramic insulators by imparting surface hydrophobicity. In this paper, the performance of three RTV SIR coatings containing different fillers is investigated in a salt-fog test. Alumina trihydrate (ATH) and silica are the fillers included in the formulation, aiming to increase the material endurance to the energy supplied by the surface electrical activity during periods of hydrophobicity loss. The primary action of these fillers is to increase the material heat conductivity, i.e. the amount of energy conducted to the substrate. In addition, in the case of ATH relief is also achieved due to particle decomposition. The results indicate that for the compositions commercially available, where low amounts of fillers are used, and under the conditions of the test, ATH filled coatings performed better than the silica filled ones. This is attributed to ATH decomposition which further relieves the material structure and therefore decelerates material aging.

  5. Treatment of a traumatic atrophic depressed scar with hyaluronic acid fillers: a case report

    Directory of Open Access Journals (Sweden)

    Hussain SN

    2017-08-01

    Full Text Available Syed Nazim Hussain,1 Greg J Goodman,2,3 Eqram Rahman4 1Royal Lush Skin Hair & Laser Clinic, Saket, New Delhi, India; 2Department of Primary Care, Monash University, Clayton, 3Skin and Cancer Foundation Inc, Carlton, VIC, Australia; 4Faculty of Medical Science, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, UK Background: Hyaluronic acid filler has been documented in the treatment of atrophic depressed acne scars relatively frequently in the literature but rarely in chronic depressed traumatic atrophic facial scars.Methods: This case report discusses the use of hyaluronic acid fillers in the correction of a post-traumatic facial atrophic scar on the right cheek.Results: The right cheek scar was substantially corrected with one session of two different hyaluronic acids injected in a deep and superficial plane.Conclusion: Relatively accurate, simple and effective correction of this atrophic traumatic scar may suggest that fillers are a suitable alternative to surgery for such scars. Keywords: scarring, scar correction, filler, hyaluronic acid, facial scar

  6. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    Science.gov (United States)

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  7. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    Directory of Open Access Journals (Sweden)

    Nadiim Domun

    2017-10-01

    Full Text Available In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs and boron nitride nanotubes (BNNTs were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  8. Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement.

    Science.gov (United States)

    Fumagalli, Matthieu; Berriot, Julien; de Gaudemaris, Benoit; Veyland, Anne; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Heux, Laurent

    2018-04-04

    Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.

  9. Effects of trace fillers on the radiation-induced crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Chappas, W.J.; Silverman, J.

    1979-01-01

    Silica-filled samples of low-density polyethylene were subjected to γ and electron irradiation. The insoluble fraction determined by Soxhlet extraction was found to be independent of filler concentrations up to 0.5% by volume. The results show no evidence to support the previously reported work by Gordiyenko et al. of a sharp increase in the gel fraction of irradiated samples with filler concentrations of 0.2%. Substantial changes in the conditions of irradiation and of sample preparation and treatment do not affect gel yields strongly

  10. design and implementation of a microcontroller based dual axis

    African Journals Online (AJOL)

    user

    In this paper, an efficient microcontroller-based dual axis solar radiation tracker which can be used to align a single photovoltaic (PV) ... replaced them with wind turbine generating stations. ... tracker which has both horizontal and vertical axle.

  11. Reconfigurable dual-band metamaterial antenna based on liquid crystals

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun

    2018-05-01

    In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward  ‑16° to forward  +13° at 7.2 GHz and backward  ‑9° to forward  +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.

  12. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  13. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    Science.gov (United States)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  14. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  15. Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Science.gov (United States)

    Schumacher, J.; Otero, Toribio F.; Pascual, Victor H.

    2017-04-01

    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.

  16. Foreign Body Granulomas after the Use of Dermal Fillers: Pathophysiology, Clinical Appearance, Histologic Features, and Treatment

    Directory of Open Access Journals (Sweden)

    Jeong Min Lee

    2015-03-01

    Full Text Available A foreign body granuloma is a non-allergic chronic inflammatory reaction that is mainly composed of multinucleated giant cells. Foreign body granulomas may occur after the administration of any dermal filler. Factors such as the volume of the injection, impurities present in the fillers, and the physical properties of fillers affect granuloma formation. The formation of granulomas involves five phases: protein adsorption, macrophage adhesion, macrophage fusion, and crosstalk. The clinical and pathologic features of granulomas vary depending on the type of filler that causes them. Foreign body granulomas can be treated effectively with intralesional corticosteroid injections. Surgical excisions of granulomas tend to be incomplete because granulomas have ill-defined borders and moreover, surgical excisions may leave scars and deformities.

  17. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  18. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  19. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  20. (Methacrylic Acid-Co-Divinylbenzene) Resin as Filler- Binder for ...

    African Journals Online (AJOL)

    Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand. Abstract ... Methods: Powder properties of PMD and MCC were characterized. Tablets ... with the widely used filler-binder, ... Gravimetric swelling was determined by.

  1. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  2. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  3. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  4. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  5. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  6. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  7. Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion

    OpenAIRE

    Kim, Yong-Kyu; Jung, Cheolkyu; Woo, Se Joon; Park, Kyu Hyung

    2015-01-01

    Cosmetic facial filler-related ophthalmic artery occlusion is rare but is a devastating complication, while the exact pathophysiology is still elusive. Cerebral angiography provides more detailed information on blood flow of ophthalmic artery as well as surrounding orbital area which cannot be covered by fundus fluorescein angiography. This study aimed to evaluate cerebral angiographic features of cosmetic facial filler-related ophthalmic artery occlusion patients. We retrospectively reviewed...

  8. Use of waste from the marble industry as filler for the production of self-compacting concretes

    Directory of Open Access Journals (Sweden)

    Valdez, P.

    2011-03-01

    Full Text Available This study evaluates the possibilities of using residual slurry from the cutting and superficial treatment of marble for the production of self-compacting concrete (SCC. The study considers the replacement of 30% of cement by the waste material, and assessed the effects on SCC properties in fresh and hardened states. Rheological characteristics were evaluated at the paste and concrete levels. Physical-mechanical characterization considers the rate of shrinkage and compressive strength gain. Pastes and concrete properties using waste marble as filler are compared with mixtures that include limestone filler, either added to the concrete or the cement. For the same dosage, an improvement in the flowability was observed in SCC with waste marble filler. The mechanical properties of the SCC adopting marble waste are equivalent to the SCC with limestone filler. The study shows that residual slurry from the processing of marble can represents an appropriate filler to be used in SCC.

    El presente estudio evalúa las posibilidades de utilización de lodos residuo de la industria del corte y tratamiento superficial del mármol para la producción de hormigón autocompactante (HAC. Se estudia el efecto del remplazo de un 30% del cemento por el residuo. Se valoran las características reológicas a nivel pasta y hormigón. La caracterización físico-mecánica contempla la evolución de la retracción y de la resistencia a compresión. Se comparan las prestaciones de pastas y hormigones empleando el residuo con mezclas que incorporan filler calizo, ya sea adicionado al hormigón o presente en el cemento. Se observa una mejora de la fluidez en el caso de los HAC que contienen el residuo estudiado; las propiedades mecánicas de éstos resultan equivalentes a las de los HAC con filler calizo. Se concluye que los lodos residuo del procesamiento del mármol pueden representan un filler adecuado para su uso en HAC.

  9. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  10. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  11. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2014-01-01

    Full Text Available Energy dispersive X-ray spectroscopy microanalysis (EDX, scanning electron microscopy (SEM, and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C, Hydrogum 5 (H5, Hydrogum (H, Orthoprint (O, and Jeltrate Plus (JP. The different alginate powders (0.5 mg were fixed on plastic stubs (n=5 and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt. The filler fractions in volume (vt were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  12. Comparison between rice husk ash and commercial silica as filler in polymeric composites

    International Nuclear Information System (INIS)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M.

    2014-01-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  13. Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover

    Directory of Open Access Journals (Sweden)

    Li Xie

    2012-01-01

    Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.

  14. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    Science.gov (United States)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  15. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  16. 14 CFR 23.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  17. [Advantages of combined therapies in cosmetic medicine for the treatment of face aging: botulinum toxin, fillers and mesotherapy].

    Science.gov (United States)

    Braccini, F; Dohan Ehrenfest, D M

    2010-01-01

    Non surgical cosmetic medicine procedures for the face are developing considerably, as they deliver good results using simple, non invasive, atraumatic and reproducible techniques. Aesthetic mesotherapy, also known as anti-aging mesotherapy, uses intra-dermal injections of a nutritive and moisturizing solution to improve brightness, skin hydration and tonus, and also smooth out superficial wrinkles. Subcutaneous filler injections enable to fill wrinkles and folds; by using high density products it is also able to provide genuine facial volumetric reconstruction. Finally, botulinum toxin acts by reducing certain muscle contractions to smooth out expression lines and folds induced by facial dynamics. In this article, we explore the concept of combined therapy and describe our experience associating anti-aging mesotherapy (NCTF-135HA, Filorga, Paris, France), hyaluronic acid based fillers (X-HA3 and X-HA-Volume, Filorga, Paris, France) and botulinum toxin (Vistabel, Allergan, Irvine CA, USA). A therapy combining anti-aging mesotherapy, botulinum toxin and filler injections, offers full treatment of the 3 biological levels of the covering tissues. This non-invasive therapeutic strategy brings patient satisfaction through a global approach to facial aging.

  18. Comparative assessment of filler wires for argon-arc welding of refractory alloys

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Bagdasarov, Yu.S.; Tupikin, V.I.

    1993-01-01

    It is recommended to use wires of similar composition as filler material during argon-arc welding of heat resisting alloys, and Sv-08Kh20N57M8V8T3R wire - for welding of dispersion hardening alloys. Sv-06Kh15N60M15, Sv-KhN64KBMYuVF or Kh11N60M23 wires should be used as filler materials to decrease tendency of welded joints to cracking during welding and heat treatment

  19. Fractional-Order Total Variation Image Restoration Based on Primal-Dual Algorithm

    OpenAIRE

    Chen, Dali; Chen, YangQuan; Xue, Dingyu

    2013-01-01

    This paper proposes a fractional-order total variation image denoising algorithm based on the primal-dual method, which provides a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, convergence rate, and blocky effect. The fractional-order total variation model is introduced by generalizing the first-order model, and the corresponding saddle-point and dual formulation are constructed in theory. In order to guarantee $O(1/{N}^{2})$ conv...

  20. Current Concepts in Filler Injection.

    Science.gov (United States)

    Moradi, Amir; Watson, Jeffrey

    2015-11-01

    When evaluating the face in thirds, the upper face, midface, and lower face, one may assume the lateral the temple, midface, and lateral mandible as the pillars of these subdivisions. Many of our facial aesthetic procedures address these regions, including the lateral brow lift, midface lift, and lateral face lift. As the use of facial fillers has advanced, more emphasis is placed on the correction of the temples, midlateral face, and lateral jaw line. This article is dedicated to these facial aesthetic pillars. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    Science.gov (United States)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  2. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  3. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  4. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  5. A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2006-01-01

    Roč. 47, č. 23 (2006), s. 7997-8012 ISSN 0032-3861 R&D Projects: GA ČR GA203/05/2252 Institutional research plan: CEZ:AV0Z40500505 Keywords : elastomers * fillers * constitutive equation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.773, year: 2006

  6. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites

    International Nuclear Information System (INIS)

    Fama, Lucia; Bittante, Ana Monica B.Q.; Sobral, Paulo J.A.; Goyanes, Silvia; Gerschenson, Lia N.

    2010-01-01

    Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E') and hardening and a decrease in Tan δ, while the garlic composite showed a diminishing in the E' and hardening and did not produce significant changes in Tan δ values when compared with systems without fillers (matrix). In the range between -90 deg. C and 20 deg. C, all the materials studied presented two peaks in the Tan δ curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T gelatinization ) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water.

  7. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  8. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  9. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance.

    Science.gov (United States)

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-09-17

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  10. Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes

    International Nuclear Information System (INIS)

    Fombuena, V.; Bernardi, L.; Fenollar, O.; Boronat, T.; Balart, R.

    2014-01-01

    Highlights: • Calcium carbonate from seashell is an attractive bio-filler in polymeric industry. • We examine composition and thermal properties of calcium carbonate from seashell. • Used with eco-friendly epoxy matrices provides a high renewable content material. • Addition of 30 wt.% of seashell bio-filler increase of over 50% in flexural modulus. • Calcium carbonate from seashell leads higher thermal stability materials. - Abstract: The seashells, a serious environmental hazard, are composed mainly by calcium carbonate, which can be used as filler in polymer matrix. The main objective of this work is the use of calcium carbonate from seashells as a bio-filler in combination with eco-friendly epoxy matrices thus leading to high renewable contents materials. Previously obtaining calcium carbonate, the seashells were washed and grinded. The powder obtained and the resin was characterized by DSC, TGA, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and rheology plate-plate. The results show that addition of 30 wt.% of seashell bio-filler increase mechanical properties as flexural modulus (over 50%) and hardness Shore D (over 6%) and thermal properties as an increase around 13% in glass transitions temperature. The results show that the addition of calcium carbonate from seashells is an effective method to increase mechanical properties of bio-composite and to reduce the residue of seashells from industrial production

  11. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    Science.gov (United States)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  12. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties

    International Nuclear Information System (INIS)

    González-Domínguez, Jose M; Ansón-Casaos, A; Martínez, M Teresa; Martínez-Rubí, Yadienka; Simard, Benoit; Díez-Pascual, Ana M; Gómez-Fatou, Marian

    2012-01-01

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40–60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ∼10 −13 to ∼10 −3 S cm −1 , which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. (paper)

  13. Research and Development of Powder Brazing Filler Metals for Diamond Tools: A Review

    Directory of Open Access Journals (Sweden)

    Fei Long

    2018-05-01

    Full Text Available Powder brazing filler metals (PBFMs feature a number of comparative advantages. Among others, these include a low energy consumption, an accurate dosage, a good brazeability, a short production time, and a high production efficiency. These filler metals have been used in the aerospace, automobile, and electric appliances industries. The PBFMs are especially suitable for diamond tools bonding, which involves complex workpiece shapes and requires accurate dosage. The recent research of PBFMs for diamond tools is reviewed in this paper. The current applications are discussed. The CuSnTi and Ni-Cr-based PBFMs have been the two commonly used monolayer PBFMs. Thus, the bonding mechanism at the interface between both the monolayer PBFMs and a diamond tool are summarized first. The ways to improve the performance of the monolayer PBFMs for diamond tools are analyzed. Next, a research of PBFMs for impregnated diamond tools is reviewed. The technical problems that urgently need solutions are discussed. Finally, the challenges and opportunities involved with the PBFMs for diamond tools research and development are summarized, and corresponding prospects are suggested.

  14. The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation.

    LENUS (Irish Health Repository)

    Hahnel, Sebastian

    2012-04-01

    To explore experimental RBCs derived from a successful commercially available RBC (Grandio) to investigate resin monomer blend and filler parameters (volume fraction, density and diameter) on RBC performance.

  15. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  16. Effect Assessment the Impact of Filler Types on the Input Design Parameter of Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Sahar S. Neham

    2017-08-01

    Full Text Available To meet the requirements of flexible pavements (safety, economy, limited the stresses on the natural subgrade and a smooth ride, good quality material of surface course must be used so to prevent pavement distresses caused by the different types of loadings (structural and environmental loadings, while the resilient modulus is important input data when flexible pavement was designed, it is selected to show its effect by different types of mineral filler as a partial replacement. In this paving mix, to improve the quality of the mix material and to represent the effect of these replacements materials on the elastic characterization by measuring the resilient modulus of hot mix asphalt (HMA: Fly Ash (FA, Ordinary Portland Cement (OPC, Hydrated Lime (HL and Silica Fume (SF are used as a partial percent of filler (Limestone Dust (LSD replacement, where these materials are locally available including (40-50 penetration grade asphalt binder. To achieve the goal of study; asphalt concrete mixes are prepared at their optimum asphalt content using Marshall Method of mix design. Four replacement percent’s were used; 0, 1.5, 3.0 and 4.5 percent by total weight of aggregate for each filler types. According to ASTM D4123 criteria (Resilient Modulus was tested by UTM¬25. Mixes modified with (FA, (OPC, (HL and (SF were found to have average improvement in the value of Resilient Modulus by (13.37, 9.63, 11.14, 24.00 % at 1.5 percent of filler replacement and by (24.54, 16.63, 18.73, 38.31 % at 3.0 percent of filler replacement also the percent of improvement is: (39.55, 26.36, 29.82, 58.30 at 4.5percent of filler replacement sequentially.

  17. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  18. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  19. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were

  20. On-line determination of vertical distribution of filler materials in paper using x-ray techniques

    International Nuclear Information System (INIS)

    Kuusi, J.; Kumpulainen, H.

    1983-01-01

    Optimizing the use of mineral filler and coating materials in paper production is a significant technical and economic problem. These compounds improve the printability, opacity and finish of papers and may even be cheaper than fibres. Since good printing paper should display the least possible two-sidedness, the distribution of filler and coating materials is also of great importance. This paper describes principles and feasibility studies of a method which enables even on-line determination and thus also control of vertical distribution and content of filler materials in paper using X-ray techniques. The method is much faster than the ones presently used in paper industry and offers potential for considerable technical and economical benefits

  1. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    International Nuclear Information System (INIS)

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-01-01

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80–100 μm between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn 2 , Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg–Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: ► Mg alloy AZ31B and Al alloy 6061 are welded successfully. ► Zinc wire is employed as a filler metal to form the alloyed welding seam. ► An alloyed welding seam is benefit for improving of the joint tensile strength.

  2. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  3. Utilization of Durian Seed Flour as Filler Ingredient of Meatball

    Directory of Open Access Journals (Sweden)

    D. R. Malini

    2016-12-01

    Full Text Available Durian seed flour contains starch consisted of amylose and amylopectin like tapioca flour, so it can be utilized as a filler in meatball production. The purposes of this research were to evaluate the nutrient content and quality of durian seed flour, the best level of durian seed flour addition to the meatball production, and the quality of beef meatball during storage in room temperature and refrigerator. Complete randomized design (CRD was used with 3 treatments and 3 replications. The treatments used different filler ingredients consisted of: 1 100% tapioca, 2 50% tapioca + 50% durian seed flour, and 3 100% durian seed flour utilization. The results showed that durian seed flour could affect the protein levels and hardness of beef meatballs. In the organoleptic test, the addition of durian seed flour had no effect on the appearance of the color, flavor, aroma, and texture. The meatballs with 100% durian seed flour had the lowest hardness. The protein content of the meatballs with 100% durian seed flour was the highest. The used of 50% durian seed flour gave the best effect to beef meatball during storage. Meatball could be stored up to 8 h in room temperature while refrigerator could keep it longer up to 12 d. It was concluded that the addition 50% durian seed flour may substitute tapioca flour as filler ingredient of beef meatball.

  4. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fama, Lucia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Bittante, Ana Monica B.Q.; Sobral, Paulo J.A. [Food Engineering Department, FZEA, University of Sao Paulo, PO Box 23, 13635-900 Pirassununga (SP) (Brazil); Goyanes, Silvia [Physics Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Gerschenson, Lia N., E-mail: lia@di.fcen.uba.ar [Industry Department, School of Exact and Natural Sciences, University of Buenos Aires (UBA) and CONICET, Ciudad Universitaria, (1428) Buenos Aires (Argentina)

    2010-07-20

    Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E') and hardening and a decrease in Tan {delta}, while the garlic composite showed a diminishing in the E' and hardening and did not produce significant changes in Tan {delta} values when compared with systems without fillers (matrix). In the range between -90 deg. C and 20 deg. C, all the materials studied presented two peaks in the Tan {delta} curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T{sub gelatinization}) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water.

  5. Dataset for acrylate/silica nanoparticles formulations and photocured composites: Viscosity, filler dispersion and bulk Poisson׳s ratio

    Directory of Open Access Journals (Sweden)

    Hubert Gojzewski

    2017-06-01

    Full Text Available UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200 dispersed in 2-hydroxyethyl acrylate (HEA or polyethylene glycol diacrylate (PEGDA monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled “Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites” (Gojzewski et al., 2017 [1].

  6. Betwixt and between : role conflict, role ambiguity and role definition in project-based dual-leadership structures

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2017-01-01

    Project-based organizations in the film industry usually have a dual leadership structure, based on a division of tasks between the dual leaders, the director and the producer, in which the former is predominantly responsible for the artistic and the latter for the commercial aspects of the film.

  7. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  8. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance

    Science.gov (United States)

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  9. Mechanical properties of 5083 aluminium welds after manual and automatic pulsed gas metal arc welding using E5356 filler

    CSIR Research Space (South Africa)

    Mutombo, K

    2010-01-01

    Full Text Available Semi-automatic and automatic pulsed gas metal arc welding (GMAW) of aluminium alloy 5083 with ER5356 filler wire causes considerable softening in the weld. The tensile strength of dressed automatic welds approaches that of the base metal...

  10. Bacterial biofilm formation and treatment in soft tissue fillers

    DEFF Research Database (Denmark)

    Alhede, Morten; Er, Ozge; Eickhardt, Steffen

    2014-01-01

    that once the bacteria had settled (into biofilms) within the gels, even succesive treatments with high concentrations of relevant antibiotics were not effective. Our data substantiate bacteria as a cause of adverse reactions reported when using tissue fillers, and the sustainability of these infections...

  11. Utilization of rice husk ash as filler for polyamide 6 and ionizing radiation effect studies on this composite

    International Nuclear Information System (INIS)

    Ferro, Waldir Pedro

    2009-01-01

    In order to improve the dimensional stability, as well as, electrical, mechanical and thermal properties of polymers, new filler to this purpose has been developed. The mos applied filler to propitiate the features previously mentioned are the glass and carbon fibers, the mineral filler as the calcium carbonate, the talc and the micro glass sphere. The main aim of this work was to study the rice husk ash as filler for polyamide 6 and ionizing radiation effect studies on this composite, irradiated by electron beam at different doses, since it is constituted of at least 90% of silicon dioxide, and compared with the talc which is the most applied mineral filler. This comparison was made from a compound made through the refined rice husk ash and the polyamide 6 (PA 6), which is one of the main engineering plastic with applications in several productive areas. The samples were injected and irradiated in a electron accelerator. Afterwards, their mechanical and thermal properties were measured. It was also inject automotive parts to verify the processing of the PA 6 with CCA. The results showed that the use of the rice husk ash as filler for polyamide 6 composite is technically and economically viable. The irradiation of the studied composite (PA 6 with 30% of rice husk ash) did not provide any improvement for the mechanical and thermal properties previously appraised. (author)

  12. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen; Jr., Carlos M. Torres,; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  13. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  14. Influence of Natural, Synthetic Polymers and Fillers on sustained release matrix tablets of Pregabalin

    OpenAIRE

    Vijaya Durga. K; Ashok Kumar. P; Suresh V Kulkarni

    2013-01-01

    The objective of the present study was to develop sustained release matrix tablets of Pregabalin for the treatment of neuropathic pain and epilepsy. The tablets were prepared by wet granulation and formulated using drug with Hydrophilic, hydrophobic, synthetic, natural polymers and 4 different fillers were used. The effect of Polymer concentration, combination and fillers on drug release rate was analyzed for the formulations F-1 to F-17. The tablets were subjected to physicochemical studies,...

  15. Effect of filler loading of characteristic natural rubber latex (NRL) film filled with nanocrystal cellulose (NCC) and dipersion agent polyvinylpyrrolidone (PVP)

    Science.gov (United States)

    Harahap, Hamidah; Lubis, Yuni Aldriani; Taslim, Iriany, Nasution, Halimatuddahliana; Agustini, Hamda Eka

    2018-04-01

    A study has been conducted on the effect of filler loading on NRL films filled with NCC from corn cob waste. This study reviews on the filler loading of NRL film characteristics. The process begins with the production of NCC filler and then proceed with the production NRL film which is processed by coagulant dipping method. NRL is filled with NCC and PVP as dispersion agent of 2, 4, 3, 8 grams (filler loading) and 1% PVP by weight. The production of NRL film started with pre-vulcanization process at 70 °C and followed by vulcanization process at 110 °C for 20 minutes. The results showed that higher filler loading improved the higher crosslink density and mechanical properties of NRL film.

  16. Dual Colorimetric and Fluorescent Authentication Based on Semiconducting Polymer Dots for Anticounterfeiting Applications.

    Science.gov (United States)

    Tsai, Wei-Kai; Lai, Yung-Sheng; Tseng, Po-Jung; Liao, Chia-Hsien; Chan, Yang-Hsiang

    2017-09-13

    Semiconducting polymer dots (Pdots) have recently emerged as a novel type of ultrabright fluorescent probes that can be widely used in analytical sensing and material science. Here, we developed a dual visual reagent based on Pdots for anticounterfeiting applications. We first designed and synthesized two types of photoswitchable Pdots by incorporating photochromic dyes with multicolor semiconducting polymers to modulate their emission intensities and wavelengths. The resulting full-color Pdot assays showed that the colorimetric and fluorescent dual-readout abilities enabled the Pdots to serve as an anticounterfeiting reagent with low background interference. We also doped these Pdots into flexible substrates and prepared these Pdots as inks for pen handwriting as well as inkjet printing. We further applied this reagent in printing paper and checks for high-security anticounterfeiting purposes. We believe that this dual-readout method based on Pdots will create a new avenue for developing new generations of anticounterfeiting technologies.

  17. Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2015-09-01

    Full Text Available As asphalt concrete wearing course (ACWC is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties. A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50 penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and limestone dust, the second type included SCRB specification and coal fly ash, the third types included ROAD NOTE 31 specification and limestone dust and the fourth type included ROAD NOTE 31 specification and coal fly ash. The optimum asphalt content of each type of mixtures was determined using Marshall Method of mix design. 60 specimen were prepared and tested with dimension of 10.16 cm in diameter and 6.35 cm in height. Results of this study indicated that aggregate gradation and filler type have a significant effect on optimum asphalt content and Marshall Properties. From the experimental data, it was observed that the value of Marshall Stability is comparatively higher when using fly ash as filler as compared to limestone dust.

  18. Dual-mode operation of 2D material-base hot electron transistors.

    Science.gov (United States)

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  19. Sugarcane bagasse ash: new filler to natural rubber composite

    Directory of Open Access Journals (Sweden)

    Renivaldo José dos Santos

    2014-12-01

    Full Text Available Waste recycling has been the subject of numerous scientific researches regarding the environmental care. This paper reports the redirecting of sugarcane bagasse ash (SBA as new filler to natural rubber (NR/SBA. The NR/SBA composites were prepared using an opened cylinder mixer to incorporate the vulcanization agents and different proportions of residue (SBA. The ash contains about 70-90% of inorganic compounds, with silica (SiO2 being the main compound. The SBA incorporation improved the mechanical properties of the vulcanized rubber. Based on these results, a new use is proposed for the agro-industry organic waste to be implemented in the rubber vulcanization process, aimed at improving the rubber physical properties as well as decreasing the prices of natural rubber composites.

  20. Effect of pyrophyllite filler treatment toward water absorbance rate of SAPC and its application test

    International Nuclear Information System (INIS)

    Jadigia Ginting

    2015-01-01

    An optimization treatment to pyrophyllite filler has been done to synthesis super absorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al 2 Si 4 O 10 (OH) 2 having a reactive functional group -OH that easily making a bonding and therefore it is suitable for water absorbance materials. The pyrophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The syntheses were carried out by using the settle method from Chemicals Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy (FTIR), Xray diffraction (XRD) and scanning electron microscopy(SEM). Effect of filler treatment toward water absorbance rate is the SAPC-prflt with 0.5 gr filler having the highest gradient absorbance 1,610; SAPC prflt which milled for 9 hours has gradient absorbance 1,526; SAPC-prflt after hot water test at 40°C has gradient absorbence 2,241 and SAPC-prflt as pampers test has the gradient absorbance 1,607. XRD data analysis showed a broad peak 2 θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbance.

  1. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.

    Science.gov (United States)

    Li, JinZhi; Zhao, LiJie; Lin, Xiao; Shen, Lan; Feng, Yi

    2017-11-01

    Many commonly used tablet fillers are not suitable for direct compaction process due to insufficient properties, mainly of flowability and compactability. This work therefore aimed to use co-spray drying with HPMC as a platform to improve direct compaction properties of various tablet fillers. Starch, calcium hydrogen phosphate dihydrate (DCPD), and mannitol were chosen as a representative of three types of commonly used fillers (i.e. organic macromolecules, water-insoluble inorganic salts, and water-soluble small molecular carbohydrates), respectively. The five-level central composite design-response surface methodology was used (i) to investigate the effects of HPMC level and solid content of the feed on various powder, tableting, and tablet properties of composite excipients, and (ii) to optimize the composition. The results showed that the impacts of the two factors on various properties of composite excipients showed great similarity, despite of significantly different primary properties of the parent fillers, and the HPMC level was the main contributor to the majority of the impacts. An increase in HPMC level significantly improved tablet tensile strength and various tableting parameters. For all the three fillers, their optimized composite excipients provided by the established models showed excellent performances as predicted. The platform suggested is confirmed to be effective and promising.

  2. Anatomic and mechanical considerations in restoring volume of the face with use of hyaluronic acid fillers with a novel layered technique.

    Science.gov (United States)

    Thomas, Mohan K; Dsilva, James A; Borole, Ateesh J; Naik, Sudhir M; Sarkar, Soma G

    2014-01-01

    Facial fillers have revolutionized the field of cosmetic facial rejuvenation as it has become the prime sought - after rejuvenation procedure offering youthful, 3-dimensional look with minimal invasiveness. Fillers are expensive and need to be redone periodically hence a sound understanding of structural basis on which they are laid is important in reducing the quantity of filler required in each sitting as well as increasing the longevity of results. The aim of the following study is to analyse a novel method of facial filling "The pillars pyramids and tie beams (PPT)" technique and its advantages over the conventional methods. A novel technique of injecting the facial fillers was employed on 67 patients visiting our clinic. These patients were followed-up for a period of 3 years. We observed that the amount of filler material required in initial sitting remains the same, however the frequency of touch up visits is decreased and so is the amount of filler material required for follow-up injections. Facial contour remodelling is being revolutionised by the new filler materials for volume augmentation and no uniform consensus has been reached on the techniques currently used in clinical practice. We advocate this novel PPT technique of facial filling in facial rejuvenation to restore a youthful look as a primary goal.

  3. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  4. The Effect of Filler-Polymer Interactions on Cold-Crystallization Kinetics in Crosslinked, Silica Filled PDMS/PDPS Copolymer Melts

    International Nuclear Information System (INIS)

    Chien, A; DeTeresa, S; Thompson, L; Cohenour, R; Balazs, B; Maxwell, R S

    2006-01-01

    Crystallization in a series of variable crosslink density poly(dimethyl-diphenyl) siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and X-ray Diffraction (XRD). The silicone composite studied was composed of 94.6 mol% Dimethoylsiloxane, 5.1 mol% diphenylsiloxane, and 0.3 mol% methyl-vinyl siloxane (which formed crosslinking after a peroxide cure). The polymer was filled with a mixture of 21.6 wt. % fumed silica and 4.0 wt. % precipitated silica previously treated with 6.8 wt. % ethoxy-endblocked siloxane processing aid. The base composite was characterized by a molecular weight between crosslinks in the polymer network of ∼24 kDa and an overall molecular weight (including the influence of the silica fillers) between crosslinks of ∼11 kDa. Molecular weight between crosslinks and filler-polymer interaction strength were then modified by exposure to γ-irradiation in either air or vacuum. The unirradiated material exhibited crystallization at -80 C as measured by DSC with a 16% crystallization as measured by XRD. Isothermal DMA experiments illustrated that crystallization at -85 C occurred over a 1.8 hour period in silica-filled systems and 2.2-2.6 hours in unfilled systems. The onset of crystallization typically occurred after a 30-minute incubation/nucleation period. The crystallization kinetics were dependent on crosslink density. Changes in molecular weight of a factor of two did not, however, change the amount of crystallization. Irradiation in vacuum resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the PDMS/PDPS base copolymer and helped

  5. Numerical simulation of TIG welding with filler of steel pieces of high thickness

    International Nuclear Information System (INIS)

    Carmignani, B.; Toselli, G.

    1999-01-01

    The problem of the numerical simulation of welding process with filler, in particular TIG (tungsten inert gas) with cold filler, has been approached with ABAQUS/S code. Reference has been made to some experimental models studied and prepared ad hoc in order to better know the physical phenomena involved in the TIG welding technique and to validate the computation methodologies and results obtained. This numerical simulation has been required in order to assist the fabrication development and QA for TF (toroidal field) coil case, an important component of ITER (international thermonuclear experimental reactor) machine [it

  6. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  7. Dermal fillers for facial soft tissue augmentation.

    Science.gov (United States)

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  8. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  9. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  10. Penggunaan precipitated calcium carbonate (PCC sebagai filler untuk sol karet sepatu olah raga

    Directory of Open Access Journals (Sweden)

    Herminiwati

    2010-12-01

    Full Text Available Abstract The objective of the research was to investigate the utilization of Precipitated Calcium Carbonate (PCC as filler in producing sport shoe rubber soles. PCC is a white filler needed for production of nonblack colour rubber products. There are four types of PCC that have been used including two local PCC from Wonosari and East Java, and two imported PCC from Japan and Taiwan. The amount of PCC added into the sport shoe sole rubber compound was varied in 30,45,60,75 and 90 per hundred rubber (phr. The compounding was carried-out by using two roll mills machine, and the compound was subsequently measured their optimum vulcanization time by using rheometer. The produced compound was then subjected to vulcanistion process by using hydrolic press at temperature 1500C and pressure 150 kg/ cm2. The quality of shoes sole vulcanisates were compare to standard quality of SNI. 12-7075-2005 about cemented system sport shoes. The results indicated that the best formula of rubber compound for sport shoes sole were made by using NR 80 phr, NBR 20 phr, paraffinic oil 10 phr, aluminium silicate 30 phr, ZnO 5 phr, TiO2 10 phr, stearic acid 1 phr, vulkanox SP 1 phr, paraffin wax 1 phr, TMTD 0,5 phr, CBS 2 phr, sulphur 1,2 phr with the amount of PCC Actifort 700 of 45 phr. The best formula meet the requirement SNI 12-7075-2005 and they were characterized by tensile sterength 16,79 N/mm2, elongation at break 529,92% tear resistance 9,06 N/mm2, specific gravity 1,28 g/cm3, hardness 55 shore A, Grasselli absrassion resistancing filler. The local PCC from Wonosari can be used for substitution of the imported PCC as the white filler for the production of rubber compound sport shoes sole. However, particle size reduction and coating or surface treatment of local PCC were needed for improving the quality and the role of reinforcing filler.

  11. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  12. Development of a highly weldable and corrosion resistant nickel-chromium filler metal

    International Nuclear Information System (INIS)

    Young, G.A.; Capobianco, T.E.; Etien, R.A.; Mullen, J.V.; Leveillee, S.; Sander, P.C.

    2007-01-01

    This paper reports on a long term research effort to develop an improved filler metal for gas-tungsten- arc welding of Alloy 690. The goal of this work was to maintain the corrosion resistance of wrought Alloy 690 while eliminating ductility dip cracking (DDC) or other as welded defects in prototypical welds. Results from weld mockups, weldability testing, microstructural and microchemical characterization, and computational modeling show that ductility dip cracking is a form of precipitation-induced-cracking and can be mitigated via alloying to control the type and extent of carbide formation. Additionally, these tests illustrate that in commercially available filler metals, alloying additions intended to provide DDC resistance (Nb, B, and Zr) are not effective and, in many cases, cause solidification cracking in addition to DDC. Based on these welding results, three candidate alloys of 24 wt.%, 27 wt.%, and 30 wt.% chromium were further evaluated for their mechanical properties, phase stability, and resistance to environmentally assisted cracking (EAC). Results to date show weldability mechanical properties, and phase stability comparable to EN82, but significantly improved resistance to EAC. These findings are used to define an alloy designated EN52i, that offers a desirable combination of weldability and corrosion resistance. (author)

  13. Development of a highly weldable and corrosion resistant nickel-chromium filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Young, G.A.; Capobianco, T.E.; Etien, R.A.; Mullen, J.V.; Leveillee, S.; Sander, P.C. [Lockheed Martin Corp., Schenectady, New York (United States)

    2007-07-01

    This paper reports on a long term research effort to develop an improved filler metal for gas-tungsten- arc welding of Alloy 690. The goal of this work was to maintain the corrosion resistance of wrought Alloy 690 while eliminating ductility dip cracking (DDC) or other as welded defects in prototypical welds. Results from weld mockups, weldability testing, microstructural and microchemical characterization, and computational modeling show that ductility dip cracking is a form of precipitation-induced-cracking and can be mitigated via alloying to control the type and extent of carbide formation. Additionally, these tests illustrate that in commercially available filler metals, alloying additions intended to provide DDC resistance (Nb, B, and Zr) are not effective and, in many cases, cause solidification cracking in addition to DDC. Based on these welding results, three candidate alloys of 24 wt.%, 27 wt.%, and 30 wt.% chromium were further evaluated for their mechanical properties, phase stability, and resistance to environmentally assisted cracking (EAC). Results to date show weldability mechanical properties, and phase stability comparable to EN82, but significantly improved resistance to EAC. These findings are used to define an alloy designated EN52i, that offers a desirable combination of weldability and corrosion resistance. (author)

  14. Design of data transportation based on dual-port RAM in IMS system

    International Nuclear Information System (INIS)

    Zhang Guohui; Li Yongping

    2010-01-01

    Ion mobility spectroscopy (IMS) is a rugged, portable, sensitive, low cost, field instrumental technique capable of trace organic detection and monitoring for environmental pollutants, pesticides, explosives, narcotics, and other analytes, hence it is of great significance to social security and stability. High rate data transmission mechanism between DSP processor and ARM core is required in the electronic system of IMS. After careful comparison of UART and dual port RAM, a new design based on dual port RAM that can be applied to other similar systems. (authors)

  15. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  16. Effects of Different Filler Metals on the Mechanical Behaviors of GTA Welded AA7A52(T6)

    Science.gov (United States)

    Shu, Fengyuan; Lv, Yaohui; Liu, Yuxin; Lin, Jianjun; Sun, Zhe; Xu, Binshi; He, Peng

    2014-06-01

    ER4043, ER5356, and AA7A52 on behalf of the Al-Si, Al-Mg, and Al-Zn-Mg-based welding material, respectively, were chosen as the filler metal to weld AA7A52(T6) plates by GTAW. The variance in mechanical performances of the joints caused by the various filler materials was investigated with reference to the SEM and EDS test results for the weld seam and the fracture surface. Failure was found in the seam for all the welded joints. With regard to the joint obtained with ER4043 welding wire, the total elongation was limited by the brittle intergranular compound Mg2Si of which Mg was introduced by convection mass transfer. As for the other two welds, the content ratio of Zn and Mg was found to play the dominant role in deciding the mechanical properties of the intergranular Mg-Zn compounds which were responsible for the tensile behavior of the joints. The content ratio (wt.%) of beyond 2:1 gave birth to the strengthening phase MgZn2 leading to a ductile fracture. Cr in the seam obtained with AA7A52 filler metal was found to enhance the strength of the joint through isolated particles.

  17. Thio-urethanes improve properties of dual-cured composite cements.

    Science.gov (United States)

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  18. SYNTHESIS AND CHARACTERIZATION OF HDPE PLASTIC FILM FOR HERBICIDE CONTAINER USING FLY ASH CLASS F AS FILLER

    Directory of Open Access Journals (Sweden)

    Yatim Lailun Ni’mah

    2010-06-01

    Full Text Available High Density Polyethylene (HDPE plastic plays an important role in various applications, for example, it can be used as a container (bottle. Petrokimia Kayaku Company, a branch of Petrokimia Company of Gresik, produces herbicides using HDPE plastic bottles as their container. Those plastic bottles undergo degradation (kempot for certain period of time. The aim of this research is to characterize and to synthesize the HDPE plastic film with class F fly ash as filler. The results expected from this research are producing the plastic with a better properties and durability. This research was initiated by taking the sample of HDPE plastic bottle and herbicides (containing Gramakuat, on active material parakuat dichloride at Petrokimia Kayaku Company. Both the initial HDPE and the degraded bottles was analyzed their tensile strength and Fourier Transform-Infra Red (FTIR spectral. The next step was to synthesize the HDPE plastic film using class F fly ash as filler and a coupling agent. The filler concentrations were 0%, 5%, 10%, 15%, and 20wt %. The best result was 5% filler concentration with tensile strength of 27.7 lbs. This HDPE film was then subjected to degradation test using pyridine solution with various concentrations (1%, 3% and 5% for two weeks, thermal degradation at 100 °C for two weeks and chemical resistance by xylene with soak time variation of 24 h, 98 h and 168 h. The result of degradations test show that the value of tensile strength was decreased with the increase of filler consentration. The chemical resistance, however, was increased.   Keywords: degradation, filler, fly ash, HDPE, Herbicide

  19. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds

    NARCIS (Netherlands)

    Chen, Zhe; Brokken-Zijp, J.C.M.; Michels, M.A.J.

    2006-01-01

    Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (c 0.9 vol %). The relationship between the volume conductivity and the filler

  20. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    International Nuclear Information System (INIS)

    W. Wallin

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective

  1. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  2. Anatomic and mechanical considerations in restoring volume of the face with use of hyaluronic acid fillers with a novel layered technique

    Directory of Open Access Journals (Sweden)

    Mohan K Thomas

    2014-01-01

    Full Text Available Context: Facial fillers have revolutionized the field of cosmetic facial rejuvenation as it has become the prime sought - after rejuvenation procedure offering youthful, 3-dimensional look with minimal invasiveness. Fillers are expensive and need to be redone periodically hence a sound understanding of structural basis on which they are laid is important in reducing the quantity of filler required in each sitting as well as increasing the longevity of results. Aim: The aim of the following study is to analyse a novel method of facial filling "The pillars pyramids and tie beams (PPT" technique and its advantages over the conventional methods. Subjects and Methods: A novel technique of injecting the facial fillers was employed on 67 patients visiting our clinic. These patients were followed-up for a period of 3 years. Results: We observed that the amount of filler material required in initial sitting remains the same, however the frequency of touch up visits is decreased and so is the amount of filler material required for follow-up injections. Conclusion: Facial contour remodelling is being revolutionised by the new filler materials for volume augmentation and no uniform consensus has been reached on the techniques currently used in clinical practice. We advocate this novel PPT technique of facial filling in facial rejuvenation to restore a youthful look as a primary goal.

  3. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  4. The Classification and Prognosis of Periocular Complications Related to Blindness following Cosmetic Filler Injection.

    Science.gov (United States)

    Myung, Yujin; Yim, Sangjun; Jeong, Jae Hoon; Kim, Baek-Kyu; Heo, Chan-Yeong; Baek, Rong-Min; Pak, Chang-Sik

    2017-07-01

    Common side effects during hyaluronic acid filler injections are typically mild and reversible, but several reports of blindness have received attention. The present study focused on orbital symptoms combined with blindness, aiming to classify affected patients and predict their disease course and prognosis. From September of 2012 to August of 2015, nine patients with vision loss after filler injection were retrospectively reviewed. Ptosis, ophthalmoplegia, and enophthalmos were recorded over a 6-month follow-up, and patients were classified into four types according to periocular symptom manifestation. Two patients were categorized as type I (blindness without ptosis or ophthalmoplegia), two patients as type II (blindness and ptosis without ophthalmoplegia), two patients as type III (blindness and ophthalmoplegia without ptosis), and three patients as type IV (blindness with ptosis and ophthalmoplegia). The present study includes previously unpublished information about orbital symptom manifestations and prognosis combined with blindness caused by retinal artery occlusion after cosmetic filler injection. Therapeutic, V.

  5. Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion.

    Science.gov (United States)

    Kim, Yong-Kyu; Jung, Cheolkyu; Woo, Se Joon; Park, Kyu Hyung

    2015-12-01

    Cosmetic facial filler-related ophthalmic artery occlusion is rare but is a devastating complication, while the exact pathophysiology is still elusive. Cerebral angiography provides more detailed information on blood flow of ophthalmic artery as well as surrounding orbital area which cannot be covered by fundus fluorescein angiography. This study aimed to evaluate cerebral angiographic features of cosmetic facial filler-related ophthalmic artery occlusion patients. We retrospectively reviewed cerebral angiography of 7 patients (4 hyaluronic acid [HA] and 3 autologous fat-injected cases) showing ophthalmic artery and its branches occlusion after cosmetic facial filler injections, and underwent intra-arterial thrombolysis. On selective ophthalmic artery angiograms, all fat-injected patients showed a large filling defect on the proximal ophthalmic artery, whereas the HA-injected patients showed occlusion of the distal branches of the ophthalmic artery. Three HA-injected patients revealed diminished distal runoff of the internal maxillary and facial arteries, which clinically corresponded with skin necrosis. However, all fat-injected patients and one HA-injected patient who were immediately treated with subcutaneous hyaluronidase injection showed preserved distal runoff of the internal maxillary and facial arteries and mild skin problems. The size difference between injected materials seems to be associated with different angiographic findings. Autologous fat is more prone to obstruct proximal part of ophthalmic artery, whereas HA obstructs distal branches. In addition, hydrophilic and volume-expansion property of HA might exacerbate blood flow on injected area, which is also related to skin necrosis. Intra-arterial thrombolysis has a limited role in reconstituting blood flow or regaining vision in cosmetic facial filler-associated ophthalmic artery occlusions.

  6. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  7. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    Science.gov (United States)

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    De Vivo, B.; Lamberti, P.; Spinelli, G., E-mail: gspinelli@unisa.it; Tucci, V. [Department of Information Engineering, Electrical Engineering and Applied Mathematics—DIEM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy); Guadagno, L.; Raimondo, M. [Department of Industrial Engineering—DIIn, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy)

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  9. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  10. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  11. Proportional reasoning as a heuristic-based process: time constraint and dual task considerations.

    Science.gov (United States)

    Gillard, Ellen; Van Dooren, Wim; Schaeken, Walter; Verschaffel, Lieven

    2009-01-01

    The present study interprets the overuse of proportional solution methods from a dual process framework. Dual process theories claim that analytic operations involve time-consuming executive processing, whereas heuristic operations are fast and automatic. In two experiments to test whether proportional reasoning is heuristic-based, the participants solved "proportional" problems, for which proportional solution methods provide correct answers, and "nonproportional" problems known to elicit incorrect answers based on the assumption of proportionality. In Experiment 1, the available solution time was restricted. In Experiment 2, the executive resources were burdened with a secondary task. Both manipulations induced an increase in proportional answers and a decrease in correct answers to nonproportional problems. These results support the hypothesis that the choice for proportional methods is heuristic-based.

  12. Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

    OpenAIRE

    M. E. Ali Mohsin; Agus Arsad; Othman Y. Alothman

    2014-01-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increas...

  13. Dual entanglement measures based on no local cloning and no local deleting

    International Nuclear Information System (INIS)

    Horodecki, Michal; Sen, Aditi; Sen, Ujjwal

    2004-01-01

    The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and no local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity

  14. Amorphous filler metal foils for brazing zirconium grid plates

    International Nuclear Information System (INIS)

    Plyushchev, A.N.; Kalin, B.A.; Fedotov, V.T.; Sevryukov, O.N.; Mamedova, T.T.; Shestakov, E.F.; Timoshin, S.N.

    2001-01-01

    A new amorphous ribbon filler metal of Zr-5.5 Fe-2.5 Be-1.0 Nb-8.0 Cu-2.0 Sn-0.4 Cr (mass %) with the temperature of melting onset of 745-750 deg C is designed to braze spacer grids of zirconium base alloys. The brazing conditions (780-790 deg C, 40-45 s) are determined which provide minimal standing at temperatures above 700 deg C (∼ 1.5 min) for spacer grids. Mechanical tests show that tensile strength of brazed joints is 55-59 kgf what is twice that of analogous welded joints. In addition, the brazed joints exhibit high corrosion resistance when testing in a distilled steam-water mixture at a temperature of 350 deg C and 16.5 MPa pressure for 10000 h [ru

  15. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers

    International Nuclear Information System (INIS)

    Thenepalli, Thriveni; Ahn, Ji Whan; Ahn, Young Jun; Han, Choon; Ramakrishna, Chilakala

    2015-01-01

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles

  16. THE INFLUENCE OF THE FILLER GRAIN COMPOSITION ON THE PROPERTIES OF THE HEAT-RESISTANT BASALTIC CONCRETE

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhiev

    2017-01-01

    Full Text Available Objectives. The optimal granulometric composition of filler compound ensures the production of concrete having improved  physical and mechanical characteristics, as well as minimal binder  consumption. The properties of heat-resistant concrete largely  depend on the type and the ratio of its components. Taking this into  account, the aim of the study is to determine the optimal grain composition of heat-resistant concrete.Methods. Methods for optimising the properties of heatresistant basaltic concrete with a composite binder and  mechanochemical activation of the filler grains were used during the  course of the research.A simplex-centroid experiment design is  applied for this purpose. The composite binder was subjected to  mechanochemical activation. Samples were made by vibration-pressing from a concrete mix with a cone draught of 2 cm.Results. The grain composition of heat-resistant concrete is proved  to be the most important variable factor, regulating which the  properties of concrete can be varied. The compositions of heat- resistant basaltic concrete with activated composite binder having a  maximum application temperature of 700 ºС are developed. The  influence of the grain composition of the basaltic filler on the  properties of basaltic concrete using mathematical experiment planning methods is determined. The regression equations for the ultimate tensile strength and bending stress of basaltic concrete are  obtained for heating temperature of 700ºC.Conclusion. The granulometric composition of heat-resistant basaltic concrete based on the activated binder is optimised for basic physical and technical properties. The optimal granulometric  design of the composition of heat-resistant concrete indicates that as the coarse fraction (particles greater than 0.63 mm in the filler  composition increases, the ultimate tensile strength and bending  stress of heatresistant basaltic concrete is increased

  17. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Goc, K., E-mail: Kamil.Goc@fis.agh.edu.pl [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Rybak, A.; Kmita, G. [ABB Corporate Research Center, 13A Starowislna Street, 31-038 Krakow (Poland); Kapusta, Cz. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland)

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained. - Highlights: • Influence of magnetic field on the particle chains in epoxy composites is analysed. • Strontium ferrite fillers with good thermal and low electrical conductivity. • Influence of interparticle interactions for agglomeration efficiency. • The impact of chains formed on the heat transfer by creating conductive paths. • Connection between structural anisotropy and transport properties anisotropy.

  18. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard

    of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to a very attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative-permittivity changes as a function of filler loading...

  19. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  1. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    Science.gov (United States)

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The use of styrene-butadiene rubber waste as a potential filler in nitrile rubber: order of addition and size of waste particles

    Directory of Open Access Journals (Sweden)

    D. A. Baeta

    2009-03-01

    Full Text Available Styrene-butadiene rubber (SBR has large applications in the shoe industry, especially as expanded sheets used to produce insoles and inner soles. According to TG analysis, the rubber content in SBR residues (SBR-r was found to be around 26-wt%. Based on that data, a cost-effective technique for the reuse of SBR-r in Nitrile rubber (NBR was developed. Later, the effect of SBR-r on the cure behavior, mechanical performance, swelling, and crosslink density of reused rubber was investigated, with more emphasis placed on the effect of both particle size and loading of waste filler. Cure characteristics such as optimum cure time and scorch time were then reduced by the increasing amount of SBR-r filler. Owing to the reinforced nature of the largest particle size SBR-r, the best results for the mechanical properties of NBR were those in which SBR-r was added at the end of the cure process. The study has thus shown that SBR residue (SBR-r can be used as an economical alternative filler in NBR.

  3. Terahertz-wave differential detection based on simultaneous dual-wavelength up-conversion

    Directory of Open Access Journals (Sweden)

    Yuma Takida

    2017-03-01

    Full Text Available We report a terahertz (THz-wave differential detection based on simultaneous dual-wavelength up-conversion in a nonlinear optical MgO:LiNbO3 crystal with optical and electronic THz-wave sources. The broadband parametric gain and noncollinear phase-matching of MgO:LiNbO3 provide efficient conversion from superposed THz waves to spatially distributed near-infrared (NIR beams to function as a dispersive THz-wave spectrometer without any additional dispersive element. We show that the μW-level THz waves from two independent sources, a 0.78-THz injection-seeded THz-wave parametric generator (is-TPG and a 1.14-THz resonant tunneling diode (RTD, are simultaneously up-converted to two NIR waves and then detected with two NIR photodetectors. By applying a balanced detection scheme to this dual-frequency detection, we demonstrate THz-wave differential imaging of maltose and polyethylene pellets in the transmission geometry. This dual-wavelength detection is applicable to more than three frequencies and broadband THz-wave radiation for real-time THz-wave spectroscopic detection and imaging.

  4. Hydrogels from radiation crosslinked blends of hydrophilic polymers and fillers

    International Nuclear Information System (INIS)

    Yen, S.N.; Osterholtz, F.D.

    1975-01-01

    Particulate, free-flowing, insoluble swellable polymers are provided which are comprised of a mixture of an insoluble, swellable hydrogel and inert filler. The mixtures are free-flowing powders or granules which can absorb many times their weight of water and hence are useful as a soil amendment

  5. Comparing Efficacy and Costs of Four Facial Fillers in Human Immunodeficiency Virus-Associated Lipodystrophy: A Clinical Trial.

    Science.gov (United States)

    Vallejo, Alfonso; Garcia-Ruano, Angela A; Pinilla, Carmen; Castellano, Michele; Deleyto, Esther; Perez-Cano, Rosa

    2018-03-01

    The objective of this study was to evaluate and compare the safety and effectiveness of four different dermal fillers in the treatment of facial lipoatrophy secondary to human immunodeficiency virus. The authors conducted a clinical trial including 147 patients suffering from human immunodeficiency virus-induced lipoatrophy treated with Sculptra (poly-L-lactic acid), Radiesse (calcium hydroxylapatite), Aquamid (polyacrylamide), or autologous fat. Objective and subjective changes were evaluated during a 24-month follow-up. Number of sessions, total volume injected, and overall costs of treatment were also analyzed. A comparative cost-effectiveness analysis of the treatment options was performed. Objective improvement in facial lipoatrophy, assessed by the surgeon in terms of changes from baseline using the published classification of Fontdevila, was reported in 53 percent of the cases. Patient self-evaluation showed a general improvement after the use of facial fillers. Patients reported being satisfied with the treatment and with the reduced impact of lipodystrophy on their quality of life. Despite the nonsignificant differences observed in the number of sessions and volume, autologous fat showed significantly lower costs than all synthetic fillers (p < 0.05). Surgical treatment of human immunodeficiency virus-associated facial lipoatrophy using dermal fillers is a safe and effective procedure that improves the aesthetic appearance and the quality of life of patients. Permanent fillers and autologous fat achieve the most consistent results over time, with lipofilling being the most cost-effective procedure.

  6. Evaluation of the use of inorganic pigments and fillers in cure of epoxy resins by microwave irradiation

    International Nuclear Information System (INIS)

    Kersting, Daniel; Wiebeck, Helio

    2013-01-01

    The use of microwave in chemical processes began soon after the WW II. The mechanism of curing via microwave heating is independent of the thermal conductivity of the irradiated material and offers a good solution to operate with materials that do not have a good thermal conductivity, such as polymers. Despite these advantages, the use of multimode microwave ovens, the main source used today, indicates some challenges to overcome. Associated with the use of epoxy resins in various applications, the use of pigments and inorganic fillers has added more variables to be studied. Much of the inorganic fillers used commercially are good absorbers of microwave providing changes in the amount of radiation absorbed, and thus the amount of heat transferred to the epoxy resin curing process. After selecting the key fillers and pigments traditionally used in the production of parts with epoxy resins they were subjected to the same microwave irradiation for evaluation of their behavior alone. In order to observe the effect of mixtures 1, 2, and 5% by weight of filler were added to epoxy resin, and it was verified these effects in the curing process. The preliminary results are promising, because for the same cure cycle for different types of fillers added separately, gains in curing time were obtained, making the process of cure via microwave quick and efficient without substantial losses in thermal properties of the final products obtained. (author)

  7. Utilization of Swedish fly ash from bio fuel fired power plants as a filler material in concrete; Anvaendning av svenska flygaskor som fillermaterial i betong

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2006-03-15

    -scale demonstration The physical characteristic had an effect on the filler behavior of the FA in the laboratory investigation. The FA from the PF boilers had similar filler behavior as the limestone filler investigated. The tested FA increased the compressive strength of the concrete in laboratory and full-scale testing In the full-scale demonstration the FA tested showed good filler behavior (stability to the concrete) in the crushed aggregate self-compacting concrete. The concrete surfaces were all even and without pores. The next step of using FA in concrete is to create a group for running the certification process based on EN 450 in Sweden.

  8. Radiological impact of the use of calcium hydroxylapatite dermal fillers

    International Nuclear Information System (INIS)

    Feeney, J.N.; Fox, J.J.; Akhurst, T.

    2009-01-01

    Aim: To report a case series in which the radiological features of the subcutaneous use of calcium hydroxylapatite (CaHa) dermal fillers are described for the first time. Materials and methods: Five patients with facial hyperattenuating hypermetabolic subcutaneous lesions were identified on 2- [ 18 F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography/computed tomography (PET/CT), who gave a history of facial injections to augment physical appearance. Correlation with additional imaging studies was performed. Results: All cases had subcutaneous high attenuation material on CT (range 280-700 HU), which was FDG avid on PET, with a standardized uptake value (SUV) range of 2.9-13.4. Magnetic resonance imaging (MRI) demonstrated a heterogeneous intermediate signal intensity subcutaneous lesion with enhancement post-gadolinium in one case. Conclusions: CaHa dermal filler is hyperattenuating on CT, hypermetabolic on FDG-PET imaging, of intermediate signal intensity on MRI, and is a potential cause of a false-positive imaging study.

  9. Betwixt and between: Role conflict, role ambiguity and role definition in project-based dual-leadership structures.

    Science.gov (United States)

    Ebbers, Joris J; Wijnberg, Nachoem M

    2017-11-01

    Project-based organizations in the film industry usually have a dual-leadership structure, based on a division of tasks between the dual leaders - the director and the producer - in which the former is predominantly responsible for the artistic and the latter for the commercial aspects of the film. These organizations also have a role hierarchically below and between the dual leaders: the 1st assistant director. This organizational constellation is likely to lead to role conflict and role ambiguity experienced by the person occupying that particular role. Although prior studies found negative effects of role conflict and role ambiguity, this study shows they can also have beneficial effects because they create space for defining the role expansively that, in turn, can be facilitated by the dual leaders defining their own roles more narrowly. In a more general sense, this study also shows the usefulness of analyzing the antecedents and consequences of roles, role definition, and role crafting in connection to the behavior of occupants of adjacent roles.

  10. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    Science.gov (United States)

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  11. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance.

    Science.gov (United States)

    Sabetghadam, Anahid; Seoane, Beatriz; Keskin, Damla; Duim, Nicole; Rodenas, Tania; Shahid, Salman; Sorribas, Sara; Le Guillouzer, Clément; Clet, Guillaume; Tellez, Carlos; Daturi, Marco; Coronas, Joaquin; Kapteijn, Freek; Gascon, Jorge

    2016-05-10

    Mixed-matrix membranes (MMMs) comprising NH 2 -MIL-53(Al) and Matrimid ® or 6FDA-DAM have been investigated. The MOF loading has been varied between 5 and 20 wt%, while NH 2 -MIL-53(Al) with three different morphologies: nanoparticles, nanorods and microneedles have been dispersed in Matrimid ® . The synthesized membranes have been tested in the separation of CO 2 from CH 4 in an equimolar mixture. At 3 bar and 298 K for 8 wt% MOF loading, incorporation of NH 2 -MIL-53(Al) nanoparticles leads to the largest improvement compared to nanorods and microneedles. The incorporation of the best performing filler, i.e. NH 2 -MIL-53(Al) nanoparticles, to the highly permeable 6FDA-DAM has a larger effect, and the CO 2 permeability increased up to 85 % with slightly lower selectivities for 20 wt% MOF loading. Specifically, these membranes have a permeability of 660 Barrer with CO 2 /CH 4 separation factor of 28, leading to a performance very close to the Robeson limit of 2008. Furthermore, a new non-destructive technique based on Raman spectroscopy mapping is introduced to assess the homogeneity of the filler dispersion in the polymer matrix. The MOF contribution can be calculated by modelling the spectra. The determined homogeneity of the MOF filler distribution in the polymer is confirmed by FIB-SEM analysis.

  12. A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations.

    Science.gov (United States)

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A

    2013-07-24

    A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.

  13. Dual effects of guide-based guidance on pedestrian evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk; Lee, Eric Wai Ming; Shi, Meng

    2017-06-15

    This study investigates the effects of guide-based guidance on the pedestrian evacuation under limited visibility via the simulations based on an extended social force model. The results show that the effects of guides on the pedestrian evacuation under limited visibility are dual, and related to the neighbor density within the visual field. On the one hand, in many cases, the effects of guides are positive, particularly when the neighbor density within the visual field is moderate; in this case, a few guides can already assist the evacuation effectively and efficiently. However, when the neighbor density within the visual field is particularly small or large, the effects of guides may be adverse and make the evacuation time longer. Our results not only provide a new insight into the effects of guides on the pedestrian evacuation under limited visibility, but also give some practical suggestions as to how to assign guides to assist the evacuation under different evacuation conditions. - Highlights: • Extended social force model is used to simulate guided pedestrian evacuation. • Effects of guides on pedestrian evacuation under limited visibility are dual. • Effects of guides on pedestrian evacuation under limited visibility are related to neighbor density within visual field.

  14. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  15. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  16. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. A strategy of precipitated calcium carbonate (CaCO{sub 3}) fillers for enhancing the mechanical properties of polypropylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of); Ahn, Young Jun; Han, Choon [Kwangwoon University, Seoul (Korea, Republic of); Ramakrishna, Chilakala [Hanil Cement, Danyang (Korea, Republic of)

    2015-06-15

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles.

  18. Polyols as filler-binders for disintegrating tablets prepared by direct compaction

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Rexwinkel, Erik G.; Zuurman, Klaas

    Background: Although polyols are frequently used as tablet excipients in lozenges, chewing tablets, and orodisperse tablets, special directly compressible (DC) forms are recommended as filler-binder in common disintegrating tablets. Aim: In this article, DC types of isomalt, lactitol, mannitol,

  19. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  20. On Anticipatory Development of Dual Education Based on the Systemic Approach

    Science.gov (United States)

    Alshynbayeva, Zhuldyz; Sarbassova, Karlygash; Galiyeva, Temir; Kaltayeva, Gulnara; Bekmagambetov, Aidos

    2016-01-01

    The article addresses separate theoretical and methodical aspects of the anticipatory development of dual education in the Republic of Kazakhstan based on the systemic approach. It states the need to develop orientating basis of prospective professional activities in students. We define the concepts of anticipatory cognition and anticipatory…

  1. Smartphone App-Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability.

    Science.gov (United States)

    Manor, Brad; Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong

    2018-01-30

    Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and "dual-task" walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. We created an iPhone app that used the phone's motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user's pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard-instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times-a clinically meaningful metric of locomotor control-from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses

  2. Hybrid filler composition optimization for tensile strength of jute fibre

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/039/05/1223-1231 ... The developed composite consists of natural jute fibre as reinforcement and unsaturated ... The effect of weight content of bagasse fibre, carbon black and calcium carbonate ... of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  3. Anatomic and mechanical considerations in restoring volume of the face with use of hyaluronic acid fillers with a novel layered technique

    OpenAIRE

    Thomas, Mohan K.; Dsilva, James A.; Borole, Ateesh J.; Naik, Sudhir M.; Sarkar, Soma G.

    2014-01-01

    Context: Facial fillers have revolutionized the field of cosmetic facial rejuvenation as it has become the prime sought - after rejuvenation procedure offering youthful, 3-dimensional look with minimal invasiveness. Fillers are expensive and need to be redone periodically hence a sound understanding of structural basis on which they are laid is important in reducing the quantity of filler required in each sitting as well as increasing the longevity of results. Aim: The aim of the following st...

  4. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  5. Safety and early satisfaction assessment of patients seeking nonsurgical rhinoplasty with filler

    Directory of Open Access Journals (Sweden)

    Raffaele Rauso

    2017-01-01

    Full Text Available Background: Nonsurgical aesthetic treatments are usually preferred by patients because their effects are visible immediately after the treatment and patients can return to their normal activities on the same day. Although many studies have indicated safety and efficacy of filler injection to improve facial appearance, it is not absolutely confirmed for nose reshaping. Objectives: To assess the safety and early satisfaction of 52 consecutive patients underwent nonsurgical rhinoplasty with an injection of a 20-mg/mL smooth, cohesive, and viscous hyaluronic acid (HA filler. Materials and Methods: Fifty-two consecutive healthy patients, dissatisfied with the appearance of their nose, were treated with HA injections between November 2014 and November 2016. Complications and side effects were documented. Aesthetic outcomes were scored subjectively on a scale of 1–4 represented by four emoticons. Results: Among patients, 96.15% affirmed to be “very satisfied” at the end of the procedure (50 patients over 52 treated. No major complications and side effects occurred. Conclusions: Outcomes of this study, with the limitation of a non-comparative open-label study, show that surgical remodeling of the nose, with the use of a 20-mg/mL smooth, cohesive, and viscous HA filler, is a safe and predictable technique, with a high degree of satisfaction for the patients.

  6. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.; Chen, D.; Zhang, X.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong, S.Y.; Wu, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-20

    Various graphite fillers, such as graphite particles, graphite fibers, graphite flakes and porous graphite blocks, have been successfully incorporated into an Al alloy by squeeze casting in order to fabricate graphite/Al composites with enhanced thermal conductivity (TC). Microstructural characterization by X-ray diffraction and scanning electron microscopy has revealed a tightly-adhered, clean and Al{sub 4}C{sub 3}-free interface between the graphite fillers and the Al matrix in all the as-fabricated composites. Taking the microstructural features into account, we generalized the corresponding predictive models for the TCs of these composites with the effective medium approximation and the Maxwell mean-field scheme, which both show good agreement with the experimental data. The roles of geometry and topology structures of graphite fillers on the TCs of the composites were further discussed. - Highlights: • The thermal enhancement of various graphite fillers with different topology structures. • Predictive models for the thermal conductivity of different topology structures. • Oriented flakes alignment has the high potentials for thermal enhancement.

  7. The partial replacement of palm kernel shell by carbon black and halloysite nanotubes as fillers in natural rubber composites

    Science.gov (United States)

    Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu

    2017-07-01

    The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).

  8. Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability

    Science.gov (United States)

    Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong

    2018-01-01

    Background Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and “dual-task” walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. Objective The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. Methods We created an iPhone app that used the phone’s motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard–instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times—a clinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms

  9. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  10. 2 filler on the dielectric permittivity and electrical modulus of PMMA

    Indian Academy of Sciences (India)

    plex in solution phase.9 Debye theory of dipolar relaxation apprehends the ... present a study on the effect of Zn(NO3)2 filler in PMMA matrix, with a view to .... 3.4 EDX analysis. The quantitative and qualitative elemental analyses of the.

  11. Production and characterization of composites based on ramie cellulose micro fibers filler

    International Nuclear Information System (INIS)

    Edi Syafri; Anwar Kasim and Alfi Asben; Hairul Abral; Sudirman

    2018-01-01

    This research studied production and characterization of bioplastic composites by using cellulose fibers (Cellulose Micro Fibers/CMF) as reinforcement in tapioca starch. CMF ramie was produced by using milling method (CMFM) and ultrasonication (CMFU) with particle size 3,51 μm and 0,388 μm, respectively. The fabrication of the bioplastic composites was performed by solution casting with addition glycerol as a plasticizer. SEM, UTM, XRD, and DSC characterization were carried out. The results show that the size and concentration of CMF significantly affect the physical bioplastic composites. The SEM displays the good interaction CMF filler with the tapioca starch matrix, where the small sized hemophytic CMF bioplastic exhibits are more homogeneous compact and surface structure. The optimum value of tensile strength is found in the addition of 8 % (w/w)CMF ramie from ultrasonication and milling results increased from 1.64 MPa to 3.31 MPa and 2.71 MPa, respectively. The thermal properties have low significant effect with addition ramie CMF.X-ray Diffraction Analysis (XRD) showed that the crystallinity of bioplastic composites increased with the addition of ramie CMF from 8.65 % to 20.21 % for CMFM and 15.12 % for CMFU. (author)

  12. Fracture resistance of endodontically treated teeth restored with Zirconia filler containing composite core material and fiber posts.

    Science.gov (United States)

    Jeaidi, Zaid Al

    2016-01-01

    To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (pcomposite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures.

  13. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    Science.gov (United States)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  14. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  15. A new dual-functional microcomputer-based system for nuclear measurement

    International Nuclear Information System (INIS)

    Zhang Jiang; Fang Fang

    2004-01-01

    Introduction is made on a new type of microcomputer-based system nuclear instrument which can be used in both α ray and γ ray measurements. This dual-functional instrument is based on P89C58 single-chip microcomputer as its core MPU to do operations like data acquisition, data processing, circuit control, display and communication. Improvement and simplification are made to the traditional single channel analyzer, which is completely dependent on the hardware circuit, through the use of P89C58. (authors)

  16. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  17. Betwixt and between: Role conflict, role ambiguity and role definition in project-based dual-leadership structures

    Science.gov (United States)

    Ebbers, Joris J; Wijnberg, Nachoem M

    2017-01-01

    Project-based organizations in the film industry usually have a dual-leadership structure, based on a division of tasks between the dual leaders – the director and the producer – in which the former is predominantly responsible for the artistic and the latter for the commercial aspects of the film. These organizations also have a role hierarchically below and between the dual leaders: the 1st assistant director. This organizational constellation is likely to lead to role conflict and role ambiguity experienced by the person occupying that particular role. Although prior studies found negative effects of role conflict and role ambiguity, this study shows they can also have beneficial effects because they create space for defining the role expansively that, in turn, can be facilitated by the dual leaders defining their own roles more narrowly. In a more general sense, this study also shows the usefulness of analyzing the antecedents and consequences of roles, role definition, and role crafting in connection to the behavior of occupants of adjacent roles. PMID:29081536

  18. Dual Orlicz geominimal surface area

    Directory of Open Access Journals (Sweden)

    Tongyi Ma

    2016-02-01

    Full Text Available Abstract The L p $L_{p}$ -geominimal surface area was introduced by Lutwak in 1996, which extended the important concept of the geominimal surface area. Recently, Wang and Qi defined the p-dual geominimal surface area, which belongs to the dual Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed volume, we extend the dual geominimal surface area to the Orlicz version and give its properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type inequality, and the monotonicity inequality for the dual Orlicz geominimal surface areas are established.

  19. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  20. Esthetic Reconstruction of Diastema with Adhesive Tooth-Colored Restorations and Hyaluronic Acid Fillers

    Directory of Open Access Journals (Sweden)

    Supawadee Naorungroj

    2017-01-01

    Full Text Available Objective. This report presents a comprehensive esthetic treatment with adhesive tooth-colored restorations in a combination with hyaluronic acid (HA fillers of diastema in an orthodontic patient with relapse. Case Report. A 36-year-old female patient consulted about 1.5–2 mm midline diastema after an orthodontic relapse of replacing missing central incisors with lateral incisors and dark-colored gingival tissue as a result of a metal post and core with porcelain fused to a metal (PFM crown at the left lateral incisor. Restorative treatments included replacing the PFM with all-ceramic material and placing a ceramic veneer on the right lateral incisor. To close the space, crown forms of both lateral incisors were altered. A direct resin composite was then used to reform right and left canines to a more ideal lateral incisor shape. An HA fillers injection was used to fill the remaining open gingival embrasure. Eighteen months after treatment, the interdental papilla remained stable and the patient was satisfied with the result. Conclusion. Esthetic reconstruction of diastema and open gingival embrasure in this case can be accomplished without orthodontic retreatment. Tooth-colored restorations and HA filler injection appear as a promising modality to address this patient’s esthetic concern.

  1. Assessment of the Resistance to External Factors of Low-Density Polyethylene Modified with Natural Fillers

    Directory of Open Access Journals (Sweden)

    Karolina Głogowska

    2017-12-01

    Full Text Available The study reports the results of investigation of basic processing and thermal properties of low-density polyethylene modified with two types of natural filler: wheat bran and pumpkin seed hulls, their content ranging from 5% to 15% relative to the matrix. In addition, the physical properties of the produced granulates are determined, i.e. the relationship between their density and the applied contents of the tested fillers. Furthermore, the study reports the results concerning the longitudinal shrinkage, abrasion resistance and cold water absorption of injection molded tensile specimens.

  2. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao; Pan, Yichang; Peinemann, Klaus-Viktor; Lai, Zhiping

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite

  3. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  4. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  5. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  6. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  7. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  8. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

    Science.gov (United States)

    Sidi, Ahmedou; Colombani, Juliette; Larché, Jean-François; Rivaton, Agnès

    2018-01-01

    This study is focused on the radiooxidative degradation of polymeric insulation of electric cables used in Nuclear Power Plants (NPPs). In order to investigate the degradation mechanisms of the insulation, model composites with ATH (Aluminium TriHydrate) filler and blends (without filler) based on a cross-linked mixture of EVA (Ethylene Vinyl Acetate) and EPDM (Ethylene Propylene Diene Monomer) were submitted to gamma-rays. In normal operating conditions of a NPP, the dose rate which electric cables are exposed to is around 0.1 Gy h-1. In this work, artificial accelerated ageing test process has been applied at a relatively low dose rate of 7 Gy h-1. Gamma-irradiations at higher dose rates typically used to accelerate the ageing, in the range 0.2-1 kGy h-1, were also carried out. The first part of the study is focused on irradiations performed at relatively low dose rate and is devoted to the highlighting of the radiooxidative degradation mechanisms of EVA/EPDM blend with and without ATH filler. Correlations between the evolutions of the chemical, morphological and mechanical/electrical properties of the materials occurring after the ageing process are presented. It is shown that the degradation process is governed by radical oxidation mechanism involving chain scissions leading to the formation of carboxylic acids as end-groups. One of the main effects of the ATH filler is the progressive loss of the mechanical properties of the composite upon radiooxidation whereas they are maintained in the case of the unfilled sample. Despite the oxidation of the polymer, no change in the electrical properties of the blend and of the composite could be observed. The second part of the study focuses on the dose rate effect. It is shown that one of the main consequences of an increase of the dose rate from 7 Gy h-1 to 0.2-1 kGy h-1 is a reduction of the chain scission process yield by a factor of about 20. Therefore, an important and consistent finding is that there are some

  9. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle

    Science.gov (United States)

    Huang, Mulin; Cheng, Yongzhi; Cheng, Zhengze; Chen, Haoran; Mao, Xuesong; Gong, Rongzhou

    2018-05-01

    We present a wide-angle tunable dual-band terahertz (THz) metamaterial absorber (MMA) based on square graphene patch (SGP). This MMA is a simple periodic array, consisting of a dielectric substrate sandwiched with the SGP and a continuous metallic film. The designed MMA can achieve dual-band absorption by exciting fundamental and second higher-order resonance modes on SGP. The numerical simulations indicate that the absorption spectrum of the designed MMA is tuned from 0.85 THz to 1.01 THz, and from 2.84 THz to 3.37 THz when the chemical potential of the SGP is increasing from 0.4eV to 0.8eV. Moreover, it operates well in a wide-angle of the incident waves. The presented THz MMA based on the SGP could find some potential applications in optoelectronic related devices, such as sensor, emitter and wavelength selective radiators.

  10. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    Science.gov (United States)

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors. J Drugs Dermatol. 2016;15(9):1076-1082.

  11. Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes

    International Nuclear Information System (INIS)

    Bonis, Catia de; Cozzi, Dafne; Mecheri, Barbara; D'Epifanio, Alessandra; Rainer, Alberto; De Porcellinis, Diana; Licoccia, Silvia

    2014-01-01

    The phenylsulfonic functionalized nanometric titania (TiO 2 -PhSO 3 H) was synthesized to be used as filler in Nafion-based composite membranes for direct methanol fuel cell (DMFC) applications. The organic moieties were covalently bound on the surface of TiO 2 nanoparticles and the hybrid product was characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) analysis. TiO 2 -PhSO 3 H showed higher ion exchange capacity (IEC) and proton conductivity values with respect to those of TiO 2 . The incorporation of TiO 2 -PhSO 3 H in Nafion led to a mechanical reinforcement of the membranes and higher conductivity than that obtained with unfilled Nafion. The composite membrane containing 10 wt.% of TiO 2 -PhSO 3 H showed an increased crystallinity and the highest conductivity, reaching 0.11 S cm −1 at 140 °C. DMFC tests were carried out showing that the use of the organic-inorganic hybrid filler leads to a general improvement in the cell performance, in terms of higher current and power density and reduced methanol crossover

  12. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  13. The Dual Orlicz-Brunn-Minkowski Theory

    OpenAIRE

    Gardner, Richard J.; Hug, Daniel; Weil, Wolfgang; Ye, Deping

    2014-01-01

    This paper introduces the dual Orlicz-Brunn-Minkowski theory for star sets. A radial Orlicz addition of two or more star sets is proposed and a corresponding dual Orlicz-Brunn-Minkowski inequality is established. Based on a radial Orlicz linear combination of two star sets, a formula for the dual Orlicz mixed volume is derived and a corresponding dual Orlicz-Minkowski inequality proved. The inequalities proved yield as special cases the precise duals of the conjectured log-Brunn-Minkowski and...

  14. UTILIZATION OF TORAY FLY ASH AS FILLER SUBSTITUTION IN THE HOT ROLLED SHEET-WEARING COURSE (HRS-WC MIXTURE

    Directory of Open Access Journals (Sweden)

    F. Candra

    2012-02-01

    Full Text Available In road construction materials, the utilization of fly ash as additive materials is limited and also small in quantity, while the disposal of fly ash is quite high. An abundance of fly ash can be found at PT Toray Company in Jakarta and Surabaya. Toray fly ash is disposed coal ash resulting from coal-fired electricity generating power plants. Toray fly ash in this research is used as substitute mineral filler in asphalt paving mixtures. Research on utilization of Toray fly ash as filler is conducted in the Hot Rolled Sheet – Wearing Course Mixture.  Filler content in the HRS –WC mixture is 9%. Variations of Toray fly ash in the mixture tested are 0%, 25%, 50%, 75%, 100% and the variations of asphalt content are 6%, 6.5%, 7%, 7.5%, 8%. Marshall test is  performed to determine the Optimum Asphalt Content  and Marshall Stability, Indirect Tensile Strength (ITS test and Tensile Strength Ratio (TSR to select the optimum Toray fly ash utilization in the mixture based on the moisture susceptibility of specimens. The research results show that in variations of 0%, 25%, 50%, 75% and 100% Toray fly ash in the HRS-WC Mixture, the Optimum Asphalt Contents are at 6.8%, 7.0%, 7.0%, 7.1% and 7.6%  and Marshall Stability values of the variations are 1649 kg, 1541 kg, 1568 kg, 1678 kg, 1718 kg respectively. TSR values in variations of Toray fly ash are 98.32%, 90.28%, 89.38%, 87.62%, 64.71% respectively, with Minimum TSR value required is 80%. Based on the overall parameters, the optimum Toray fly ash utilization in the HRS-WC Mixture recommended is 75% of Toray fly ash at 7.1% Optimum Asphalt Content.

  15. Moessbauer study of the magnetic filler for suppositories

    International Nuclear Information System (INIS)

    Bykov, A.V.; Nikolaev, V.I.; Shulgin, V.I.; Diaz, C.; Kharitonov, Yu.Ya.; Cherkasova, O.G.

    1991-01-01

    Moessbauer spectroscopy methods are discussed when applied to test the properties of magnetic suppositories used in medicine. The experiments were carried out on magnetic rectal suppositories containing paramadine and fine-dispersed ferrite powder (BaO.nFe 2 O 3 ) as a magnetic filler. According to the data on the value of effective magnetic field on 57 Fe nuclei in ferrite magnetic sublattices, the stoichiometric n-number equals approximately 5.5; this value corresponds to the composition range of optimal magnetic properties. (orig.)

  16. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding

    Science.gov (United States)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present research work, dissimilar welding between Inconel 625 super alloy and AISI 904L super austenitic stainless steel using manual multi-pass continuous current gas tungsten arc (CCGTA) welding process employed with ERNiCrMo-4 and ERNiCrCoMo-1 fillers were performed to determine the mechanical properties and weldability. Tensile test results corroborated that the fracture had occurred at the parent metal of AISI 904L irrespective of filler used for all the trials. The presence of the macro and micro void coalescence in the fibrous matrix characterised for ductile mode of fracture. The hardness values at the weld interface of Inconel 625 side were observed to be higher for ERNiCrMo-4 filler due to the presence of strengthening elements such as W, Mo, Ni and Cr. The impact test accentuated that the weldments using ERNiCrMo-4 filler offered better impact toughness (41J) at room temperature. Bend test results showed that the weldments using these fillers exhibited good ductility without cracks.

  17. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  18. Investigation of the Effect of Internal Mold Release Agent and Filler on the Pulling Force in Pultrusion Process

    Directory of Open Access Journals (Sweden)

    M. Esfandeh

    2007-08-01

    Full Text Available Pulling force is one of the most important variables in pultrusion process which determines the capacity of the pultrusion machine. One of the characteristics of a desired pultrusion process is a low pulling force and a high line speed.Among the important factors affecting the pulling force are the internal mold release agent (IMR and the content and particle size of the filler in resin formulation. In addition to facilitating the part separation from the die, IMR also affects the curing kinetics and in turn the pulling force. In this research, a commercial IMR has been used in a range 1-5 phr. DSC and DMTAAnalyses showed that the presence of IMR in concentrations above 3 phr reduces the heat of curing reaction and also the curing rate. This results in an increase in pulling force. Study of filler effect showed that the increase in filler content from 4 to 8 phr reduces the pulling force but beyond that it is increased. Also, decreasing the filler particle size in line speed lower than 30 cm/min reduces the pulling force but increases it at higher line speed.

  19. Method and apparatus for welding workpieces along a seam with the aid of a filler material deposited in the seam

    International Nuclear Information System (INIS)

    1979-01-01

    A method and apparatus for welding a nuclear reactor core barrel in a very precise and controlled manner is given. The power employed to preheat the filler material at its operating level is automatically controlled as a continuous non-linear function of the filler feed speed. (UK)

  20. Quick Maintenance for High Voltage Equipment with the New Not Toxic Boron Nitride Powder (BN100) Superior Thermal Conductive and Lightweight Filler

    National Research Council Canada - National Science Library

    Boer, Fabrizio

    2005-01-01

    .... The BN100 superior thermal conductive and lightweight filler technology is a new filler technology, that not only lets Users a full access for maintenance because cure-free being compounded by loose...

  1. Properties of rubber blends based on natural rubber loaded with different fillers and cured by gamma radiation

    International Nuclear Information System (INIS)

    Mohamed, R.M.

    2011-01-01

    In this investigation system styrene butadiene rubber (1502 type) and natural rubber were blended in different ratios namely, NR/SBR (0/100), NR/SBR (25/75), NR/SBR (50/50), NR/SBR (75/25) and NR/SBR (100/0). All the samples were subjected to gamma irradiation dose up to 250 kGy. The improvement in the mechanical properties, physico-mechanical properties and thermal properties was followed as a function of irradiation dose and blend ratio. The SBR /NR (50/50) blend with reasonable properties were filled with 40 p hr of Hisil (highly fined silicon), HAF carbon black (high abrasion furnace), TiO 2 titanium dioxide and clay; the reinforcing ability of these fillers was found to follow the order: Hisil > HAF carbon black > Clay > TiO 2 The effect of different kinds of enhancing agents (coagent) namely: N, N- methylene di acrylamide (MDA), trimethylol propane tri methacrylate (TMPTMA) and tetramethylol - methane tetraacrylate (TMMT) on the properties of the obtained composites as a function of irradiation dose was studied. The data obtained showed that the enhancement character of the co agents follow the order: TMMT >TMPTMA > MDA >unenhanced composites. This investigation showed also the effect of gamma irradiation on improving the above mentioned properties in the presence of filler and co agents. Moreover, radiation dose at 100 kGy is sufficient enough for obtained the desired properties. The obtaining composites can be used in many industrial applications such as radio controlled model race car tires to footwear applications; the SBR component adds the toughness while the natural rubber provides superior resilience and energy return when used in footwear.

  2. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: a literature review.

    Science.gov (United States)

    André, P; Villain, F

    2017-08-01

    Mannitol has both hydrating and antioxidant properties that make it an ideal excipient for use with hyaluronic acid (HA) fillers. This review examines the role of reactive oxygen species in the ageing process and their effects on both endogenous HA and HA products developed for aesthetic use. Evidence is presented to show that the free radical scavenging properties of mannitol provide it with a two-fold mechanism of action when combined with HA fillers: reducing the inflammation and swelling associated with the injection procedure itself, and preventing the degradation of the injected HA by free radicals. Mannitol also has a long- and well-established safety profile in both the food and pharmaceutical industry. Having established the rationale for using mannitol in combination with an HA filler, the products using this strategy are then reviewed. The addition of mannitol to HA fillers is a viable and safe option for improving both short- and long-term HA aesthetic effects. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. The role of the adsorption interaction between pitch and filler in the process of baking of carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, N.; Razvigorova, M.; Budinova, T.; Siskov, K. (Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Organic Chemistry)

    1994-01-01

    The adsorption interaction between the filler and the binder in carbon/carbon composite was studied. The binder and the filler should be chosen so as to realize the maximum adsorption interaction between them. The optimum composition of the composite is attained when the maximum part of the binder takes part in the adsorption layer. As a result of the interaction between the binder and the filler polar compounds, higher molecular mass compounds and those with a condensed aromatic structure are concentrated in the adsorption layer. Upon thermal treatment of the composite, these substances yield a larger amount of solid residue than the unadsorbed part of the binder. 3 refs., 1 fig., 6 tabs.

  5. Self-corrected chip-based dual-comb spectrometer.

    Science.gov (United States)

    Hébert, Nicolas Bourbeau; Genest, Jérôme; Deschênes, Jean-Daniel; Bergeron, Hugo; Chen, George Y; Khurmi, Champak; Lancaster, David G

    2017-04-03

    We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.

  6. Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.

  7. Injectable neurotoxins and fillers: there is no free lunch.

    Science.gov (United States)

    Emer, Jason; Waldorf, Heidi

    2011-01-01

    Injection of neurotoxins and filling agents for the treatment of facial aesthetics has increased dramatically during the past few decades due to an increased interest in noninvasive aesthetic improvements. An aging but still youth-oriented population expects effective treatments with minimal recovery time and limited risk of complications. Injectable neurotoxins and soft tissue stimulators and fillers have filled this niche of "lunch-time" procedures. As demand for these procedures has increased, supply has followed with more noncore cosmetic specialty physicians, as well as unsupervised ancillary staff, becoming providers and advertising them as easy fixes. Despite an excellent record of safety and efficacy demonstrated in scores of published studies, injectable agents do carry risks of complications. These procedures require a physician with in-depth knowledge of facial anatomy and injection techniques to ensure patient safety and satisfaction. In general, adverse events are preventable and technique-dependent. Although most adverse events are minor and temporary, more serious complications can occur. The recognition, management, and treatment of poor outcomes are as important as obtaining the best aesthetic results. This review addresses important considerations regarding the complications of injectable neurotoxins and fillers used for "lunch-time" injectable procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    International Nuclear Information System (INIS)

    Wang, Hsin-Hu; Lee, Chih-Kung; Hsu, Yu-Hsiang; Wu, Ting-Jui; Cheng, I-Chun; Lin, Shih-Jue; Gu, Jen-Tau

    2017-01-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper. (paper)

  9. Moessbauer study of the magnetic filler for suppositories

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.V.; Nikolaev, V.I.; Shulgin, V.I. (M.V. Lomonosov Moscow State Univ. (USSR)); Diaz, C. (Cuba National Center of Scientific Research, Havana (Cuba)); Kharitonov, Yu.Ya.; Cherkasova, O.G. (I.M. Sechenov First Moscow Medical Inst. (USSR))

    1991-11-01

    Moessbauer spectroscopy methods are discussed when applied to test the properties of magnetic suppositories used in medicine. The experiments were carried out on magnetic rectal suppositories containing paramadine and fine-dispersed ferrite powder (BaO.nFe[sub 2]O[sub 3]) as a magnetic filler. According to the data on the value of effective magnetic field on [sup 57]Fe nuclei in ferrite magnetic sublattices, the stoichiometric n-number equals approximately 5.5; this value corresponds to the composition range of optimal magnetic properties. (orig.).

  10. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2014-01-01

    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  11. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    Science.gov (United States)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  12. A new green methodology for surface modification of diatomite filler in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Mori, S.; Cherubini, V. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy); Scarselli, M. [Department of Physics, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Rome (Italy); Nanni, F., E-mail: fnanni@ing.uniroma2.it [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy)

    2017-06-15

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H{sub 2}O:NaOH:H{sub 2}O{sub 2}. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind

  13. A new green methodology for surface modification of diatomite filler in elastomers

    International Nuclear Information System (INIS)

    Lamastra, F.R.; Mori, S.; Cherubini, V.; Scarselli, M.; Nanni, F.

    2017-01-01

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H_2O:NaOH:H_2O_2. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind chemically to

  14. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  15. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  16. Power Split Based Dual Hemispherical Continuously Variable Transmission

    Directory of Open Access Journals (Sweden)

    Douwe Dresscher

    2017-04-01

    Full Text Available In this work, we present a new continuously variable transmission concept: the Dual-Hemi Continuously Variable Transmission (CVT. It is designed to have properties we believe are required to apply continuously variable transmissions in robotics to their full potential. These properties are a transformation range that includes both positive and negative ratios, back-drivability under all conditions, kinematically decoupled reconfiguration, high efficiency of the transmission, and a reconfiguration mechanism requiring little work for changing the transmission ratio. The design of the Dual-Hemi CVT and a prototype realisation are discussed in detail. We show that the Dual-Hemi CVT has the aforementioned desired properties. Experiments show that the efficiency of the CVT is above 90% for a large part of the range of operation of the CVT. Significant stiction in the transmission, combined with a relatively low bandwidth for changing the transmission ratio, may cause problems when applying the DH-CVT as part of an actuator in a control loop.

  17. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  18. Hyaluronic acid filler injections for tear-trough deformity: injection technique and high-frequency ultrasound follow-up evaluation.

    Science.gov (United States)

    De Pasquale, Antonino; Russa, Giuseppina; Pulvirenti, Manuela; Di Rosa, Luigi

    2013-06-01

    This study aimed to describe the technique used by the authors in treating tear-trough deformity and to illustrate the effectiveness of high-frequency diagnostic ultrasound in the assessment of dermal filler longevity. In this consecutive interventional nonrandomized case series, 22 patients (18 women and 4 men) were evaluated. They ranged in age from 29 to 65 years (mean, 46.59 years ± 10.0 years). The patients were given multiple hyaluronic acid injections in the tear-trough area between 2009 and 2011. The injected areas then were evaluated with sonographic scans during the follow-up period. All the patients were examined preoperatively, 7 days after injection, then after 1, 6, and 12 months, and finally once a year. Pre- and postoperative photographs using standard positioning and lighting were taken as well as high-frequency ultrasound scans using a 15-MHz scanner with an axial resolution of 15 mm. The injection technique consisted of three to five injections perpendicular to the skin. These were administered just under the orbital rim, creating three column-shaped hyaluronic acid deposits deep in the orbicularis oculi muscle, from 0.2 mm to 0.5 mm below the orbital rim. Approximately 0.1 ml-0.3 ml was injected at a time. This technique creates a deep scaffolding that can fill the orbital hollow. The amount of filler used in each area ranged from 0.1 ml to 0.3 ml (mean, 0.267 ml ± 0.128 ml), whereas the mean filler quantity in each eyelid was 0.45 ml ± 0.14 ml. During the follow-up visit 1 week after the treatment, 21 patients (90 %) required a second series of injections either in the exact same areas or right next to the injected area to obtain a smoother appearance of the skin surface. During the sonographer examination, it was always possible to identify and measure the filler at the site of the injection. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please

  19. Consensus Recommendations for Optimal Augmentation of the Asian Face with Hyaluronic Acid and Calcium Hydroxylapatite Fillers.

    Science.gov (United States)

    Rho, Nark-Kyoung; Chang, Yao-Yuan; Chao, Yates Yen-Yu; Furuyama, Nobutaka; Huang, Peter Y C; Kerscher, Martina; Kim, Hee-Jin; Park, Je-Young; Peng, Hsien Li Peter; Rummaneethorn, Paisal; Rzany, Berthold; Sundaram, Hema; Wong, Chin Ho; Yang, Yuli; Prasetyo, Adri Dwi

    2015-11-01

    Although the use of filling agents for soft-tissue augmentation has increased worldwide, most consensus statements do not distinguish between ethnic populations. There are, however, significant differences between Caucasian and Asian faces, reflecting not only cultural disparities, but also distinctive treatment goals. Unlike aesthetic patients in the West, who usually seek to improve the signs of aging, Asian patients are younger and request a broader range of indications. Members of the Asia-Pacific Consensus group-comprising specialists from the fields of dermatology, plastic surgery, anatomy, and clinical epidemiology-convened to develop consensus recommendations for Asians based on their own experience using cohesive polydensified matrix, hyaluronic acid, and calcium hydroxylapatite fillers. The Asian face demonstrates differences in facial structure and cosmetic ideals. Improving the forward projection of the "T zone" (i.e., forehead, nose, cheeks, and chin) forms the basis of a safe and effective panfacial approach to the Asian face. Successful augmentation may be achieved with both (1) high- and low-viscosity cohesive polydensified matrix/hyaluronic acid and (2) calcium hydroxylapatite for most indications, although some constraints apply. The Asia-Pacific Consensus recommendations are the first developed specifically for the use of fillers in Asian populations. Therapeutic, V.

  20. Perspectives in the selection of hyaluronic acid fillers for facial wrinkles and aging skin

    Directory of Open Access Journals (Sweden)

    Hannah E John, Richard D Price

    2009-07-01

    Full Text Available Hannah E John, Richard D PriceDepartment of Plastic and Reconstructive Surgery, Addenbrookes Hospital, Cambridge University Teaching Hospitals NHS Trust, Cambridge, UKAbstract: Aesthetic surgery is, in the USA at least, no longer a taboo subject. Outside North America, public acceptance continues to grow as more procedures are performed each year. While there appears, anecdotally, to be a decrease in patients undergoing cosmetic treatments because of the global financial crisis, the overall trend remains upward. Although popular television programs espouse the benefits of surgery, it is nonsurgical procedures that account, numerically, for the majority of procedures performed; in the USA, there was a 48% growth from 2000 to 2008 in nonsurgical treatments undertaken by women, and 64% in men and while the average surgeon might perform 60 blepharoplasty operations in 2007, (she would also undertake 375 botulinum injections, and almost 200 filler injections of varying sorts. Clearly there is enthusiasm for nonsurgical treatments, and this trend appears to be rising. With this in mind, we present an overview of the commonest filler injection material, hyaluronic acid. We present the mechanism of action, the purported risks and benefits, and briefly discuss technique.Keywords: hyaluronic acid, filler injection, nonsurgical procedures, technique