WorldWideScience

Sample records for dual energy x-rays

  1. Bone age assessment by dual-energy X-ray absorptiometry in children: An alternative for X-ray?

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); H.R. Taal (Rob); G.D.S. Ernst (Gesina); E.L.T. van den Akker (Erica); M.H. Lequin (Maarten); A.C.S. Hokken-Koelega (Anita); J.J.M. Geelhoed (Miranda); V.W.V. Jaddoe (Vincent)

    2012-01-01

    textabstractObjective: The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods: Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinol

  2. Simultaneous dual-energy X-ray stereo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mokso, Rajmund, E-mail: rajmund.mokso@psi.ch [Paul Scherrer Institute, Swiss Light Source, CH 5232 Villigen (Switzerland); Oberta, Peter [Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 1999/2, Praha 8 (Czech Republic); Rigaku Innovative Technologies Europe s.r.o., Novodvorska 994, Praha 4 (Czech Republic)

    2015-06-26

    A Laue–Bragg geometry is introduced for splitting an X-ray beam and tuning each of the two branches to selected wavelength. Stereoscopic and dual-energy imaging was performed with this system. Dual-energy or K-edge imaging is used to enhance contrast between two or more materials in an object and is routinely realised by acquiring two separate X-ray images each at different X-ray wavelength. On a broadband synchrotron source an imaging system to acquire the two images simultaneously was realised. The single-shot approach allows dual-energy and stereo imaging to be applied to dynamic systems. Using a Laue–Bragg crystal splitting scheme, the X-ray beam was split into two and the two beam branches could be easily tuned to either the same or to two different wavelengths. Due to the crystals’ mutual position, the two beam branches intercept each other under a non-zero angle and create a stereoscopic setup.

  3. Suspension criteria for dual energy X ray absorptiometry.

    Science.gov (United States)

    McLean, I D

    2013-02-01

    The use of dual-energy X-ray absorptiometry (DXA) units primarily for the assessment of fracture risk and in the diagnosis of osteoporosis is ubiquitous in Europe and ever-expanding in its implementation worldwide. DXA is known for its reported low radiation dose and precision in the determination of bone mineral density. However, the use of simple suspension criteria, as proposed in the new EC report RP-162, will identify units that are unfit for useful and safe diagnosis. Such suspension levels, however, are not a substitute for regular maintenance, quality control testing and optimisation of clinical outcomes.

  4. Features of dual-energy X-ray computed tomography

    Science.gov (United States)

    Torikoshi, M.; Tsunoo, T.; Ohno, Y.; Endo, M.; Natsuhori, M.; Kakizaki, T.; Ito, N.; Uesugi, K.; Yagi, N.

    2005-08-01

    We proposed dual-energy X-ray CT for direct measurement of electron densities to make treatment planning for heavy ion radiotherapy more accurate. The accuracy was proved to be about 1% using synchrotron radiation in previous experiments carried out at SPring-8 and PF-AR. The electron densities of some porcine organs were measured in this method at SPring-8, and compared with data of ICRU Report. Besides, the atomic number of the object is also obtained as a byproduct. Comparing the CT-number given in conventional CT scanning is an important information. Images of the electron density and atomic number may give new information to medical diagnosis.

  5. Quality in dual-energy X-ray absorptiometry scans.

    Science.gov (United States)

    Morgan, Sarah L; Prater, Ginnie L

    2017-11-01

    Dual-energy X-ray absorptiometry (DXA) is the gold standard for measuring bone mineral density (BMD), making the diagnosis of osteoporosis, and for monitoring changes in BMD over time. DXA data are also used in the determination of fracture risk. Procedural steps in DXA scanning can be broken down into scan acquisition, analysis, interpretation, and reporting. Careful attention to quality control pertaining to these procedural steps should theoretically be beneficial in patient management. Inattention to procedural steps and errors that may occur at each step has the possibility of providing information that would inform inappropriate clinical decisions, generating unnecessary healthcare expenses and ultimately causing avoidable harm to patients. This article reviews errors in DXA scanning that affect trueness and precision related to the machine, the patient, and the technologist and reviews articles which document problems with DXA quality in clinical and research settings. An understanding of DXA errors is critical for DXA quality; programs such as certification of DXA technologists and interpreters help in assuring quality bone densitometry. As DXA errors are common, pay for performance requiring DXA technologists and interpreters to be certified and follow quality indicators is indicated. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. X-ray synchrotron dual energy imaging for material specific study

    Science.gov (United States)

    Singh, B.; Agrawal, A. K.; Kashyap, Y. S.; Gadkari, S. C.

    2017-05-01

    X-ray imaging techniques, in general, are used to study the internal structures of an object non-destructively such as anatomy, imperfections, cracks and voids whereas insensitive to spatial distribution of different element or elemental compositions of the object. With the development of advance bright X-ray synchrotron sources and accurate energy tunability using high resolution crystal monochromator, detection of elemental distribution in an object became possible. Quantitative small concentrations with enhance contrast can be detected fast in X-ray synchrotron based dual energy imaging, in comparison to conventional X-ray lab based techniques. We report here the experimental setup, image acquisition and image processing for the dual energy X-ray imaging (DEI) technique to retrieve the spatial distribution of different elements in the object.

  7. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    Science.gov (United States)

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  8. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  9. Fat to Muscle Ratio Measurements with Dual Energy X Ray Absorbtiometry

    CERN Document Server

    Chen, A; Broadbent, C; Zhong, J; Dilmanian, A; Zafonte, F; Zhong, Z

    2014-01-01

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  10. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography.

    Science.gov (United States)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-08-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented.

  11. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content...

  12. Application of dual-energy x-ray techniques for automated food container inspection

    Science.gov (United States)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  13. Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

    CERN Document Server

    Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Peiping

    2015-01-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method is aiming to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretic ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for future precise and lo...

  14. Wire transfer function analysis for castellated dual-energy x-ray detectors.

    Science.gov (United States)

    Chan, Jer Wang; Evans, James Paul Owain; Yong, Yen San; Monteith, Andrew

    2004-12-10

    An investigation into the spatial resolving power of a castellated linear dual-energy x-ray detector array is reported. The detector was developed for use in aviation security screening applications. Experiments employing different gauges of lead wire are used to plot a wire transfer function. A numerical simulation is developed to predict and underpin the empirical results. The suitable processing of the castellated detector signals helps to maintain spatial resolving power while affording a 50% reduction in x-ray sensing elements. This encouraging result has formed the basis for an ongoing investigation into materials discrimination capability of the castellated detector array.

  15. Dual-energy tissue cancellation in mammography with quasi-monochromatic x-rays.

    Science.gov (United States)

    Marziani, M; Taibi, A; Tuffanelli, A; Gambaccini, M

    2002-01-21

    Dual-energy radiography has not evolved into a routine clinical examination yet due to intrinsic limitations of both dual-kVp imaging and single-exposure imaging with conventional x-ray sources. The recent introduction of novel quasi-monochromatic x-ray sources and detectors could lead to interesting improvements, especially in mammography where the complex structure of healthy tissues often masks the detectability of lesions. A dual-energy radiography technique based on a tissue cancellation algorithm has been developed for mammography, with the aim of maximizing the low intrinsic contrast of pathologic tissues while being able to minimize or cancel the contrast between glandular and fat tissues. Several images of a plastic test object containing various tissue equivalent inserts were acquired in the energy range 17-36 keV using a quasi-monochromatic x-ray source and a scintillator-coated CCD detector. Images acquired at high and low energies were nonlinearly combined to generate two energy-independent basis images. Suitable linear combinations of these two basis images result in the elimination of the contrast of a given material with respect to another. This makes it possible to selectively cancel certain details in the processed image.

  16. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content......-ray measurements show good agreement with results from the two standard materials which imitate water in a porous material. On this background the dual-energy x-ray absorptiometry measurement principle can be used on porous structural materials....

  17. Evaluation of a dichromatic X-ray source for dual-energy imaging in mammography

    Science.gov (United States)

    Tuffanelli, A.; Fabbri, S.; Sarnelli, A.; Taibi, A.; Gambaccini, M.

    2002-08-01

    A novel X-ray system, providing dichromatic beams for dual-energy radiography, has been assembled. The source generates pairs of superimposed quasi-monochromatic beams, having energies E and 2 E, with E tuneable in the 15-20 keV range. In this paper the characteristics of the radiation field in terms of energy resolution and fluence, for three dichromatic X-ray beams are reported. A study of the spectra attenuated by a 5 cm-thick phantom of breast equivalent tissue demonstrates that the optimal energy of the dichromatic beam for dual-energy application may be set as a function of the thickness of investigated tissue. A detailed topographic study of mean energy and flux shows the spatial superposition of the first and the second diffraction order beam, that is the main requirement for the application of a single exposure dual-energy radiography. The bidimensional mapping of the irradiated beam is also reported, showing the presence of energy and intensity gradients. We estimate that the observed gradients do not affect the results of dual-energy technique application in an appreciable way.

  18. CT dual-energy decomposition into x-ray signatures ρe and Ze

    Science.gov (United States)

    Martz, Harry E.; Seetho, Issac M.; Champley, Kyle E.; Smith, Jerel A.; Azevedo, Stephen G.

    2016-05-01

    In a recent journal article [IEEE Trans. Nuc. Sci., 63(1), 341-350, 2016], we introduced a novel method that decomposes dual-energy X-ray CT (DECT) data into electron density (ρe) and a new effective-atomic-number called Ze in pursuit of system-independent characterization of materials. The Ze of a material, unlike the traditional Zeff, is defined relative to the actual X-ray absorption properties of the constituent atoms in the material, which are based on published X-ray cross sections. Our DECT method, called SIRZ (System-Independent ρe, Ze), uses a set of well-known reference materials and an understanding of the system spectral response to produce accurate and precise estimates of the X-ray-relevant basis variables (ρe, Ze) regardless of scanner or spectra in diagnostic energy ranges (30 to 200 keV). Potentially, SIRZ can account for and correct spectral changes in a scanner over time and, because the system spectral response is included in the technique, additional beam-hardening correction is not needed. Results show accuracy (<3%) and precision (<2%) values that are much better than prior methods on a wide range of spectra. In this paper, we will describe how to convert DECT system output into (ρe, Ze) features and we present our latest SIRZ results compared with ground truth for a set of materials.

  19. Bone mineral density of normal people by dual energy X-ray absorptiometry

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The bone minearl density(BMD) determination is performed for 210 selected Shanghai residents of both sexes across the age range 15-50 using Hologic QDR-2000 dual energy X-ray absorptiometry(DEXA).The results whow that in female groups the peak value of L1-L4 BMD is 1.023±0.103g/cm2 at the ages of 31-35,but in male groups it is 0.971±0.118g/cm2 aged 26-30 and the peak period can last he ages 46-50,The similarconclusion is also obtained by further statistics.

  20. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    Science.gov (United States)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  1. SU-C-18C-03: Dual-Energy X-Ray Fluoroscopy Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Virshup, G; Richmond, M; Mostafavi, H; Ganguly, A [Ginzton Technology Center, Varian Medical Systems Inc, Palo Alto, CA (United States); Fu, D [Ruier Medical, Wuxi, Jiangsu Province (China)

    2014-06-01

    Purpose: This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. Methods: Twenty subjects who were undergoing RT for lung cancer were recruited following institutional review board approval. The subjects had a range of tumor sizes, locations in the lungs, and body sizes. An x-ray imaging system was setup with the following components: (a) x-ray tube (Varian G-242, Varian Medical Systems (VMS), CA) (b) flat panel detector (4030CB, VMS, CA) and (c) x-ray generator (EPS 50RF, EMD, Canada). Firmware and software modifications were made to the generator to allow 10 x-ray pulse pairs with alternating low/high kV, 100 ms apart for ∼4s (one breathing cycle). Images were obtained at 4 angles: 0°, 45°, 90° and 135°. Weighted subtraction of a kV-pair image set was used to create a “bone-free” image of the lungs. The 2D tumor-shift in each subtracted image and the 3D shift during a breathing cycle was calculated using all views. Results: The subjects enrolled had the following statistics: average age 62.3±7.1 years, 5 female/15 male, 11 had tumors on the right and 9 on the left and the average tumor size was ∼31.4±10.8 mm. X-ray imaging conditions for the pulse pairs were: 70/120 kVp, 280/221 mA and 65/8 ms. For views where these parameters were insufficient 80/130 kVp, 280/221 mA and 60/12 ms was used. Tumor visibility improved for 0°, 45°, 90° and 135° in 100%, 55%, 75% and 80% of the cases respectively. Tumor shift during a breathing cycle was: 2.4±1.0 mm AP, 2.7±1.4 mm LR and 7.6±4.8 mm IS. Conclusion: DE subtraction fluoroscopy allowed improved visualization and quantification of movement of tumors in the lungs during a breathing cycle. This study was entirely funded by Varian Medical Systems.

  2. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    2016-03-01

    Full Text Available Significant improvements in dual-energy X-ray absorptiometry (DXA concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry.

  3. Pediatric body composition analysis with dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helba, Maura; Binkovitz, Larry A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2009-07-15

    Pediatric applications of body composition analysis (BCA) have become of increased interest to pediatricians and other specialists. With the increasing prevalence of morbid obesity and with an increased awareness of anorexia nervosa, pediatric specialists are utilizing BCA data to help identify, treat, and prevent these conditions. Dual-energy X-ray absorptiometry (DXA) can be used to determine the fat mass (FM) and lean tissue mass (LTM), as well as bone mineral content (BMC). Among the readily available BCA techniques, DXA is the most widely used and it has the additional benefit of precisely quantifying regional FM and LTM. This review evaluates the strengths and limitations of DXA as a pediatric BCA method and considers the utilization of DXA to identify trends and variations in FM and LTM measurements in obese and anorexic children. (orig.)

  4. A status report on dual energy x-ray absorptiometry quality control in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su [Dept. of Radiogic Technology, Chungbuk Health and Science University, Cheongju (Korea, Republic of); Ro, Young Hoon; Lee, In Ju; Kim, Jung Min [Dept. of Bio-convergence Engineering, Korea University Graduate School, Seoul (Korea, Republic of); Kim, Sung Su [Dept. of Healthcare Management, Cheongju University, Cheongju (Korea, Republic of); Kim, Kyoung Ah [Dept. of Diagnostic Radiology, CHA Bundang Medical Center, CHA University, Sungnam (Korea, Republic of)

    2016-12-15

    Dual-energy X-ray absorptiometry (DEXA) is the most widely used technical instrument for evaluating bone mineral content (BMC) and density (BMD) in patients of all ages. In 2016, DEXA devices operating is 5617 in Korea. In this study we investigated the quality of management practices survey for DEXA equipment and we analyzed it. We got a survey response rate of 12.6%. Accurate bone densitometry test is used data for estimation a patient's risk of fracture. However, improper bone densitometry will increase the possibility of causing a false positive. Therefore. it is essential to use the proper aids accurate bone densitomenty to be performed, and the quality control of the device to reduce the error factor of the tester through the training to reduce error for the device and the attitude.

  5. Comparison of the Bod Pod and dual energy x-ray absorptiometry in men.

    Science.gov (United States)

    Ball, Stephen D; Altena, Thomas S

    2004-06-01

    The majority of studies investigating the accuracy of the Bod Pod have compared it to hydrostatic weighing (HW), the long held, and perhaps outdated 'gold standard' method of body composition analysis. Much less research has compared the Bod Pod to dual energy x-ray absorptiometry (DXA), a technique that is becoming popular as an alternative reference method. The purpose of this study was to compare per cent fat estimates by the Bod Pod to those of DXA in a large number of men. Participants were 160 men (32 +/- 11 years). Per cent body fat was estimated to be 19.4 +/- 6.8 and 21.6 +/- 8.4 for DXA and the Bod Pod, respectively. Although the two methods were highly correlated (0.94), the mean difference of 2.2% was significant (p Bod Pod, DXA), differences between methods exist and the determination of body composition is at best, an estimation.

  6. Neonatal anthropometrics and body composition in obese children investigated by dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Lausten-Thomsen, Ulrik; Nielsen, Tenna Ruest Haarmark; Thagaard, Ida Näslund

    2014-01-01

    index (BFMI), and fat free mass index (FFMI) in obese children and the preceding in utero conditions expressed by birth weight, birth length, and birth weight for gestational age. The study cohort consisted of 776 obese Danish children (median age 11.6 years, range 3.6-17.9) with a mean Body Mass Index......UNLABELLED: Epidemiological and animal studies have suggested an effect of the intrauterine milieu upon the development of childhood obesity. This study investigates the relationship between body composition measured by dual energy X-ray absorptiometry expressed as body fat percent, body fat mass...... obesity treatment to be significantly correlated with both birth weight and birth weight for gestational age. CONCLUSION: These results indicate a prenatal influence upon childhood obesity. Although there are currently no sufficient data to suggest any recommendations to pregnant women, it is possible...

  7. Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.

    Science.gov (United States)

    Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed

    2017-01-01

    To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.

  8. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Kullberg, J; Brandberg, J; Angelhed, J-E

    2009-01-01

    The aim of this study was to validate a recently proposed MRI-based T(1)-mapping method for analysis of whole-body adipose tissue (AT) using an established CT protocol as reference and to include results from dual energy X-ray absorptiometry (DEXA). 10 subjects, drawn from the Swedish Obese...

  9. A review of the use of dual-energy X-ray absorptiometry (DXA in rheumatology

    Directory of Open Access Journals (Sweden)

    Tanner SB

    2012-12-01

    Full Text Available S Bobo Tanner, Charles F Moore JrDivision of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USAAbstract: The principal use of dual-energy X-ray absorptiometry (DXA is to diagnose and monitor osteoporosis and therefore reduce fracture risk, associated morbidity, and mortality. In the field of rheumatology, DXA is an essential component of patient care because of both rheumatologists’ prescription of glucocorticoid treatment as well as the effects of rheumatological diseases on bone health. This review will summarize the use of DXA in the field of rheumatology, including the concern for glucocorticoid-induced osteoporosis, as well as the association of osteoporosis with a sampling of such rheumatologic conditions as rheumatoid arthritis (RA, systemic lupus erythematosus, ankylosing spondylitis, juvenile idiopathic arthritis, and scleroderma or systemic sclerosis. Medicare guidelines recognize the need to perform DXA studies in patients treated with glucocorticoids, and the World Health Organization FRAX tool uses data from DXA as well as the independent risk factors of RA and glucocorticoid use to predict fracture risk. However, patient access to DXA measurement in the US is in jeopardy as a result of reimbursement restrictions. DXA technology can simultaneously be used to discover vertebral fractures with vertebral fracture assessment and provide patients with a rapid, convenient, and low-radiation opportunity to clarify future fracture and comorbidity risks. An emerging use of DXA technology is the analysis of body composition of RA patients and thus the recognition of “rheumatoid cachexia,” in which patients are noted to have a worse prognosis even when the RA appears well controlled. Therefore, the use of DXA in rheumatology is an important tool for detecting osteoporosis, reducing fracture risk and unfavorable outcomes in rheumatological conditions. The widespread use of glucocorticoids and the underlying

  10. Predicting Football Players' Dual-Energy X-Ray Absorptiometry Body Composition Using Standard Anthropometric Measures

    Science.gov (United States)

    Oliver, Jonathan M.; Lambert, Brad S.; Martin, Steven E.; Green, John S.; Crouse, Stephen F.

    2012-01-01

    Context: The recent increase in athlete size, particularly in football athletes of all levels, coupled with the increased health risk associated with obesity warrants continued monitoring of body composition from a health perspective in this population. Equations developed to predict percentage of body fat (%Fat) have been shown to be population specific and might not be accurate for football athletes. Objective: To develop multiple regression equations using standard anthropometric measurements to estimate dual-energy x-ray absorptiometry %Fat (DEXA%Fat) in collegiate football players. Design: Controlled laboratory study. Patients and Other Participants: One hundred fifty-seven National Collegiate Athletic Association Division IA football athletes (age  =  20 ± 1 years, height  =  185.6 ± 6.5 cm, mass  =  103.1 ± 20.4 kg, DEXA%Fat  =  19.5 ± 9.1%) participated. Main Outcome Measure(s): Participants had the following measures: (1) body composition testing with dual-energy x-ray absorptiometry; (2) skinfold measurements in millimeters, including chest, triceps, subscapular, midaxillary, suprailiac, abdominal (SFAB), and thigh; and (3) standard circumference measurements in centimeters, including ankle, calf, thigh, hip (AHIP), waist, umbilical (AUMB), chest, wrist, forearm, arm, and neck. Regression analysis and fit statistics were used to determine the relationship between DEXA%Fat and each skinfold thickness, sum of all skinfold measures (SFSUM), and individual circumference measures. Results: Statistical analysis resulted in the development of 3 equations to predict DEXA%Fat: model 1, (0.178 • AHIP) + (0.097 • AUMB) + (0.089 • SFSUM) − 19.641; model 2, (0.193 • AHIP) + (0.133 • AUMB) + (0.371 • SFAB) − 23.0523; and model 3, (0.132 • SFSUM) + 3.530. The R2 values were 0.94 for model 1, 0.93 for model 2, and 0.91 for model 3 (for all, P < .001). Conclusions: The equations developed provide an accurate way to assess DEXA

  11. Fundamental evaluation of bone densitometry using dual energy X-ray absorptiometry (DEXA)

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Kiyoshi; Uchiyama, Guio; Araki, Tsutomu (Yamanashi Medical Coll., Tamaho (Japan)) (and others)

    1990-02-01

    A newly developed instrument based on dual energy X-ray absorptiometry (DEXA), Hologic QDR-1000, was evaluated fundamentally and clinically. Image quality was quite satisfactory though radiation exposure was minimal, 780.2 nC/kg (3.024 mR) for lumbar measurement. Reproducibility of the repeated measurement of a phantom was fairly good; 0.343 CV% in a same day and 0.520 CV% in a long period. Accuracy determined by measurement of potassium phosphate solution was also satisfactory. Bone mineral densities measured by this instrument were fairly correlated with those measured by single energy quantitative CT; coefficient was 0.740 for 17 patients. Mix-DP plates of more than 10 cm thick overestimated the bone mineral densities of a phantom. Bone mineral densities of Japanese normal volunteers were in the normal range (mean {plus minus} 2SD) of the Americans though mostly lower than the mean. In patients with spondylosis deformans or prominent aortic calcification, bone mineral densities might be overestimated. Lateral view was obtainable though its reproducibility was not good. Positioning especially for measuring femoral neck was quite critical for reproducible measurement. In conclusion, this new instrument is quite accurate and satisfactory for clinical application to measuring bone mineral densities. (author).

  12. The evaluation of breast tissues removed during reductive mammaplasty with dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, Antonino [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Gravante, Gianpiero [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Department of Surgery, Whipps Cross University Hospital, London (United Kingdom)], E-mail: ggravante@hotmail.com; Sorge, Roberto [Laboratory of Biometry, University of Tor Vergata in Rome (Italy); Nicoli, Fabio; Caruso, Riccardo; Araco, Antonino [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy); Servidio, Michele [Division of Human Nutrition, University of Tor Vergata in Rome (Italy); Orlandi, Augusto [Department of Biopathology, Anatomic Pathology Institute, University of Tor Vergata in Rome (Italy); Cervelli, Valerio [Department of Plastic Surgery, University of Tor Vergata in Rome (Italy)

    2009-06-15

    Purpose: We conducted a case-control study in which patients were evaluated with dual energy X-ray absorptiometry (DEXA) before and after breast reduction surgery, and results were correlated with the histological examination. Our goal was to confirm the DEXA as a precise technique for the measurement of breast composition, in order to propose it for the preoperative evaluation of plastic surgery patients. Materials and methods: We prospectively recruited all women that underwent reduction mammaplasty and excluded patients with contraindications to the operation or those that previously underwent bariatric surgery to reduce their weight. Patients were evaluated with DEXA 1 week before and after surgery. Results: From February to October 2006 we recruited 25 patients. The statistical analysis found a significant reduction of weight, BMI, regional fat free mass and fat mass after the operation. The comparison between DEXA and the histological analysis produced a correlation r = 0.989 (r{sup 2} = 0.978), with a predictivity of 98% and a percentage of error 8.3% (95% confidence intervals -252.6, 273.7; 95% limits of agreements of Bland and Altman -436.0, 457.1). Similar results were obtained with the analysis of fat. Conclusions: Our study demonstrated that conventional segmental DEXA is a very precise technique to measure the amount of tissue removed in breast reductions and could open future application in the preoperative assessment of patients undergoing such operations.

  13. Prevalence and type of errors in dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Carmelo; Bandirali, Michele; D' Alonzo, Nathascja Katia [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Sconfienza, Luca Maria; Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy); Di Leo, Giovanni; Papini, Giacomo Davide Edoardo [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Ulivieri, Fabio Massimo [IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Servizio di Medicina Nucleare, Milano (Italy)

    2015-05-01

    Pitfalls in dual-energy x-ray absorptiometry (DXA) are common. Our aim was to assess rate and type of errors in DXA examinations/reports, evaluating a consecutive series of DXA images of patients examined elsewhere and later presenting to our institution for a follow-up DXA. After ethics committee approval, a radiologist retrospectively reviewed all DXA images provided by patients presenting at our institution for a new DXA. Errors were categorized as patient positioning (PP), data analysis (DA), artefacts and/or demographics. Of 2,476 patients, 1,198 had no previous DXA, while 793 had a previous DXA performed in our institution. The remaining 485 (20 %) patients entered the study (38 men and 447 women; mean age ± standard deviation, 68 ± 9 years). Previous DXA examinations were performed at a total of 37 centres. Of 485 reports, 451 (93 %) had at least one error out of a total of 558 errors distributed as follows: 441 (79 %) were DA, 66 (12 %) PP, 39 (7 %) artefacts and 12 (2 %) demographics. About 20 % of patients did not undergo DXA at the same institution as previously. More than 90 % of DXA presented at least one error, mainly of DA. International Society for Clinical Densitometry guidelines are very poorly adopted. (orig.)

  14. Pediatric dual-energy X-ray absorptiometry: interpretation and clinical and research application

    Directory of Open Access Journals (Sweden)

    Jung Sub Lim

    2010-03-01

    Full Text Available Peak bone mass is established predominately during childhood and adolescence. It is an important determinant of future resistance to osteoporosis and fractures to gain bone mass during growth. The issue of low bone density in children and adolescents has recently attracted much attention and the use of pediatric dual-energy X-ray absorptiometry (DXA is increasing. The process of interpretation of pediatric DXA results is different from that of adults because normal bone mineral density (BMD of children varies by age, body size, pubertal stage, skeletal maturation, sex, and ethnicity. Thus, an appropriate normal BMD Z-score reference value with Z-score should be used to detect and manage low BMD. Z-scores below -2.0 are generally considered a low BMD to pediatrician even though diagnoses of osteoporosis in children and adolescents are usually only made in the presence of at least one fragility fracture. This article will review the basic knowledge and practical guidelines on pediatric DXA based on the International Society for Clinical Densitometry (ISCD Pediatric Official Positions. Also discussed are the characteristics of normal Korean children and adolescents with respect to BMD development. The objective of this review is to help pediatricians to understand when DXA will be useful and how to interpret pediatric DXA reports in the clinical practice for management of children with the potential to develop osteoporosis in adulthood.

  15. Evaluation of Dual Energy X Ray Absorbsiometry and Osteoporosis Risk Factors in 197 Patients - Original Investigation

    Directory of Open Access Journals (Sweden)

    Şirin Raife Çoban

    2007-12-01

    Full Text Available Aim: To examine the risk factors for osteoporosis, dual energy X ray absorbsiometry (DXA measures, dorsolomber radiographics and laboratory analysis of 197 patients which followed in Goztepe Education and Research Hospital Physical Medicine and Rehabilitation Policlinics. Patients and Methods: 197 patients, ages between 37-78, which followed in Physical Medicine and Rehabilitation Policlinics, cross-sectionally evaluated. Patients interrogated about risk factors like life style, calcium-caffeine-alcohol consumption in nutrition, cigarette smoking, age ot menarch, number of births, time of menopause, physical activity levels and their dorsolomber AP-lateral radiograpichs, laboratory analysis and bone mineral density measures with DXA has done. Osteoporosis-osteopenia classification has done by the T score criterias of World Health Organisation. Pearson correlation analysis and ANOVA has used as statistical method. Results: Mean age was 59,24±8,33. Mean body mass index was 26,42±3,99. A significant correlation did not found between life style, nutrition, age of menarch, number of births, early fracture, compression fracture, sunbathe and T scores. A statistically significant correlation has found between age and femur neck T scores; body mass index and lomber-femoral T scores; time of menopause and femur neck T scores (p<0,005. Conclussion: A significant correlation did not found between the minimal risk factors and DXA measures. Age, body mass index and time of menopause has found related to bone mineral density measures. (From the World of Osteoporosis 2007;13:80-2

  16. Clinical usefulness of calcaneal measurements using dual energy x-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Jun [Nagasaki Saiseikai Hospital (Japan); Nakata, Tomoko; Ito, Masako

    1999-07-01

    To investigate the clinical usefulness of calcaneal measurement using dual-energy x-ray absorptiometry (DXA), the ability to detect bone loss and fracture risk were evaluated in comparison with spinal bone mineral density (BMD) measured using DXA and quantitative CT (QCT) and with calcaneal quantitative ultrasound (QUS). Furthermore, to investigate the region in calcaneus in which to detect bone change sensitively, the ability to detect bone loss and fracture risk were also evaluated using new regions of interest (ROIs) that were manually defined. The subjects were 165 healthy women, and 188 female patients with fracture, estrogen deficiency, and steroid-induced osteoporosis. Calcaneal BMD with some manually defined ROIs showed lower precision and less sensitivity in detecting bone loss than BMD measured with automatically defined ROIs. Calcaneal DXA, spinal DXA, and QCT demonstrated significant age-related bone loss, and all measurements could discriminate fracture cases from non-fracture cases. Calcaneal DXA could discriminate the bone loss associated with estrogen deficiency as well as spinal DXA. Furthermore, calcaneal measurements showed a greater ability to detect steroid-induced bone loss than spinal DXA, probably because this group included subjects of advanced age with spondylosis. In conclusion, calcaneal DXA is useful to assess BMD in subjects who are not suitable for spinal measurement, although the ability to detect age-related bone loss in calcaneal DXA is less than in spinal measurements. (author)

  17. Wool Base determination using dual energy X-ray absorptiometry (DEXA)

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Chris [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand)]. E-mail: c.kroger@gns.cri.nz; Murray Bartle, C. [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand); West, John G. [Institute of Geological and Nuclear Science Ltd., Lower Hutt (New Zealand); Rensburg, Brendon van [New Zealand Wool Testing Authority Ltd., Napier (New Zealand)

    2006-12-15

    An industry grade dual energy X-ray absorptiometry (DEXA) scanner was calibrated for Wool Base determination. The calibration used 201 Crossbred and Merino wool samples, and a further 72 samples to validate the calibration. The prediction correlation had the smallest residual standard deviation (RSD) when the independently measured mean fibre diameter (MFD) was included in the multiple regression analysis. Best results were achieved when separate calibrations were used for individual wool breeds. The RSD for the Merino calibration set of 44 samples was 1.88, when the MFD was included in the regression, and 2.1 without. The RSD for 144 Crossbred samples was 1.73 including the MFD, and 2.59 without. The validation trial with 46 Crossbred and 24 Merino wool samples resulted in RSD of 2.35 and 2.23, respectively. An excellent DEXA repeatability was achieved at a standard deviation of {approx}0.2%. Improvement of the calibration is expected from concurrent laboratory testing and scanning. The research shows the promising potential for DEXA as a tool to determine Wool Base.

  18. Optimal calibration via virtual x-ray imaging for dual-energy techniques: application to glass wool

    Science.gov (United States)

    Letang, Jean-Michel; Freud, N.; Peix, Gilles

    2003-04-01

    We present in this paper a technique that makes benefit of a virtual X-ray simulation tool to both assess the optimal spectra and calibrate a dual-energy technique. The proposed method is applied to the selective imaging of glass wool materials. To optimize the choice of energy spectra, a signal-to-noise (SNR) criterion on the materials estimated thickness is derived using a constant absorbed energy constraint in the detector. To study further its reliability, the criterion is related to the measurement quality, expressed by a contrast to noise ratio of the input projections, and to the inversion stability, expressed by a contrast to noise ration of the input projections, and to the inversion stability, expressed by the numerical conditioning of the linear dual-energy attenuation system. Once the choice of energy spectra is settled, apparent thicknesses are modeled as third order polynomials expressed in terms of X-ray attenuation measures. The best polynomial fit and the choice of the degree can again be advantageously assessed using virtual X-ray imaging. A semi-empirical catalog is here used to characterize the X-ray source spectrum, and attenuation coefficients for each corresponding compound substance are obtained from standard databases. After completion of those calibration phases, a glass wool phantom composed of PMMA and glass (combined step wedges) is used to validate using real experimental data the selected dual-energy protocol obtained by virtual X-ray imaging. The worse error on the estimated thickness is about 5% for both the binder and the glass fibers. Quantitative imaging in thickness of glass fibers and binder is finally presented.

  19. A Curve-based Material Recognition Method in MeV Dual-energy X-ray Imaging System

    CERN Document Server

    Chen, Zhi-qiang; Li, Liang

    2014-01-01

    High energy dual-energy X-ray Digital Radiography(DR) imaging is mainly used in material recognition of the cargo inspection. We introduce the development history and the principle of the technology and describe the data process flow of our system. The system corrects original data to get the dual-energy transparence image. Material categories of all points in the image are identified by the classification curve which is related to the X-ray energy spectrum. For the calibration of classification curve, our strategy involves a basic curve calibration and a real-time correction devoted to enhance the classification accuracy. Image segmentation and denoising methods are applied to smooth the image. The image contains more information after colorization. Some results show that our methods achieve the desired effect.

  20. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  1. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography. Vergleichende Untersuchungen mit der quantitativen Computertomographie und der Dual-Energy-X-Ray-Absorptiometrie zur Knochendichte bei renaler Osteopathie

    Energy Technology Data Exchange (ETDEWEB)

    Funke, M.; Maeurer, J.; Grabbe, E. (Abt. Roentgendiagnostik, Klinikum, Goettingen Univ. (Germany)); Scheler, F. (Abt. Nephrologie und Rheumatologie, Klinikum, Goettingen Univ. (Germany))

    1992-08-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.).

  2. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, Anne, E-mail: annebonnin@free.fr [ESRF, 6 Jules Horowitz, F-38073 Grenoble Cedex (France); LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Duvauchelle, Philippe, E-mail: philippe.duvauchelle@insa-lyon.fr [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Kaftandjian, Valérie [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Ponard, Pascal [Thales Electron Devices SAS, 2 Rue Marcel Dassault, BP23 78141 Vélizy, Villacoublay Cedex (France)

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage.

  3. Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rijn, Rick R. van; Wittenberg, Rianne [Academic Medical Centre Amsterdam, Department of Radiology, Amsterdam Zuid-Oost (Netherlands); Boot, Annemieke; Sluis, Inge M. van der; MuinckKeizer-Schrama, Sabine M.P.F. de [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Endocrinology, Rotterdam (Netherlands); Heuvel-Eibrink, Marry M. van den [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Haematology/Oncology, Rotterdam (Netherlands); Lequin, Maarten H. [Erasmus MC-Sophia Children' s Hospital, Department of Paediatric Radiology, Rotterdam (Netherlands); Kuijk, Cornelis Van [University Medical Centre ' Radboud' , Department of Radiology, Nijmegen (Netherlands)

    2006-03-15

    In recent years interest in bone densitometry in children has increased. To evaluate the clinical application of digital X-ray radiogrammetry (DXR) and compare the results with those of dual-energy X-ray absorptiometry (DXA). A total of 41 children with acute lymphoblastic leukaemia (ALL) and 26 children with growth hormone deficiency (GHD) were included in this longitudinal study. Radiographs of the left hand were obtained and used for DXR. DXA of the total body and of the lumbar spine was performed. In both study populations significant correlations between DXR and DXA were found, and, with the exception of the correlation between DXR bone mineral density (DXR-BMD) and bone mineral apparent density in the GHD population, all correlations had a P-value of <0.001. During treatment a change in DXR-BMD was found in children with GHD. Our study showed that DXR in a paediatric population shows a strong correlation with DXA of the lumbar spine and total body and that it is able to detect a change in BMD during treatment. (orig.)

  4. Use of dual-energy X-ray absorptiometry in obese individuals.

    Science.gov (United States)

    Tataranni, P A; Ravussin, E

    1995-10-01

    Dual-energy X-ray absorptiometry (DXA) provides precise measurements of body composition in humans. Because its use in obese subjects is limited by the size of the scanning area, we explored the possibility of estimating whole-body composition from DXA half-body scans. Body composition of 183 subjects with a wide range of body sizes [body mass index (BMI; in kg/m2) of 17.7 - 52.8] was assessed by DXA and hydrodensitometry. Subjects fitting in the DXA scanning area (group A, n = 156) were scanned once whereas subjects exceeding it (group B, n = 27) were scanned twice, once for each side of the body. When body-composition results for the right and left sides were compared, only minimal differences between the two sides of the body were found in both groups. Least-squares-regression analysis of whole-body composition by hydrodensitometry on DXA gave the following results: percent body fat, r2 = 0.89 (SEE = 4.1%); fat-free mass, r2 = 0.89 (SEE = 3.72 kg); and fat mass, r2 = 0.95 (SEE = 3.57 kg). Similar r2 values and SEEs were obtained for percent body fat when only results from DXA half-body scans of all subjects were considered: right side, r2 = 0.90 (SEE = 4.1%); and left side, r2 = 0.89 (SEE = 4.2%). The error in predicting body composition by hydrodensitometry from DXA whole- or half-body scans was not affected by the subject's body size and/or scanning technique. In conclusion, our results indicate that half-body scan values by DXA accurately predict whole-body composition.

  5. Hip Strentgh Analysis By Dual Energy X-Ray Absorbtiometry in Nephrolithiasis Patients

    Directory of Open Access Journals (Sweden)

    Aynur Ozen

    2014-12-01

    Full Text Available Aim: The aim of this study was to assess the hip geometric parameters measured by dual-energy X-ray absorptiometry in patients with kidney stones and to compare normal population. Material and Method: This study is retrospectively evaluation and performed hip structural analysis of another prospective study data, included 72 patients with kidney stones (29 female, 43 male and 94 control subjects (31 women, 63 men. Bone mineral density and structural parameters such as hip axis length, cross-sectional area, cross-sectional moment of inertia, femur strength index and section modulus of femur neck have been measured in each groups. Results: The patients and control subjects were anthropometrically identical (P>0.05. There were no statistical difference for hip axis length, cross-sectional area, cross-sectional moment of inertia and section modulus between of groups when take into consideration of gender effect (P>0.05. The presence of nephrolithiasis was determined that there was not predictive effects on femur neck bone mineral density, hip axis length, cross-sectional moment of inertia, section modulus, femur strength index and cross-sectional area. To be female gender was a negatif effect on bone mineral density, hip axis length, cross-sectional moment of inertia and section modulus. Discussion: As a conclusion, we did not found any differences on bone mineral density and hip structural parameters measured with hip strength analysis program between nephrolithiasis patients and normal subjects at 20-50 ages. We thought that in these patients had high fracture rates determined previous studies especially in older ages, bone metabolic and geometric changes may start or/and fast with aging together other cause of loss of bone mineral (e.g. postmenopausal osteoporosis.

  6. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    Science.gov (United States)

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults.

  7. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children

    DEFF Research Database (Denmark)

    Tompuri, Tuomo T; Lakka, Timo A; Hakulinen, Mikko;

    2015-01-01

    We compared InBody720 segmental multifrequency bioimpedance analysis (SMF-BIA) with Lunar Prodigy Advance dual-energy X-ray absorptiometry (DXA) in assessment of body composition among 178 predominantly prepubertal children. Segmental agreement analysis of body compartments was carried out, and i......, and inter-relationships of anthropometric and other measures of body composition were defined. Moreover, the relations of different reference criteria for excess body fat were evaluated....

  8. [Body composition by dual-energy x-ray absorptiometry in women with fibromyalgia].

    Science.gov (United States)

    Lobo, Márcia Maria Marques Teles; Paiva, Eduardo dos Santos; Andretta, Aline; Schieferdecker, Maria Eliana Madalozzo

    2014-01-01

    To assess body composition in women with fibromyalgia (FM) comparing to the reference value for healthy women. Cross-sectional observational analytical study, with 52 women selected with Fibromyalgia, according American College of Rheumatology (ACR, 1990) criteria. The patients were selected in Hospital de Clínicas da Universidade Federal do Paraná (HC-UFPR) and divided into two groups, 28 patients with a BMI (Body Mass Index) equal or higher (≥) than 25kg/m2 and 24 patients with BMI less or equal (≤) 24.99 kg/m2, subjected to physical examination for the count of tender points (TP) and completing the fibromyalgia impact questionnaire (FIQ). The assessment of body composition was performed by the Dual-Energy X-Ray Absorptiometry (DXA). The values of the fat mass percentage (MG %) found in the two groups were compared to the average percentage of MG by age and sex, described by Heward (2004). The mean age of the study groups was 47.8 ± 8.6 years, the FIQ score was 70.5 ± 18.6 and TP 16.2 ± 2.0. The mean BMI was 26.4 ± 4.1 kg/m2, and the amount of MG was 25.2 ± 7.8 kg and 39.5 ± 6.8%, and lean mass (LM) was 37 2 ± 3.7 kg and 60.4 ± 7.3%. In the group with BMI ≤ 25 kg/m2, the MG % was 33.8% (21.5 -42.4) and in the group with BMI ≥ 25 kg/m2 of the MG was 44.4% (37.6 -56.2). Both groups women with FM eutrophic as the overweight and obese group, presented higher reference MG% levels comparing with the standard levels for healthy women. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  9. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    Science.gov (United States)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  10. Improvements in the management of rheumatic patients from vertebral image obtained through dual-energy X-ray absorptiometry

    Directory of Open Access Journals (Sweden)

    D. Gatti

    2011-09-01

    Full Text Available The diagnosis of asymptomatic vertebral fracture is clinically useful and the identification of new fractures may influences the choice of appropriate therapeutic measures. In order to identify moderate and asymptomatic vertebral deformities in an objective and reproducible manner, vertebral morphometry is performed. This method measures the vertebral body’s anterior, middle and posterior heights at the dorsal and lumbar level. Currently this technique is performed on lateral images of the spine obtained through the traditional X-ray method (radiological morphometry or morphometric X-ray radiography, MRX and, more recently from images obtained through dual-energy X-ray absorptiometry (DXA machines (visual assessment of x-ray absoptiometry scans or morphometric X-ray absorptiometry, MXA, commonly used to measure bone mineral density. The main advantage of MXA relative to MRX is the lower radiation dose to which the patient is exposed during the exam. In addition, MXA scans offers the advantage of acquiring a single image of thoracic and lumbar spine, without any distortion (e.g.: coning. The most obvious advantage of MXA is the opportunity of obtaining during the same session a bone mineral density evaluation, and digital images that are easily processable, manageable, recordable and comparable for the patient’s follow up. A limitation of the MXA technique is the inferior quality of the images, that make often impossible the detection of the vertebral edges, and the impossibility to visualize the upper thoracic vertebral bodies. MXA, despite its intrinsic limitations, when carried out by trained personnel may provide substantial improvements in the management (diagnosis and follow-up of rheumatic patients.

  11. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    Science.gov (United States)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  12. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening.

    Science.gov (United States)

    Zhang, Li; YangDai, Tianyi

    2016-08-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile.

  13. Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model.

    Science.gov (United States)

    Zhang, Ruoqiao; Thibault, Jean-Baptiste; Bouman, Charles A; Sauer, Ken D; Hsieh, Jiang

    2014-01-01

    Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.

  14. Abdominal fat indicators: anthropometry vs dual energy x-ray absortometry

    Directory of Open Access Journals (Sweden)

    Maria Fátima Glaner

    2008-06-01

    Full Text Available Excessive abdominal fat contributes to the development of chronic nontransmissible diseases. Dual emission X Ray absorptiometry (DXA is a simple to administer technique that allows abdominal fat percentage (%abdominalFDXA to be determined. Anthropometric measurements, which have been validated and are of low cost, such as the abdominal circumferences 2.5cm above the umbilical scar (ABC2,5 and level with the umbilical scar (ABCum, are used as indicators of abdominal fat. Skin folds (SF are little used for this purpose. The objective of this study was to verify which of these anthropometric indicators best correlates with and best explains abdominalFDXA. The sample was made up of 22 women (43.9±11.6 years; 34.7±8.3 %G totalDXA and 18 men (31.9±11.6 years; 19.0±8.0 %G totalDXA who were measured for ABC2.5, ABCum, suprailiac SF (SI, midaxillary SF (AM and abdominal SF (AB, while abdominalF (L1-L4 was measured by DXA. Pearson’s correlation and multivariate linear regression (“enter” method were employed to verify the anthropometric measurements’ correlations and percentage of explanation with relation to abdominalFDXA. Strong correlations and significant levels of explanation (pResumoO excesso de gordura abdominal contribui no desenvolvimento de doenças crônicas não-transmissíveis. A absortometria de raio-X de dupla energia (AXDE é uma técnica de simples aplicação, que permite a mensuração do percentual de gordura abdominal (%G abdominalAXDE. As medidas antropométricas, validadas e de baixo custo, como os perímetros abdominal 2,5cm acima da cicatriz umbilical (PAB2,5 e ao nível da cicatriz umbilical (PABum, são empregadas como indicadores de gordura abdominal. As dobras cutâneas (DC são pouco estudadas nesse sentido. Assim, o objetivo desse estudo foi verificar quais destes indicadores antropométricos mais se correlacionam e explicam o %G abdominalAXDE. A amostra foi composta por 22 mulheres (43,9±11,6 anos; 34,7±8,3 %G

  15. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery

    Science.gov (United States)

    Rogers, Thomas W.; Jaccard, Nicolas; Griffin, Lewis D.

    2017-05-01

    Previously, we investigated the use of Convolutional Neural Networks (CNNs) to detect so-called Small Metallic Threats (SMTs) hidden amongst legitimate goods inside a cargo container. We trained a CNN from scratch on data produced by a Threat Image Projection (TIP) framework that generates images with realistic variation to robustify performance. The system achieved 90% detection of containers that contained a single SMT, while raising 6% false positives on benign containers. The best CNN architecture used the raw high energy image (single-energy) and its logarithm as input channels. Use of the logarithm improved performance, thus echoing studies on human operator performance. However, it is an unexpected result with CNNs. In this work, we (i) investigate methods to exploit material information captured in dual-energy images, and (ii) introduce a new CNN training scheme that generates `spot-the-difference' benign and threat pairs on-the-fly. To the best of our knowledge, this is the first time that CNNs have been applied directly to raw dual-energy X-ray imagery, in any field. To exploit dual-energy, we experiment with adapting several physics-derived approaches to material discrimination from the cargo literature, and introduce three novel variants. We hypothesise that CNNs can implicitly learn about the material characteristics of objects from the raw dual-energy images, and use this to suppress false positives. The best performing method is able to detect 95% of containers containing a single SMT, while raising 0.4% false positives on benign containers. This is a step change improvement in performance over our prior work

  16. Dual energy x-ray imaging and scoring of coronary calcium: physics-based digital phantom and clinical studies

    Science.gov (United States)

    Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C.; Wilson, David L.

    2016-03-01

    Coronary artery calcification (CAC) as assessed with CT calcium score is the best biomarker of coronary artery disease. Dual energy x-ray provides an inexpensive, low radiation-dose alternative. A two shot system (GE Revolution-XRd) is used, raw images are processed with a custom algorithm, and a coronary calcium image (DECCI) is created, similar to the bone image, but optimized for CAC visualization, not lung visualization. In this report, we developed a physicsbased, digital-phantom containing heart, lung, CAC, spine, ribs, pulmonary artery, and adipose elements, examined effects on DECCI, suggested physics-inspired algorithms to improve CAC contrast, and evaluated the correlation between CT calcium scores and a proposed DE calcium score. In simulation experiment, Beam hardening from increasing adipose thickness (2cm to 8cm) reduced Cg by 19% and 27% in 120kVp and 60kVp images, but only reduced Cg by <7% in DECCI. If a pulmonary artery moves or pulsates with blood filling between exposures, it can give rise to a significantly confounding PA signal in DECCI similar in amplitude to CAC. Observations suggest modifications to DECCI processing, which can further improve CAC contrast by a factor of 2 in clinical exams. The DE score had the best correlation with "CT mass score" among three commonly used CT scores. Results suggest that DE x-ray is a promising tool for imaging and scoring CAC, and there still remains opportunity for further DECCI processing improvements.

  17. Determination of body composition--a comparison of dual-energy x-ray absorptiometry and hydrodensitometry.

    Science.gov (United States)

    Johansson, A G; Forslund, A; Sjödin, A; Mallmin, H; Hambraeus, L; Ljunghall, S

    1993-03-01

    Determination of body composition by dual-energy x-ray absorptiometry (DEXA) was evaluated in healthy men, by using underwater weighing (UWW), skinfold thickness measurement, and bioimpedance analysis. There were strong correlations between percent body fat obtained by all techniques, but DEXA gave significantly lower values (P < 0.001). The influence of differences in bone mineral density (BMD) on fat content determined by UWW was also studied. The individual differences between UWW and DEXA fat estimates were calculated and there was a negative correlation with BMD (r = -0.50, P < 0.05). There was also a negative correlation between body fat by UWW and BMD (r = -0.71, P < 0.01) in the subjects with lowest fat by DEXA, indicating that high or low BMD gave false values by UWW. In conclusion, DEXA and UWW provide complementary information and a combination of these techniques seems to offer new opportunities in evaluations of body composition.

  18. Using Hounsfield Units to Assess Osteoporotic Status on Wrist Computed Tomography Scans: Comparison With Dual Energy X-Ray Absorptiometry.

    Science.gov (United States)

    Johnson, Christine C; Gausden, Elizabeth B; Weiland, Andrew J; Lane, Joseph M; Schreiber, Joseph J

    2016-07-01

    Rates of evaluation and treatment for osteoporosis following distal radius fragility fractures remain low. As a subset of patients with these fractures undergo diagnostic computed tomography (CT) scan of the wrist, utilizing bone mineral density (BMD) measurements available with this imaging can be used to detect osteopenia or osteoporosis. This information may consequently prompt intervention to prevent a subsequent fracture. The purpose of this study was to determine if Hounsfield unit (HU) measurements at the wrist correlate with BMD measurements of the hip, femoral neck, and lumbar spine and to assess the ability of these HU measurements to detect osteoporosis of the hip. Forty-five female patients with distal radius fractures who underwent CT scan and dual energy x-ray absorptiometry scan as part of the management of their wrist fracture were identified. Bone mineral density measurements were made using the regional cancellous bone HU value at the capitate and compared with values obtained by a dual energy x-ray absorptiometry scan. Hounsfield unit values at the capitate were significantly correlated with BMD and t scores at the femoral neck, hip, and lumbar spine. An HU threshold of 307 in the capitate optimized sensitivity (86%) and specificity (94%) for detecting osteoporotic patients. By demonstrating that capitate HU measurements from clinical CT scans are correlated with BMD and t scores at the hip, femoral neck, and lumbar spine, our data suggest that clinical CT scans should have a role in detecting osteopenia and osteoporosis. Diagnostic III. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Comparison of Dual Energy X-Ray Absorptiometry and Quantitative Ultrasonography Measurements in Osteoporotic Patients - Original Investigation

    Directory of Open Access Journals (Sweden)

    Şule Tütün

    2008-08-01

    Full Text Available Aim: Osteoporosis (OP is a skelatal disease of bone fragility resulting from micro-architectural deteriotarion and decreased bone mass. There are many studies in literature that show high sensibility and specifity of quantitative ultrasonography (QUS. Recently many comparatives studies of QUS and dual energy X-ray absorbtiometry (DEXA have been made. In this study we aimed to investigate correlation of QUS and DEXA measurments in 53 women with postmenopausal osteoporosis were enrolled in this study. Material and Method: Fifty three postmenopausal women with osteoporosis were studied: Ultrasound parameters were measured by the DTU-one imaging ultrasonometer in the calcaneus. BMD was assessed by dual-energy X-ray absorptiometry (DEXA at the lumbar spine, femoral neck, and trochanter. QUS measurements of the postmenopausal women was compared with DEXA measurements. Results: There was a significant correlation between QUS T scores and DEXA L2-L4 T scores (r =0.463 p=0.000 p<0.005, there was a significant correlation between QUS Z scores and DEXA L2-L4 Z scores (r =0.589 p=0.000 p<0.005 , there was a significant correlation between QUS T scores and DEXA femur neck T scores (r =0.463 p=0.000 p<0.005 , there was a significant correlation between QUS Z scores and DEXA femur Z scores (r =0.418 p=0.000 p<0.005. Conclusion: Consequently QUS results were correlated with DEXA results in postmenopausal osteoporotic patients. (From the World of Osteoporosis 2008;14:26-8

  20. Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization

    CERN Document Server

    Tracey, Brian H

    2014-01-01

    Recent years have seen growing interest in exploiting dual- and multi-energy measurements in computed tomography (CT) in order to characterize material properties as well as object shape. Material characterization is performed by decomposing the scene into constitutive basis functions, such as Compton scatter and photoelectric absorption functions. While well motivated physically, the joint recovery of the spatial distribution of photoelectric and Compton properties is severely complicated by the fact that the data are several orders of magnitude more sensitive to Compton scatter coefficients than to photoelectric absorption, so small errors in Compton estimates can create large artifacts in the photoelectric estimate. To address these issues, we propose a model-based iterative approach which uses patch-based regularization terms to stabilize inversion of photoelectric coefficients, and solve the resulting problem though use of computationally attractive Alternating Direction Method of Multipliers (ADMM) solu...

  1. Estimation of liver iron concentration by dual energy CT images: influence of X-ray energy on sensitivity.

    Science.gov (United States)

    Malvarosa, I; Massaroni, C; Liguori, C; Paul, J; Beomonte Zobel, B; Saccomandi, P; Vogl, T J; Silvestri, S; Schena, E

    2014-01-01

    In hemochromatosis an abnormal accumulation of iron is present in parenchymal organs and especially in liver. Among the several techniques employed to diagnose the iron overload, magnetic resonance imaging (MRI) and Computed Tomography (CT) are the most promising non-invasive ones. MRI is largely used but shows limitation including an overestimation of iron and inability to quantify iron at very high concentrations. Therefore, some research groups are focusing on the estimation of iron concentration by CT images. Single X-ray CTs are not able to accurately perform this task in case of the presence of confounding factors (e.g., fat). A potential solution to overcome this concern is the employment of Dual-Energy CT (DECT). The aim of this work is to investigate influence of the kVp and mAs on CT number sensitivity to iron concentration. A phantom with test tubes filled with homogenized porcine liver at different iron concentrations, has been scanned with DECT at different mAs. The images have been analyzed using an ad-hoc developed algorithm which allows minimizing the influence of air bubbles present in the homogenized. Data show that the sensitivity is strongly influenced by kVp (its value almost halves from 80 kVp to 140 kVp; e.g. 0.41 g·μmol(-1) and 0.19 g·μmol(-1) at 80 kVp/120 mAs and 140 kVp/60 mAs respectively), on the other hand the influence of mAs value is negligible.

  2. A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Janssen, Thomas W. J.; Rolf, Marijn P.; Roos, Jan C.; Burcksen, Jos; Knol, Dirk L.; de Groot, Sonja

    2014-01-01

    Purpose: To assess the intra- and inter-rater reliability of a standardized protocol for measuring proximal tibia and distal femur bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA). Methods: Ten able-bodied individuals (7 males) participated in this study. During one measuremen

  3. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro

    NARCIS (Netherlands)

    J.W. Kuiper; C. van Kuijk (Cornelis); J.L. Grashuis (Jan); A.G.H. Ederveen (Antwan); H.E. Schütte (Henri)

    1996-01-01

    markdownabstractAbstract Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in

  4. Technical note: Prediction of chemical rib section composition by dual energy X-ray absorptiometry in Zebu beef cattle.

    Science.gov (United States)

    Prados, L F; Zanetti, D; Amaral, P M; Mariz, L D S; Sathler, D F T; Filho, S C Valadares; Silva, F F; Silva, B C; Pacheco, M C; Alhadas, H M; Chizzotti, M L

    2016-06-01

    It is expensive and laborious to evaluate carcass composition in beef cattle. The objective of this study was to evaluate a method to predict the 9th to 11th rib section (rib) composition through empirical equations using dual energy X-ray absorptiometry (DXA). Dual energy X-ray absorptiometry is a validated method used to describe tissue composition in humans and other animals, but few studies have evaluated this technique in beef cattle, and especially in the Zebu genotype. A total of 116 rib were used to evaluate published prediction equations for rib composition and to develop new regression models using a cross-validation procedure. For the proposed models, 93 ribs were randomly selected to calculate the new regression equations, and 23 different ribs were randomly selected to validate the regressions. The rib from left carcasses were taken from Nellore and Nellore × Angus bulls from 3 different studies and scanned using DXA equipment (GE Healthcare, Madison, WI) in the Health Division at Universidade Federal de Viçosa (Viçosa, Brazil). The outputs of the DXA report were DXA lean (g), DXA fat free mass (g), DXA fat mass (g), and DXA bone mineral content (BMC; g). After being scanned, the rib were dissected, ground, and chemically analyzed for total ether extract (EE), CP, water, and ash content. The predictions of rib fat and protein from previous published equations were different ( g) = 37.082 + 0.907× DXA lean ( = 0.95); fat free mass (g) = 103.224 + 0.869 × DXA fat free mass ( = 0.93); EE mass (g) = 122.404 + 1.119 × DXA fat mass ( = 0.86); and ash mass (g) = 18.722 + 1.016 × DXA BMC ( = 0.39). The equations were validated using Mayer's test, the concordance correlation coefficient, and the mean square error of prediction for decomposition. For both equations, Mayer's test indicated that if the intercept and the slope were equal to 0 and 1 ( > 0.05), respectively, then the equation correctly estimated the rib composition. Comparing observed and

  5. Long-term precision of dual-energy X-ray absorptiometry body composition measurements and association with their covariates.

    Science.gov (United States)

    Powers, Cassidy; Fan, Bo; Borrud, Lori G; Looker, Anne C; Shepherd, John A

    2015-01-01

    Few studies have described the long-term repeatability of dual-energy X-ray absorptiometry scans. Even fewer studies have been performed with enough participants to identify possible precision covariates such as sex, age, and body mass index (BMI). Our objective was to investigate the long-term repeatability of both total and subregional body composition measurements and their associations with covariates in a large sample. Two valid whole-body dual-energy X-ray absorptiometry scans were available for 609 participants in the National Health and Nutrition Examination Survey 2000-2002. Participants with scan-quality issues were excluded. Participants varied in race and ethnicity, sex, age (mean 38.8±17.5; range 16-69 yr), and BMI (mean, 26.9±5.2; range 14.1-43.5 kg/m2). The length of time between scans ranged from 3 to 51 days (mean, 18.7±8.4). Precision error estimates for total body measures (bone mineral density, bone mineral content, lean mass, total mass, fat mass, and percent body fat) were calculated as root mean square percent coefficients of variation and standard deviations. The average root mean square percent coefficients of variation and root mean square standard deviations of the precision error for total body variables were 1.12 and 0.01 g/cm2 for bone mineral density, 1.14 and 27.3 g for bone mineral content, 1.97 and 505 g for fat mass, 1.46 and 760 g for lean mass, 1.10 and 858 g for total mass, and 1.80 and 0.59 for percent body fat. In general, only fat and lean masses were impacted by participant and scan qualities (obesity category, sex, the magnitude of the body composition variables, and time between scans). We conclude that long-term precision error values are impacted by BMI, and sex. Our long-term precision error estimates may be more suitable than short-term precision for calculating least significant change and monitoring time intervals.

  6. Radial Quantitative Ultrasound and Dual Energy X-Ray Absorptiometry: Intermethod Agreement for Bone Status Assessment in Children

    Directory of Open Access Journals (Sweden)

    Kar Hau Chong

    2015-01-01

    Full Text Available Aim. To validate a radial quantitative ultrasound (QUS system with dual energy X-ray absorptiometry (DXA, a criterion technique in bone status assessment among children. Methods. Bone health was evaluated using a radial QUS system (Sunlight Omnisense 8000P to measure the speed of sound (SOS at one-third distal radius of the nondominant hand and DXA (Hologic QDR was used to assess whole body bone mineral density (BMD. Results. Some 29.9% of the children were grossly misclassified according to quartiles of BMD and radial SOS. Poor agreement was observed between Z-scores of radial SOS and whole-body BMD (mean difference = 0.6 ± 0.9; 95% limits of agreement = −1.4 to 2.6. With a cut-off value of −1.0, radial SOS yielded satisfactory sensitivity (80% and specificity (93% for the detection of children with low BMD. Conclusion. The observed poor agreement in the present study suggests that radial QUS and DXA are not comparable and hence are not interchangeable in evaluating bone status of the children.

  7. Dual-energy X-ray absorptiometry diagnostic discordance between Z-scores and T-scores in young adults.

    LENUS (Irish Health Repository)

    Carey, John J

    2009-01-01

    Diagnostic criteria for postmenopausal osteoporosis using central dual-energy X-ray absorptiometry (DXA) T-scores have been widely accepted. The validity of these criteria for other populations, including premenopausal women and young men, has not been established. The International Society for Clinical Densitometry (ISCD) recommends using DXA Z-scores, not T-scores, for diagnosis in premenopausal women and men aged 20-49 yr, though studies supporting this position have not been published. We examined diagnostic agreement between DXA-generated T-scores and Z-scores in a cohort of men and women aged 20-49 yr, using 1994 World Health Organization and 2005 ISCD DXA criteria. Four thousand two hundred and seventy-five unique subjects were available for analysis. The agreement between DXA T-scores and Z-scores was moderate (Cohen\\'s kappa: 0.53-0.75). The use of Z-scores resulted in significantly fewer (McNemar\\'s p<0.001) subjects diagnosed with "osteopenia," "low bone mass for age," or "osteoporosis." Thirty-nine percent of Hologic (Hologic, Inc., Bedford, MA) subjects and 30% of Lunar (GE Lunar, GE Madison, WI) subjects diagnosed with "osteoporosis" by T-score were reclassified as either "normal" or "osteopenia" when their Z-score was used. Substitution of DXA Z-scores for T-scores results in significant diagnostic disagreement and significantly fewer persons being diagnosed with low bone mineral density.

  8. Age-related differences in body composition by hydrodensitometry and dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Snead, D B; Birge, S J; Kohrt, W M

    1993-02-01

    To determine whether percent body fat (%BF) is overestimated in older people by hydrodensitometry (HD) because of an age-related decrease in bone mineral content (BMC), body composition of 113 women and 72 men (21-81 yr) was assessed by HD and dual-energy X-ray absorptiometry (DEXA). DEXA provides an estimate of %BF adjusted for differences in BMC. HD %BF and DEXA %BF were not different in young people [21-39 yr; 17.6 +/- 6.4 (SD) vs. 17.6 +/- 7.2%, NS], were slightly, but significantly, different in middle-aged people (40-59 yr; 25.5 +/- 6.4 vs. 24.1 +/- 6.7%, P or = 60 yr; 34.9 +/- 7.9 vs. 30.8 +/- 8.7%, P < 0.05). The discrepancy in older people was apparently not due to mineral loss, however, inasmuch as correction of HD %BF for variance in BMC as a fraction of fat-free mass resulted in only small adjustments (approximately 1%) of %BF. Assessment of DEXA %BF was further evaluated in nine subjects with packets of lard (2-3 kg) overlying either the thigh or the trunk region. Only 55% of the exogenous fat was identified as fat when it was in the trunk region compared with 96% when it was positioned over the legs. These data suggest that the age-related increase in upper body adipose tissue is underestimated by DEXA.

  9. Body fat measurement in adolescents: comparison of skinfold thickness equations with dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Rodríguez, G; Moreno, L A; Blay, M G; Blay, V A; Fleta, J; Sarría, A; Bueno, M

    2005-10-01

    To compare the most commonly used equations to predict body fatness from skinfold thickness, in male and female adolescents, with dual-energy X-ray absorptiometry (DXA) as a reference method of fatness measurement. Cross-sectional nutrition survey. General adolescent population from Zaragoza (Spain). A total of 238 Caucasian adolescents (167 females and 113 males), aged 13.0-17.9 y, were recruited from 15 school groups in 11 public and private schools. The percentage fat mass (%FM) was calculated by using skinfold-thickness equations. Predicted %FM was compared with the reference %FM values, measured by DXA. The lack of agreement between methods was assessed by calculating the bias and its 95% limits of agreement. Most equations did not demonstrate good agreement compared with DXA. However, in male adolescents, Slaughter et al equations showed relative biases that were not dependent on body fatness and the limits of agreement were narrower than those obtained from the rest of equations. In females, Brook's equation showed nonsignificant differences against DXA and the narrowest 95% limits of agreement. Only biases from Brook and Slaughter et al equations were not dependent on body fatness in female adolescents. Accuracy of most of the skinfold-thickness equations for assessment of %FM in adolescents was poor at the individual level. Nevertheless, to predict %FM when a relative index of fatness is required in field or clinical studies, Slaughter et al equations may be used in adolescents from both sexes and the Brook equation in female adolescents.

  10. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Keil, Mhairi; Totosy de Zepetnek, Julia O; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2016-01-01

    The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m(2) and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes.

  11. Total and regional bone mineral content in healthy Spanish subjects by dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Aguado Henche, S.; Rodriguez Torres, R.; Clemente de Arriba, C.; Gomez Pellico, L. [Universidad de Alcala, Departamento de Anatomia y Embriologia Humana, Facultad de Medicina, Alcala de Henares, Madrid (Spain)

    2008-11-15

    This is an observational cross-sectional study. The aim of the present study was to describe and analyze patterns of change in total and regional bone mineral content in relation to age and gender in a sedentary Spanish sample population (from the Community of Madrid). The age range of the sample population was from birth to 80 years. One thousand one hundred twenty healthy subjects were recruited and divided into 16 groups according to age. Each subject underwent whole-body densitometry using dual-energy X-ray absorptiometry. An analysis was made of the amount of bone mineral content (BMC) in the whole body and in different regions: the head, trunk, upper limbs, and lower limbs. Gender differences in mean values for upper limbs and lower limbs are statistically significant between 16 and 70 years of age. For the head and trunk, the mean BMC values show the most significant gender differences between 16 and 25 years of age (p{<=}0.001). Total bone mineral content (TBMC) and TBMC-to-height ratio show significant gender differences between 16 and 70 years of age. In females, TBMC values increase up to 20 years of age and in males up to 25 years of age. We have determined an evolutionary normal pattern of bone mineral content in urban Spanish people. (orig.)

  12. Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women.

    Science.gov (United States)

    Chen, Zhao; Wang, ZiMian; Lohman, Timothy; Heymsfield, Steven B; Outwater, Eric; Nicholas, Jennifer S; Bassford, Tamsen; LaCroix, Andrea; Sherrill, Duane; Punyanitya, Mark; Wu, Guanglin; Going, Scott

    2007-12-01

    Assessing skeletal muscle mass (SMM) is critical in studying and detecting sarcopenia. Direct measurements by MRI or computerized tomography are expensive or high in radiation exposure. Dual-energy X-ray absorptiometry (DXA) is promising for body composition assessments, but the validity of DXA for predicting SMM in the elderly is still under investigation. The objective of this study was to assess the relationship between DXA-derived measurements of lean soft tissue mass (LSTM) and SMM in older women. Study participants were postmenopausal women (n = 101) recruited in southern Arizona. Total and regional body composition was measured using MRI and DXA (QDR4500w). The participants' mean age was 70.7 +/- 6.4 y and their mean BMI was 27.4 +/- 5.1 kg/m2. DXA-derived LSTM was highly correlated with MRI-derived SMM for the whole body (r = 0.94; P LSTM assessments for the leg region but not for the total body. In conclusion, although the relationships between DXA measures and MRI-derived SMM vary by region of interest, the overall prediction of SMM by DXA is excellent. We conclude that DXA is a reliable method for cross-sectional assessments of SMM in older women.

  13. Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry.

    Science.gov (United States)

    Cirnigliaro, Christopher M; LaFountaine, Michael F; Dengel, Donald R; Bosch, Tyler A; Emmons, Racine R; Kirshblum, Steven C; Sauer, Sue; Asselin, Pierre; Spungen, Ann M; Bauman, William A

    2015-09-01

    To determine visceral adipose tissue (VAT) volume (VATvol) by dual energy X-ray absorptiometry (DXA) in spinal cord injured (SCI) and able-bodied (AB) participants and to explore the relationships between VATvol and routine anthropometric measures. Sixty-three subjects with SCI and 126 healthy male AB controls were stratified as low risk [LR: waist circumference (WC) MHR: WC ≥ 102 cm) for identification of risk for cardiometabolic disease: AB-LR, SCI-LR, AB-MHR, and SCI-MHR. Anthropometrics and standard body composition measurements by DXA with analysis to derive VATvol were performed. Comparison of the four subgroups demonstrated the highest subcutaneous adipose tissue volume (SATvol) in the AB-MHR group (P MHR group (P < 0.01). Furthermore, when compared to the AB group, participants with SCI had a 27% increase in VATvol for every centimeter increase in WC and a 20% increase in VATvol for every unit increase in BMI. Because cutoff values for the routine surrogate measures of adiposity underestimate visceral adiposity in persons with SCI, the risk of adverse metabolic consequences would also be underestimated, which necessitates adjustment of the these cutoff values or, preferably, to perform its direct measurement. © 2015 The Obesity Society.

  14. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    Science.gov (United States)

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs.

  15. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    Science.gov (United States)

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  16. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    Science.gov (United States)

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (PBMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  17. Cascaded-Systems Analysis of Flat-Panel Sandwich Detectors for Single-Shot Dual-Energy X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Kim, Dong Woon; Kim, Junwoo; Youn, Hanbean [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    We have developed the cascaded-systems model to investigate the signal and noise characteristics in the flat-panel sandwich detector which was developed for the preclinical single-shot dual-energy x-ray imaging. The model incorporates parallel branches to include direct interaction of x-rays in photodiode that is unavoidable in the sandwich structure with a corresponding potential increase in image noise. The model has been validated in comparison with the experimental. The cascaded-systems analysis shows that direct x-ray interaction noise behaves as additive electronic noise that is white in the frequency domain; hence it is harmful to the DQE at higher frequencies where the number of secondary quanta lessens. Even at zero frequency, the direct x-ray interaction noise can reduce the DQE of the detectors investigated in this study by ∼20% for the 60 kV x-ray spectrum. The DQE of rear detector in the sandwich structure is sensitive to additive electronic noise because of the enhancement in the number of electronic noise quanta relative to that of x-ray quanta that are attenuated through the front layers including the intermediate filter layer (i.e. incident photon fluence times transmission factor)

  18. Targeted Silver Nanoparticles for Dual-Energy Breast X-Ray Imaging

    Science.gov (United States)

    2013-03-01

    investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories...expressed as a logarithmic-weighted subtraction between the high- and low- energy signal intensities. By using the Beer -Lambert law, these intensities can...methods [1] and filtered using the Beer - Lambert law. A low- and high- energy spectral pair were then passed through 5 cm of 100% adipose or glandular

  19. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  20. Predictive Validity of the Body Adiposity Index in Overweight and Obese Adults Using Dual-Energy X-ray Absorptiometry

    Directory of Open Access Journals (Sweden)

    Robinson Ramírez-Vélez

    2016-11-01

    Full Text Available The body adiposity index (BAI is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF% in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old. DEXA was used as the “gold standard” to determine BF%. Pearson’s correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin’s concordance correlation coefficient and Bland–Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001. The bias of the BAI was −6.0 ± 3.0 BF% (95% CI = −12.0 to 1.0, indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin’s concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957. In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied.

  1. Predictive Validity of the Body Adiposity Index in Overweight and Obese Adults Using Dual-Energy X-ray Absorptiometry

    Science.gov (United States)

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; García-Hermoso, Antonio; Triana-Reina, Hector Reynaldo

    2016-01-01

    The body adiposity index (BAI) is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF%) in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA) as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old). DEXA was used as the “gold standard” to determine BF%. Pearson’s correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin’s concordance correlation coefficient and Bland–Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001). The bias of the BAI was −6.0 ± 3.0 BF% (95% CI = −12.0 to 1.0), indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin’s concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957). In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied. PMID:27916871

  2. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  3. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study.

    Science.gov (United States)

    Bandirali, Michele; Di Leo, Giovanni; Messina, Carmelo; Pastor Lopez, Maria Juana; Mai, Alessandro; Ulivieri, Fabio M; Sardanelli, Francesco

    2015-04-01

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 × CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm(-1)) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤ 2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable.

  4. Body fat measurement in elite sport climbers: comparison of skinfold thickness equations with dual energy X-ray absorptiometry.

    Science.gov (United States)

    Espana Romero, Vanesa; Ruiz, Jonatan R; Ortega, Francisco B; Artero, Enrique G; Vicente-Rodriguez, German; Moreno, Luis A; Castillo, Manuel J; Gutierrez, Angel

    2009-03-01

    The aim of this study was to compare equations for estimating percentage body fat from skinfold thickness in elite sport climbers by assessing their agreement with percentage body fat measured using dual-energy X-ray absorptiometry (DXA). Skinfold thickness was measured in a convenience sample of 19 elite sport climbers [9 women and 10 men; mean age 31.2 years (s = 5.0) and 28.6 years (s = 3.6), respectively]. Percentage body fat was estimated using 17 different equations, and it was also measured by DXA. A significant inter-methods difference was observed for all equations, except for Durnin's equation in men (inter-methods difference: -0.57% and -0.29%; 1.96 s: 5.56 and 5.23 for Siri's and Brozek's equation, respectively) and women (inter-methods difference: -0.67% and -1.29% for Siri's and Brozek's equation, respectively), and for Wilmore's equation using Siri's body fat equation in women (inter-methods difference: -1.86%). In women, the limits of agreement were lower when using Durnin's equation compared with Wilmore's equation (1.96 s: 3.86% and 5.13%, respectively). In conclusion, of the 17 studied equations, Durnin's equation was the most accurate in estimating percentage body fat in both male and female elite climbers. Therefore, Durnin's equation could be used to assess percentage body fat in elite sport climbers if more accurate methods are not available. The generalizability of the results is limited by the fact that the sample was not selected at random.

  5. The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Thewlis, Dominic [University of South Australia, Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, GPO Box 2471, Adelaide, South Australia (Australia); Archer, Jane [University of South Australia, Medical Radiation, School of Health Sciences, Adelaide (Australia)

    2016-01-15

    To investigate the reliability of a simple, efficient technique for measuring bone mineral density (BMD) in the metatarsals using dual-energy X-ray absorptiometry (DXA). BMD of the right foot of 32 trained male distance runners was measured using a DXA scanner with the foot in the plantar position. Separate regions of interest (ROI) were used to assess the BMD of each metatarsal shaft (1st-5th) for each participant. ROI analysis was repeated by the same investigator to determine within-scan intra-rater reliability and by a different investigator to determine within-scan inter-rater reliability. Repeat DXA scans were undertaken for ten participants to assess between-scan intra-rater reliability. Assessment of BMD was consistently most reliable for the first metatarsal across all domains of reliability assessed (intra-class correlation coefficient [ICC] ≥0.97; coefficient of variation [CV] ≤1.5 %; limits of agreement [LOA] ≤4.2 %). Reasonable levels of intra-rater reliability were also achieved for the second and fifth metatarsals (ICC ≥0.90; CV ≤4.2 %; LOA ≤11.9 %). Poorer levels of reliability were demonstrated for the third (ICC ≥0.64; CV ≤8.2 %; LOA ≤23.6 %) and fourth metatarsals (ICC ≥0.67; CV ≤9.6 %; LOA ≤27.5 %). BMD was greatest in the first and second metatarsals (P < 0.01). Reliable measurements of BMD were achieved for the first, second and fifth metatarsals. (orig.)

  6. Common Mistakes in the Dual-Energy X-ray Absorptiometry (DXA in Turkey. A Retrospective Descriptive Multicenter Study

    Directory of Open Access Journals (Sweden)

    Ali Yavuz Karahan

    2017-02-01

    Full Text Available Background: Osteoporosis is a widespread metabolic bone disease representing a global public health problem currently affecting more than two hundred million people worldwide. The World Health Organization states that dual-energy X-ray absorptiometry (DXA is the best densitometric technique for assessing bone mineral density (BMD. DXA provides an accurate diagnosis of osteoporosis, a good estimation of fracture risk, and is a useful tool for monitoring patients undergoing treatment. Common mistakes in BMD testing can be divided into four principal categories: 1 indication errors, 2 lack of quality control and calibration, 3 analysis and interpretation errors, and 4 inappropriate acquisition techniques. The aim of this retrospective multicenter descriptive study is to identify the common errors in the application of the DXA technique in Turkey. Methods: All DXA scans performed during the observation period were included in the study if the measurements of both, the lumbar spine and proximal femur were recorded. Forearm measurement, total body measurements, and measurements performed on children were excluded. Each examination was surveyed by 30 consultants from 20 different centers each informed and trained in the principles of and the standards for DXA scanning before the study. Results: A total of 3,212 DXA scan results from 20 different centers in 15 different Turkish cities were collected. The percentage of the discovered erroneous measurements varied from 10.5% to 65.5% in the lumbar spine and from 21.3% to 74.2% in the proximal femur. The overall error rate was found to be 31.8% (n = 1021 for the lumbar spine and 49.0% (n = 1576 for the proximal femur. Conclusion: In Turkey, DXA measurements of BMD have been in use for over 20 years, and examination processes continue to improve. There is no educational standard for operator training, and a lack of knowledge can lead to significant errors in the acquisition, analysis, and interpretation.

  7. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L

    1996-01-01

    A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK). These measu......A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK...

  8. Assessment of the effect of oral corticosteroids on bone mineral density in systemic lupus erythematosus: a preliminary study with dual energy x ray absorptiometry.

    OpenAIRE

    1990-01-01

    Dual energy x ray absorptiometry and a wide range of blood and urine tests were used to assess the propensity of patients with systemic lupus erythematosus to develop an impairment of bone mineral density. Surprisingly, in this preliminary study no significant differences in bone mineral density were found when patients taking 10 mg or more of prednisolone for six months or longer were compared with those who had never taken prednisolone.

  9. Assessment of the effect of oral corticosteroids on bone mineral density in systemic lupus erythematosus: a preliminary study with dual energy x ray absorptiometry.

    Science.gov (United States)

    Dhillon, V B; Davies, M C; Hall, M L; Round, J M; Ell, P J; Jacobs, H S; Snaith, M L; Isenberg, D A

    1990-08-01

    Dual energy x ray absorptiometry and a wide range of blood and urine tests were used to assess the propensity of patients with systemic lupus erythematosus to develop an impairment of bone mineral density. Surprisingly, in this preliminary study no significant differences in bone mineral density were found when patients taking 10 mg or more of prednisolone for six months or longer were compared with those who had never taken prednisolone.

  10. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  11. Detection of lead in Zea mays by dual-energy X-ray microtomography at the SYRMEP beamline of the ELETTRA synchrotron and by atomic absorption spectroscopy.

    Science.gov (United States)

    Reale, Lucia; Kaiser, Jozef; Pace, Loretta; Lai, Antonia; Flora, Francesco; Angelosante Bruno, Antonella; Tucci, Adele; Zuppella, Paola; Mancini, Lucia; Tromba, Giuliana; Ruggieri, Fabrizio; Fanelli, Maria; Malina, Radomir; Liska, Miroslav; Poma, Anna

    2010-06-01

    This study is related to the application of the X-ray dual-energy microradiography technique together with the atomic absorption spectroscopy (AAS) for the detection of lead on Zea mays stem, ear, root, and leaf samples. To highlight the places with lead intake, the planar radiographs taken with monochromatic X-ray radiation in absorption regime with photon energy below and above the absorption edge of a given chemical element, respectively, are analyzed and processed. To recognize the biological structures involved in the intake, the dual-energy images with the lead signal have been compared with the optical images of the same Z. mays stem. The ear, stem, root, and leaf samples have also been analyzed with the AAS technique to measure the exact amount of the hyperaccumulated lead. The AAS measurement revealed that the highest intake occurred in the roots while the lowest in the maize ears and in the leaf. It seems there is a particular mechanism that protects the seeds and the leaves in the intake process.

  12. Bone densitometry by dual-energy X-ray absorptiometry (DXA in preterm newborns compared with full-term peers in the first six months of life

    Directory of Open Access Journals (Sweden)

    Virginia S. Quintal

    2014-12-01

    Full Text Available OBJECTIVES: To longitudinally assess bone mineral content (BMC, bone mineral density (BMD, and whole-body lean mass obtained through bone densitometry by dual-energy X-ray absorptiometry (DXA in preterm newborns (PTNs and compare them with full-term newborns (FTNs from birth to 6 months of corrected postnatal age. METHODS: A total of 28 adequate for gestational age (AGA newborns were studied: 14 preterm and 14 full-term newborns. DXA was used to determine BMC, BMD, and lean mass in three moments: 40 weeks corrected post-conceptual age, as well as 3 and 6 months of corrected postnatal age. PTNs had gestational age ≤ 32 weeks at birth and were fed their mother's own milk or milk from the human milk bank. RESULTS: All infants had an increase in BMC, BMD, and lean body mass values during the study. PTNs had lower BMC, BMD, and lean mass at 40 weeks of corrected post-conceptual age in relation to FTNs (p < 0.001, p < 0.001, p = 0.047, respectively. However, there was an acceleration in the mineralization process of PTNs, which was sufficient to achieve the normal values of FTNs at 6 months of corrected age. CONCLUSIONS: This study suggests that bone densitometry by dual-energy X-ray absorptiometry is a good method for the assessment of body composition parameters at baseline, and at the follow-up of these PTNs.

  13. Change in fat-free mass assessed by bioelectrical impedance, total body potassium and dual energy X-ray absorptiometry during prolonged weight loss

    DEFF Research Database (Denmark)

    Hendel, H W; Gotfredsen, A; Højgaard, L

    1996-01-01

    A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK). These measu......A total of 16 obese women (body mass index (BMI) 30-43 kg m(-2)) participated in a weight reduction study. Before and after a weight loss of 11.7 +/- 7.4 kg (mean +/- SD), body composition was assessed by dual energy X-ray absorptiometry (DXA), and total body potassium counting (TBK......). These measurements were compared with bioimpedance analysis (BIA) by applying 11 predictive BIA equations published in the literature. Predictive equations for the present study population were developed, with the use of fat-free mass (FFM) as assessed by TBK and DXA as references in multiple regression analysis....... The results of the BIA equations varied widely; FFM was generally overestimated by BIA as compared with DXA and TBK before and after weight loss. During weight loss, the FFM did not change, as estimated by DXA (1.3 +/- 2.3 kg, p > 0.05) and TBK (0.9 +/- 2.9 kg, p > 0.05). The recorded change in impedance (R...

  14. Bone densitometry by dual-energy X-ray absorptiometry (DXA) in preterm newborns compared with full-term peers in the first six months of life.

    Science.gov (United States)

    Quintal, Virginia S; Diniz, Edna M A; Caparbo, Valeria de F; Pereira, Rosa M R

    2014-01-01

    To longitudinally assess bone mineral content (BMC), bone mineral density (BMD), and whole-body lean mass obtained through bone densitometry by dual-energy X-ray absorptiometry (DXA) in preterm newborns (PTNs) and compare them with full-term newborns (FTNs) from birth to 6 months of corrected postnatal age. A total of 28 adequate for gestational age (AGA) newborns were studied: 14 preterm and 14 full-term newborns. DXA was used to determine BMC, BMD, and lean mass in three moments: 40 weeks corrected post-conceptual age, as well as 3 and 6 months of corrected postnatal age. PTNs had gestational age ≤ 32 weeks at birth and were fed their mother's own milk or milk from the human milk bank. All infants had an increase in BMC, BMD, and lean body mass values during the study. PTNs had lower BMC, BMD, and lean mass at 40 weeks of corrected post-conceptual age in relation to FTNs (p<0.001, p<0.001, p=0.047, respectively). However, there was an acceleration in the mineralization process of PTNs, which was sufficient to achieve the normal values of FTNs at 6 months of corrected age. This study suggests that bone densitometry by dual-energy X-ray absorptiometry is a good method for the assessment of body composition parameters at baseline, and at the follow-up of these PTNs. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Low energy x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  16. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector

    Science.gov (United States)

    Kim, J.; Kim, D. W.; Kim, S. H.; Yun, S.; Youn, H.; Jeon, H.; Kim, H. K.

    2017-01-01

    For single-shot dual-energy (DE) imaging, a sandwich detector typically consists of a thin front detector and a thick rear detector. Therefore, the spatial-resolution characteristics of the two detectors are different, and as a result, weighted subtraction of the corresponding two images gives rise to edge-enhancement characteristics in the resulting DE images. This is a unique characteristic of single-shot DE imaging compared to the conventional dual-shot DE imaging which uses the same detector to acquire low- and high-energy images. Using a linear-systems theory, in this paper, we show that the modulation-transfer function (MTF) of a sandwich detector is a weighted average of contributions from each MTF characteristic of two detector layers forming the sandwich detector. The MTF results obtained using the developed model are validated with those measured directly from single-shot DE images for an edge-knife phantom. Weighting larger than at least 0.5 in DE reconstruction gives an enhancement in DE MTF at mid and high spatial frequencies compared to the MTFs obtained from each detector layer. The behavior of the linear model as a function of weighting factor used for DE reconstruction is discussed in comparisons with numerical simulations.

  17. Search for novel contrast materials in dual-energy x-ray breast imaging using theoretical modeling of contrast-to-noise ratio.

    Science.gov (United States)

    Karunamuni, R; Maidment, A D A

    2014-08-01

    Contrast-enhanced (CE) dual-energy (DE) x-ray breast imaging uses a low- and high-energy x-ray spectral pair to eliminate soft-tissue signal variation and thereby increase the detectability of exogenous imaging agents. Currently, CEDE breast imaging is performed with iodinated contrast agents. These compounds are limited by several deficiencies, including rapid clearance and poor tumor targeting ability. The purpose of this work is to identify novel contrast materials whose contrast-to-noise ratio (CNR) is comparable or superior to that of iodine in the mammographic energy range. A monoenergetic DE subtraction framework was developed to calculate the DE signal intensity resulting from the logarithmic subtraction of the low- and high-energy signal intensities. A weighting factor is calculated to remove the dependence of the DE signal on the glandularity of the breast tissue. Using the DE signal intensity and weighting factor, the CNR for materials with atomic numbers (Z) ranging from 1 to 79 are computed for energy pairs between 10 and 50 keV. A group of materials with atomic numbers ranging from 42 to 63 were identified to exhibit the highest levels of CNR in the mammographic energy range. Several of these materials have been formulated as nanoparticles for various applications but none, apart from iodine, have been investigated as CEDE breast imaging agents. Within this group of materials, the necessary dose fraction to the LE image decreases as the atomic number increases. By reducing the dose to the LE image, the DE subtraction technique will not provide an anatomical image of sufficient quality to accompany the contrast information. Therefore, materials with Z from 42 to 52 provide nearly optimal values of CNR with energy pairs and dose fractions that provide good anatomical images. This work is intended to inspire further research into new materials for optimized CEDE breast functional imaging.

  18. The Effect of (99m)Tc on Dual-Energy X-Ray Absorptiometry Measurement of Body Composition and Bone Mineral Density

    DEFF Research Database (Denmark)

    Fosbøl, Marie Øbro; Dupont, Anders; Alslev, Louise;

    2012-01-01

    Whether the γ-emission by radioisotopes influences the outcome of dual-energy X-ray absorptiometry (DXA) measurements is not fully elucidated. The aim of this study was to evaluate the effect of antecedent administration of (99m)Tc on DXA measurements regarding body composition and bone mineral...... density (BMD) using a K-edge filter scanner. The phantom measurements were performed by placing a urinary bladder phantom containing 40mL of radioisotope solution on the pelvic region of a whole-body phantom. Twenty-seven patients attending our department for a routine examination involving...... the administration of a tracer marked with (99m)Tc were included. The patients underwent a whole-body DXA scan before and within 2h after tracer injection using a GE/Lunar Prodigy scanner. Control scans were performed on 40 volunteers, who had not received any radioactive tracer. In both phantom and patient...

  19. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers.

    Science.gov (United States)

    Laskey, M A; Crisp, A J; Cole, T J; Compston, J E

    1992-12-01

    We have investigated whether the Lunar DPX (software 3.4) and Hologic QDR-1000 dual-energy X-ray absorptiometers have comparable normal reference databases for the spine and femur of white UK and USA subjects. After conversion for systematic differences in absolute bone density values between the two systems, the reference databases were very similar for the spine in young subjects, but there were clear differences in the femur databases of young females and males of all ages. These differences were confirmed by comparing the percent age-matched and young values determined by the two systems for subjects scanned on both systems. Thus the diagnosis and management of a patient could differ, depending on the system used for the bone density measurements.

  20. Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing body composition in young women.

    Science.gov (United States)

    Maddalozzo, Gianni F; Cardinal, Bradley J; Snow, Christine A

    2002-11-01

    The purpose of this study was to determine the concurrent validity of the BOD POD (BP) (Life Measurement Instruments) and Dual Energy X-Ray Absorptiometry (DXA) Elite 4500A (Hologic, Inc.) techniques for assessing the body fat percentage of young women. The participants were forty-three white college-aged women (19.4 +/- 1.4 years) with a BMI of 23.4 +/- 2.3. Both body composition analyses were completed on the same day and were taken within 10 minutes of each other. Body fat percentage was estimated to be 24.3 (SE = 1.1) and 23.8 (SE = 0.8) using the BP and DXA techniques, respectively. Exact matches, in terms of body fat percentage, were obtained for 10 of the 43 participants (23.3%). In conclusion, our data supports the concurrent validity of the BP and DXA techniques for assessing body fat in young women.

  1. Estimation of stature and length of limb segments in children and adolescents from whole-body dual-energy X-ray absorptiometry scans

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamyan, Davit O. [Debrousse Hospital and University Claude Bernard Lyon 1, Department of Imaging, Lyon (France); Sargsyan Military Institute, Medical Facility, Yerevan (Armenia); Gazarian, Aram [Debrousse Hospital, Service of Hand Surgery, Clinique du Parc Lyon, Lyon (France); Braillon, Pierre M. [Debrousse Hospital and University Claude Bernard Lyon 1, Department of Imaging, Lyon (France)

    2008-03-15

    Anthropometric standards vary among different populations, and renewal of these reference values is necessary. To produce formulae for the assessment of limb segment lengths. Whole-body dual-energy X-ray absorptiometry scans of 413 Caucasian children and adolescents (170 boys, 243 girls) aged from 6 to 18 years were retrospectively analysed. Body height and the lengths of four long bones (humerus, radius, femur and tibia) were measured. The validity (concurrent validity) and reproducibility (intraobserver reliability) of the measurement technique were tested. High linear correlations (r > 0.9) were found between the mentioned five longitudinal measures. Corresponding linear regression equations for the most important relationships were derived. The tests of validity and reproducibility revealed a good degree of precision of the applied technique. The reference formulae obtained from the analysis of whole-body DEXA scans will be useful for anthropologists, and forensic and nutrition specialists, as well as for prosthetists and paediatric orthopaedic surgeons. (orig.)

  2. Dual-energy X-ray absorptiometry assessment of postmenopausal women with vertebral fragility fracture and its relationship with serum bone turnover and bone metabolism indexes

    Institute of Scientific and Technical Information of China (English)

    Wei Li

    2016-01-01

    Objective:To study the relationship between dual-energy X-ray bone mass density measurement results of postmenopausal women with vertebral fragility fracture and the serum bone turnover as well as bone metabolism indexes.Methods:A total of 158 postmenopausal women who received DXA tests in our hospital between April 2012 and December 2015 were selected, were divided into osteoporosis group, osteopenia group and normal bone mass group according to the bone mineral density measurement results, and were divided into no vertebral fracture group, thoracic vertebral fracture group, lumbar vertebral fracture group and thoracolumbar vertebral fracture group according to the thoracolumbar vertebral anterioposterior and lateral film results, and serum was collected to determine bone turnover and bone metabolism indexes.Results: Femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with thoracic vertebral fracture and thoracolumbar vertebral fracture were significantly lower than those of the subjects without vertebral fracture, and femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with lumbar vertebral fracture were not significantly different from those of the subjects without vertebral fracture; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group and osteopenia group were significantly higher than those of normal bone mass group while 25(OH)D, BGP and ON content were significantly lower than those of normal bone mass group; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group were significantly higher than those of osteopenia group while 25(OH)D, BGP and ON content were significantly lower than those of osteopenia group.Conclusions: Dual-energy X-ray bone densitometry has clear prediction value for postmenopausal women with thoracic vertebral fragility fracture and thoracolumbar vertebral fragility fracture, and is closely related to the changes of bone turnover and

  3. Air displacement plethysmography versus dual-energy x-ray absorptiometry in underweight, normal-weight, and overweight/obese individuals.

    Directory of Open Access Journals (Sweden)

    David W Lowry

    Full Text Available Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA, however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI distribution.Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants.While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution.

  4. Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT

    Directory of Open Access Journals (Sweden)

    Baojun Li

    2013-01-01

    Full Text Available Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc with a maximum of 58.7% (or 8.97 mg/cc in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc with a maximum of 7.6% (or 1.31 mg/cc. The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm.

  5. WE-E-18A-02: Enhancement of Lung Tumor Visibility by Dual-Energy X-Ray Imaging in An Anthropomorphic Chest Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U [The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2014-06-15

    Purpose: Intrafractional lung tumor motion during radiotherapy can be compensated for by tracking the tumor position using x-ray imaging and adapting the treatment in real-time. However, locating the tumor with an automated template-matching algorithm is often challenging if the tumor is obscured by ribs. This study investigates the feasibility of creating dual-energy (DE) images of the chest with increased tumor visibility on an Elekta XVI system. Methods: An anthropomorphic chest phantom was imaged at two different energies. Low-energy images were obtained at 80 kVp (0.8 mAs); high-energy images at 129 kVp (0.6 mAs, additional 1.26 mm tin filter). A Geant4 Monte-Carlo framework was developed allowing simulation of the x-ray tube, flat-panel detector and phantom in order to optimize the beam energies, filtration and the weighting factor used to subtract the individual images into a synthetic DE image. The weighting factor was selected to minimize the visibility of bones while maintaining a sufficient tumor visibility. We scored the bone visibility as the contrast of tumor (with bone) to tumor (without bone), and similarly of lung tissue (with bone) to lung tissue (without bone). Tumor visibility was quantified as the contrast between tumor and lung tissue (both without bone). Results: In the experimentally obtained DE image the bone visibility was reduced by 79.2% in tumor and by 96.8% in lung tissue while the overall tumor visibility only decreased by 69.5%. The Monte-Carlo simulation yielded similar results reducing the scores by 90.0%, 85.3% and only 71.9%, respectively. Conclusion: This work demonstrates the feasibility of DE imaging to enhance lung tumor detectability. In the future, we hope to further refine the Monte-Carlo simulation to more accurately predict the weighting factors which would aid real-time implementation. Furthermore, we plan to use the Monte-Carlo framework to simulate DE images of actual lung tumors. The authors would like to thank Paul

  6. Effects of metal implants on whole-body dual-energy x-ray absorptiometry measurements of bone mineral content and body composition

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, L.M. [McMaster Univ., Dept. of Kinesiology, Hamilton, Ontario (Canada); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca

    2003-12-01

    The purpose of this study was to evaluate the influence of metal implants on measurements of bone mineral content and body composition by x-ray-based dual-photon absorptiometry. Four whole-body dual-photon absorptiometry scans were performed on 13 participants with metal rods either present or absent during the scans. The influence of the amount of metal (50 g, 100 g and 150 g), the proximity of the metal rod to the x-ray source and the reproducibility of any metal-induced effects were evaluated by altering the position or the size of the metal rod used, or both. The presence of metal rods weighing 100 g or 150 g significantly increased reported total body mass and bone mineral content (p < 0.034). Soft-tissue mass was increased when the scan included the 100-g rod (p < 0.003). The proximity of the metal to the x-ray source did not have a significant influence on the body composition changes induced by the metal. The effects of the metal rods on body composition variables were reproducible. The presence of metal rods inflated body composition variables measured by dual-photon absorptiometry; however, the effects are reproducible during repeat scans of an individual patient. Metal had the largest impact on whole-body bone mineral content, causing errors of 1.5%-3%. (author)

  7. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de, E-mail: crisestanislau@hotmail.co, E-mail: sheilacr@fmvz.unesp.b, E-mail: fabioandre@fmvz.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Anestesiologia Veterinaria; Sergio Swain Muller, E-mail: diretoria@fmb.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Ortopedia; Louzada, Mario Jefferson Quirino, E-mail: louzada@fmva.unesp.b [Universidade Estadual Paulista (UNESP), Aracatuba, SP (Brazil). Faculdade de Medicina Veterinaria; Estanislau, Caroline de Abreu, E-mail: caestanis@hotmail.co

    2010-03-15

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  8. The Influence of Magnetic Resonance Imaging Findings of Degenerative Disease on Dual-Energy X-ray Absorptiometry Measurements in Middle-Aged Men

    Energy Technology Data Exchange (ETDEWEB)

    Donescu, O.S.; Battie, M.C.; Videman, T. [Faculty of Rehabilitation Medicine and Dept. of Physical Therapy, Univ. of Alberta (Canada)

    2007-02-15

    Purpose: To examine degenerative features based on magnetic resonance imaging (MRI) measurements at the lumbar spine in relation to dual-energy X-ray absorptiometry (DXA), and to investigate whether bone mineral density (BMD) is reflected in the substitution of bone trabecular structure by fat at the vertebral body level indicated by MRI T1 relaxation time, endplate concavity, and hypertrophic (osteophytes and endplate sclerosis) MRI findings. Material and Methods: The sample for this cross-sectional study was composed of 102 subjects, 35-70 years old, from a population-based cohort. Data collection included DXA in the anterior-posterior projection at the L1-L4 vertebrae and right femoral neck, and MRI of the lumbar spine in the midsagittal plane. Results: Age, vertebral signal intensity, osteophytes, and endplate concavity collectively explained 20% of the variance in spine BMD. Conclusion: The study findings suggest that degenerative findings based on MRI measurements at the lumbar spine have an influence on bone assessment using DXA. Therefore, an overall bone assessment such as DXA might not offer an accurate measure of BMD.

  9. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  10. “Evaluation of Hand Absorpsiometry and Lumbar-Femoral Dual Energy X-Ray Absorptiometry in Postmenopausal Women” - Original Investigation

    Directory of Open Access Journals (Sweden)

    Canan Gücük Tezel

    2006-03-01

    Full Text Available The aim of this study is to evaluate the correlation and diagnostic value of digital radiographic absorptiometry and Dual Energy X-Ray Absorptiometry (DXA in the diagnosis and assessment of osteoporosis.Spine and non-dominant femoral DXA measurements ( Lunar Cooperation, USA and non-dominant hand absorptiometric measurements ( Metriscan-Alara, California-USA have been done in 172 post-menopausal women who were outpatients in the Physical Therapy and Rehabilitation Clinic at İstanbul Göztepe Hospital of Education and Research. Demographic characteristics were identified. Statistical analyses have been performed by the calculation of Pearson correlation coefficient. The post-menopausal women mean age was 59±8.43Std (41-81 years. Both spine and femur DXA T scores were moderately correlated with radiographic absorptiometric scores (r: 0.63 and 0.62 respectively, p<0.001. Femoral and L1-L4 T scores were moderately correlated (r. 0.53,p<0.001. Different measurements methods of bone mineral density at different skeletal sites, in parallel to the literature, are moderately correlated in post-menopausal women. We can conclude that radiographic absorptiometry can be used as a screening technique or when DXA measurement is not available. (Osteoporoz Dünyasından 2006; 12 (1: 9-11

  11. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    Science.gov (United States)

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2017-08-09

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  12. Body composition study by dual-energy x-ray absorptiometry in familial partial lipodystrophy: finding new tools for an objective evaluation

    Directory of Open Access Journals (Sweden)

    Valerio Cynthia M

    2012-08-01

    Full Text Available Abstract Background Familial partial lipodystrophies (FPLD are clinically heterogeneous disorders characterized by selective loss of adipose tissue, insulin resistance and metabolic complications. Until genetic studies become available for clinical practice, clinical suspicion and pattern of fat loss are the only parameters leading clinicians to consider the diagnosis. The objective of this study was to compare body composition by dual energy X-ray absorptiometry (DXA in patients with FPLD and control subjects, aiming to find objective variables for evaluation of FPLD. Methods Eighteen female patients with partial lipodystrophy phenotype and 16 healthy controls, matched for body mass index, sex and age were studied. All participants had body fat distribution evaluated by DXA measures. Fasting blood samples were obtained for evaluation of plasma leptin, lipid profile and inflammatory markers. Genetic studies were carried out on the 18 patients selected that were included for statistical analysis. Thirteen women confirmed diagnosis of Dunnigan-type FPLD (FPLD2. Results DXA revealed a marked decrease in truncal fat and 3 folds decrease in limbs fat percentage in FPLD2 patients (p Conclusion In this study, assessment of body fat distribution by DXA permitted an objective characterization of FLPD2. A consistent pattern with marked fat reduction of lower body was observed in affected patients. To our knowledge this is the first time that cut-off values of objective variables were proposed for evaluation of FPLD2.

  13. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang; Huan, Yong; Cui, Lishan; Liu, Yinong; Yang, Hong; Ren, Yang

    2017-05-01

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrix and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.

  14. Body fat measurement in adolescent girls with type 1 diabetes: a comparison of skinfold equations against dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Särnblad, S; Magnuson, A; Ekelund, U; Åman, J

    2016-10-01

    Skinfold measurement is an inexpensive and widely used technique for assessing the percentage of body fat (%BF). This study assessed the accuracy of prediction equations for %BF based on skinfold measurements compared to dual-energy X-ray absorptiometry (DXA) in girls with type 1 diabetes and healthy age-matched controls. We included 49 healthy girls and 44 girls with diabetes aged 12-19 years old, comparing the predicted %BF based on skinfold measurements and the %BF values obtained by a Lunar DPX-L scanner. The agreement between the methods was assessed using an Bland-Altman plot. The skinfold measurements were significantly higher in girls with diabetes (p = 0.003) despite a nonsignificant difference in total %BF (p = 0.1). A significant association between bias and %BF was found for all tested equations in the Bland-Altman plots. Regression analysis showed that the association between skinfold measurements and %BF measured by DXA differed significantly (p = 0.039) between the girls with diabetes and the healthy controls. The accuracy of skinfold thickness equations for assessment of %BF in adolescent girls with diabetes is poor in comparison with DXA measurements as criterion. Our findings highlight the need for the development of new prediction equations for girls with type 1 diabetes. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  15. Cross-calibration of Lunar DPX-IQ and DPX dual-energy x-ray densitometers for bone mineral measurements in women: effect of body anthropometry.

    Science.gov (United States)

    Saarelainen, J; Honkanen, R; Vanninen, E; Kröger, H; Tuppurainen, M; Niskanen, L; Jurvelin, J S

    2005-01-01

    When dual-energy X-ray absorptiometry (DXA) instruments are replaced, it is essential to determine if systematic differences in measurements occur. As a part of the Kuopio Osteoporosis Risk Factor and Prevention study (N=14,220), a group of women, aged 36 to 69 yr underwent anteroposterior lumbar spine L2 to L4 (n=89) and proximal femur scans (n=88) by the Lunar DPX and DPX-IQ, respectively, during the same visit. A high linear association (r from 0.944 to 0.989, p<0.001) between the two scanners was established for lumbar spine and proximal femur bone mineral density (BMD). The average DPX values for BMD were 1.1% and 2.0% higher than those of DPX-IQ for the lumbar spine (p<0.001) and Ward's triangle (p=0.001), respectively. Femoral neck BMD values by the DPX were 1.4% lower (p<0.001) compared to DPX-IQ. The difference between trochanter BMD results (0.1%) was not significant (p=0.809). In the femoral neck and trochanter, but not in the lumbar spine or Ward's triangle, the differences in BMD values of the two machines were found to depend on body mass index. After linear formulas based on simple and multivariate linear regression analyses were calculated, the differences were negligible, enabling objective comparison of longitudinal measurements.

  16. Cross-calibration of pencil-beam (DPX-NT) and fan-beam (QDR-4500C) dual-energy X-ray absorptiometry for sarcopenia.

    Science.gov (United States)

    Ito, Kenyu; Tsushita, Kazuyo; Muramoto, Akiko; Kanzaki, Hiroki; Nohara, Takashi; Shimizu, Hitomi; Nakazawa, Tomoko; Harada, Atsushi

    2015-11-01

    Sarcopenia, defined as the loss of muscle mass accompanied by weakness, is an important factor leading to frailty and is a growing concern in the aging Japanese society. Muscle mass can be calculated by dual-energy X-ray absorptiometry (DXA), but results differ between devices produced by different manufactures. Thus, cross-calibration is needed to compare body composition results in multicenter trials or when scanners are replaced. The purpose of this study was to perform an in vivo calibration of total body scans between pencil-beam (DPX-NT, GE Healthcare) and fan-beam (QDR-4500C, Hologic Inc.) DXA units. A total 30 subjects (15 women, 15 men, mean age = 35 years, range 22-49 years) were recruited. The lumbar bone mineral density (BMD), femoral neck BMD, appendicular fat and lean body mass, and the appendicular skeletal muscle mass index (ASMI) were highly correlated (r = 0.979-0.993, r(2) = 0.889-0.977). The conversion formulas were as follows: lumbar BMD, Y = -0.08 + 1.16X (X = QDR-4500C, Y = DPX-NT), femoral neck BMD, Y = -0.015 + 1.11X, and ASMI Y = 0.92 + 0.90X. There is excellent comparability between the DPX-NT and the QDR-4500C DXA units. However, cross-calibration equations are required to assess muscle volume, fat, and ASMI in multicenter studies investigating sarcopenia.

  17. Three-compartment body composition changes in elite rugby league players during a super league season, measured by dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Harley, Jamie A; Hind, Karen; O'hara, John P

    2011-04-01

    This study investigated the acute changes in body composition that occur over the course of a competitive season in elite rugby league players. Twenty elite senior players from an English Super League rugby league team underwent a total-body dual-energy X-ray absorptiometry scan at 3 phases of a competitive season: preseason (February), midseason (June), and postseason (September). Body mass (BM), fat mass (FM), lean mass, percentage body fat, and bone mineral content (BMC) were reported at each phase. Between the start and midpoint of the season, BM, lean mass, FM, and body fat percentage showed no significant change (p > 0.05); however, BMC was significantly increased (+0.71%; 30.70 ± 38.00 g; p 0.05); however, significant changes were observed in lean mass (-1.54%; 1.19 ± 1.43 kg), FM (+4.09%; 0.57 ± 1.10 kg), and body fat percentage (+4.98%; 0.78 ± 1.09%; p nutritional practices with the aim of maintaining the players' optimal body composition until the conclusion of the competitive season, in order that performance capabilities are maximized over the entire competition period.

  18. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro.

    Science.gov (United States)

    Kuiper, J W; van Kuijk, C; Grashuis, J L; Ederveen, A G; Schütte, H E

    1996-01-01

    Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in vitro was determined with QCT and DXA before and after defatting. ChA consisted of defatting and decalcification of the femoral neck samples for determination of bone mineral mass (BmM) and amount of fat. The mean BmM was 4.49 g. Mean fat percentage was 37.2% (23.3%-48.5%). QCT, DXA and ChA before and after defatting were all highly correlated (r > 0.96, p defatting the QCT values were on average 0.35 g less than BmM and the DXA values were on average 0.65 g less than BmM. After defatting, all bone mass values increased; QCT values were on average 0.30 g more than BmM and DXA values were 0.29 g less than BmM. It is concluded that bone mineral measurements of the femoral neck with QCT and DXA are highly correlated with the chemically determined bone mineral mass and that both techniques are influenced by the femoral fat content.

  19. Dual-energy X-ray absorptiometry with serum ferritin predicts liver iron concentration and changes in concentration better than ferritin alone.

    Science.gov (United States)

    Shepherd, John A; Fan, Bo; Lu, Ying; Marquez, Lorena; Salama, Khaled; Hwang, Jimmy; Fung, Ellen B

    2010-01-01

    Accurate assessment of liver iron concentration (LIC) is critical for optimal monitoring of iron toxicity in multitransfused patients. Serum ferritin is the most widely used although its association to LIC is only modest. We studied if a liver-specific measure using dual-energy X-ray absorptiometry (DXA) systems could improve LIC estimates over ferritin alone in Thalassemia (Thal) patients. Thirty-seven patients with Thal (19.2 ± 9.0 yr, 20 male) were studied and 10 had multiple visits. Height, weight, ferritin, whole-body DXA, and hepatic superconducting quantum interference device (SQUID) were measured within 5 wk. DXA hepatic density was measured using right rib, whole liver, and multiple subliver regions. The best agreement to SQUID LIC was found using a combination of ferritin, weight, DXA subliver region 3 bone mineral content (BMC), and right rib BMC. DXA with ferritin improved the ferritin alone correlation from R(2)=0.35 to R(2)=0.62. Serial LIC changes using DXA were associated with serial SQUID changes (r=0.73, p=0.02). Changes in ferritin alone were not significant (p=0.06). We conclude that the addition of whole-body DXA measures and body weight substantially increased the accuracy of LIC and change in LIC estimates over the use of ferritin alone and could be useful when magnetic resonance imaging or SQUID is not available. Copyright © 2010 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck

    Energy Technology Data Exchange (ETDEWEB)

    Preidler, K.W. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); White, L.S. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); Tashkin, J. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); McDaniel, C.O. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); Brossmann, J. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); Andresen, R. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States); Sartoris, D. [Dept. of Radiology, Veterans Administration Medical Center and Univ. of California, San Diego, CA (United States)

    1997-07-01

    Purpose: The aim of this study was to evaluate the influence of buttressing on bone densitometry measurements in the femoral neck, in Ward`s triangle, and in the greater trochanter. In addition, we attempted to establish the length of the femoral axis (FAL) and the true length of the femoral neck (FNL) as potential correlates with osteoarthritis (OA) or with buttressing. Material and Methods: Our study comprised 101 hips in 68 adult patients. Conventional radiographs of the hip joints were obtained in order to assess the presence and extent of OA by means of the 6-step grading system introduced in 1990 by CROFT et al., and in order to measure the cortical thickness at the medial aspect of the femoral neck. In addition, FAL and FNL were measured. All patients underwent dual energy X-ray absorptiometry so that bone density could be assessed in the femoral neck, in Ward`s triangle, and in the greater trochanter. The Spearman rank correlation was used to compare the measurements. Results: Statistical analysis showed a significant positive correlation between cortical thickness and bone density in the femoral neck and in Ward`s triangle. No correlation was found between cortical thickness and bone density in the greater trochanter, nor between cortical thickness and OA, FNL, and FAL, nor between OA and bone density, FNL, and FAL. (orig.).

  1. Comparison of high-resolution peripheral quantitative computerized tomography with dual-energy X-ray absorptiometry for measuring bone mineral density.

    Science.gov (United States)

    Colt, E; Akram, M; Pi Sunyer, F X

    2017-06-01

    The objective of this study was to compare the measurement of areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) with the measurement of volumetric bone mineral density (vBMD) by high-resolution peripheral computerized tomography (HR-pQCT) in subjects with a wide range of body mass indices (BMI). We scanned the arms and legs of 49 premenopausal women, aged 21-45 years, with BMI from 18.5 to 46.5, by HR-pQCT and found that there was a nonsignificant change in vBMD associated with increased BMI, whereas aBMD (DXA) was associated with a positive significant increase. HR-pQCT scans a slice at the extremity of the tibia and radius, whereas DXA scans the entire leg and arm. The correlation coefficients (r) of BMD (DXA) of the legs with BMI were 0.552, PD100) of legs and arms measured by HR-pQCT with BMI, W and %fat were not significant. Although HR-pQCT and DXA scan different parts of the bone, the high r of BMD with BMI and low r of bone density measured by HR-pQCT with BMI suggest that BMD measured by DXA is artifactually increased in the presence of obesity.

  2. Accuracy of lateral dual energy X-ray absorptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Edmondston, S.J. (Curtin Univ., Perth (Australia). Dept. of Physiotherapy); Singer, K.P. (Royal Perth Hospital, WA (Australia) Curtin Univ., Perth (Australia). Dept. of Physiotherapy); Price, R.I. (Sir Charles Gairdner Hospital, Perth (Australia)); Breidahl, P.D. (Royal Perth Hospital, WA (Australia))

    1993-04-01

    Lateral scanning with dual energy X-ray absorptiometry (DXA) was undertaken on 153 thoracic and lumbar vertebral bodies from nine individuals (mean age 67; range 34-92 years) to establish their bone mineral content (BMC). All specimens were subsequently de-fatted and ashed to compare ash weight with BMC of the T1 to L5 segments. Linear regression analysis indicated a higher correlation between BMC and measured ash weights for each vertebral column (range: r = 0.97-0.99), with error analysis for all vertebrae tested showing a standard error of 0.40 g, or 10.8%. For the L2-4 segments the accuracy error was 0.50 g or 7.9%. In both cases there was a mean trend towards underestimation of ash weight. Mean BMC values of the T1 to T5 segments were similar before a progressive increase caudally. These data affirm the utility of DXA for determining bone mineral content in the vertebral column across wide ranges of age, and segmental and bone density. (Author).

  3. Adiposity Measurements by BMI, Skinfolds and Dual Energy X-Ray Absorptiometry in relation to Risk Markers for Cardiovascular Disease and Diabetes in Adult Males

    Directory of Open Access Journals (Sweden)

    Ahmad A. Hariri

    2013-01-01

    Full Text Available Background. Choice of adiposity measure may be important in the evaluation of relationships between adiposity and risk markers for cardiovascular disease and diabetes. Aim. We explored the strengths of risk marker associations with BMI, a simple measure of adiposity, and with measures provided by skinfold thicknesses and dual energy X-ray absorptiometry (DXA. Subjects and Methods. We evaluated in three subgroups of white males (–349, participating in a health screening program, the strengths of relationship between measures of total and regional adiposity and risk markers relating to blood pressure, lipids and lipoproteins, insulin sensitivity, and subclinical inflammation. Results. Independent of age, smoking, alcohol intake, and exercise, the strongest correlations with adiposity measures were seen with serum triglyceride concentrations and indices of insulin sensitivity, with strengths of association showing little difference between BMI and skinfold and DXA measures of total and percent body fat (–0.46, . Significant but weaker associations with adiposity were seen for serum HDL cholesterol and only relatively inconsistent associations with adiposity for total and LDL cholesterol and indices of subclinical inflammation. Conclusions. BMI can account for variation in risk markers in white males as well as more sophisticated measures derived from skinfold thickness measurements or DXA scanning.

  4. Impact of beverage consumption, age, and site dependency on dual energy X-ray absorptiometry (DEXA) measurements in perimenopausal women: a prospective study.

    Science.gov (United States)

    Lo, Huan-Chu; Kuo, Duen-Pang; Chen, Yen-Lin

    2017-08-01

    The aim of this study was to determine the best site for bone mineral density (BMD) measurements based on T-scores, age, and beverage consumption. In this prospective study, 271 women stratified by age (average age: 61.9 years) underwent dual energy X-ray absorptiometry (DEXA) scanning of their lumbar spine, hips, and forearms. Osteoporosis was defined as a BMD of 2.5 standard deviations or more below the mean peak bone mass based on a reference population of adult women (translated as a T-score ≤ -2.5), as measured by DEXA. Participants were also evaluated regarding alcohol and caffeine consumption by a semiquantitative questionnaire. A significant discrepancy was observed in the classification of osteoporosis at different locations, with hip and forearm showing the best correlation (Pearson's r = 0.627, p consumption. In the group ≤ 50 years of age, lumbar spine and forearm T-scores were only associated with alcohol consumption. In the group over 50 years of age, hip and forearm T-scores were only associated with caffeine consumption. Bone mineral density measurements at the hip and forearm correlated with caffeine consumption in elderly Taiwanese women. This is an important finding since age and caffeine consumption are known risk factors for osteoporosis.

  5. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salamat

    2013-01-01

    Full Text Available Objective. Although several studies have investigated the association between body mass index (BMI and bone mineral density (BMD, the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft and lumbar vertebrae (L2-L4 using a Dual-Energy X-ray Absorptiometry (DXA scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m2 and overweight and obese, BMI ≥ 25 kg/m2. Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93 and for osteoporosis was 4.4 (1.51, 12.87 for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  6. Comparison of Body Composition Assessed by Dual-Energy X-Ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members.

    Directory of Open Access Journals (Sweden)

    Heath G Gasier

    Full Text Available Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF% with BMI, and assess the agreement between BMI and BF% in defining obesity.Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20-91 years old who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification.The mean BMI (± SD and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%, however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%.From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs.

  7. Validation of quantitative computed tomography-derived areal bone mineral density with dual energy X-ray absorptiometry in an elderly Chinese population

    Institute of Scientific and Technical Information of China (English)

    Cheng Xiaoguang; Wang Ling; Wang Qianqian; Ma Yimin; Su Yongbin; Li Kai

    2014-01-01

    Background The performance of computed tomography X-ray absorptiometry (CTXA) against the dual energy X-ray absorptiometry (DXA) as standard has not been studied in Chinese population.The aim of this study was to evaluate the precision of this measurement and validate the value of quantitative computed tomography (QCT) by comparing CTXA results with DXA results in an elderly Chinese population.Methods One hundred and three females of 46 to 76 years old and 49 males of 52 to 76 years old were recruited from the Prospective Urban Rural Epidemiology study.All subjects underwent hip scans by both QCT and DXA on the same day.For precision determination,30 subjects had duplicate DXA hip scans.The hip QCT data of a subset of 27 subjects were separately analyzed by two observers and reanalyzed by one observer at a different time.The inter-and intra-observer variations of CTXA measurement were assessed,and the difference and correlation between CTXA and DXA results were analyzed.Results The inter-and intra-observer variations of CTXA were 0.070 and 0.024 g/cm2 in the femoral neck (FN),and 0.030 and 0.012 g/cm2 in the total hip (TH),which were comparable to the DXA inter-scan variations (0.013 g/cm2 for FN and 0.014 g/cm2 for TH).The results of CTXA bone mineral density (BMD) were highly correlated with those of DXA (R2 =0.810 for FN and R2=0.878 for TH).The BMD values of CTXA in FN and TH were lower than those of DXA by 21.0% and 17.8% (P<0.05),respectively.However,after appropriate transformation,the difference was eliminated and a comparable T score could be obtained.Conclusions CTXA shows good agreement with DXA for the measurement of BMD in the proximal femur,which makes QCT suitable for the quantification of bone mineral content in the hip and helpful for the diagnosis of osteoporosis.

  8. The prediction of total skeletal muscle mass in a Caucasian population - comparison of Magnetic resonance imaging (MRI) and Dual-energy X-ray absorptiometry (DXA).

    Science.gov (United States)

    Geisler, Corinna; Pourhassan, Maryam; Braun, Wiebke; Schweitzer, Lisa; Müller, Manfred J

    2017-03-01

    Dual-energy X-ray (DXA) is an alternative to magnetic resonance imaging (MRI) to measure skeletal muscle mass. DXA assesses lean body mass (LBM), and MRI measures skeletal muscle mass (SMM). Kim et al. (Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655) developed MRI-based algorithms to estimate whole-body SMM by DXA. These algorithms were based on an ethnically mixed study population (Kim et al., Am J Clin Nutr 2002; 76: 378; J Appl Physiol (1985) 2004; 97: 655). It is unclear whether Kim's algorithms are accurate in an exclusive Caucasian population. The aim of our study was to validate Kim's equation in a Caucasian population of 346 subjects. SMMMRI was assessed using MRI, and LBM and BMCDXA were measured by DXA and fat mass (FMADP ) by air-displacement plethysmographie (ADP). SMMMRI and predicted SMM were highly correlated (r = 0·944; P<0·05). The standard error of estimate of the regression equation was 2·4 kg. However, Bland-Altman plots showed a significant (P<0·001) systematic bias between SMMMRI (median 25·1 kg; IQ 20·2-31·1 kg) and predicted SMM (median 26·3 kg; IQ 22·6-33·0 kg), overestimating SMM by 9·8%. Multiple regression analyses showed that weight explained 4·4% of the variance in the differences between SMMMRI and predicted SMM with the major part unexplained. Kim's algorithm has a systematic unexplained bias and is not recommended in Caucasians.

  9. Visceral fat mass determination in rodent: validation of dual-energy x-ray absorptiometry and anthropometric techniques in fat and lean rats

    Directory of Open Access Journals (Sweden)

    Courteix Daniel

    2010-12-01

    Full Text Available Abstract Background Because abdominal obesity is predisposed to various metabolic disorders, it is of major importance to assess and track the changes with time of this specific fat mass. The main issue for clinicians or researchers is to use techniques for assessing abdominal fat deposition and its accumulation or changes over time, without sacrificing of experimental subjects. In the rat, techniques to investigate in-vivo visceral fat mass are lacking. The purpose of the study was to validate indirect Dual-energy X-ray Absorptiometry technique and abdominal circumference measurement as tools to predict visceral adipose tissue in rats. Forty-three Wistar male rats from different body weight, fat mass and ages were included in the study. Visceral fat mass was assessed by weighing the total perirenal and peri-epididymal adipose tissues after dissection. Statistical methods were used to discriminate the best region of interest allowing the in-vivo measure of Central Fat Mass by DXA. Abdominal circumference was measured at the same time as the DXA scan. Results A region of interest including Central Fat Mass from the whole body DXA scan (extending from L2 to L5 vertebrae, correlated strongly with ex-vivo Fat Mass (r = 0.94, p ex-vivo Fat Mass (r = 0.82, p ex-vivo Fat Mass but disappeared for the lean group between abdominal circumference and ex-vivo Fat Mass. Conclusions This study validates the Central Fat Mass determined by DXA as a non-sacrificial technique to assess visceral fat for in-vivo investigations in rats. The abdominal circumference measure appears useful in studying overweight or obese rats. These two techniques could be convenient tools in follow-up and longitudinal studies.

  10. Dual-energy X-ray absorptiometry, skinfold thickness and waist circumference for assessing body composition in ambulant and non-ambulant wheelchair games players

    Directory of Open Access Journals (Sweden)

    Annika eWillems

    2015-11-01

    Full Text Available Field-based assessments provide a cost–effective and accessible alternative to dual-energy X-ray absorptiometry (DXA for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n =7 or relied on a wheelchair for sports participation only (walkers; n =7. Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan & Weir, Durnin & Womersley, Lean et al, Gallagher et al and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thicknesses and sum of 8 skinfold thicknesses. Results showed that non-walkers had significantly lower total lean tissue mass (46.2±=6.6 kg vs. 59.4±8.2 kg, P =.006 and total body mass (65.8 ±4.2 kg vs. 79.4 ±14.9 kg; P =0.05 than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thicknesses had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.

  11. Associations of size at birth and dual-energy X-ray absorptiometry measures of lean and fat mass at 9 to 10 y of age.

    Science.gov (United States)

    Rogers, Imogen S; Ness, Andy R; Steer, Colin D; Wells, Jonathan C K; Emmett, Pauline M; Reilly, John R; Tobias, Jon; Smith, George Davey

    2006-10-01

    Birth weight has been positively associated with risk of overweight in later life. However, little information exists on how weight and length at birth are associated with subsequent lean and total body fat. We investigated the association between weight and length at birth and body composition and fat distribution in childhood. Body composition was measured by using dual-energy X-ray absorptiometry in 9-10-y-old subjects (n = 3006 boys and 3080 girls). Weight and length at birth were measured or taken from hospital records. Birth weight was positively associated with both lean body mass (LBM) and total body fat at 9-10 y of age in both sexes. LBM rose by 320 g per 1-SD increase in birth weight (P < 0.001), and total body fat rose by 2.5% (P = 0.001), but birth weight was unassociated with the fat-to-lean mass ratio (FLR). Ponderal index (PI) at birth (ie, weight/length3) was positively associated with LBM, total body fat, and the FLR in both sexes; the FLR increased by 2.7% in boys (P = 0.021) and by 5.0% in girls per 1-SD increase in PI (P < 0.001). Weight and length at birth did not predict central adiposity; although trunk fat had a strong positive association with PI at birth, this association disappeared after adjustment for total body fat. Higher PI at birth is associated with both higher fat and lean mass in childhood but also with an increase in the FLR. PI at birth is a better predictor of subsequent adiposity than is birth weight.

  12. Cost-effectiveness of dual-energy X-ray absorptiometry plus antiresorptive treatment in Australian women with breast cancer who receive aromatase inhibitors.

    Science.gov (United States)

    Sowa, P Marcin; Downes, Martin J; Gordon, Louisa G

    2017-03-01

    Postmenopausal women with breast cancer on aromatase inhibitor (AI) treatment are at increased risk of bone mineral density loss, which may lead to minimal trauma fractures. We examined the cost-effectiveness of dual energy X-ray absorptiometry (DXA) with antiresorptive (AR) therapy compared with fracture risk assessment, lifestyle advice, and vitamin supplementation. We used a hypothetical Markov cohort model of lifetime duration for 60-year-old women with early stage breast cancer receiving AIs. The data to inform the model came from medical literature, epidemiological reports, and costing data sets. Two eligibility scenarios for AR therapy were considered: (A) osteoporosis and (B) osteopenia or osteoporosis. The main outcomes were incremental cost per quality-adjusted life years gained and cumulative fractures per 1000 women, calculated relative to the comparator. Key aspects of the model were explored in sensitivity analyses. Due to relatively low effectiveness gains, the outcomes were primarily driven by the costs. The incremental cost per quality-adjusted life year gained was A$47,556 and A$253,000 for scenarios A and B, respectively. The numbers of fractures avoided were 56 and 77 per 1000 women, respectively. The results were most sensitive to the initial probability of osteoporosis, baseline risk of fracture, and cohort starting age. Compared with risk assessment and lifestyle advice only, a DXA scan followed by an AR treatment is potentially cost-effective for women aged 60 and over undergoing AI therapy for early breast cancer. However, the number of fractures averted through this intervention is small.

  13. Identifying scoliosis in population-based cohorts: development and validation of a novel method based on total-body dual-energy x-ray absorptiometric scans.

    Science.gov (United States)

    Taylor, Hilary J; Harding, Ian; Hutchinson, John; Nelson, Ian; Blom, Ashley; Tobias, Jon H; Clark, Emma M

    2013-06-01

    The purpose of this study was to develop and validate a novel method of identifying scoliosis on total-body dual energy X-ray absorptiometric (DXA) scans. Scoliosis was identified on total-body DXA scans by triaging to distinguish true curves from positioning errors, followed by a modified Ferguson method to measure angles. Precision was assessed on 174 children from the Avon Longitudinal Study of Parents and Children (ALSPAC), who underwent repeat DXA scans at age 15, 2-6 weeks apart. In addition, precision of angle estimation was evaluated on 20 scans measured five times. To evaluate accuracy, angle size was compared to spinal radiographs in 13 individuals with known scoliosis. Subsequently, this method was applied to estimate scoliosis prevalence rates and curve patterns from DXA scans previously obtained in 7,298 ALSPAC participants at age 9 and 5,122 at age 15. There was substantial agreement in identifying those with scoliosis on repeat DXA scans taken 2-6 weeks apart (kappa 0.74, 95 % CI 0.59-0.89). Of repeat angle measures, 95 % were within 5°. Angle size was underestimated by approximately 40 %. Prevalence of scoliosis ≥10° in the ALSPAC was 0.3 % at age 9 and 3.5 % at age 15 and was higher in girls at both time points. The mean ± SD curve size was 12 ± 4° at age 9 years and 15 ± 7° at age 15. We have developed and validated a novel method for identifying scoliosis from DXA scans. Comparison with prevalence data using more established techniques suggests our method provides valid estimates of scoliosis prevalence in population-based cohorts.

  14. DUAL-ENERGY X-RAY ABSORPTIOMETRY AND CALCULATED FRAX RISK SCORES MAY UNDERESTIMATE OSTEOPOROTIC FRACTURE RISK IN VITAMIN D–DEFICIENT VETERANS WITH HIV INFECTION

    Science.gov (United States)

    Stephens, Kelly I.; Rubinsztain, Leon; Payan, John; Rentsch, Chris; Rimland, David; Tangpricha, Vin

    2017-01-01

    Objective We evaluated the utility of the World Health Organization Fracture Risk Assessment Tool (FRAX) in assessing fracture risk in patients with human immunodeficiency virus (HIV) and vitamin D deficiency. Methods This was a retrospective study of HIV-infected patients with co-existing vitamin D deficiency at the Atlanta Veterans Affairs Medical Center. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DEXA), and the 10-year fracture risk was calculated by the WHO FRAX algorithm. Two independent radiologists reviewed lateral chest radiographs for the presence of subclinical vertebral fractures. Results We identified 232 patients with HIV and vitamin D deficiency. Overall, 15.5% of patients met diagnostic criteria for osteoporosis on DEXA, and 58% had low BMD (T-score between −1 and −2.5). The median risk of any major osteoporotic and hip fracture by FRAX score was 1.45 and 0.10%, respectively. Subclinical vertebral fractures were detected in 46.6% of patients. Compared to those without fractures, those with fractures had similar prevalence of osteoporosis (15.3% versus 15.7%; P>.999), low BMD (53.2% versus 59.3%; P = .419), and similar FRAX hip scores (0.10% versus 0.10%; P = .412). While the FRAX major score was lower in the nonfracture group versus fracture group (1.30% versus 1.60%; P = .025), this was not clinically significant. Conclusion We found a high prevalence of subclinical vertebral fractures among vitamin D–deficient HIV patients; however, DEXA and FRAX failed to predict those with fractures. Our results suggest that traditional screening tools for fragility fractures may not be applicable to this high-risk patient population. PMID:26684149

  15. Dual-Energy X-Ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players.

    Science.gov (United States)

    Willems, Annika; Paulson, Thomas A W; Keil, Mhairi; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2015-01-01

    Field-based assessments provide a cost-effective and accessible alternative to dual-energy X-ray absorptiometry (DXA) for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n = 7) or relied on a wheelchair for sports participation only (walkers; n = 7). Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan and Weir, Durnin and Womersley, Lean et al, Gallagher et al, and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thickness and sum of 8 skinfold thickness. Results showed that non-walkers had significantly lower total lean tissue mass (46.2 ± 6.6 kg vs. 59.4 ± 8.2 kg, P = 0.006) and total body mass (65.8 ± 4.2 kg vs. 79.4 ± 14.9 kg; P = 0.05) than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to 14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thickness had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.

  16. Comparison of Skinfold Thicknesses and Bioimpedance Spectroscopy to Dual-Energy X-Ray Absorptiometry for the Body Fat Measurement in Patients With Chronic Kidney Disease.

    Science.gov (United States)

    Rymarz, Aleksandra; Szamotulska, Katarzyna; Niemczyk, Stanisław

    2017-08-01

    The aim of the study was to compare the amount of body fat measured by skinfold thickness (SFT) and bioimpedance spectroscopy (BIS) with dual-energy x-ray absorptiometry (DXA) as a reference method. Forty-eight patients undergoing hemodialysis treatment thrice-weekly for at least 3 months (HD group) with a mean age of 59.8 ± 15.5 years, 61 patients with chronic kidney disease (CKD) with an estimated glomerular filtration rate (eGFR) 60 mL/min/1.73 m(2) and a mean age of 58.7 ± 17.0 years (control group) were included. Mean percentages of body fat measured by SFT did not significantly differ from those measured by DXA in the HD group ( P = .249) and the PreD group ( P = .355). In the control group, mean percentage of fat mass measured by SFT was significantly higher than measured by DXA ( P = .004). Mean difference was 1.99% ± 3.65%. The measurements of body fat performed by BIS were significantly higher than those performed by DXA in all studied groups ( P < .001). Age was statistically significant and the strongest factor that influenced the variability of measurements obtained by BIS and DXA in all studied groups ( R(2) = 0.302, 0.153, and 0.250, respectively, for HD, PreD, and control groups). SFT as a method of fat mass assessment in daily routine practice seems to be more reliable then BIS in patients treated with hemodialysis and in patients with stage IV/V CKD. However, methods based on bioimpedance techniques can potentially offer more data such as overhydration or an amount of lean tissue mass, but further investigations are needed to establish method the most suitable for patients with CKD.

  17. DUAL-ENERGY X-RAY ABSORPTIOMETRY AND CALCULATED FRAX RISK SCORES MAY UNDERESTIMATE OSTEOPOROTIC FRACTURE RISK IN VITAMIN D-DEFICIENT VETERANS WITH HIV INFECTION.

    Science.gov (United States)

    Stephens, Kelly I; Rubinsztain, Leon; Payan, John; Rentsch, Chris; Rimland, David; Tangpricha, Vin

    2016-04-01

    We evaluated the utility of the World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) in assessing fracture risk in patients with human immunodeficiency virus (HIV) and vitamin D deficiency. This was a retrospective study of HIV-infected patients with co-existing vitamin D deficiency at the Atlanta Veterans Affairs Medical Center. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DEXA), and the 10-year fracture risk was calculated by the WHO FRAX algorithm. Two independent radiologists reviewed lateral chest radiographs for the presence of subclinical vertebral fractures. We identified 232 patients with HIV and vitamin D deficiency. Overall, 15.5% of patients met diagnostic criteria for osteoporosis on DEXA, and 58% had low BMD (T-score between -1 and -2.5). The median risk of any major osteoporotic and hip fracture by FRAX score was 1.45 and 0.10%, respectively. Subclinical vertebral fractures were detected in 46.6% of patients. Compared to those without fractures, those with fractures had similar prevalence of osteoporosis (15.3% versus 15.7%; P>.999), low BMD (53.2% versus 59.3%; P = .419), and similar FRAX hip scores (0.10% versus 0.10%; P = .412). While the FRAX major score was lower in the nonfracture group versus fracture group (1.30% versus 1.60%; P = .025), this was not clinically significant. We found a high prevalence of subclinical vertebral fractures among vitamin D-deficient HIV patients; however, DEXA and FRAX failed to predict those with fractures. Our results suggest that traditional screening tools for fragility fractures may not be applicable to this high-risk patient population.

  18. Measurement of bone mineral density by dual-energy x-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem.

    Science.gov (United States)

    Kiratli, B J; Checovich, M M; McBeath, A A; Wilson, M A; Heiner, J P

    1996-02-01

    Although qualitative evidence of femoral bone remodeling, secondary to total hip arthroplasty (THA), is apparent on radiographs, quantification of change in bone mass from radiographs is limited. Dual-energy x-ray absorptiometry overcomes many of the limitations and yields accurate and precise bone mineral density (BMD) data. In this study, regional changes in femoral BMD were examined in 89 THA patients with a 2-year follow-up period. Thirty-two patients were evaluated initially before surgery and followed through the first 2 postoperative years. A second group was comprised of 57 patients whose surgery had been performed 1 to 6 years prior to entry into the study; they were also followed for 2 years hence. Thus, both immediate and later bone responses were evaluated prospectively. Maximal bone remodeling was seen in the first 6 months after THA and with a near plateau by the end of the first year. A slow yearly decline in BMD appeared to occur as long as 8 years after THA, thus demonstrating the long-term effects of the introduction of a femoral stem. Variance in preoperative BMD was explained by disease only; no other factors (age, weight, sex) showed significant associations, and body weight was the only variable that affected rate of remodeling after THA (not age, weight, sex, prosthesis size, nor disease). All patients were healthy, relatively young individuals who were good candidates for uncemented implantation, and none showed evidence of clinical complications or surgical failure. It is therefore suggested that the patterns and results reported here be viewed as normative data, that is, the typical skeletal adaptation to THA. In future application, observation of disparate BMD results as compared with these "normal" data may be predictive of abnormal response to surgery and potential for later problems.

  19. Percentage of body fat assessment using bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a weight loss program for obese or overweight Chinese adults.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Li

    Full Text Available The current study aimed to compare the estimates of body fat percentage (%BF by performing bioelectrical impedance analysis (BIA and dual energy X-ray absorptiometry (DXA in a sample of obese or overweight Chinese adults who participated in a weight-loss randomized control trial stratified by gender to determine whether or not BIA is a valid measurement tool. Among 189 adults [73 males, 116 females; age = 41 to 74 years; mean body mass index (BMI = 27.3 kg/m(2], assessments of %BF at the baseline and six months from the baseline were conducted by performing BIA and DXA. Bland-Altman analyses and multiple regression analyses were used to assess the relationships between %BFBIA and %BFDXA. Compared with DXA, BIA underestimated %BF [in males: 4.6, -2.4 to 11.7 (mean biases, 95% limit of agreement at the baseline, 1.4, -7.4 to 10.2 at the endpoint, and 3.2, -4.8 to 11.3 in changes; in females: 5.1, -2.4 to 12.7; 2.2, -6.1 to 10.4; and 3.0, -4.8 to 10.7, respectively]. For males and females, %BFDXA proved to be a significant predictor of the difference between DXA and BIA at the baseline, the endpoint, and in changes when BMI and age were considered (in males: p<0.01 and R (2 = 23.1%, 24.1%, 20.7%, respectively; for females: p<0.001 and R (2 = 40.4%, 48.8%, 25.4%, respectively. The current study suggests that BIA provides a relatively accurate prediction of %BF in individuals with normal weight, overweight, or obesity after the end of weight-loss program, but less accurate prediction of %BF in obese individuals at baseline or weight change during the weight-loss intervention program.

  20. Are adult patients with Laron syndrome osteopenic? A comparison between dual-energy X-ray absorptiometry and volumetric bone densities.

    Science.gov (United States)

    Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi

    2003-10-01

    Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.

  1. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases.

    Science.gov (United States)

    Dimai, Hans P

    2017-11-01

    Dual-energy X-ray absorptiometry (DXA) is a two-dimensional imaging technology developed to assess bone mineral density (BMD) of the entire human skeleton and also specifically of skeletal sites known to be most vulnerable to fracture. In order to simplify interpretation of BMD measurement results and allow comparability among different DXA-devices, the T-score concept was introduced. This concept involves an individual's BMD which is then compared with the mean value of a young healthy reference population, with the difference expressed as a standard deviation (SD). Since the early nineties of the past century, the diagnostic categories "normal, osteopenia, and osteoporosis", as recommended by a WHO working Group, are based on this concept. Thus, DXA is still the globally accepted "gold-standard" method for the noninvasive diagnosis of osteoporosis. Another score obtained from DXA measurement, termed Z-score, describes the number of SDs by which the BMD in an individual differs from the mean value expected for age and sex. Although not intended for diagnosis of osteoporosis in adults, it nevertheless provides information about an individual's fracture risk compared to peers. DXA measurement can either be used as a "stand-alone" means in the assessment of an individual's fracture risk, or incorporated into one of the available fracture risk assessment tools such as FRAX® or Garvan, thus improving the predictive power of such tools. The issue which reference databases should be used by DXA-device manufacturers for T-score reference standards has been recently addressed by an expert group, who recommended use National Health and Nutrition Examination Survey III (NHANES III) databases for the hip reference standard but own databases for the lumbar spine. Furthermore, in men it is recommended use female reference databases for calculation of the T-score and use male reference databases for calculation of Z-score. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Anthropometric variables accurately predict dual energy x-ray absorptiometric-derived body composition and can be used to screen for diabetes.

    Directory of Open Access Journals (Sweden)

    Reza Yavari

    Full Text Available The current world-wide epidemic of obesity has stimulated interest in developing simple screening methods to identify individuals with undiagnosed diabetes mellitus type 2 (DM2 or metabolic syndrome (MS. Prior work utilizing body composition obtained by sophisticated technology has shown that the ratio of abdominal fat to total fat is a good predictor for DM2 or MS. The goals of this study were to determine how well simple anthropometric variables predict the fat mass distribution as determined by dual energy x-ray absorptometry (DXA, and whether these are useful to screen for DM2 or MS within a population. To accomplish this, the body composition of 341 females spanning a wide range of body mass indices and with a 23% prevalence of DM2 and MS was determined using DXA. Stepwise linear regression models incorporating age, weight, height, waistline, and hipline predicted DXA body composition (i.e., fat mass, trunk fat, fat free mass, and total mass with good accuracy. Using body composition as independent variables, nominal logistic regression was then performed to estimate the probability of DM2. The results show good discrimination with the receiver operating characteristic (ROC having an area under the curve (AUC of 0.78. The anthropometrically-derived body composition equations derived from the full DXA study group were then applied to a group of 1153 female patients selected from a general endocrinology practice. Similar to the smaller study group, the ROC from logistical regression using body composition had an AUC of 0.81 for the detection of DM2. These results are superior to screening based on questionnaires and compare favorably with published data derived from invasive testing, e.g., hemoglobin A1c. This anthropometric approach offers promise for the development of simple, inexpensive, non-invasive screening to identify individuals with metabolic dysfunction within large populations.

  3. Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, M. [Medical University of Vienna, Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Bauer, J.S.; Dobritz, M.; Woertler, K.; Rummeny, E.J.; Baum, T. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Beer, A.J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Wolf, P. [Technische Universitaet Muenchen, Institute for Medical Statistics and Epidemiology, Munich (Germany)

    2013-02-15

    To evaluate the utility of femoral bone mineral density (BMD) measurements in routine contrast-enhanced multi-detector computed tomography (ceMDCT) using dual-energy X-ray absorptiometry (DXA) as the reference standard. Forty-one patients (33 women, 8 men) underwent DXA measurement of the proximal femur. Subsequently, transverse sections of routine ceMDCT of these patients were used to measure BMD of the femoral head and femoral neck. The MDCT-to-DXA conversion equations for BMD and T-score were calculated using linear regression analysis. The conversion equations were applied to the MDCT data sets of 382 patients (120 women, 262 men) of whom 74 had osteoporotic fractures. A correlation coefficient of r = 0.84 (P < 0.05) was calculated for BMD{sub MDCT} values of the femoral head and DXA T-scores of the total proximal femur using the conversion equation T-score = 0.021 x BMD{sub MDCT} - 5.90. The correlation coefficient for the femoral neck was r = 0.79 (P < 0.05) with the conversion equation T-score = 0.016 x BMD{sub MDCT} - 4.28. Accordingly, converted T-scores for the femoral neck in patients with versus those without osteoporotic fractures were significantly different (female, -1.83 versus -1.47; male, -1.86 versus -1.47; P < 0.05). BMD measurements of the proximal femur were computed in routine contrast-enhanced MDCT and converted to DXA T-scores, which adequately differentiated patients with and without osteoporotic fractures. (orig.)

  4. Discriminative ability of calcaneal quantitative ultrasound compared with dual-energy X-ray absorptiometry in men with hip or distal forearm fractures.

    Science.gov (United States)

    Cesme, Fatih; Esmaeilzadeh, Sina; Oral, Aydan

    2016-10-01

    The aim of this case-control study was to compare the discriminatory ability of bone mineral density (BMD) measurements and calcaneal quantitative ultrasound (QUS) parameters for fractures and to determine fracture thresholds for each variable in men with hip or distal forearm fractures. A total of 20 men with hip and 18 men with distal forearm fractures and 38 age-matched controls were included in this study. Dual-energy X-ray absorptiometry (DXA) BMD (spine and hip) and calcaneal QUS measurements were made. Area under the curves (AUCs) were calculated to assess fracture discriminatory power of DXA and QUS variables. Quantitative Ultrasound Index (QUI) T-score and Speed of Sound (SOS) were found to be the best parameters for the identification of hip and distal forearm fractures, respectively, with AUCs greater than those of DXA BMD and other QUS parameters. While a QUI T-score of ≤-1.18 could identify and rule out hip fracture cases with approximately 80% sensitivity and specificity, a SOS value of ≤1529.75 reached to almost 90% for ruling in and out distal forearm fractures. The discriminatory performance of calcaneal QUS variables between fractured and non-fractured men was as good as those of the DXA BMD and even better. Since men appear to sustain fractures at closer QUS variable levels than those of the DXA BMD regardless of the fracture type, it may be speculated that calcaneal QUS may be more helpful in predicting the risk of fractures when BMD alone does not demonstrate impaired bones. Level III, Study of Diagnostic Test. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  5. Prediction of Android and Gynoid Body Adiposity via a Three-dimensional Stereovision Body Imaging System and Dual-Energy X-ray Absorptiometry.

    Science.gov (United States)

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Stanforth, Philip R; Xu, Bugao

    2015-01-01

    Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease of use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percentage fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. The R(2) of the prediction equations for fat mass and percentage body fat were 93.2% and 76.4% for android and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percentage fat were -0.06 ± 0.87 kg and -0.11% ± 1.97% for android and -0.04 ± 1.58 kg and -0.19% ± 4.27% for gynoid. Prediction values for fat mass and percentage fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid as well as total and regional (trunk, leg) fat mass.

  6. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    Science.gov (United States)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  7. The Study on Bone Mineral Density Measurement Error in Accordance with Change in ROI by Utilizing Dual Energy X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hong [Dept. of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, In Ja [Dept. of Radiological Technology, Dongnam Health College, Suwon (Korea, Republic of); Yong, Hyung Jin [Dept. of Medicine Physics, The Graduate School of Biomedical Science Korea University, Seoul (Korea, Republic of)

    2012-03-15

    Dual Energy X-ray Absorptiometry(DEXA) is commonly used to diagnose Osteoporosis. The errors of DEXA bone density operation are caused by operator, bone mineral density meter, blood testing, patient. We focus on operator error then study about how much influence operator's region of intest(ROI) in bone testing result. During from March to July in 2011. 50 patients ware selected respectively from 30, 40, 50, 60, and 70 age groups who came to Korea University Medical Center(KUMC) for their Osteoporosis treatment. A-test was performed with usually ROI and B-test was performed with most widely ROI. Then, We compare A-test and B-test for find maximum difference of T-score error which occurred operator ROI controlling. Standard deviation of T-score of B-test showed 0.1 higher then A-test in femur neck. Standard deviation of B-test showed 0.2 higher then A-test in Ward's area which in Greater trocanter and Inter trocanter. Standard deviation of B-test showed 0,1 lower then A-test in L-1. Bone density testing about Two hundred patients results are as follow. When operator ROI was changed wider than normal ROI, bone density of femur was measured more higher but bone density of L-spine was measured more lower then normal bone density. That means, sometime DEXA bone density testing result is dependent by operator ROI controlling. This is relevant with the patient's medicine and health insurance, thus, tester always keep the size of ROI for to prevent any problem in the patient.

  8. Assess the discrimination of Achilles InSight calcaneus quantitative ultrasound device for osteoporosis in Chinese women: Compared with dual energy X-ray absorptiometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jin Ningning, E-mail: ningning_jin@163.com [Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 (China); Lin Shouqing, E-mail: Shouqing_Lin2003@yahoo.com.cn [Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 (China); Zhang Ying, E-mail: steel_lee@sina.com.cn [Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 (China); Chen Fengling, E-mail: bjzqk@126.com [Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 (China)

    2010-11-15

    Since the implementation of quantitative ultrasound (QUS) technology may become a part of future clinical decision making to identify osteoporosis and prevent fractures, this study was initiated to evaluate the correlations of QUS parameters and axial bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA) and to assess the discrimination of QUS measurements for osteoporosis and osteopenia defined by WHO criteria. 106 native Chinese women (aged 50.2 {+-} 10.9 SD, 21-74 years) were involved. Each subject received both QUS measurements at left calcaneus with Achilles InSight and DXA measurements with DPX-L at lumbar spine (L{sub 2-4}), total hip and femoral neck. Achilles InSight provided the stiffness index (SI) which derived from Broadband Ultrasound Attenuation (BUA) and Speed of Sound (SOS), and the T-scores of SI were calculated. We found that the QUS parameter SI was statistically significant but medium correlated (r = 0.458-0.587) with DXA at the lumbar spine, total hip and femoral neck (P < 0.0001 for all correlations). With ROC analysis, the area under the ROC curve of diagnosis of osteoporosis and osteopenia were 0.933 and 0.796, respectively. To identify osteoporosis, when the T-score threshold of SI was defined as -1.4, the sensitivity was 100%, and the specificity was 73.7%. Our study confirmed that QUS measurements performed with Achilles InSight were capable to identify osteoporosis defined by axial BMD using DXA in Chinese women.

  9. Fundamentals of energy dispersive X-ray analysis

    CERN Document Server

    Russ, John C; Kiessling, R; Charles, J

    1984-01-01

    Fundamentals of Energy Dispersive X-ray Analysis provides an introduction to the fundamental principles of dispersive X-ray analysis. It presents descriptions, equations, and graphs to enable the users of these techniques to develop an intuitive and conceptual image of the physical processes involved in the generation and detection of X-rays. The book begins with a discussion of X-ray detection and measurement, which is accomplished by one of two types of X-ray spectrometer: energy dispersive or wavelength dispersive. The emphasis is on energy dispersive spectrometers, given their rather wid

  10. Theoretical and experimental comparison of image signal and noise for dual-energy subtraction angiography and conventional x-ray angiography

    Science.gov (United States)

    Burton, Christiane S.; Mayo, John R.; Cunningham, I. A.

    2015-03-01

    Cardiovascular disease is currently the leading cause of mortality worldwide. Digital subtraction angiography (DSA) is widely used to enhance the visibility of small vessels and vasculature obscurred by overlying bone and lung fields by subtracting a mask and contrast image. However, motion between these mask and contrast images can introduce artifacts that can render a study non-diagnostic. This makes DSA particularly unsuccessful for cardiac imaging. A method called dual-energy, or energy subtraction angiography (ESA), was proposed in the past as an alternative for vascular imaging, however it was not pursued because experimental results suggested that image quality was deemed as poor and inferior to DSA. Image quality for angiography comes down to iodine signal and noise. In this paper we investigate the fundamental iodine signal and noise analysis of ESA and compare it to DSA. Method: We developed a polyenergetic and monoenergetic theoretical model for iodine signal and noise for both ESA and DSA. We validated our polyenergetic model by experiment where ESA and DSA images of a vascular phantom were acquired using an x-ray system with a flat panel CsI Xmaru1215CF-MPTM (Rayence Co., Ltd., Republic of Korea) detector. For ESA low and high applied tube voltages of 50 kV and 120 kV (2.5 mmCu), respectively, and for DSA the applied tube voltage was 80 kV. Iodine signal-to-noise ratio (SNR) per entrance exposure was calculated for each iodine concentration for both ESA and DSA. Results: Our measured iodine SNR agreed well with theoretical calculations. Iodine SNR for ESA was relatively higher than DSA for low iodine mass loadings, and as iodine mass loading increases iodine SNR decreases. Conclusions: We have developed a model for iodine SNR for both DSA and ESA. Our model was validated with experiment and showed excellent agreement. We have shown that there is potential for obtaining iodine-specific images using ESA that are similar to DSA.

  11. Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system

    OpenAIRE

    Lane, D W.; Nyombi, A.; Shackel, J.

    2014-01-01

    A method for energy-dispersive X-ray diffraction mapping is presented, using a conventional low-power benchtop X-ray fluorescence spectrometer, the Seiko Instruments SEA6000VX. Hyper spectral X-ray maps with a 10µm step size were collected from polished metal surfaces, sectioned Bi, Pb and steel shot gun pellets. Candidate diffraction lines were identified by eliminating those that matched a characteristic line for an element and those predicted for escape peaks, sum peaks, and Rayleigh and C...

  12. Low Energy X-Ray Diagnostics - 1981.

    Science.gov (United States)

    1981-01-01

    Filtering, and Scattering of Soft X-Rays by Mirrors Victor Rehn Michelson Laboratory, Physics Division Naval Weapons Center, China Lake, California...met with in K.Tregidgo, 18, 2003 (1979). the manufacture of X-ray optical components. In 32. W.P.Linnik, C. R. Acad. Sci. URSS ., 5, 210 (1933). general

  13. Use of dual-energy X-ray absorptiometry in obese individuals: The possibility to estimate whole body composition from DXA half-body scans

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)], E-mail: kent.lundqvist@karolinska.se; Neovius, M. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden); Grigorenko, A. [Research and Development Unit, YLab Wellcare Institute, SE-113 60 Stockholm (Sweden); Nordenstroem, J. [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Roessner, S. [Obesity Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm (Sweden)

    2009-02-15

    Background: Because of its high accuracy, dual-energy X-ray absorptiometry (DXA) has become one of the most frequently used methods for estimating human body composition. One limiting factor concerning measuring obese people with the DXA technique is the size of the scanning area. Objective: To explore the possibility of estimating whole body composition from half-body scans before and after weight reduction, and compare the results with densitometry measurements. Design: Intervention study of 15 obese adults (age 47.2 {+-} 13.4; BMI 35.9 {+-} 3.1) who were measured with full- and half-body DXA scans before and after a 7-week weight loss program. On both occasions, body composition was also assessed with air-displacement plethysmography (ADP). Results: The mean weight loss at follow-up was 14.9 {+-} 4.1 kg (5.0 kg/m{sup 2}), corresponding to a 14% decrease in body weight. When comparing the results from full- and half-body DXA, between 96% and 98% of the variance was explained. At baseline, %Body Fat (%BF) did not differ significantly between full and half-body measurements (0.6, -0.1-1.3), but the half-body method overestimated it by 1.0% (0.2-1.8) at follow-up. On the contrary, the difference between DXA and ADP in the assessment of %BF was both significant and of large magnitude (5.2; 2.4-8.0) at baseline, while non-significant and near zero (0.4; -1.3-2.2) at follow-up when the subjects had lost a significant amount of weight. Conclusion: The results obtained from half-body DXA scans can accurately predict whole body composition, as measured by full-body DXA, before and after significant weight reduction, in obese patients who barely fit into the scanning area. However, increasing discordance between DXA and ADP with increasing adiposity was seen, indicating that the measurements might not be as reliable on extreme obese subjects as on normal and overweight ditto.

  14. Application of the World Health Organization Fracture Risk Assessment Tool to predict need for dual-energy X-ray absorptiometry scanning in postmenopausal women.

    Science.gov (United States)

    Chao, An-Shine; Chen, Fang-Ping; Lin, Yu-Ching; Huang, Ting-Shuo; Fan, Chih-Ming; Yu, Yu-Wei

    2015-12-01

    To evaluate the efficacy of the World Health Organization Fracture Risk Assessment Tool, excluding bone mineral density (pre-BMD FRAX), in identifying Taiwanese postmenopausal women needing dual-energy X-ray absorptiometry (DXA) examination for further treatment. The pre-BMD FRAX score was calculated for 231 postmenopausal women who participated in public health education workshops in the local Keelung community, Taiwan. DXA scanning and vertebral fracture assessment (VFA) were arranged for women classified as intermediate or high risk for fracture using the pre-BMD FRAX fracture probability. Pre-BMD FRAX classified 26 women as intermediate risk and 37 as having high risk for fracture. Subsequent DXA scans for these 63 women showed that 36 were osteoporotic, 19 were osteopenic, and eight had normal bone density. Concurrent VFA revealed 25 spine factures in which 14 were osteoporotic, seven were osteopenic, and four had normal bone density. The efficacy of the pre-BMD FRAX score to identify those patients with low bone mass by DXA was 87.3% (55/63). When VFA was combined with BMD to identify those patients with high risk (osteopenia, osteoporosis, or spinal fracture), the efficacy of the pre-BMD score increased to 93.7% (59/63). According to the National Osteoporosis Foundation, the overall concordance between pre-BMD FRAX and BMD, expressed through the kappa index, was 0.967. Compared with the evaluation when BMD was used alone, there was a significant increase in efficacy in identifying women who need treatment using BMD plus VFA or FRAX plus BMD. Furthermore, the highest efficacy was achieved when FRAX with BMD and VFA was used. The pre-BMD FRAX score not only efficiently predicts postmenopausal patients who are potentially at risk and might require treatment but also reduces unnecessary DXA use. Concurrent VFA during DXA use increases spine fracture detection. This improvement in diagnostic efficacy allows clinicians to provide the most appropriate therapeutic

  15. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    Science.gov (United States)

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  16. Measurement of bone mineral density at proximal femur by dual-energy X-ray Absorptiometry%股骨近端骨密度的测量

    Institute of Scientific and Technical Information of China (English)

    张华俦

    2012-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptionmetry can be regarded as "gold standard" for the diagnosis and treatment follow-up. The measurement of BMD at proximal femur can not only predict an occurrence of the hip fracture but also in the other part of body fracture. The elderly population with high incidence of osteoporosis often combine with many degenerative disease, such as degenerative scoliosis, osteophyte formation, intervertebral disc herniation etc. These pathological changes in the lumbar spine might reduce the accuracy of BMD in anterposterior position. So the measurement of BMD at proximal femur become more and more popular in the clinical trial or diagnosis and treatment of osteoporosis in Europen and American areas in recently. This article reviews the anatomy characteristics of proximal femur, method and purport of measurement of BMD at proximal femur, and refers to some matters must be paid more attention in the procedures of measurement of BMD and facilitate clinicians and technicians to assess the clinical meaning of measurement of BMD at proximal femur comprehensively.%双能X线骨密度仪检测骨密度是诊断骨质疏松症和疗效随访的金标准,特别是髋部骨密度的测量对于骨折的预测尤其测定部位本身骨折的预测作用较大.由于脊柱部位的骨密度测量值易受到脊柱退行性疾病的病理改变如退行性侧凸、骨赘增生、腰椎间盘突出等影响,测量的准确性下降.因而近年来欧美国家临床试验也好或者骨质疏松诊疗也好,大都以股骨近端的BMD测定为标准.本文就股骨近端解剖特点、骨密度测量的意义、方法以及测量的注意点作一个综述,以期帮助临床医生或技术员全面评估股骨近端骨密度测定的意义.

  17. High Energy Vision: Processing X-rays

    CERN Document Server

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  18. Asymmetric Dual Axis Energy Recovery Linac for Ultra-High Flux sources of coherent X-ray/THz radiation: Investigations Towards its Ultimate Performance

    CERN Document Server

    Ainsworth, R; Konoplev, I V; Seryi, A

    2015-01-01

    Truly compact and high current, efficient particle accelerators are required for sources of coherent high brightness and intensity THz and X-Ray radiation to be accepted by university or industrial R&D laboratories. The demand for compactness and efficiency can be satisfied by superconducting RF energy recovery linear accelerators (SRF ERL) allowing effectively minimising the footprint and maximising the efficiency of the system. However such set-ups are affected by regenerative beam-break up (BBU) instabilities which limit the beam current and may terminate the beam transport as well as energy recuperation. In this paper we suggest and discuss a SRF ERL with asymmetric configuration of accelerating and decelerating cavities resonantly coupled. In this model of SRF ERL we propose an electron bunch passing through accelerating and decelerating cavities each once and we show that in this case the regenerative BBU instability can be minimised allowing high currents to be achieved. We study the BBU start curr...

  19. Application of dual-energy X-ray in vascular calcification in patients with chronic kidney disease%双能X线在慢性肾脏病患者血管钙化中的应用

    Institute of Scientific and Technical Information of China (English)

    吴晓婵; 罗福漳; 洪国保

    2015-01-01

    目的:探讨双能X线骨密度检测在慢性肾脏病(CKD)患者血管钙化诊断中的应用价值。方法选取2013年1月~2014年12月本院接诊的42例CKD 3~5期患者作为研究对象,所有患者均行双能X线检查。以多层螺旋CT诊断为金标准,评价双能X线检测在CKD 3~5期患者血管钙化诊断中的敏感度和特异性。结果多层螺旋 CT在 CKD 3期、CKD 4期、CKD 5期的检出率分别为33.3%、52.2%、100.0%,双能X线的检出率分别为22.2%、43.5%、90.0%,且多层螺旋CT的总检出率为59.5%,与双能X线检测的50.0%比较,差异无统计学意义(P跃0.05)。以多层螺旋CT检测为金标准,双能X线检测的特异性为100.0%,敏感度为84.0%。结论双能X线可应用于检测CKD 3~5期患者的血管钙化,具有较好的临床价值。%Objective To exolore the application value of dual-energy X-ray in the detection of vascular calcification in chronic kidney disease (CKD) patients. Methods 42 cases of CKD 3-5 stages from January 2013 to December 2014 in our hospital were selected as the research objects.All patients were given dual-energy X-ray examination.The sensi-tivity and specificity of dual-energy X-ray examination in the diagnosis of vascular calcification in patients with CKD 3-5 stages were evaluated by using the gold standard of the diagnosis of multi-slice spiral CT. Results The detection rate in CKD 3-5 stages by multi-slice spiral CT was 33.3%,52.2%,100.0% respectively,while the detection rate in CKD 3-5 stages by dual-energy X-ray was 22.2%,43.5%,90.0% respectively.The total detection rate of multi-slice spiral CT was 59.5%,the otal detection rate of multi-slice spiral CT was 50.0%,there was no significant difference (P>0.05).The specificity of dual energy X-ray detection was 84%,and the sensitivity was 100%,with the detection of multi slice spiral CT as gold standard. Conclusion Dual-energy X-ray can be used in the detection of vascular calcification in chronic

  20. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    Science.gov (United States)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  1. Clinical research on dual-energy X-ray absorptiometry in diagnose of osteoporosis in the elderly%双能X线骨密度测量仪在老年人骨质疏松的临床研究

    Institute of Scientific and Technical Information of China (English)

    曹学胜; 李秀芬; 黄欣

    2015-01-01

    目的:探讨双能X线骨密度测量仪在治疗老年人骨质疏松的临床应用价值.方法:收集200例老年住院患者在双能X线骨密度测量仪下测量,并对其数据进行分析.结果:老年人多数患有骨质疏松,女性明显高于男性,在骨质疏松的患者中,90%的患者有骨折病史,有统计学意义(P<0.01).结论:双能X线骨密度测量仪对诊断、治疗老年人骨质疏松有重要的临床意义.%Objective: To investigate the clinical value of the dual-energy X-ray absorptiometry in gauging osteoporosis in the elderly. Methods: 200 cases of elderly patients hospitalized were measured by the dual energy X-ray absorptiometry measurement instrument, and the data were analyzed. Results: Most of the elderly were suffering from osteoporosis and the incurrence of osteoporsis in females was much significantly higher than in males. 90 percent of patients with osteoporosis have a history of fracture and it is of statistical significance (P<0.01). Conclusion: dual-energy X-ray absorptiometry meter in diagnosis and treatment of osteoporosis in the elderly has shown important clinical significance.

  2. Reduction of misclassification rates of obesity by body mass index using dual-energy X-ray absorptiometry scans to improve subsequent prediction of per cent fat mass in a Caucasian population

    DEFF Research Database (Denmark)

    Pedersen, Susie Dawn; Astrup, Arne; Skovgaard, Ib

    2011-01-01

    Recognition is increasing for the errors of body mass index (BMI) in classification of excess body fat. Dual-energy X-ray absorptiometry (DXA) is accurate to assess body fat mass per cent (%FM), but is underutilized clinically. We examined the prevalence of obesity misclassification by BMI...... in comparison to body %FM by DXA scanning, and whether there is a time-stable individual relation between the %FM and the BMI in patients scanned several times. We aimed to develop a formula where, based on a single DXA scan, %FM could be predicted following a change in weight, and a patient-specific BMI...

  3. Energy-resolved X-ray detectors: the future of diagnostic imaging

    Directory of Open Access Journals (Sweden)

    Pacella D

    2015-01-01

    Full Text Available Danilo Pacella ENEA-Frascati, Rome, Italy Abstract: This paper presents recent progress in the field of X-ray detectors, which could play a role in medical imaging in the near future, with special attention to the new generation of complementary metal-oxide semiconductor (C-MOS imagers, working in photon counting, that opened the way to the energy-resolved X-ray imaging. A brief description of the detectors used so far in medical imaging (photographic films, imaging plates, flat panel detectors, together with the most relevant imaging quality parameters, shows differences between, and advantages of these new C-MOS imagers. X-ray energy-resolved imaging is very attractive not only for the increase of contrast but even for the capability of detecting the nature and composition of the material or tissue to be investigated. Since the X-ray absorption coefficients of the different parts or organs of the patient (object are strongly dependent on the X-ray photon energy, this multienergy ("colored" X-ray imaging could increase enormously the probing capabilities. While dual-energy imaging is now a reality in medical practice, multienergy is still in its early stage, but a promising research activity. Based on this new technique of color X-ray imaging, the entire scheme of source–object–detector could be revised in the future, optimizing spectrum and detector to the nature and composition of the target to be investigated. In this view, a transition to a set of monoenergetic X-ray lines, suitably chosen in energy and intensity, could be envisaged, instead of the present continuous spectra. Keywords: X-ray detectors, X-ray medical imaging, C-MOS imagers, dual and multienergy CT

  4. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    Science.gov (United States)

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  5. Metacarpal index by digital X-ray radiogrammetry: normative reference values and comparison with dual X-ray absorptiometry

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Nielsen, S P

    2001-01-01

    Metacarpal index (MCI), the combined cortical midmetacarpal thickness divided by the outer mid-metacarpal diameter, fell into oblivion when dual photon absorptiometry was introduced a quarter of a century ago. Modern PC-based digital X-ray diameter measurements offers a unique opportunity...

  6. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  7. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray flu

  8. X-ray characterization by energy-resolved powder diffraction

    Directory of Open Access Journals (Sweden)

    G. Cheung

    2016-08-01

    Full Text Available A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  9. Focusing high-energy x-rays by a PMMA compound x-ray lens on Beijing synchrotron radiation facility

    Institute of Scientific and Technical Information of China (English)

    Le Zi-Chun; Liang Jing-Qiu; Dong Wen; Zhu Pei-Ping; Peng Liang-Qiang; Wang Wei-Biao; Huang Wan-Xia; Yuan Qing-Xi; Wang Jun-Yue

    2007-01-01

    The x-ray compound lens is a novel refractive x-ray optical device. This paper reports the authors' recent research on a polymethyl methacrylate (PMMA) compound x-ray lens. Firstly the designing and LIGA fabrication process for the PMMA compound x-ray lens are briefly described. Then, a method for theoretical analysis, as well as the experimental system for measurement is also introduced. Finally, the focusing spots for 8keV monochromatic x-rays by the PMMA compound x-ray lens are measured and analysed. According to the experimental results, it is concluded that the PMMA compound x-ray lens promises a good focusing performance under the high-energy x-rays.

  10. Projection x-ray imaging with photon energy weighting: experimental evaluation with a prototype detector.

    Science.gov (United States)

    Shikhaliev, Polad M

    2009-08-21

    The signal-to-noise ratio (SNR) in x-ray imaging can be increased using a photon counting detector which could allow for rejecting electronics noise and for weighting x-ray photons according to their energies. This approach, however, was not feasible for a long time because photon counting x-ray detectors with very high count rates, good energy resolution and a large number of small pixels were required. These problems have been addressed with the advent of new detector materials, fast readout electronics and powerful computers. In this work, we report on the experimental evaluation of projection x-ray imaging with a photon counting cadmium-zinc-telluride (CZT) detector with energy resolving capabilities. The detector included two rows of pixels with 128 pixels per row with 0.9 x 0.9 mm(2) pixel size, and a 2 Mcount pixel(-1) s(-1) count rate. The x-ray tube operated at 120 kVp tube voltage with 2 mm Al-equivalent inherent filtration. The x-ray spectrum was split into five regions, and five independent x-ray images were acquired at a time. These five quasi-monochromatic x-ray images were used for x-ray energy weighting and material decomposition. A tissue-equivalent phantom was used including contrast elements simulating adipose, calcifications, iodine and air. X-ray energy weighting improved the SNR of calcifications and iodine by a factor of 1.32 and 1.36, respectively, as compared to charge integrating. Material decomposition was performed by dual energy subtraction. The low- and high-energy images were generated in the energy ranges of 25-60 keV and 60-120 keV, respectively, by combining five monochromatic image data into two. X-ray energy weighting was applied to low- and high-energy images prior to subtraction, and this improved the SNR of calcifications and iodine in dual energy subtracted images by a factor of 1.34 and 1.25, respectively, as compared to charge integrating. The detector energy resolution, spatial resolution, linearity, count rate, noise and

  11. Low energy background in mercuric iodide X-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Natarajan, M. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Henderson, J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.

    1996-10-01

    The origins of the continuous background (window effect or dead layer) in mercuric iodide X-ray spectrometers are investigated. It is found that photo-electron escape and carrier diffusion are the dominant mechanisms of incomplete charge collection in the energy range of interest (from 3-60 keV). X-ray spectra measurements, computer calculation and photo-response measurements are presented in support of the proposed model. Many observations of detector behavior made in the manufacturing and application of mercuric iodide X-ray detectors can be explained by this model. (orig.).

  12. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  13. Signal and noise analysis of flat-panel sandwich detectors for single-shot dual-energy x-ray imaging

    Science.gov (United States)

    Kim, Dong Woon; Kim, Ho Kyung; Youn, Hanbean; Yun, Seungman; Han, Jong Chul; Kim, Junwoo; Kam, Soohwa; Tanguay, Jesse; Cunningham, Ian A.

    2015-03-01

    We have developed a novel sandwich-style single-shot (single-kV) detector by stacking two indirect-conversion flat-panel detectors for preclinical mouse imaging. In the sandwich detector structure, extra noise due to the direct x-ray absorption in photodiode arrays is inevitable. We develop a simple cascaded linear-systems model to describe signal and noise propagation in the flat-panel sandwich detector considering direct x-ray interactions. The noise-power spectrum (NPS) and detective quantum efficiency (DQE) obtained from the front and rear detectors are analyzed by using the cascaded-systems model. The NPS induced by the absorption of direct x-ray photons that are unattenuated within the photodiode layers is white in the spatial-frequency domain like the additive readout noise characteristic; hence that is harmful to the DQE at higher spatial frequencies at which the number of secondary quanta lessens. The model developed in this study will be useful for determining the optimal imaging techniques with sandwich detectors and their optimal design.

  14. Point-of-Care Phalangeal Bone Mineral Density Measurement Can Reduce the Need of Dual-Energy X-Ray Absorptiometry Scanning in Danish Women at Risk of Fracture

    DEFF Research Database (Denmark)

    Holmberg, Teresa; Bech, Mickael; Gram, Jeppe;

    2016-01-01

    Identifying persons with a high risk of osteoporotic fractures remains a challenge. DXA uptake in women with elevated risk of osteoporosis seems to be depending on distance to scanning facilities. This study aimed to investigate the ability of a small portable scanner in identifying women...... with reduced bone mineral density (BMD), and to define triage thresholds for pre-selection. Total hip and lumbar spine BMD was measured by dual-energy X-ray absorptiometry and phalangeal BMD by radiographic absorptiometry in 121 Danish women with intermediate or high 10-year fracture probability (aged 61......-81 years). Correlation between the two methods was estimated using correlation coefficient (r) and Bland-Altman plots. A moderate correlation between phalangeal BMD versus total hip (r = 0.47) and lumbar spine (r = 0.51), and an AUC on 0.80 was found. The mean difference between phalangeal T score...

  15. Dual-energy x-ray absorptiometry to measure the effects of a thirteen-week moderate to vigorous aquatic exercise and nutritional education intervention on percent body fat in adults with intellectual disabilities from group home settings.

    Science.gov (United States)

    Casey, Amanda; Boyd, Colin; Mackenzie, Sasho; Rasmussen, Roy

    2012-05-01

    People with intellectual disability are more likely to be obese and extremely obese than people without intellectual disability with rates remaining elevated among adults, women and individuals living in community settings. Dual-energy X-ray absorptiometry measured the effects of a 13-week aquatic exercise and nutrition intervention on percent body fat in eight adults with intellectual disabilities (aged 41.0 ± 13.7 yrs) of varying fat levels (15%-39%) from two group homes. A moderate to vigorous aquatic exercise program lasted for the duration of 13 weeks with three, one-hour sessions held at a 25m pool each week. Nutritional assistants educated participants as to the importance of food choice and portion size. A two-tailed Wilcoxon matched-pairs signed-ranks test determined the impact of the combined intervention on body fat percentage and BMI at pre and post test. Median body fat percentage (0.8 %) and BMI (0.3 kg/m(2)) decreased following the exercise intervention, but neither were statistically significant, p = .11 and p = .55, respectively. The combined intervention was ineffective at reducing percent body fat in adults with intellectual disability according to dual-energy X-ray absorptiometry. These results are in agreement with findings from exercise alone interventions and suggest that more stringent nutritional guidelines are needed for this population and especially for individuals living in group home settings. The study did show that adults with intellectual disability may participate in moderate to vigorous physical activity when given the opportunity.

  16. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2003-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduce s background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  17. Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2004-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduces background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  18. Effects of Intermediate Filter Thickness on the Detective Quantum Efficiency of Sandwich Detectors for Dual-Energy X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo; Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    The double-shot dual-energy imaging (DEI) can discriminate, or enhance, material content (e.g., bone or soft tissue) within a two-dimensional radiograph and can provide improved visualization of lesions for clinician. Existing double-shot DEI system uses the fast kilovoltage (kV) switching technique (also known as the double-shot or double-exposure technique). However, the double-shot technique is susceptible to motion artifacts resulting from an anatomical mismatch between two successive exposures. We have built the sandwich detector for the singleshot DEI. In order to quantitatively evaluate the imaging performance, we measured the characteristic curve, MTF, NNPS, and DQE of the sandwich detector. The imaging characteristics of the front detector are barely affected by the sandwich structure. On the other hand, a thicker filtration reduces the rear detector response and degrades the NNPS. The MTF of the rear detector is not affected by variations in the Cu filter.

  19. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cuevas, Ariadna, E-mail: ariadna@mail.or [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba); Perez Gravie, Homero, E-mail: homero.perezgravie@mail.co [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba)

    2011-03-21

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  20. Energy weighted x-ray dark-field imaging

    CERN Document Server

    Pelzer, Georg; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-01-01

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  1. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  2. Compensational scintillation detector with a flat energy response for flash X-ray measurements

    Science.gov (United States)

    Chen, Liang; Ouyang, Xiaoping; Liu, Bin; Liu, Jinliang; Quan, Lin; Zhang, Zhongbing

    2013-01-01

    To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and γ-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

  3. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance.

    Science.gov (United States)

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N; Leduc, Charles A; Leibel, Rudolph L

    2009-01-01

    OBJECTIVE: To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus(™)) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. SUBJECTS AND MEASUREMENTS: Thirty lean and obese mice (body weight range 19-67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10-25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. RESULTS: In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (advantages compared to DXA, such as speed of measurement and the ability to scan unanesthetized animals.

  4. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  5. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    Science.gov (United States)

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  6. Optimum Resolution in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Buras, B.; Niimura, N.; Staun Olsen, J.

    1978-01-01

    The resolution problem in X-ray energy-dispersive diffractometry is discussed. It is shown that for a given characteristic of the solid-state detector system and a given range of interplanar spacings, an optimum scattering angle can be easily found for any divergence of the incident and scattered...

  7. Measurement of body segment parameters using dual energy X-ray absorptiometry and three-dimensional geometry: an application in gait analysis.

    Science.gov (United States)

    Lee, Mei Kay; Le, Ngoc Sang; Fang, Anthony C; Koh, Michael T H

    2009-02-01

    Body segment parameters (BSP) are essential input for the computations in kinetics of motion applied in the field of biomechanics. These data are usually obtained from population-specific predictive equations which present limitations in being representative of the population under study. More recently, medical imaging techniques have been adopted but are limited to two-dimensional (2-D) measurements or required extensive tomographic images for three-dimensional (3-D) reconstruction. We proposed an in vivo method to measure 3-D BSP using X-ray imaging and 3-D exterior geometry. Criterion values of the BSP were determined using magnetic resonance imaging (MRI) which has previously been validated. Errors for all BSP values were less than 2% when values derived from our method were compared to the criterion values. We found no significant difference between our method and four selected BSP models in both stance and swing phase. Significant phase effects were observed for our method and other BSP models between stance and swing phase. Significant differences (pgait are relatively insensitive to BSP variations. However, the influence of BSP cannot be undermined in movements that generate higher acceleration at the limbs. Considering the accuracy of our method, it could be used as a novel in vivo method to obtain direct 3-D BSP measurements.

  8. Measurement of bone mineral density in the tunnel regions for anterior cruciate ligament reconstruction by dual-energy X-ray absorptiometry, computed tomography scan, and the immersion technique based on Archimedes' principle.

    Science.gov (United States)

    Tie, Kai; Wang, Hua; Wang, Xin; Chen, Liaobin

    2012-10-01

    To determine, for anterior cruciate ligament (ACL) reconstruction, whether the bone mineral density (BMD) of the femoral tunnel was higher than that of the tibial tunnel, to provide objective evidence for choosing the appropriate diameter of interference screws. Two groups were enrolled. One group comprised 30 normal volunteers, and the other comprised 9 patients with ACL rupture. Dual-energy X-ray absorptiometry was used to measure the BMD of the femoral and tibial tunnel regions of the volunteers' right knees by choosing a circular area covering the screw fixation region. The knees were also scanned by spiral computed tomography (CT), and the 3-dimensional reconstruction technique was used to determine the circular sections passing through the longitudinal axis of the femoral and tibial tunnels. Grayscale CT values of the cross-sectional area were measured. Cylindrical cancellous bone blocks were removed from the femoral and tibial tunnels during the ACL reconstruction for the patients. The volumetric BMD of the bone blocks was measured using a standardized immersion technique according to Archimedes' principle. As measured by dual-energy X-ray absorptiometry, the BMD of the femoral and tibial tunnel regions was 1.162 ± 0.034 g/cm(2) and 0.814 ± 0.038 g/cm(2), respectively (P < .01). The CT value of the femoral tunnel region was 211.7 ± 11.5 Hounsfield units, and the value of the tibial tunnel region was 104.9 ± 7.4 Hounsfield units (P < .01). The volumetric BMD of the bone block from the femoral tunnel (2.80 ± 0.88 g/cm(3)) was higher than the value from the tibial tunnel (1.88 ± 0.59 g/cm(3)) (P < .01). Comparing the data between male and female patients, we found no significant difference in both femoral and tibial tunnel regions. For ACL reconstruction, the BMD of the femoral tunnel is higher than that of the tibial tunnel. This implies that a proportionally larger-diameter interference screw should be used for fixation in the proximal tibia than that

  9. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  10. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  11. Flywheel energy storage for x-ray machines.

    Science.gov (United States)

    Siedband, M P; Showers, D K

    1984-01-01

    X-ray image quality for stop-motion exposures is greatly affected by the system power capability. High power levels are required for adequate resolution, which often precludes the use of mobile x-ray systems for stop-motion exposures. Currently available mobile systems use (1) 90-V nickel-cadmium batteries capable of 120 A, (2) a power line of 220 V ac, 60 Hz capable of about 100 A, or (3) a capacitor discharge unit using 1.0-microF capacitors and limited to 17-mAs equivalent output (compared to three-phase systems at 100 kVp). In each case, instantaneous power is usually limited to 10 kW. An alternative means which now appears to be a practical power source for mobile x-ray systems is the flywheel energy storage system. A 5-kg flywheel has been constructed which runs at 10 000 rpm and stores 25 000 J while drawing only a few hundred watts to bring the system up to speed. When coupled to an aircraft alternator, pulsed power levels of 25 kW have been achieved. The aircraft alternator also has the advantage of high-frequency output which has permitted the use of smaller high-voltage transformers. This system permits the generation of powerful x rays using low-power sources, such as single automobile batteries, common 115-V outlets, or electrical sources of poor regulation such as found in Third World countries.

  12. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  13. X-ray energy optimisation in computed microtomography.

    Science.gov (United States)

    Spanne, P

    1989-06-01

    Expressions describing the absorbed dose and the number of incident photons necessary for the detection of a contrasting detail in x-ray transmission CT imaging of a circular phantom are derived as functions of the linear attenuation coefficients of the materials comprising the object and the detail. A shell of a different material can be included to allow simulation of CT imaging of the skulls of small laboratory animals. The equations are used to estimate the optimum photon energy in x-ray transmission computed microtomography. The optimum energy depends on whether the number of incident photons or the absorbed dose at a point in the object is minimised. For a water object of 300 mm diameter the two optimisation criteria yield optimum photon energies differing by an order of magnitude.

  14. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  15. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  16. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Poloni, Alessandro; Messina, Carmelo; Petrini, Marcello [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Sconfienza, Luca Maria; Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy); Papini, Giacomo Davide Edoardo; Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Ulivieri, Fabio Massimo [IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Servizio di Medicina Nucleare, Milano (Italy)

    2015-07-15

    We estimated the in vivo reproducibility of trabecular bone score (TBS) from dual-energy X-ray absorptiometry (DXA) using different imaging modes to be compared to that of bone mineral density (BMD). We enrolled 30 patients for each imaging mode: fast-array, array, high definition. Each patient underwent two DXA examinations with in-between repositioning. BMD and TBS were obtained according to the International Society for Clinical Densitometry guidelines. The coefficient of variation (CoV) was calculated as the ratio between root mean square standard deviation and mean, percent least significant change (LSC) as 2.77 x CoV, reproducibility as the complement to 100 % LSC. Fast-array imaging mode resulted in 0.8 % CoV and 2.1 % LSC for BMD, 1.9 % and 5.3 % for TBS, respectively; array imaging mode resulted in 0.7 % and 2.0 % for BMD, 1.9 % and 5.2 %, for TBS; high-definition imaging mode resulted in 0.7 % and 2.0 %, for BMD; 2.0 % and 5.4 % for TBS, respectively. Reproducibility of TBS (95 %) was significantly lower than that of BMD (98 %) (p < 0.012). Difference in reproducibility among the imaging modes was not significant for either BMD or TBS (p = 0.942). While TBS reproducibility was significantly lower than that of BMD, differences among imaging modes were not significant for both TBS and BMD. (orig.)

  17. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    Science.gov (United States)

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific. © 2016 APJPH.

  18. Lumbar spine and total-body dual-energy X-ray absorptiometry in children with severe neurological impairment and intellectual disability: a pilot study of artefacts and disrupting factors

    Energy Technology Data Exchange (ETDEWEB)

    Mergler, S.; Rieken, R.; Evenhuis, H.M.; Penning, C. [Erasmus University Medical Centre, Intellectual Disability Medicine, Department of General Practice, PO Box 2040, CA, Rotterdam (Netherlands); Tibboel, D. [Erasmus University Medical Centre, Department of Pediatric Surgery, Rotterdam (Netherlands); Rijn, R.R. van [Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands)

    2012-05-15

    Children with severe neurological impairment and intellectual disability (ID) are susceptible for developing low bone mineral density (BMD) and fractures. BMD is generally measured with dual-energy X-ray absorptiometry (DXA). To describe the occurrence of factors that may influence the feasibility of DXA and the accuracy of DXA outcome in children with severe neurological impairment and ID. Based on literature and expert opinion, a list of disrupting factors was developed. Occurrence of these factors was assessed in 27 children who underwent DXA measurement. Disrupting factors that occurred most frequently were movement during measurement (82%), aberrant body composition (67%), small length for age (56%) and scoliosis (37%). The number of disrupting factors per child was mean 5.3 (range 1-8). No correlation was found between DXA outcomes and the number of disrupting factors. Factors that may negatively influence the accuracy of DXA outcome are frequently present in children with severe neurological impairment and ID. No systematic deviation of DXA outcome in coherence with the amount of disrupting factors was found, but physicians should be aware of the possible influence of disrupting factors on the accuracy of DXA. (orig.)

  19. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survey 1999-2004.

    Science.gov (United States)

    Batsis, John A; Barre, Laura K; Mackenzie, Todd A; Pratt, Sarah I; Lopez-Jimenez, Francisco; Bartels, Stephen J

    2013-06-01

    To determine the prevalence range for sarcopenic obesity and its relationship with sex, age, and ethnicity. Cross-sectional analysis of a population-based sample. Noninstitutionalized persons in the United States participating in the National Health and Nutrition Examination Surveys 1999-2004. Subsample of 4,984 subjects aged 60 and older with dual-energy X-ray absorptiometry body composition data. Eight definitions of sarcopenic obesity identified from six studies found using a systematic literature review (Baumgartner, Bouchard, Davison, Zoico, Levine, Kim-1,2,3) were applied to the sample. Results were stratified according to sex, age, and ethnicity. Prevalence of sarcopenic obesity ranged from 4.4% to 84.0% in men and from 3.6% to 94.0% in women. Prevalence was higher in men using definitions from Baumgartner (17.9% vs 13.3%, P obesity increased with each decade and was lower in non-Hispanic blacks than whites. Prevalence of sarcopenic obesity in older adults varies up to 26-fold depending on current research definitions. Such a high degree of variability suggests the need to establish consensus criteria that can be reliably applied across clinical and research settings. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  20. Progress in the diagnosis of aortic calcification with dual energy X-ray absorptiometry%DXA在诊断主动脉钙化中的应用进展

    Institute of Scientific and Technical Information of China (English)

    商敏

    2011-01-01

    双能X线骨密度吸收仪(DXA)通常被用于测定骨密度(BMD)以诊断骨质疏松,近年研究发现,DXA同时应仔细观察主动脉有无钙化,而主动脉钙化是冠心病的重要危险因素,发现异常者应结合被检者的年龄、冠心病风险因素等情况提出进一步检查的建议。这样,在检测骨密度的同时检测主动脉的钙化,无论是对骨质疏松还是冠心病的发生均可以起到早期诊断、早期治疗的目的 。%Dual energy X-ray absorptiometry is generally used to measure bone mineral density for diagnosis of osteoporosis. Recent research results support that aortic calcification might be found during DXA measuring. Because aortic calcification is associated with coronary heart disease, so caution should be taken about aortic calcification when DXA was done and further checklist may be raised as a result. Thinking about aortic calcification when bone mineral density was measuring by DXA was important for early diagnosis and treatment of osteoporosis and coronary heart disease.

  1. Model-based x-ray energy spectrum estimation algorithm from CT scanning data with spectrum filter

    Science.gov (United States)

    Li, Lei; Wang, Lin-Yuan; Yan, Bin

    2016-10-01

    With the development of technology, the traditional X-ray CT can't meet the modern medical and industry needs for component distinguish and identification. This is due to the inconsistency of X-ray imaging system and reconstruction algorithm. In the current CT systems, X-ray spectrum produced by X-ray source is continuous in energy range determined by tube voltage and energy filter, and the attenuation coefficient of object is varied with the X-ray energy. So the distribution of X-ray energy spectrum plays an important role for beam-hardening correction, dual energy CT image reconstruction or dose calculation. However, due to high ill-condition and ill-posed feature of system equations of transmission measurement data, statistical fluctuations of X ray quantum and noise pollution, it is very hard to get stable and accurate spectrum estimation using existing methods. In this paper, a model-based X-ray energy spectrum estimation method from CT scanning data with energy spectrum filter is proposed. First, transmission measurement data were accurately acquired by CT scan and measurement using phantoms with different energy spectrum filter. Second, a physical meaningful X-ray tube spectrum model was established with weighted gaussian functions and priori information such as continuity of bremsstrahlung and specificity of characteristic emission and estimation information of average attenuation coefficient. The parameter in model was optimized to get the best estimation result for filtered spectrum. Finally, the original energy spectrum was reconstructed from filtered spectrum estimation with filter priori information. Experimental results demonstrate that the stability and accuracy of X ray energy spectrum estimation using the proposed method are improved significantly.

  2. Focusing Optics for High-Energy X-ray Diffraction

    DEFF Research Database (Denmark)

    Leinert, U.; Schulze, C.; Honkimäki, V.;

    1998-01-01

    of the different set-ups are described and potential applications are discussed. First experiments were performed, investigating with high spatial resolution the residual strain gradients in layered polycrystalline materials. The results underline that focused high-energy synchrotron radiation can provide unique...... information on the mesoscopic scale to the materials scientist, complementary to existing techniques based on conventional X-ray sources, neutron scattering or electron microscopy....

  3. [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry].

    Science.gov (United States)

    Sabo, D; Reiter, A; Pfeil, J; Güssbacher, A; Niethard, F U

    1996-01-01

    The treatment of osteoporosis is still controversial. Rehabilitation programs which stress strengthening exercises as well as impact loading activities increase the bone mass. On the other side activity level early in life has not been proven to correlate with increased bone mineral content later in life. Little is known on the influence of high performance sports on the bone density especially in athletes with high demands on weight bearing of the spine. In (n = 40) internationally top ranked high performance athletes of different disciplines (n = 28 weight-lifters, n = 6 sports-boxers and n = 6 bicycle-racers) bone density measurements of the lumbar spine and the left hip were performed. The measurements were carried out by dual-photonabsorptiometry (DEXA; QDR 2000, Siemens) and evaluated by an interactive software-programme (Hologic Inc.). The results were compared to the measurements of 21 age-matched male control individuals. In the high performance weight lifters there was an increase of bone density compared to the control individuals of 23% in the Ward's triangle (p boxers had an increase up to 17% (lumbar spine), 9% (hip) and 7% (Wards' triangle). In the third athletes group (Tour de France-bikers) BMD was decreased 10% in the lumbar spine, 14% in the hip and 17% in the Wards' triangle. Our results show that training programs stressing axial loads of the skeletal system may lead to an increase of BMD in the spine and the hip of young individuals. Other authors findings, that the BMD of endurance athletes may decrease, is confirmed. Nevertheless the bikers BMD-loss of 10 to 17% was surprisingly high.

  4. High-energy x-ray imaging spectrometer (HEXIS)

    Science.gov (United States)

    Matteson, James L.; Gruber, Duane E.; Heindl, William A.; Pelling, Michael R.; Peterson, Laurence E.; Rothschild, Richard E.; Skelton, Robert E.; Hink, Paul L.; Slavis, Kimberly R.; Binns, W. Robert

    1998-11-01

    HEXIS is a MIDEX-class mission concept for x-ray astronomy. Its objectives are to improve our knowledge of the high energy x-ray sky by increasing the number of sources above 20 keV to > 2,000, discovering transient sources such as x-ray novae and gamma-ray bursts, and making spectral and temporal studies of the sources. With mission life > 3 years, a 1-year all-sky survey sensitivity of approximately 0.3 mCrab, and continuous monitoring of the entire visible sky, HEXIS will provide unprecedented capabilities. Source positions will be determined to accuracies of a few arcmin or better. Spectra will be determined with an energy resolution of a few keV and source variability will be studied on time scales from CZT detectors operating from approximately 5 keV to 200 keV. Detector planes are built with 41 cm(superscript 2) CZT detector modules which employ crossed-strip readout to obtain a pixel size of 0.5 mm. Nine modules are grouped in a 369 cm(superscript 2) array for each imager. In the past 2 years significant progress has been made on techniques requires for HEXIS: position-sensitive CZT detectors and ASIC readout, coded mask imaging, and background properties at balloon altitudes. Scientific and technical details of HEXIS are presented together with result form tests of detectors and a coded mask imager.

  5. Dual view x-ray inspection system for foreign objects detection in canned food

    Science.gov (United States)

    Lu, Zhiwen; Peng, Ningsong

    2013-04-01

    X-ray inspection technique for foreign objects in food products can determine and mark the presence of contaminants within the product by using image processing and pattern recognition technique on the X-ray transmission images. This paper presents the dual view X-ray inspection technique for foreign objects in food jar via analyzing the weak points of the traditional single view X-ray inspection technique. In addition, a prototype with the new technique is developed in accordance with glass splinters detection within the food jar (glass jar especially) which is a typical tickler. Some algorithms such as: adaptive image segmentation based on contour tracking, nonlinear arctan function transform and etc., are applied to improve image quality and achieve effective inspection results. The false recognition rate is effectively reduced and the detection sensitivity is highly enhanced. Finally the actual test results of this prototype are given.

  6. High resolution, multiple-energy linear sweep detector for x-ray imaging

    Science.gov (United States)

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  7. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished?

    Science.gov (United States)

    Hands, Beth; Pennell, Craig E.; Lye, Stephen J.; Mountain, Jennifer A.

    2016-01-01

    Background and Aims Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. Methods and Results 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Conclusion Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults. PMID:27622523

  8. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study.

    Science.gov (United States)

    Bandirali, Michele; Poloni, Alessandro; Sconfienza, Luca Maria; Messina, Carmelo; Papini, Giacomo Davide Edoardo; Petrini, Marcello; Ulivieri, Fabio Massimo; Di Leo, Giovanni; Sardanelli, Francesco

    2015-07-01

    We estimated the in vivo reproducibility of trabecular bone score (TBS) from dual-energy X-ray absorptiometry (DXA) using different imaging modes to be compared to that of bone mineral density (BMD). We enrolled 30 patients for each imaging mode: fast-array, array, high definition. Each patient underwent two DXA examinations with in-between repositioning. BMD and TBS were obtained according to the International Society for Clinical Densitometry guidelines. The coefficient of variation (CoV) was calculated as the ratio between root mean square standard deviation and mean, percent least significant change (LSC) as 2.77 × CoV, reproducibility as the complement to 100% LSC. Fast-array imaging mode resulted in 0.8% CoV and 2.1% LSC for BMD, 1.9% and 5.3% for TBS, respectively; array imaging mode resulted in 0.7% and 2.0% for BMD, 1.9% and 5.2%, for TBS; high-definition imaging mode resulted in 0.7% and 2.0%, for BMD; 2.0% and 5.4% for TBS, respectively. Reproducibility of TBS (95%) was significantly lower than that of BMD (98%) (p < 0.012). Difference in reproducibility among the imaging modes was not significant for either BMD or TBS (p = 0.942). While TBS reproducibility was significantly lower than that of BMD, differences among imaging modes were not significant for both TBS and BMD. • TBS is an emerging tool for assessing BMD. • TBS reproducibility is lower than that of BMD. • Differences between imaging modes are not significant for either TBS or BMD.

  9. The abilities of body mass index and skinfold thicknesses to identify children with low or elevated levels of dual-energy X-ray absorptiometry-determined body fatness.

    Science.gov (United States)

    Freedman, David S; Ogden, Cynthia L; Blanck, Heidi M; Borrud, Lori G; Dietz, William H

    2013-07-01

    To examine the accuracies of body mass index (BMI) and skinfold thicknesses in classifying the body fatness of 7365 8- to 19-year-old subjects in a national sample. We used percent body fat determined by dual-energy x-ray absorptiometry (PBFDXA) between 1999 and 2004. Categories of PBFDXA and the skinfold sum (triceps plus subscapular) were constructed so that that numbers of children in each category were similar to the number in each of 5 BMI categories based on the Centers for Disease Control and Prevention growth charts. Approximately 75% of the children and adolescents who had a BMI-for-age ≥ 95th percentile (considered obese) had elevated body fatness, but PBFDXA levels were more variable at lower BMIs. For example, only 41% of the boys who had a BMI skinfold sum, rather than BMI, slightly improved the identification of elevated levels of body fatness among boys (P = .03), but not among girls (P > .10). A low sum of the triceps and subscapular skinfold thicknesses was a better indicator of low PBFDXA than was a low BMI, but differences were smaller among children with greater levels of body fatness. Among girls who had a PBFDXA above the median, for example, BMI and the skinfold sum were correlated similarly (r = 0.77-0.79) with body fatness. Both BMI and skinfold thicknesses are fairly accurate in identifying children who have excess body fatness. In contrast, if the goal is to identify children who have low body fatness, skinfold thicknesses would be preferred. Copyright © 2013 Mosby, Inc. All rights reserved.

  10. The Abilities of Body Mass Index and Skinfold Thicknesses to Identify Children with Low or Elevated Levels of Dual-Energy X-Ray Absorptiometry–Determined Body Fatness

    Science.gov (United States)

    Freedman, David S.; Ogden, Cynthia L.; Blanck, Heidi M.; Borrud, Lori G.; Dietz, William H.

    2015-01-01

    Objective To examine the accuracies of body mass index (BMI) and skinfold thicknesses in classifying the body fatness of 7365 8- to 19-year-old subjects in a national sample. Study design We used percent body fat determined by dual-energy x-ray absorptiometry (PBFDXA) between 1999 and 2004. Categories of PBFDXA and the skinfold sum (triceps plus subscapular) were constructed so that that numbers of children in each category were similar to the number in each of 5 BMI categories based on the Centers for Disease Control and Prevention growth charts. Results Approximately 75% of the children and adolescents who had a BMI-for-age ≥ 95th percentile (considered obese) had elevated body fatness, but PBFDXA levels were more variable at lower BMIs. For example, only 41% of the boys who had a BMI skinfold sum, rather than BMI, slightly improved the identification of elevated levels of body fatness among boys (P = .03), but not among girls (P > .10). A low sum of the triceps and subscapular skinfold thicknesses was a better indicator of low PBFDXA than was a low BMI, but differences were smaller among children with greater levels of body fatness. Among girls who had a PBFDXA above the median, for example, BMI and the skinfold sum were correlated similarly (r = 0.77-0.79) with body fatness. Conclusions Both BMI and skinfold thicknesses are fairly accurate in identifying children who have excess body fatness. In contrast, if the goal is to identify children who have low body fatness, skinfold thicknesses would be preferred. PMID:23410599

  11. High-energy neutrino emission from X-ray binaries

    CERN Document Server

    Christiansen, H R; Romero, G E; Christiansen, Hugo R.; Orellana, Mariana; Romero, Gustavo E.

    2006-01-01

    We show that high-energy neutrinos can be efficiently produced in X-ray binaries with relativistic jets and high-mass primary stars. We consider a system where the star presents a dense equatorial wind and the jet has a small content of relativistic protons. In this scenario, neutrinos and correlated gamma-rays result from pp interactions and the subsequent pion decays. As a particular example we consider the microquasar LSI +61 303. Above 1 TeV, we obtain a mean-orbital $\

  12. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    CERN Document Server

    Traulsen, I; Schwope, A D; Schwarz, R; Walter, F M; Burwitz, V

    2014-01-01

    RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give eviden...

  13. Energy dispersive x-ray fluorescence analyzer with several x-ray tubes

    Science.gov (United States)

    Borisov, G. I.; Kondratenko, R. I.; Mikhin, V. A.; Odinov, B. V.; Pukhov, A. V.

    2005-07-01

    X-ray flurescent analyzer (XFA) has been developed and fabricated for determining sulphur, vanadium and nickel in oil. The instrument is equipped with three x-ray tubes with transmission Ti, Cu and Ag anodes, and aluminum, copper, and germanium filters, respectively, and one common switchable power supply. To excite characteristic radiation of determined elements, the characteristic radiation of the tube anode (titan, copper) is used, or the charactersitic radiation of the filter (germanium). XFA is fitted with one small-size electrically cooled semiconductor detector. The measuring device is based on a wide-angle geometry of characteristic radiation excitation and registration, where the x-ray tube focus illuminates the sample, and the registering detector 'sees' the illuminated area within the plane angle of 90° (it corresponds to 0.146 of 4p). Under such geometry, the dependence of the count rate for excited characteristic photons on the position of sample under study has a smooth maximum in the calculated sample position point. For one, the rate count changes by less than 1%. Quantitative results are obtained through the regression method. The instrument underwent metrology testing. It is designed for operation both in the laboratory and industrial environment. The instrument has been delivered for operation to the "Druzhba" pipeline.

  14. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    Science.gov (United States)

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  15. Dual color x-rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  16. Dual color x rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  17. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-09-01

    Energy-dispersive small-angle X-ray scattering (ED-SAXS) with an innovative design of cone collimation based on an ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL) had been explored. Using this new cone collimation system, scattering angle 2θ has a theoretical minimum angle related to the mean half-opening angle of the hollow cone beam of 1.42 mrad, and with the usable X-ray energy ranging from 4 to 30 keV, the resulting observable scattering vector q is down to a minimum value of about 0.003 Å-1 (or a Bragg spacing of about 2100 Å). However, the absorption of lower energies by X-ray capillary optics, sample transmission, and detector response function limits the application range to lower energy. Cone collimation ED-SAXS experiments carried out on pure water, Lupolen, and in situ temperature-dependent measurement of diacetylenic acid/melamine micelle solid were presented at three different scattering angles 2θ of 0.18°, 0.70° and 1.18° to illustrate the new opportunities offered by this technique as well as its limitations. Also, a comparison has been made by replacing the PPXRL with a pinhole, and the result shows that cone collimation ED-SAXS based on ESBC with PPXRL was helpful in improving the signal-to-noise ratio (i.e., reducing the parasitic background scattering) than ESBC with a pinhole. The cone collimation instrument based on X-ray capillary optics could be considered as a promising tool to perform SAXS experiments, especially cone collimation ED-SAXS has potential application for the in situ temperature-dependent studying on the kinetics of phase transitions.

  18. Low-energy shelf response in thin energy-dispersive X-ray detectors from Compton scattering of hard X-rays

    Science.gov (United States)

    Michel-Hart, N.; Elam, W. T.

    2017-08-01

    Silicon drift detectors have been successfully employed in both soft and hard X-ray spectroscopy. The response function to incident radiation at soft X-ray levels has been well studied and modeled, but less research has been published on response functions for these detectors to hard X-ray input spectra above 20 keV. When used with hard X-ray sources a significant low energy, non-peak response exists which can adversely affect detection limits for lighter elements in, for example, X-ray fluorescence spectroscopy. We present a numerical model that explains the non-peak response function of silicon drift detectors to hard X-rays based on incoherent Compton scattering within the detector volume. Experimental results are presented and numerically compared to model results.

  19. Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edy [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States); Woods, Kaley; Boucher, Salime [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2014-04-15

    Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans

  20. Segmentation-free x-ray energy spectrum estimation for computed tomography

    CERN Document Server

    Zhao, Wei; Niu, Tianye

    2016-01-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT images, in this study, we develop a segmentation-free indirect transmission measurement based energy spectrum estimation method using dual-energy material decomposition. The general principle of the method is to compare polychromatic forward projection with raw projection to calibrate a set of unknown weights which are used to express the unknown spectrum together with a set of model spectra. After applying dual-energy material decomposition using high- and low-energy raw projection data, polychromatic forward projection ...

  1. Energy resolving power of transition-edge X-ray microcalorimeters

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.

    2004-01-01

    This thesis describes the development and device physics of an X-ray microcalorimeter. This is a device for measuring the energy of X-rays. The microcalorimeter measures the temperature increase that is the result of the absorption of an X-ray photon. Combined into an array, the microcalorimeter can

  2. High energy X-ray phase and dark-field imaging using a random absorption mask

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  3. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    Science.gov (United States)

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones.

  4. Infant feeding method and obesity: body mass index and dual-energy X-ray absorptiometry measurements at 9-10 y of age from the Avon Longitudinal Study of Parents and Children (ALSPAC).

    Science.gov (United States)

    Toschke, André M; Martin, Richard M; von Kries, Rüdiger; Wells, Jonathan; Smith, George Davey; Ness, Andrew R

    2007-06-01

    Previous studies reported inconsistent associations between breastfeeding and body mass index (BMI; in kg/m2). Associations with body fatness are unknown. We investigated the association of breastfeeding with fatness measured by dual-energy X-ray absorptiometry. The prospective cohort study involved 4325 singletons with measurements at 9-10 y of age to assess the main outcomes of BMI and total and trunk fat masses. Prevalence of any breastfeeding was 82%. In crude analyses, breastfeeding was inversely associated with total fat mass [% change per category increase (4 categories)] in breastfeeding duration (-4.4%; 95% CI: -3.1%, -5.6%) and trunk fat mass (-0.5%; 95% CI: -1.1%, 0.1%); the odds of adiposity were measured by total [odds ratio (OR): 0.81; 95% CI: 0.75, 0.88] and trunk (OR: 0.78; 95% CI: 0.71, 0.84) fat masses in the top decile. In adjusted models, the inverse association of breastfeeding with mean total fat mass was attenuated by 59% (% change per category increase in breastfeeding duration: -1.8%; 95% CI: -0.5%, -3.1%), but associations with trunk fat mass (% change per category increase in breastfeeding duration: -0.6%; 95% CI: 0.0%, -1.3%) and the ORs for total (0.76; 95% CI: 0.69, 0.84) and trunk (0.74; 95% CI: 0.67, 0.81) fat masses in the top decile were little altered. Children breastfed >or=6 mo had the lowest odds of total fat mass in the top decile (OR: 0.45; 95% CI: 0.33, 0.62). In multivariate models, there was little evidence that breastfeeding was associated with mean or threshold values of BMI. The protective association of breastfeeding with mean total fat mass was attenuated somewhat after adjustment for confounders, which indicated that confounding may explain this association. Breastfeeding may protect against obesity if maintained for >or=6 mo.

  5. In vivo body composition in autochthonous and conventional pig breeding groups by dual-energy X-ray absorptiometry and magnetic resonance imaging under special consideration of Cerdo Ibérico.

    Science.gov (United States)

    Kremer, P V; Fernández-Fígares, I; Förster, M; Scholz, A M

    2012-12-01

    The improvement of carcass quality is one of the main breeding goals in pig production. To select appropriate breeding animals, it is of major concern to exactly and reliably analyze the body composition in vivo. Therefore, the objective of the study was to examine whether the combination of dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) offers the opportunity to reliably analyze quantitative and qualitative body composition characteristics of different pig breeding groups in vivo. In this study, a total of 77 pigs were studied by DXA and MRI at an average age of 154 days. The pigs originated from different autochthonous or conventional breeds or crossbreeds and were grouped into six breed types: Cerdo Ibérico (Ib); Duroc × Ib (Du_Ib); White Sow Lines (WSL, including German Landrace and German Large White); Hampshire/Pietrain (Pi_Ha, including Hampshire, Pietrain × Hampshire (PiHa) and Pietrain × PiHa); Pietrain/Duroc (Pi_Du, including Pietrain × Duroc (PiDu) and Pietrain × PiDu); crossbred WSL (PiDu_WSL, including Pietrain × WSL and PiDu × WSL). A whole-body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (FM; %FM), lean tissue (LM; %LM) and bone mineral, whereas a Siemens Magnetom Open with a large body coil was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the area of the loin (LA) and the above back fat area (FA) of both body sides. A GLM procedure using SAS 9.2 was used to analyze the data. As expected, the native breed Ib followed by Du_Ib crossbreeds showed the highest %FM (27.2%, 25.0%) combined with the smallest LA (46.2 cm2, 73.6 cm2), whereas Ib had the lowest BW at an average age of 154 days. Pigs with Pi_Ha origin presented the least %FM (12.4%) and largest LA (99.5 cm2). The WSL and PiDu_WSL showed an intermediate body composition. Therefore, it could be concluded that DXA and MRI and especially their combination

  6. Anthropometrics and body composition by dual energy X-ray in children of obese women: a follow-up of a randomized controlled trial (the Lifestyle in Pregnancy and Offspring [LiPO] study.

    Directory of Open Access Journals (Sweden)

    Mette Tanvig

    Full Text Available OBJECTIVE: In obese women, 1 to assess whether lower gestational weight gain (GWG during pregnancy in the lifestyle intervention group of a randomized controlled trial (RCT resulted in differences in offspring anthropometrics and body composition, and 2 to compare offspring outcomes to a reference group of children born to women with a normal Body Mass Index (BMI. RESEARCH DESIGN AND METHODS: The LiPO (Lifestyle in Pregnancy and Offspring study was an offspring follow-up of a RCT with 360 obese pregnant women with a lifestyle intervention during pregnancy including dietary advice, coaching and exercise. The trial was completed by 301 women who were eligible for follow-up. In addition, to the children from the RCT, a group of children born to women with a normal BMI were included as a reference group. At 2.8 (range 2.5-3.2 years, anthropometrics were measured in 157 children of the RCT mothers and in 97 reference group children with Body Mass Index (BMI Z-score as a primary outcome. Body composition was estimated by Dual Energy X-ray (DEXA in 123 successful scans out of 147 (84%. RESULTS: No differences between randomized groups were seen in mean (95% C.I. BMI Z-score (intervention group 0.06 [-0.17; 0.29] vs. controls -0.18 [-0.43; 0.05], in the percentage of overweight or obese children (10.9% vs. 6.7%, in other anthropometrics, or in body composition values by DEXA. Outcomes between children from the RCT and the reference group children were not significantly different. CONCLUSIONS: The RCT with lifestyle intervention in obese pregnant women did not result in any detectable effect on offspring anthropometrics or body composition by DEXA at 2.8 years of age. This may reflect the limited difference in GWG between intervention and control groups. Offspring of obese mothers from the RCT were comparable to offspring of mothers with a normal BMI.

  7. Multi-energy x-ray detectors to improve air-cargo security

    Science.gov (United States)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  8. Cartilage imaging of a rabbit knee using dual-energy X-ray microscopy and 1.0 T and 9.4 T magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2015-10-01

    Conclusion: Our results suggest that the dual-energy XRM for articular-cartilage analysis is feasible and comparable to the MRI. This technology will provide good support for high-resolution animal-osteoarthritis studies, and in the future, it may be possible to apply dual energy in a clinical setting.

  9. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  10. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    Science.gov (United States)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  11. An edge-on charge-transfer design for energy-resolved x-ray detection.

    Science.gov (United States)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  12. An edge-on charge-transfer design for energy-resolved x-ray detection

    Science.gov (United States)

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology.

  13. Interferometric phase detection at x-ray energies via Fano resonance control

    CERN Document Server

    Heeg, K P; Schumacher, D; Wille, H -C; Röhlsberger, R; Pfeifer, T; Evers, J

    2014-01-01

    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.

  14. The BeppoSAX High Energy Large Area Survey. IV. On the soft X-ray properties of the hard X-ray-selected HELLAS sources

    CERN Document Server

    Vignali, C; Fiore, F; La Franca, F

    2001-01-01

    We present a comprehensive study of the soft X-ray properties of the BeppoSAX High-Energy Large Area Survey (HELLAS) sources. A large fraction (about 2/3) of the hard X-ray selected sources is detected by ROSAT. The soft X-ray colors for many of these objects, along with the 0.5-2 keV flux upper limits for those undetected in the ROSAT band, do imply the presence of absorption. The comparison with the ROSAT Deep Survey sources indicates that a larger fraction of absorbed objects among the HELLAS sources is present, in agreement with their hard X-ray selection and the predictions of the X-ray background synthesis models. Another striking result is the presence of a soft (additional) X-ray component in a significant fraction of absorbed objects.

  15. In situ analysis of electrocrystallization process of metal electrodeposition with confocal energy dispersive X-ray diffraction based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yang, Chaolin; Sun, Weiyuan; Sun, Xuepeng [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-06-11

    The confocal energy dispersive X-ray diffraction (EDXRD) based on a polycapillary focusing X-ray lens (PFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) in detection channel was presented to study the electrocrystallization process of metal electrodeposition. The input focal spot of the PPXRL and the output focal spot of the PFXRL was adjusted in a confocal configuration, and only the X-rays from the volume overlapped by the two foci could be accordingly detected by the detector. The experimental results demonstrated the confocal EDXRD could be used to in situ real-time analysis of electrochemical crystal growth process.

  16. Automatic detection of bone fragments in poultry using multi-energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, Shaun S [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Mullens, James A [Knoxville, TN

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  17. Amorphous silica studied by high energy x-ray diffraction

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Neuefeind, J.; Neumann, H.B.

    1995-01-01

    The use of hard X-rays (60-300 keV) for diffraction studies of disordered materials has several advantages: higher resolution in direct space, smaller correction terms, removal of truncation effects, the possibility for operating in extreme environments and for direct comparison between X-ray.......3(3)degrees with a rms value of 4.2(3)degrees. For the Si-O-Si bond angle, several types of distribution V(alpha) = V-1(alpha) sin(alpha) were investigated. Best fits were obtained for rather broad distributions with V having its maximum at 147 degrees and V-1 at 180 degrees....

  18. Energy dispersive X-ray analysis in the electron microscope

    CERN Document Server

    Bell, DC

    2003-01-01

    This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical me

  19. Validity of dual X-ray absorptiometry scanning for determination of body composition in IDDM patients

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, T; Gotfredsen, A

    1995-01-01

    Data on body composition in patients with insulin-dependent diabetes mellitus (IDDM) are scarce. Dual X-ray absorptiometry (DXA) scanning has proved useful for this purpose in other groups of patients. We tested the validity of the DXA scanner for the determination of fat-free mass (FFM) and fat...... mass in IDDM patients and control subjects, as compared to other reference methods, i.e. total body potassium by 40K whole body counting (TBK), total body water by tritiated water (TBW), bioelectrical impedance analysis (BIA) and 24-h urinary creatinine excretion (Ucrea). A total of 13 healthy controls...

  20. Energy response of graphite-mixed magnesium borate TLDs to low energy x-rays

    DEFF Research Database (Denmark)

    Pelliccioni, M.; Prokic, M.; Esposito, A.

    1991-01-01

    Graphite-mixed sintered magnesium borate TL dosemeters are attractive for beta/gamma dosimetry because they combine a low energy dependence to beta-rays with near tissue or air equivalence to photon irradiations and a high sensitivity. In this paper results from the experimental measurements...... of the energy response to very low energy x-rays are presented and evidence of agreement between experimental and calculated conversion coefficient H'(0.07, alpha = 0-degrees)/Ka is also shown. A monochromatized x-ray beam from a synchrotron radiation source in the energy range from 3 to 12 keV has been...

  1. Energy response of graphite-mixed magnesium borate TLDs to low energy x-rays

    DEFF Research Database (Denmark)

    Pelliccioni, M.; Prokic, M.; Esposito, A.

    1991-01-01

    of the energy response to very low energy x-rays are presented and evidence of agreement between experimental and calculated conversion coefficient H'(0.07, alpha = 0-degrees)/Ka is also shown. A monochromatized x-ray beam from a synchrotron radiation source in the energy range from 3 to 12 keV has been......Graphite-mixed sintered magnesium borate TL dosemeters are attractive for beta/gamma dosimetry because they combine a low energy dependence to beta-rays with near tissue or air equivalence to photon irradiations and a high sensitivity. In this paper results from the experimental measurements...

  2. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    OpenAIRE

    Zycki, P. T.; A. Niedzwiecki(University of Lodz, Poland); Sobolewska, M. A.

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretio...

  3. Development of low-energy x-ray fluorescence micro-distribution analysis using a laser plasma x-ray source and multilayer optics?

    NARCIS (Netherlands)

    Stuik, R.; Shmaenok, L. A.; Fledderus, H.; Andreev, S. S.; Shamov, E. A.; Zuev, S. Y.; Salashchenko, N. N.; F. Bijkerk,

    1999-01-01

    A new technique is presented for low-energy X-ray fluorescence micro-distribution analysis of low-Z elements at micrometer spatial resolutions. The technique is based on the use of a laser plasma X-ray source and spherically curved multilayer optics. A large collimator is used to focus the light fro

  4. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  5. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    Science.gov (United States)

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  6. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  7. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  8. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  9. Relative calibration of energy thresholds on multi-bin spectral x-ray detectors

    Science.gov (United States)

    Sjölin, M.; Danielsson, M.

    2016-12-01

    Accurate and reliable energy calibration of spectral x-ray detectors used in medical imaging is essential for avoiding ring artifacts in the reconstructed images (computed tomography) and for performing accurate material basis decomposition. A simple and accurate method for relative calibration of the energy thresholds on a multi-bin spectral x-ray detector is presented. The method obtains the linear relations between all energy thresholds in a channel by scanning the thresholds with respect to each other during x-ray illumination. The method does not rely on a model of the detector's response function and does not require any identifiable features in the x-ray spectrum. Applying the same method, the offset between the thresholds can be determined also without external stimuli by utilizing the electronic noise as a source. The simplicity and accuracy of the method makes it suitable for implementation in clinical multi-bin spectral x-ray imaging systems.

  10. Composition variations in Cu{sub 2}ZnSnSe{sub 4} thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Dahyun [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Opanasyuk, A.S.; Koval, P.V.; Ponomarev, A.G. [Department of Electronics and Computer Technology, Sumy State University, Sumy UA-40007 (Ukraine); Jeong, Ah Reum; Kim, Gee Yeong; Jo, William [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Cheong, Hyeonsik, E-mail: hcheong@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-07-01

    Compositional and structural studies of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on sodalime glass by co-evaporation. The composition of the films measured by two different methods, EDS and PIXE, showed significant differences. Generally, the Zn/Sn ratio measured by EDS is larger than that measured by PIXE. Both the micro-PIXE and the micro-Raman imaging results indicated the compositional and structural inhomogeneity of the sample. - Highlights: • Particle induced X-ray emission was used to analyze the composition of CZTSe films. • Energy dispersive X-ray spectroscopy tends to underestimate the Sn composition. • Local Raman intensity is related with the composition rather than the crystallinity.

  11. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  12. Low Energy Plasma Focus as an Intense X-ray Source for Radiography

    Institute of Scientific and Technical Information of China (English)

    S. Hussain; M. Zakaullah; Shujaat Ali; A. Waheed

    2004-01-01

    Study on X-ray emission from a low energy (1.8 k J) plasma focus device powered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175 kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energy windows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry is found to be (27.3±1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52 ±0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at the anode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device as an intense X-ray source for radiography is demonstrated.

  13. SETI at X-ray Energies - Parasitic Searches from Astrophysical Observations

    CERN Document Server

    Corbet, Robin H D

    2016-01-01

    If a sufficiently advanced civilization can either modulate the emission from an X-ray binary, or make use of the natural high luminosity to power an artificial transmitter, these can serve as good beacons for interstellar communication without involving excessive energy costs to the broadcasting civilization. In addition, the small number of X-ray binaries in the Galaxy considerably reduces the number of targets that must be investigated compared to searches in other energy bands. Low mass X-ray binaries containing neutron stars in particular are considered as prime potential natural and artificial beacons and high time resolution (better than 1ms) observations are encouraged. All sky monitors provide the capability of detecting brief powerful artificial signals from isolated neutron stars. New capabilities of X-ray astronomy satellites developed for astrophysical purposes are enabling SETI in new parameter regimes. For example, the X-ray Timing Explorer satellite provides the capability of exploring the sub...

  14. Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera.

    Science.gov (United States)

    Scharf, O; Ihle, S; Ordavo, I; Arkadiev, V; Bjeoumikhov, A; Bjeoumikhova, S; Buzanich, G; Gubzhokov, R; Günther, A; Hartmann, R; Kühbacher, M; Lang, M; Langhoff, N; Liebel, A; Radtke, M; Reinholz, U; Riesemeier, H; Soltau, H; Strüder, L; Thünemann, A F; Wedell, R

    2011-04-01

    For many applications there is a requirement for nondestructive analytical investigation of the elemental distribution in a sample. With the improvement of X-ray optics and spectroscopic X-ray imagers, full field X-ray fluorescence (FF-XRF) methods are feasible. A new device for high-resolution X-ray imaging, an energy and spatial resolving X-ray camera, is presented. The basic idea behind this so-called "color X-ray camera" (CXC) is to combine an energy dispersive array detector for X-rays, in this case a pnCCD, with polycapillary optics. Imaging is achieved using multiframe recording of the energy and the point of impact of single photons. The camera was tested using a laboratory 30 μm microfocus X-ray tube and synchrotron radiation from BESSY II at the BAMline facility. These experiments demonstrate the suitability of the camera for X-ray fluorescence analytics. The camera simultaneously records 69,696 spectra with an energy resolution of 152 eV for manganese K(α) with a spatial resolution of 50 μm over an imaging area of 12.7 × 12.7 mm(2). It is sensitive to photons in the energy region between 3 and 40 keV, limited by a 50 μm beryllium window, and the sensitive thickness of 450 μm of the chip. Online preview of the sample is possible as the software updates the sums of the counts for certain energy channel ranges during the measurement and displays 2-D false-color maps as well as spectra of selected regions. The complete data cube of 264 × 264 spectra is saved for further qualitative and quantitative processing.

  15. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  16. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Samedov, Victor V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Shosse, 115409, Moscow, (Russian Federation)

    2015-07-01

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  17. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.

    Science.gov (United States)

    Geraki, K; Farquharson, M J; Bradley, D A

    2004-01-07

    This paper presents improvements on a previously reported method for the measurement of elements in breast tissue specimens (Geraki et al 2002 Phys. Med. Biol. 47 2327-39). A synchrotron-based system was used for the detection of the x-ray fluorescence (XRF) emitted from iron, copper, zinc and potassium in breast tissue specimens, healthy and cancerous. Calibration models resulting from the irradiation of standard aqueous solutions were used for the quantification of the elements. The present developments concentrate on increasing the convergence between the tissue samples and the calibration models, therefore improving accuracy. For this purpose the composition of the samples in terms of adipose and fibrous tissue was evaluated, using an energy dispersive x-ray diffraction (EDXRD) system. The relationships between the attenuation and scatter properties of the two tissue components and water were determined through Monte Carlo simulations. The results from the simulations and the EDXRD measurements allowed the XRF data from each specimen to be corrected according to its composition. The statistical analysis of the elemental concentrations of the different groups of specimens reveals that all four elements are found in elevated levels in the tumour specimens. The increase is less pronounced for iron and copper and most for potassium and zinc. Other observed features include the substantial degree of inhomogeneity of elemental distributions within the volume of the specimens, varying between 4% and 36% of the mean, depending on the element and the type of the sample. The accuracy of the technique, based on the measurement of a standard reference material, proved to be between 3% and 22% depending on the element, which presents only a marginal improvement (1%-3%) compared to the accuracy of the previously reported results. The measurement precision was between 1% and 9% while the calculated uncertainties on the final elemental concentrations ranged between 10% and 16%.

  18. Single-shot phase retrieval in high-energy X-ray grating interferometry

    CERN Document Server

    Zhili, Wang

    2016-01-01

    In X-ray phase contrast imaging, phase retrieval from intensity measurements is the key for further quantitative analysis and tomographic reconstructions. In this letter, we present a single-shot approach for quantitative phase retrieval in high-energy X-ray grating interferometry. The proposed approach makes use of the phase-attenuation duality of soft tissues when being imaged with high-energy X-rays. The phase retrieval formula is derived and presented, and tested by numerical experiments including photon shot noise. The good agreement between retrieval results and theoretical values confirms the feasibility of the presented approach.

  19. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry?

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Heydorn, Kaj

    1985-01-01

    This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference....

  20. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    Science.gov (United States)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  1. Bone loss in unclassified polyarthritis and early rheumatoid arthritis is better detected by digital x ray radiogrammetry than dual x ray absorptiometry: relationship with disease activity and radiographic outcome

    DEFF Research Database (Denmark)

    Jensen, T; Klarlund, Mette; Hansen, M

    2004-01-01

    OBJECTIVE: To compare changes in regional bone mineral density (BMD) of the metacarpal joints measured by dual x ray absorptiometry (DXA) and digital x ray radiogrammetry (DXR) in relation to disease activity and radiographic outcome in a two year follow up study of patients with early RA...... polyarthritis. The patients with RA were divided into groups according to mean disease activity, average glucocorticoid dose, and MRI and x ray detected bone erosions in the hands. Clinical and biochemical measurements were made every month and an x ray examination of the hands and BMD of the metacarpal joints...

  2. Investigation of TLD-700 energy response to low energy x-ray encountered in diagnostic radiology

    Directory of Open Access Journals (Sweden)

    Herrati Ammar

    2016-01-01

    Full Text Available The aim of thiswork is to study the energy dependence of thermoluminescent dosimeter (TLD-700 for low energy X-ray beams encountered in conventional diagnostic radiology. In the first step, we studied some characteristics (reproducibility and linearity of TLD-700 chips using a 137Cs source, and selected TLD chips with reproducibility better than 2.5%. Then we determined TLD-700 energy response for diagnostic radiology X-ray qualities, and investigated its influence on air kerma estimate. A maximum deviation of 60% can be obtained if TLDs are calibrated for 137Cs radiation source and used in diagnostic radiology fields. However, this deviation became less than 20% if TLDs chips are calibrated for the reference x-ray radiation quality RQR5 (recommended by the IEC 61267 standard. Consequently, we recommend calibrating this kind of TLDdetector with RQR5 diagnostic radiology X-ray quality. This method permits to obtain a good accuracy when assessing the entrance dose in diagnostic radiology procedures.

  3. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  4. The X-ray variability and the near-IR to X-ray spectral energy distribution of four low luminosity Seyfert 1 galaxies

    CERN Document Server

    Papadakis, I E; Brinkmann, W; Xilouris, E M

    2008-01-01

    We present the results from a study of the X-ray variability and the near-IR to X-ray spectral energy distribution of four low-luminosity, Seyfert 1 galaxies. We compared their variability amplitude and broad band spectrum with those of more luminous AGN in order to investigate whether accretion in low-luminosity AGN operates as in their luminous counterparts. We used archival XMM-Newton and, in two cases, ASCA data to estimate their X-ray variability amplitude and determine their X-ray spectral shape and luminosity. We also used archival HST data to measure their optical nuclear luminosity, and near-IR measurements from the literature, in order to construct their near-IR to X-ray spectra. The X-ray variability amplitude of the four Seyferts is what one would expect, given their black hole masses. Their near-IR to X-ray spectrum has the same shape as the spectrum of quasars which are 10^2-10^5 times more luminous. The objects in our sample are optically classified as Seyfert 1-1.5. This implies that they host...

  5. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    Science.gov (United States)

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  6. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    Science.gov (United States)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  7. Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.

  8. Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bollini, D.; Cabal Rodriguez, A.E.; Dabrowski, W.; Diaz Garcia, A.; Gambaccini, M.; Giubellino, P.; Grybos, P.; Idzik, M.; Marzari-Chiesa, A.; Montano, L.M.; Prino, F.; Ramello, L. E-mail: ramello@to.infn.it; Sitta, M.; Swientek, K.; Wheadon, R.; Wiacek, P

    2003-12-11

    Results from a silicon microstrip detector coupled to the RX64 ASIC are presented. The system is capable of single photon counting in digital X-ray imaging, with foreseen applications to dual energy mammography and angiography. The main features of the detecting system are low noise (operation with threshold as low as {approx}4 keV is possible), good spatial resolution (a pixel of 100 {mu}mx300 {mu}m when oriented edge-on) and good counting rate capability (up to one million counts per channel with a maximum rate of about 200 kHz per channel). The energy resolution of the system, as obtained with several fluorescence X-ray lines, is described.

  9. Low-photon-energy plasma flash x-ray generator (LPFXG-2002)

    Science.gov (United States)

    Komatsu, Makoto; Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Tanaka, Etsuro; Mori, Hidezo; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In this study, we have made a low photon energy flash x-ray generator with a titanium target and have measured the radiographic characteristics. The flash x-ray generator consists of a high-voltage power supply, a high-voltage condenser, a turbo molecular pump and a flash x-ray tube. The condenser is charged up to about 30 kV, and the electric charges in the condenser are discharged to the tube after triggering the cathode. The linear plasma x-ray source forms from the target evaporation, and then the flash x-rays are generated from the plasma in the axial direction. K-series emission of titanium has been confirmed in experiments qualitatively and characteristics of the generator have been measured. K-series x-ray of titanium had a high resolution and enable us to take radiographs of a thin rabbit's ear clearly using the CR (Computed Radiography) system. The effect of titanium on the target of the soft flash x-ray tube has been indicated accordingly.

  10. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  11. Thermal expansion in UO2 determined by high-energy X-ray diffraction

    Science.gov (United States)

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; Alderman, O. L. G.; Weber, J. K. R.; Parise, J. B.; Williamson, M.

    2016-10-01

    Here we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  12. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  13. Material depth reconstruction method of multi-energy X-ray images using neural network.

    Science.gov (United States)

    Lee, Woo-Jin; Kim, Dae-Seung; Kang, Sung-Won; Yi, Won-Jin

    2012-01-01

    With the advent of technology, multi-energy X-ray imaging is promising technique that can reduce the patient's dose and provide functional imaging. Two-dimensional photon-counting detector to provide multi-energy imaging is under development. In this work, we present a material decomposition method using multi-energy images. To acquire multi-energy images, Monte Carlo simulation was performed. The X-ray spectrum was modeled and ripple effect was considered. Using the dissimilar characteristics in energy-dependent X-ray attenuation of each material, multiple energy X-ray images were decomposed into material depth images. Feedforward neural network was used to fit multi-energy images to material depth images. In order to use the neural network, step wedge phantom images were used for training neuron. Finally, neural network decomposed multi-energy X-ray images into material depth image. To demonstrate the concept of this method, we applied it to simulated images of a 3D head phantom. The results show that neural network method performed effectively material depth reconstruction.

  14. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  15. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...... Astrophysics Facility. Data was obtained at CuK(alpha )1 (8.048 keV) and, using single reflection asymmetric Si(044) crystals for both the monochromator and analyzer, an angular resolution of 1.5 arcsec FWHM was achieved. The efficiency of the grating in all orders up to the 15th was measured using a 12 k......W rotating anode X-ray generator. These data provided the basis for a modelling of the grating structure....

  16. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...... Astrophysics Facility. Data was obtained at CuK(alpha )1 (8.048 keV) and, using single reflection asymmetric Si(044) crystals for both the monochromator and analyzer, an angular resolution of 1.5 arcsec FWHM was achieved. The efficiency of the grating in all orders up to the 15th was measured using a 12 k......W rotating anode X-ray generator. These data provided the basis for a modelling of the grating structure....

  17. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Science.gov (United States)

    Hall, G. N.; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Lee, J. J.; Romano, E.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.

    2016-11-01

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  18. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  19. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector; Analyse de la densite osseuse et de la morphometrie de petits animaux avec un osteodensitometre bi-energie utilisant un capteur 2D de radiographie numerique

    Energy Technology Data Exchange (ETDEWEB)

    Boudousq, V. [Centre Hospitalier Universitaire de Nimes, 30 (France); Bordy, T.; Gonon, G.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France)

    2004-07-01

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm{sup 2} digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  20. Two thermal methods to measure the energy fluence of a brief exposure of diagnostic x rays.

    Science.gov (United States)

    Carvalho, A A; Mascarenhas, S; dePaula, M H; Cameron, J R

    1992-01-01

    This paper describes two simple thermal methods for measuring the energy fluence in J/cm2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.

  1. Energy calibration of the pixels of spectral X-ray detectors.

    Science.gov (United States)

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors.

  2. Pulse energy measurement at the hard x-ray laser in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, T.; Saito, N. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kurosawa, T. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); Richter, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany); Sorokin, A. A. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Ioffe Physico-Technical Institute, RAS, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Tiedtke, K. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Kudo, T.; Yabashi, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tono, K. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ishikawa, T. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  3. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    Science.gov (United States)

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.

  4. X-ray ionization yields and energy spectra in liquid argon

    CERN Document Server

    Bondar, A; Dolgov, A; Shekhtman, L; Sokolov, A

    2015-01-01

    The main purpose of this work is to provide reference data on X-ray ionization yields and energy spectra in liquid Ar to the studies in the field of Cryogenic Avalanche Detectors (CRADs) for rare-event experiments, based on noble-gas liquids. We present the results of two related researches. First, the X-ray recombination coefficients in the energy range of 10-1000 keV and ionization yields at different electric fields are determined in liquid Ar, based on the results of a dedicated experiment. Second, the energy spectra of pulsed X-rays in liquid Ar in the energy range of 15-40 keV, obtained in given experiments including that with the two-phase CRAD, are interpreted and compared to those calculated using a dedicated computer program, to correctly determine the incident X-ray energy. The X-ray recombination coefficients and ionization yields have for the first time been presented for liquid Ar in systematic way.

  5. X-ray ionization yields and energy spectra in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, A.; Buzulutskov, A. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Dolgov, A. [Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Shekhtman, L.; Sokolov, A. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-04-21

    The main purpose of this work is to provide reference data on X-ray ionization yields and energy spectra in liquid Ar to the studies in the field of Cryogenic Avalanche Detectors (CRADs) for rare-event and other experiments, based on liquid Ar detectors. We present the results of two related researches. First, the X-ray recombination coefficients in the energy range of 10–1000 keV and ionization yields at different electric fields, between 0.6 and 2.3 kV/cm, are determined in liquid Ar based on the results of a dedicated experiment. Second, the energy spectra of pulsed X-rays in liquid Ar in the energy range of 15−40 keV, obtained in given experiments including that with the two-phase CRAD, are interpreted and compared to those calculated using a computer program, to correctly determine the absorbed X-ray energy. The X-ray recombination coefficients and ionization yields have for the first time been presented for liquid Ar in systematic way.

  6. NASA's High Energy Vision: Chandra and the X-Ray Universe

    Science.gov (United States)

    Mais, D. E.; Stencel, R. E.; Richards, D.

    2004-05-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of supernovae explosions, col- liding galaxies, black holes, pulsars, neutron stars, quasars, and X-ray bi- nary stars. The spectacular results from the first five years of Chandra ob- servations are changing and redefining theories with each observation. Every exciting new image shows glimpses of such exotic phenomena as super-massive black holes, surprising black hole activity in old galaxies, rivers of grav- ity that define the cosmic landscape, unexpected x-ray activity in proto- stars and failed stars, puzzling distributions of elements in supernovae remnants, the sound waves from a super-massive black hole, and the even the tantalizing possibility of an entirely new form of matter - the strange quark star. On September 14, 2000, triggered by alerts from amateur astron- omers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists pro- vided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  7. X-ray experiments for Space applications in intermediate energy range

    CERN Document Server

    Yadav, Vipin K; Nandi, Anuj; Palit, Sourav

    2009-01-01

    X-ray experiments in the intermediate energy range (1-50 keV) are carried out at the Indian Centre for Space Physics (ICSP), Kolkata for space application. The purpose is to carry out developmental studies of space instruments to observe energetic phenomena from compact objects (black hole and compact stars) and active stars and their testing and evaluation. The testing/evaluation setup primarily consists of an X-ray generator, various X-ray imaging masks, an X-ray imager (CMOS) and an X-ray spectrometer (Si-PIN photo-diode). The X-ray generator (Mo target) operates in 1-50 kV anode voltage, and 1-30 mA beam current. A 45 feet long shielded collimator is used to collimate the beam which leads to the detector chamber having a 30 arc-sec angular diameter. Two types of imaging masks are used - conventional Coded Aperture Masks (CAM) and Tungsten Fresnel half-period zone-plates (ZPs) having angular resolutions of a few tens of arc-sec. The Moire fringe pattern produced by the composite shadows of two ZPs is inver...

  8. X-ray polarimetry: A new window on the high energy sky

    Science.gov (United States)

    Bellazzini, R.; Muleri, F.

    2010-11-01

    Polarimetry is widely considered a powerful observational technique in X-ray astronomy, useful to enhance our understanding of the emission mechanisms, geometry and magnetic field arrangement of many compact objects. However, the lack of suitable sensitive instrumentation in the X-ray energy band has been the limiting factor for its development in the last three decades. Up to now, polarization measurements have been made exclusively with Bragg diffraction at 45∘ or Compton scattering at 90∘ and the only unambiguous detection of X-ray polarization has been obtained for one of the brightest object in the X-ray sky, the Crab Nebula. Only recently, with the development of a new class of high sensitivity imaging detectors, the possibility to exploit the photoemission process to measure the photon polarization has become a reality. We will report on the performance of an imaging X-ray polarimeter based on photoelectric effect. The device derives the polarization information from the track of the photoelectrons imaged by a finely subdivided Gas Pixel Detector. It has a great sensitivity even with telescopes of modest area and can perform simultaneously good imaging, moderate spectroscopy and high rate timing. Being truly 2D it is non-dispersive and does not require any rotation. This device is included in the scientific payload of many proposals of satellite mission which have the potential to unveil polarimetry also in X-rays in a few years.

  9. Evaluation of the energy dependence of a zinc oxide nanofilm X-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Valenca, C.P.V., E-mail: claudia.cpvv@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Silveira, M.A.L.; Macedo, M.A., E-mail: odecamm@gmail.com [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil); Santos, L.A.P, E-mail: lasantos@scients.com.br [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    International organizations of human health and radiation protection have recommended certain care for using of the X-ray as a diagnosis tool to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, electronic semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can conclude that the ZnO device can be used as a diagnostic X-ray detector with an appropriate calibration. (author)

  10. X-ray grating interferometry at photon energies over 180 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Yaniz, M., E-mail: maite.ruiz-yaniz@esrf.fr [European Synchrotron Radiation Facility, 71 Rue des Martyrs, 38000 Grenoble (France); Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Koch, F.; Meyer, P.; Kunka, D.; Mohr, J. [Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zanette, I. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Rack, A. [European Synchrotron Radiation Facility, 71 Rue des Martyrs, 38000 Grenoble (France); Hipp, A. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Plank Strasse 1, 21502 Geesthacht (Germany); Pfeiffer, F. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany)

    2015-04-13

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater height of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.

  11. Discovery of very high energy gamma-rays associated with an X-ray binary

    CERN Document Server

    Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; De Jager, O C; Khelifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-01-01

    X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and X-ray observations have led to the presumption that some X-ray binaries called microquasars behave as scaled down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission >100 GeV from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

  12. Low-energy X-ray detection with an in-vacuum PILATUS detector

    Science.gov (United States)

    Marchal, Julien; Luethi, Benjamin; Ursachi, Catalin; Mykhaylyk, Vitaliy; Wagner, Armin

    2011-11-01

    The feasibility of using PILATUS single-X-ray-photon counting detectors for long-wavelength macromolecular crystallography was investigated by carrying out a series of experiments at Diamond Light Source. A water-cooled PILATUS 100k detector was tested in vacuum with monochromatic 3 keV X-rays on the Diamond test beamline B16. Effects of detector cooling on noise performance, energy calibration and threshold trimming were investigated. When detecting 3 keV X-rays, the electronic noise of the analogue output of pixel preamplifiers forces the threshold to be set at a higher level than the 50% energy level recommended to minimize charge-sharing effects. The influence of threshold settings at low X-ray energy was studied by characterizing the detector response to a collimated beam of 3 keV X-rays scanned across several pixels. The relationship between maximum count rate and minimum energy threshold was investigated separately for various detector gain settings.

  13. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  14. ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Fragos, T.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Naoz, S. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Basu-Zych, A., E-mail: tfragos@cfa.harvard.edu [NASA Goddard Space Flight Centre, Code 662, Greenbelt, MD 20771 (United States)

    2013-10-20

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ∼ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z ∼> 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ∼4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ∼300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages ∼> 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  15. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect.

    Energy Technology Data Exchange (ETDEWEB)

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin, M.; Michael, Barry, D.

    2007-01-23

    The Gray Cancer Institute has pioneered the use of X ray focussing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognised as a highly versatile technique for understanding how ionising radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ‘bystander effect’ where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbours. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ‘tabletop’ X-ray microprobe was optimised for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focussed electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 metre optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a

  16. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  17. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    CERN Document Server

    Jacobsen, Idunn B; On, Alvina Y L; Saxton, Curtis J

    2015-01-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \\citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\\it Chandra} and {\\it Swift}/BAT X-ray luminosity functions \\citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). B...

  18. Time-delayed beam splitting with energy separation of x-ray channels

    CERN Document Server

    Stetsko, Yuri P; Stephenson, G Brian

    2013-01-01

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. For energy separation the back-reflectors are set at slightly different temperatures and angular deviations from exact backscattering. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities. The delay line can be made more compact by adding a fourth crystal.

  19. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Fina, Laura [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-15

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  20. Precision of dual energy X-ray absorptiometry for body composition measurements in cats; Precisao da tecnica de absorciometria de raios-X de dupla energia na determinacao da composicao corporal em gatos

    Energy Technology Data Exchange (ETDEWEB)

    Borges, N.C. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Veterinaria]. E-mail: naida@vet.ufg.br; Vasconcellos, R.S.; Canola, J.C.; Carciofi, A.C.; Pereira, G.T. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias; Paula, F.J.A. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2008-07-01

    A short-term precision error of the individual subject and the DEXA technique, such as the effect of the repositioning of the cat on the examination table, were established. Four neutered adult cats (BW=4342 g) and three females (BW=3459 g) were submitted to five repeated scans with and without repositioning between them. Precision was estimated from the mean of the five measurements and expressed by the individual coefficient of variation (CV). The precision error of the technique was estimated by the variance of scan pool (n=35) and expressed in CV for the technique (CVt). The degrees of freedom and confidence intervals were determined to avoid underestimation of precision errors. Bone mineral content (BMC), lean mass (LM), and fat mass (FM) averages were higher (P<0.05) when animals were repositioned. The CVt was significantly higher (P<0.05) for bone mineral density (BMD), LM, and FM when the animals were repositioned. For short-term precision measurements, the repositioning of the animal was important to establish the precision of the technique. The dual energy xray absorptiometry method provided precision for body composition measurements in adult cats. (author)

  1. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method.

    Science.gov (United States)

    Hong, Xinguo; Chen, Zhiqiang; Duffy, Thomas S

    2012-06-01

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10(-5) -10(-6) spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 Å, 0.3 Å, and 0.4 Å, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO(2), Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO(2) glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  2. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  3. Use of sampling based correction for non-radioactivity X-ray energy calibration

    Institute of Scientific and Technical Information of China (English)

    CHENG Cheng; WEI Yong-Bo; JIANG Da-Zhen

    2005-01-01

    As the requirement of non-radioactivity measurement has increased in recent years, various energy calibration methods applied in portable X-ray fluorescence (XRF) spectrometers have been developed. In this paper, a sampling based correction energy calibration has been discussed. In this method both history information and current state of the instrument are considered and relative high precision and reliability can be obtained.

  4. Place of HgI/sub 2/ energy-dispersive x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, A.J.; Huth, G.C.; Iwanczyk, J.S.; Kusmiss, J.H.; Barton, J.S.; Szymczyk, J.M.; Schnepple, W.F.; Lynn, R.

    1982-01-01

    After a review of solid-state conduction counters, in general, and of the history of mercuric iodide, in particular, the theory of operation of solid-state energy-dispersive HgI/sub 2/ detectors is dicusssed. The main factors which limit energy resolution in solid-state compound detectors are considered, including statistical fluctuations in charge generation, the window effect, trapping, inhomogeneities in the detector material, and electronic noise. Potential applications of room-temperature HgI/sub 2/ x-ray detectors are listed, and general considerations are discussed for x-ray fluorescence analysis with HgI/sub 2/. Directions of current investigations are given. (LEW)

  5. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S. [Argonne National Lab., IL (United States); Frigo, S.P. [Chicago Univ., IL (United States). Dept. of Physics; Retsch, C.C. [Saint-Gobain Sekurit Deutschland (Germany); Stampfl, A.P.J. [Australian Nuclear Science and Technology Organisation, Div. Physics, Menai, NSW (Australia); Wang, Y. [X-Radia Inc., Concord, CA (United States)

    2002-08-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10{sup 9} photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  6. Transmission diffraction-tomography system using a high-energy X-ray tube.

    Science.gov (United States)

    Garrity, D J; Jenneson, P M; Crook, R; Vincent, S M

    2010-01-01

    A high-energy bench-top energy dispersive X-ray diffraction (EDXRD) system for 3-dimensional mapping of the crystalline structure and phase transformations in steel is described, for which preliminary data and system development are presented here. The use of precision tungsten slit screens with up to 225 keV X-rays allows for diffraction through samples of 304 L austenitic stainless steel of thickness 3-10 mm, while sample positioning is carried out with a precision goniometer and translation stage system.

  7. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  8. Macro and micro full field x-ray fluorescence with an X-ray pinhole camera presenting high energy and high spatial resolution.

    Science.gov (United States)

    Romano, Francesco Paolo; Caliri, Claudia; Cosentino, Luigi; Gammino, Santo; Giuntini, Lorenzo; Mascali, David; Neri, Lorenzo; Pappalardo, Lighea; Rizzo, Francesca; Taccetti, Francesco

    2014-11-01

    This work describes a tabletop (50 cm × 25 cm × 25 cm) full field X-ray pinhole camera (FF-XPC) presenting high energy- and high spatial-resolution. The FF-XPC consists of a conventional charge-coupled device (CCD) detector coupled, in a coaxial geometry, to a pinhole collimator of small diameter. The X-ray fluorescence (XRF) is induced on the samples with an external low-power X-ray tube. The use of the CCD as an energy dispersive X-ray detector was obtained by adopting a multi-image acquisition in single photon counting and by developing a processing algorithm to be applied in real-time to each of the acquired image-frames. This approach allowed the measurement of X-ray spectra with an energy resolution down to 133 eV at the reference value of 5.9 keV. The detection of the X-ray fluorescence through the pinhole-collimator allowed the two-dimensional elemental mapping of the irradiated samples. Two magnifications (M), determined by the relative sample-pinhole-CCD distances, are used in the present setup. A low value of M (equal to 0.35×) allows the macro-FF-XRF of large area samples (up to 4 × 4 cm(2)) with a spatial resolution down to 140 μm; a large magnification (M equal to 6×) is used for the micro-FF-XRF of small area samples (2.5 × 2.5 mm(2)) with a spatial resolution down to 30 μm.

  9. Energy Feedback from X-ray Binaries in the Early Universe

    CERN Document Server

    Fragos, Tassos; Naoz, Smadar; Zezas, Andreas; Basu-Zych, Antara R

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows no changes with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specificall...

  10. An X-ray Galaxy Cluster Survey for Investigations of Dark Energy

    CERN Document Server

    Haiman, Z; Bahcall, Neta A; Bautz, M; Böhringer, H; Borgani, S; Bryan, G; Cabrera, B; Canizares, C; Citterio, O; Evrard, A; Finoguenov, A; Griffiths, R; Hasinger, G; Henry, P; Jahoda, K; Jernigan, G; Kahn, S; Lamb, D; Majumdar, S; Mohr, J; Molendi, S; Mushotzky, R; Pareschi, G; Peterson, J; Petre, R; Predehl, P; Rasmussen, A; Ricker, G; Ricker, P; Rosati, P; Sanderson, A; Stanford, A; Voit, Mark; Wang, S; White, N; White, S

    2005-01-01

    The amount and nature of dark energy (DE) can be tightly constrained by measuring the spatial correlation features and evolution of a sample of ~ 100,000 galaxy clusters over the redshift range 0X-ray survey will discover all collapsed structures with mass above 3.5e14 solar masss at redshifts z<2 (i.e. the full range where such objects are expected) in the high Galactic latitude sky. Above this mass threshold the tight correlations between X-ray observables and mass allow direct interpretation of the data. We describe the constraints on Dark Energy that can be inferred from such a survey, using powerful self-calibration techniques to relate the X-ray observables (luminosity and temperature) to the underlying mass.

  11. Time-delayed beam splitting with energy separation of x-ray channels

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, Yuri P.; Shvyd' ko, Yuri V.; Brian Stephenson, G. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  12. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  13. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis

    Institute of Scientific and Technical Information of China (English)

    SHI Yue-Jiang; WAN Bao-Nian

    2001-01-01

    The soft x-ray pulse-height-analysis technique is a conventional tool to measure electron temperature on tokamaks.The soft x-ray spectra distortion due to the energy resolution of the detector will affect the temperature andimpurity concentration determination. To evaluate these effects, distorted spectra as functions of energy resolutionare derived by numerical modelling. The results show that the low-energy resolution detector can fit for the largesized tokamak soft x-ray spectra.

  14. COnstrain Dark Energy with X-ray (CODEX) clusters

    Science.gov (United States)

    Finoguenov, Alexis; SDSS Team; Cfht Team; Carma Team

    2012-09-01

    We describe the construction and follow-up observations of the most massive clusters in the Universe, selected in the SDSS-III survey using RASS data down to an unprecedented flux limit of -13 dex. In application to the cosmology studies, we demonstrate that we will achieve a 3% constraint on the dark energy equation of state, and in a combination with BOSS BAO measurement reach a FoM of 160.

  15. Search for X-Ray Induced Decay of the 31-yr Isomer of 178-Hf at Low X-Ray Energies

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J; McNabb, D; Wang, T; Cooper, J; Moore, E; Rundberg, R; Banar, J; Palmer, P; Bredeweg, T; Shastri, S; Ahmad, I; Mashayekhi, A; Wilhelmy, J; Schiffer, J; Gemmell, D

    2003-12-01

    The 31-yr isomer of {sup 178}Hf at excitation energy 2.446 MeV, and with J{sup {pi}}, K= 16+, 16, has been the object of several studies for possible mechanisms that might trigger isomer decay to the ground state. Potential for the control of nuclear energies (MeV) with atomic energies (keV) is the driving interest. The 178Hf isomer is a favorite nucleus in the search for triggered decay because this isomer is long-lived, available in microgram quantities, the decay scheme is well known, the excitation energy is high, and a sample enriched in the isomer can be fabricated for irradiation. In fact, accelerated decay of the {sup 178}Hf isomer when irradiated with photons from a dental x-ray machine has been reported by Collins et al. The triggering x-ray energies were reported to be in the 20-60 keV range. Using the synchrotron radiation at the Advanced Photon Source (APS) we published limits on such accelerated emission approximately 5 orders of magnitude lower than those in ref. 1. Very recently, a new measurement of triggering has been reported by Collins et al., using monochromatic x rays from the SPring-8 synchrotron but this time for (several) much lower incident x-ray energies in the 9-13 keV region. In order to verify this observation, we undertook a new measurement at the APS, with significantly increased focus on incident x-rays below 20 keV, as described below.

  16. X-ray Polarimetry: a new window on the high energy sky

    CERN Document Server

    Bellazzini, Ronaldo; 10.1016/j.nima.2010.04.006

    2010-01-01

    Polarimetry is widely considered a powerful observational technique in X-ray astronomy, useful to enhance our understanding of the emission mechanisms, geometry and magnetic field arrangement of many compact objects. However, the lack of suitable sensitive instrumentation in the X-ray energy band has been the limiting factor for its development in the last three decades. Up to now, polarization measurements have been made exclusively with Bragg diffraction at 45 degrees or Compton scattering at 90 degrees and the only unambiguous detection of X-ray polarization has been obtained for one of the brightest object in the X-ray sky, the Crab Nebula. Only recently, with the development of a new class of high sensitivity imaging detectors, the possibility to exploit the photoemission process to measure the photon polarization has become a reality. We will report on the performance of an imaging X-ray polarimeter based on photoelectric effect. The device derives the polarization information from the track of the phot...

  17. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    Science.gov (United States)

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  18. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: eiichisato@hotmail.co [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abderyim, Purkhet [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Enomoto, Toshiyuki; Watanabe, Manabu [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Hitomi, Keitaro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan); Takahasi, Kiyomi; Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Ogawae, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo 985-8537 (Japan)

    2010-07-21

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  19. Energy-resolved X-ray detectors: the future of diagnostic imaging

    OpenAIRE

    Pacella D

    2015-01-01

    Danilo Pacella ENEA-Frascati, Rome, Italy Abstract: This paper presents recent progress in the field of X-ray detectors, which could play a role in medical imaging in the near future, with special attention to the new generation of complementary metal-oxide semiconductor (C-MOS) imagers, working in photon counting, that opened the way to the energy-resolved X-ray imaging. A brief description of the detectors used so far in medical imaging (photographic films, imaging plates, flat panel detec...

  20. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    Science.gov (United States)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  1. X-ray quantum-eraser setup for time-energy complementarity

    Science.gov (United States)

    Gunst, Jonas; Pálffy, Adriana

    2016-12-01

    A quantum-eraser setup exploiting the time-energy complementarity relation in the x-ray regime is investigated theoretically. The starting point is the interference process between x-ray quanta driving two nuclear hyperfine transitions in a nuclear forward-scattering setup. We show that which-way information can be obtained by marking the scattering paths with orthogonal polarization states, thus leading to the disappearance of the interference pattern. In turn, erasure of the which-way information leads to the reappearance of the interference fringes. We put forward two schemes using resonant scattering off nuclear targets and design which-way marking procedures to realize the quantum-eraser setup for x-ray quanta.

  2. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    Science.gov (United States)

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  3. Robust x-ray based material identification using multi-energy sinogram decomposition

    Science.gov (United States)

    Yuan, Yaoshen; Tracey, Brian; Miller, Eric

    2016-05-01

    There is growing interest in developing X-ray computed tomography (CT) imaging systems with improved ability to discriminate material types, going beyond the attenuation imaging provided by most current systems. Dual- energy CT (DECT) systems can partially address this problem by estimating Compton and photoelectric (PE) coefficients of the materials being imaged, but DECT is greatly degraded by the presence of metal or other materials with high attenuation. Here we explore the advantages of multi-energy CT (MECT) systems based on photon-counting detectors. The utility of MECT has been demonstrated in medical applications where photon- counting detectors allow for the resolution of absorption K-edges. Our primary concern is aviation security applications where K-edges are rare. We simulate phantoms with differing amounts of metal (high, medium and low attenuation), both for switched-source DECT and for MECT systems, and include a realistic model of detector energy 0 resolution. We extend the DECT sinogram decomposition method of Ying et al. to MECT, allowing estimation of separate Compton and photoelectric sinograms. We furthermore introduce a weighting based on a quadratic approximation to the Poisson likelihood function that deemphasizes energy bins with low signal. Simulation results show that the proposed approach succeeds in estimating material properties even in high-attenuation scenarios where the DECT method fails, improving the signal to noise ratio of reconstructions by over 20 dB for the high-attenuation phantom. Our work demonstrates the potential of using photon counting detectors for stably recovering material properties even when high attenuation is present, thus enabling the development of improved scanning systems.

  4. Role and significance of dual-energy X-ray absorptiometry in measurement of bone mineral density in children with upper extremity fractures%双能X线吸收法检测儿童上肢骨折的骨密度及其意义

    Institute of Scientific and Technical Information of China (English)

    韦溦; 杨星华; 刘洋; 韦继刚; 陈辉; 郭元

    2014-01-01

    Objective To measure the bone mineral density in children with dual-energy X-ray absorptiometry and examine the relevance of bone mineral density with the risk of pediatric upper limb fracture.Methods A total of 864 children (8-14 years of age) admitted into our hospital in 2009 were involved in the study.The bone mass density (Z score) at the left radius was measured using dual-energy X-ray absorptiometry.Children were grouped according to their Z score and age to observe correlations of Z value and age with the incidence of fractures.Results Thirty-three children were lost to follow-up.For the other 831 children,the mean duration of follow-up was 2 years.Z sore was ≤-2 in 66 children and >-2 in 765 children.There was significant difference in fracture incidence between children with Z score of ≤-2 and >-2 (27.27% vs 5.49%,P <0.01).Furthermore,fracture incidence in children at age group of 8-10 years and 11-14 years revealed significant difference (10.83% vs 5.03%,P < 0.01).Conclusions Bone mineral density is closely related to upper limb fracture in children and increases with aging.Early application of dual-energy X-ray absorptiometry to detect the bone density is an effective primary measure for prevention of fractures in children.%目的 探讨双能X线吸收法检测儿童上肢骨折的骨密度及其意义. 方法 选取2009年1-12月体检的8~14岁儿童864例,采用双能X线骨密度测试仪检测左桡骨骨密度Z值,根据Z值大小进行分组观察Z值与骨折的关系;根据年龄分组观察年龄与骨折的关系. 结果 864例患者中获得2年随访831例,失随访33例.Z值结果显示,Z值≤-2者66例,Z值>-2者765例.Z值≤-2组儿童骨折发生率为27.27%,Z值>-2组骨折发生率为5.49%,两组比较差异有统计学意义(P<0.01);8~10岁组儿童骨折发生率为10.83%,11 ~ 14岁组骨折发生率为5.03%,两组比较差异有统计学意义(P<0.01). 结论 骨密度与儿童上肢骨

  5. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun [Key Laboratory of Pulsed Power Technology, IFP, CAEP, Mianyang 621900 (China)

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  6. Estimation of Energy Equation Correlate of CMEs with X-Ray Flares during Solar Cycle 23rd

    Science.gov (United States)

    Shaltout, Mosalam; Shaltout, Mosalam; Ramy Mawad, Rr.

    . The aim of this paper is estimating the energy equation of CMEs with associated X-ray flares. In addition, we studied, when and where X-ray flares can eject CMEs? We are used CMEs data which observed from SOHO/LASCO, during the full solar cycle 23rd (1996- 2006), we have 12433 events. Also we are used the X-Ray flares data observed by Geostationary Operational Environmental Satellite (GEOS), during the same interval (1996-2006) in the 1-8 Ao GEOS Channel, it is recorded 22688 X-ray flare events. We had estimated energy equation between CMEs and associated X-ray flares during solar cycle 23rd (1996-2006). It is found the energy equation between them is polynomial series with correlation coefficient 92%. The characteristics of the CMEs and associated X-ray flares have been studied.

  7. DEXA技术测量体脂含量及其与2型糖尿病代谢指标的相关性%Detection of body fat composition by dual energy X-ray absorptiometry and its relations with metabolic indices of type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    聂琳; 柳洁

    2012-01-01

    Objective To explore the value of dual energy X-ray( DEXA ) in detection of body fat composition, and the relationships between body fat composition and metabolic indices of type 2 diabetic patients. Methods DEXA was used to determine the body fat composition in 123 type 2 diabetic patients and 112 normal controls. The consistency between the body fat composition and the standard waistline for abdominal obesity was verified. The correlation between body fat composition and metabolic index was analyzed in type 2 diabetic patients. Results The diagnosis results were consistent between trunk fat tissue( trunk FAT ) measured by DEXA and the standard waistline for abdominal obesity. The obese cutoff point was 35. 56% . According to the obese cutoff point, the patients and normal controls were respectively divided into two subgroups. Blood pressure, blood lipid and HbAlC were statistically different among four subgroups. Conclusion The trunk FAT measured by DEXA can evaluate the abdominal obesity and reflect IR to a certain degree. Obese is related to the hypertension, insulin resistance and blood fat disorder.%目的 探讨双能X线吸收法(dual energy X-ray absorptiometry,DEXA)测量体脂分布的价值及其与2型糖尿病代谢相关因素的关系.方法 使用DEXA法测量123例2型糖尿病患者及112例正常对照者的体脂分布,与腹型肥胖诊断标准腰围进行一致性检验,探讨其与糖尿病代谢因素的关系.结果 躯干脂肪比例与腰围诊断肥胖症具有良好的一致性,诊断切点为>35.56%,可反映胰岛素抵抗(IR),以诊断切点划分的病例组与对照组之间血压、血脂、糖化血红蛋白等指标具有统计学差异.结论 DEXA测量的体脂分布可评价腹型肥胖,肥胖与高血压、胰岛素抵抗、血脂紊乱等肥胖代谢相关因素具有相关性.

  8. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  9. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    Science.gov (United States)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  10. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    Science.gov (United States)

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system.

  11. Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    CERN Document Server

    Zycki, P T; Sobolewska, M A

    2007-01-01

    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretion flow oscillates, while the cold disc is absent at the QPO radius. We find that the QPO spectra are generally similar to the spectrum of radiation emitted at the QPO radius, and they are broadened by the relativistic effects. In particular, the QPO spectrum contains the disc component in the oscillating disc with a corona scenario. We also review the available data on energy dependencies of high frequency QPO, and we point out that they appear to lack the disc component in their energy spectra. This would suggest the hot...

  12. What is the nature of the high energy X-ray sources in the galaxy?

    Science.gov (United States)

    Cuturilo, Sophie; Tomsick, John; Clavel, Maica; Lansbury, George B.

    2017-01-01

    Finding sources of high energy “hard” X-rays allow us to probe the most extreme conditions in the Universe. Such sources include accreting black holes and neutron stars, where we find the strongest gravitational and magnetic fields, as well as pulsars and supernova remnants, where particles are accelerated to produce the hard X-rays. Over the past decade, the INTEGRAL satellite ahs been discovering new high energy sources, and this has allowed us to understand the population of bright hard X-ray sources. Over the past few years, the NuSTAR satellite, with much better sensitivity than INTEGRAL, has been allowing us to find even more hard X-ray sources, and we will present results from studies of sources discovered in the NuSTAR serendipitous source survey. We analyzed seven different potential sources looking for counterparts using NuSTAR, Chandra and ground based optical/NIR observations. Of the seven, two have confirmed counterparts and five need either an optical/NIR detection or further spectroscopy.

  13. Response of large area avalanche photodiodes to low energy x rays

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T. R. [Stop 8461, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Bales, M. [University of Michigan, Ann Arbor, Michigan 48104 (United States); Arp, U. [Stop 8410, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Dong, B. [Sotera Defense Solutions, Inc., Brookhaven National Laboratory, Upton, New York 11973 (United States); Farrell, R. [RMD Inc., Watertown, Massachusetts 02472 (United States)

    2012-05-15

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  14. Response of large area avalanche photodiodes to low energy x rays.

    Science.gov (United States)

    Gentile, T R; Bales, M; Arp, U; Dong, B; Farrell, R

    2012-05-01

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  15. High-Energy Density science with an ultra-bright x-ray laser

    Science.gov (United States)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  16. Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics

    Science.gov (United States)

    Wang, Baoqing; Yi, Tao; Wang, Chuanke; Zhu, Xiaoli; Li, Tingshuai; Li, Jin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-07-01

    A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion. supported by National Natural Science Foundation of China (Nos. 11405158 and 11435011) and Development Foundation of China Academy of Engineering Physics (Nos. 2014B0102011 and 2014B0102012)

  17. The energy spectrum of X-rays from rocket-triggered lightning

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Cramer, E. S.; Grove, J. E.; Gwon, C.; Hill, J. D.; Jordan, D. M.; Lucia, R. J.; Vodopiyanov, I. B.; Uman, M. A.; Rassoul, H. K.

    2015-10-01

    Although the production of X-rays from natural and rocket-triggered lightning leaders have been studied in detail over the last 10 years, the energy spectrum of the X-rays has never been well measured because the X-rays are emitted in very short but intense bursts that result in pulse pileup in the detectors. The energy spectrum is important because it provides information about the source mechanism for producing the energetic runaway electrons and about the electric fields that they traverse. We have recently developed and operated the first spectrometer for the energetic radiation from lightning. The instrument is part of the Atmospheric Radiation Imagery and Spectroscopy (ARIS) project and will be referred to as ARIS-S (ARIS Spectrometer). It consists of seven 3'' NaI(Tl)/photomultiplier tube scintillation detectors with different thicknesses of attenuators, ranging from no attenuator to more than 1'' of lead placed over the detector (all the detectors are in a 1/8'' thick aluminum box). Using X-ray pulses preceding 48 return strokes in 8 rocket-triggered lightnings, we found that the spectrum of X-rays from leaders is too soft to be consistent with Relativistic Runaway Electron Avalanche. It has a power law dependence on the energies of the photons, and the power index, λ, is between 2.5 and 3.5. We present the details of the design of the instrument and the results of the analysis of the lightning data acquired during the summer of 2012.

  18. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  19. Energy resolution in X-ray detecting micro-strip gas counters

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Mir, J A; Spill, E J; Stephenson, R

    2002-01-01

    Systematic measurements of the energy resolution available from a Micro-Strip Gas Counter (MSGC) are presented. The effect of factors such as bias potential, gas filling and strip geometry on the energy resolution are examined in detail and related to a simple model. The geometry of the MSGC is adapted to permit 'wall-less' detection of X-rays and this results in useful improvements in the pulse height spectra.

  20. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    Science.gov (United States)

    1987-10-01

    Energy Fluorescent X-Ray Spectroscopy for Materials Analysis" 13. "Temporal Dependence of the Mass- Ablation Rate In UV- Laser -Irradiated Spherical...Rochester (utilizing 24 focussed UV laser beams of about 2000 joules total energy of 3510 A light within a 600 picosecond Gaussian pulse). Presented in...of the carbon, tungsten , and tungsten carbide layers, respectively. We estimate the mass densities p, (for amorphous carbon), py( tungsten ), and p

  1. Iodinated silica/porphyrin hybrid nanoparticles for X-ray computed tomography/fluorescence dual-modal imaging of tumors

    Directory of Open Access Journals (Sweden)

    Koichiro Hayashi

    2014-12-01

    Full Text Available Silica nanoparticles containing covalently linked iodine and a near-infrared (NIR fluorescence dye, namely porphyrin, have been synthesized through a one-pot sol–gel reaction. These particles are called iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs. The ISP HNPs have both high X-ray absorption coefficient and NIR fluorescence. The ISP HNPs modified with folic acid (FA and polyethylene glycol (PEG, denoted as FA-PEG-ISP HNPs, enabled the successful visualization of tumors in mice by both X-ray computed tomography (CT and fluorescence imaging (FI. Thus, the FA-PEG-ISP HNPs are useful as contrast agents or probes for CT/FI dual-modal imaging.

  2. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Science.gov (United States)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2017-03-01

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ cr ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  3. Low-Energy Plasma Focus as a Tailored X-Ray Source

    Science.gov (United States)

    Zakaullah, M.; Alamgir, K.; Shafiq, M.; Sharif, M.; Waheed, A.; Murtaza, G.

    2000-06-01

    A low-energy (2.3 kJ) plasma focus energized by a single 32-μF capacitor charged at 12 kV with filling gases hydrogen, neon, and argon is investigated as an X-ray source. Experiments are conducted with a copper and an aluminum anode. Specifically, attention is given to tailoring the radiation in different windows, e.g., 1.2-1.3 keV, 1.3-1.5 keV, 2.5-5 keV, and Cu-Kα line radiation. The highest X-ray emission is observed with neon filling and the copper anode in the 1.2-1.3 keV window, which we speculate to be generated due to recombination of hydrogenlike neon ions with a few eV to a few 10s of eV electrons. The wall-plug efficiency of the device is found to be 4%. The other significant emission occurs with hydrogen filling, which exhibits wall-plug efficiency of 1.7% for overall X-ray emission and 0.35% for Cu-Kα line radiation. The emission is dominated by the interaction of electrons in the current sheath with the anode tip. The emission with the aluminum anode and hydrogen filling is up to 10 J, which corresponds to wall-plug efficiency of 0.4%. The X-ray emission with argon filling is less significant.

  4. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  5. Novel energy resolving x-ray pinhole camera on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Ellis, R.; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Brandstetter, S.; Eikenberry, E.; Hofer, P.; Schneebeli, M. [Dectris Ltd., Baden (Switzerland)

    2012-10-15

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of Almost-Equal-To 1 cm, an energy resolution of Almost-Equal-To 1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  6. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  7. Precisão da técnica de absorciometria de raios-x de dupla energia na determinação da composição corporal em gatos Precision of dual energy x-ray absorptiometry for body composition measurements in cats

    Directory of Open Access Journals (Sweden)

    N.C. Borges

    2008-02-01

    Full Text Available A short-term precision error of the individual subject and the DEXA technique, such as the effect of the repositioning of the cat on the examination table, were established. Four neutered adult cats (BW=4342g and three females (BW=3459g were submitted to five repeated scans with and without repositioning between them. Precision was estimated from the mean of the five measurements and expressed by the individual coefficient of variation (CV. The precision error of the technique was estimated by the variance of scan pool (n=35 and expressed in CV for the technique (CVt. The degrees of freedom and confidence intervals were determined to avoid underestimation of precision errors. Bone mineral content (BMC, lean mass (LM, and fat mass (FM averages were higher (P<0.05 when animals were repositioned. The CVt was significantly higher (P<0.05 for bone mineral density (BMD, LM, and FM when the animals were repositioned. For short-term precision measurements, the repositioning of the animal was important to establish the precision of the technique. The dual energy x-ray absorptiometry method provided precision for body composition measurements in adult cats.

  8. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Science.gov (United States)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  9. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gianoncelli, Alessandra, E-mail: alessandra.gianoncelli@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bufon, Jernej [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Ahangarianabhari, Mahdi [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Altissimo, Matteo [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bellutti, Pierluigi [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Bertuccio, Giuseppe [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Borghes, Roberto [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Carrato, Sergio [University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Cautero, Giuseppe [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Fabiani, Sergio [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Giuressi, Dario [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Kourousias, George [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Menk, Ralf Hendrik [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Picciotto, Antonino; Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Rachevski, Alexandre [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); and others

    2016-04-21

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  10. Studies of K-shell x-ray energy shifts induced by MeV/u heavy ions

    Institute of Scientific and Technical Information of China (English)

    Song Zhang-Yong; Yang Zhi-Hu; Shao Jian-Xiong; Cui Ying; Zhang Hong-Qiang; Ruan Fang-Fang; Du Juan; Gao Zhi-Min; Yu De-Yang; Chen Xi-Meng; Cai Xiao-Hong

    2009-01-01

    This paper reports that the K x-ray spectra of the thin target 47Ag,48Cd,49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions.Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90~110 eV.The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit.The present work extends the model of Butch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u.In addition to our experimental results,many other experimental results are compared with the calculated values by using the model.

  11. Metal screen-film detector MTF at megavoltage x-ray energies.

    Science.gov (United States)

    Droege, R T; Bjärngard, B E

    1979-01-01

    The MTF of metal screen film detectors used in radiation treatment verification has been measured at 4 and 8 MV x-ray energies. The results show that lead screens provide better resolution than copper screens, and a single-emulsion film offers considerable advantage over the traditional double-emulsion film. A rear lead screen was found to seriously degrade the resolution properties of a front lead screen single-emulsion film detector. The detector MTF was found to be energy dependent. In general, both the low and the high spatial frequency response decreased with increasing x-ray energy. This, in part, accounts for the noticeable image quality difference between 4 and 8 MV radiographs.

  12. Measurements of the spectrum and energy dependence of X-ray transition radiation

    Science.gov (United States)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  13. Superconducting tunnel junction array development for high-resolution energy-dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, A. T.; Cramer, S. P; Frank, M.; Friedrich, S.; Hiller, L. J.; Labov, S. E.; Mears, C. A.; Niderost, B.

    1998-07-01

    Cryogenic energy-dispersive x-ray detectors are being developed because of their superior energy resolution ((less than or equal to) 10 eV FWHM for keV x rays) compared to semiconductor EDS systems. So far, their range of application is limited due to their comparably small size and low count rate. We present data on the development of superconducting tunnel junction (STJ) detector arrays to address both of these issues. A single STJ detector has a resolution around 10 eV below 1 keV and can be operated at count rates of order 10,000 counts/s. We show that the simultaneous operation of several STJ detectors does not diminish their energy resolution significantly, while increasing the detector area and the maximum count rate by a factor given by the total number of independent channels.

  14. Measurement of electron energy distribution from X-rays diagnostics - foil techniques used with the hard X-ray camera on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    Goeler, S. von; Bell, R.; Bernabei, S.; Davis, W.; Ignat, D. [and others

    1995-12-31

    A half-screen foil technique is used with the Hard X-ray Camera on the PBX-M tokamak to determine the energy distribution of the suprathermal electrons generated during lower hybrid current drive. The ratio of perpendicular to parallel temperature of the suprathermal electrons is deduced from the anisotropy of the bremsstrahlung emission utilizing Abel inversion techniques. Results from lower hybrid current drive discharges are discussed.

  15. Induction of chromosome aberration in human lymphocytes and its dependence on X ray energy

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Carbajal, C.; Edwards, A.A.; Lloyd, D.C

    2003-07-01

    The variations of dose response with X ray energy observed with the human lymphocyte dicentric assay is examined. In order to determine reliably the initial slopes (RBE{sub m}) many cells need to be analysed at low doses. Insufficient analysis may explain some reported interlaboratory differences in fitted dose-response coefficients. One such discrepancy at 150 kV{sub p}, E(mean) = 70 keV is examined. Data are also presented for an X ray spectrum of 80 kV{sub p}, E(mean) = 58 keV. Over the photon energy range 20 keV X rays to 1.25 MeV gamma rays RBE{sub m} varies by about a factor of 5, with the lower energies being more effective. This is consistent with microdosimetric theory. By contrast, in radiological protection a radiation weighting factor of 1.0 is assumed for all photons when assessing the risk of inducing cancer at low doses. The measured variations of biological effect with photon energy have led to suggestions that the lower energies, as used for some diagnostic radiology, carry a greater risk per unit dose than is normally assumed by those involved in radiological protection. Interpretation of the data reported in this paper does not support this view. (author)

  16. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng; Mao, Hui, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences and Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Yang, Yi; Tang, Xiangyang, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Feng, Ting; Wang, Xueding [Department of Biomedical Engineering, University of Michigan School of Medicine, Ann Arbor, Michigan 48109 (United States); Yang, Lily [Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322 (United States)

    2016-01-15

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agent and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.

  17. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K., E-mail: jlee@khu.ac.kr [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  18. A comparison of dual energy x-ray absorptiometry and two bioelectrical impedance analyzers to measure body fat percentage and fat-free mass index in a group of Mexican young women.

    Science.gov (United States)

    Velazquez-Alva, Maria Del Consuelo; Irigoyen-Camacho, Maria Esther; Huerta-Huerta, Raquel; Delgadillo-Velazquez, Jaime

    2014-05-01

    Introducción: Los estudios de obesidad requieren estimación de masa grasa (FM) y masa libre de grasa (FFM). Objetivo: Comparar dos equipos de impedancia bioeléctrica (BIA) para estimar FM y FFM usando absorciometría de rayos X de energía dual (DXA) como referencia. Métodos: Estudio transversal. FM y FFM fueron evaluados por DXA y BIA: sistema pie-pie (FFS) y sistema mano-pie (HFS). Se realizaron pruebas t pareadas, coeficientes de correlación y análisis de Bland y Altman. Limites de acuerdo fueron calculados (CL). Resultados: Fueron estudiadas 175 mujeres (22,9 ± 2,2 años). Hubo diferencias significativas entre el promedio del porcentaje de grasa estimado por los equipos de BIA en comparación con DXA (FFS = 28,7%, HFS = 34,4% y DXA = 35,3%). La diferencia de medias del porcentaje de grasa entre HFS y DXA fue -0.96, (CL -5,29, 7,21). La diferencia de medias para FFS fue de -6,69,(CL -0,29, - 13.09) Hubo diferencias significativas entre las estimaciones de FFMI por BIA y DXA (FFS = 16,29, HFS = 14,95, DXA = 14,18). La diferencia de medias entre HFS y DXA fue = 0,78, (CL -2,27, 0,72) y la diferencia de medias de FFS fue -2,11: (CL -3,73 , -0,49). Conclusiones: Niveles diferentes de sesgo se observaron entre los equipos de BIA. El HFS parece ser más confiable que el FFS, sobre todo en la obtención de FFMI en mujeres jóvenes.

  19. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    Directory of Open Access Journals (Sweden)

    H. C. Ives

    2006-11-01

    Full Text Available We have developed a diagnostic system that measures the spectrally integrated (i.e. the total energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38×38 square array of 10-μm-diameter pinholes in a 50-μm-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode’s output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and—on every shot—provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects of the sensitivity of an array-diode combination is presented.

  20. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L.; Steinberg, A.D. [Univ. of Illinois, Chicago, IL (United States); Krauss, A.R. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  1. The Energy Dependence of Neutron Star Surface Modes and X-ray Burst Oscillations

    CERN Document Server

    Piro, A L; Piro, Anthony L.; Bildsten, Lars

    2006-01-01

    We calculate the photon energy dependence of the pulsed amplitude of neutron star (NS) surface modes. Simple approximations demonstrate that it depends most strongly on the bursting NS surface temperature. This result compares well with full integrations that include Doppler shifts from rotation and general relativistic corrections to photon propagation. We show that the energy dependence of type I X-ray burst oscillations agrees with that of a surface mode, lending further support to the hypothesis that they originate from surface waves. The energy dependence of the pulsed emission is rather insensitive to the NS inclination, mass and radius, or type of mode, thus hindering constraints on these parameters. We also show that, for this energy-amplitude relation, the majority of the signal (relative to the noise) comes in the 2-25 keV band, so that the current burst oscillation searches with the Rossi X-Ray Timing Explorer are close to optimal. The critical test of the mode hypothesis for X-ray burst oscillatio...

  2. Time resolved energy dispersive X-ray diagnostic for the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.; Amaro, P.; Amorim, P.; Varandas, C.A.F. [Associacao EURATOM/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Lisbon (Portugal); Duval, B. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-10-01

    A time resolved energy dispersive X-ray diagnostic is being developed for the TCV tokamak (CRPP - Lausanne) to measure the evolution of the plasma impurities, runaway electrons and electron temperature. A liquid nitrogen cooled Ge diode detects the X-ray photons which are processed by a spectroscopic amplifier and a locally developed interface amplifier and timing generator (IATG) unit. The energy spectrum is obtained using a fast digitiser and a software histogramming algorithm. These electronics components have been optimised to improve the data throughput to match high flux 2 seconds time duration of a TCV plasma pulse. This paper describes the diagnostic hardware with particular emphasis on the IATG unit. (author) 5 figs., 4 refs.

  3. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Science.gov (United States)

    Opachich, Y. P.; Bell, P. M.; Bradley, D. K.; Chen, N.; Feng, J.; Gopal, A.; Hatch, B.; Hilsabeck, T. J.; Huffman, E.; Koch, J. A.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R.; Udin, S.

    2016-11-01

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1-12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  4. A study of some energy dependent characteristics of X-ray screens used in diagnostic radiology : screen-film sensitivity, MTF and some related factors

    OpenAIRE

    Karlsson, Mikael

    1983-01-01

    Fluorescent x-ray screens are used in medical x-ray diagnostics to absorb x-ray photons and convert these x-ray photons to visible light. The light distribution from these screens are then registered on photographic film to give an x-ray image. Both the sensitivity and the resolution characteristics of these systems are dependent on the x-ray photon energy. To enable a study of these and some other energy dependent characteristics of x-ray screens a number of almost monoener-getic radiation s...

  5. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  6. Combination of Raman, infrared, and X-ray energy-dispersion spectroscopies and X-ray d diffraction to study a fossilization process

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Filho, Francisco Eduardo de [Departamento de Fisica, Universidade Regional do Cariri, Crato, CE (Brazil); Joao Herminio da Silva [Universidade Federal do Ceara, Cariri, Juazeiro do Norte, CE (Brazil); Saraiva, Antonio Alamo Feitosa; Brito, Deyvid Dennys S. [Departamento de Ciencias Biologicas, Universidade Regional do Cariri, Crato, CE (Brazil); Viana, Bartolomeu Cruz [Departamento de Fisica, Universidade Federal do Piaui, Teresina, PI, (Brazil); Abagaro, Bruno Tavares de Oliveira; Freire, Paulo de Tarso Cavalcante, E-mail: tarso@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2011-12-15

    X-ray diffraction was combined with X-ray energy-dispersion, Fourier-transform infrared, and Raman spectroscopies to study the fossilization of a Cretaceous specimen of the plant Brachyphyllum castilhoi, a fossil from the Ipubi Formation, in the Araripe Sedimentary Basin, Northeastern Brazil. Among the possible fossilization processes, which could involve pyrite, silicon oxide, calcium oxide, or other minerals, we were able to single out pyritization as the central mechanism producing the fossil, more than 100 million years ago. In addition to expanding the knowledge of the Ipubi Formation, this study shows that, when combined with other experimental techniques, Raman spectroscopy is a valuable tool at the paleontologist's disposal. (author)

  7. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    Energy Technology Data Exchange (ETDEWEB)

    Manso, M. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Valadas, S. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Pessanha, S.; Guilherme, A. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' , CSIC, Sole Sabaris s/n. 08028 Barcelona (Spain); Candeias, A.E. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Carvalho, M.L., E-mail: luisa@cii.fc.ul.p [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2010-04-15

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  8. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  9. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  10. K X-ray fluorescent source for energy-channel calibration of the spectrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new K X-ray fluorescent source for calibrating the X or γ-ray multichannel analyzer spectrometer is introduced. A detailed description of the K fluorescent source device is given. The calibration method used and experimental results obtained are presented. The purity and efficiency of K fluorescence photons from this device are discussed. This new fluorescent source may be used as a substitute for radioactive nuclides for the energy-channel calibration of some MCA spectrometers.

  11. New energy dispersive X-ray spectrometer developed in ATOMKI (Debrecen, Hungary)

    Energy Technology Data Exchange (ETDEWEB)

    Bacso, J.; Kalinka, G.; Kovacs, P.; Lakatos, T. (Magyar Tudomanyos Akademia Atommag Kutato Intezete, Debrecen)

    1982-06-01

    A new X-ray spectrometer developed in ATOMKI is described. The measuring head contains a p-type Si(Li) detector surrounded by an Al collimator, a charge sensitive preamplifier and a vacuum cryostat. The analog pulse processor uses filters with variable parameters. The characteristic properties of the spectrometer (energy resolution, its dependence on load, stability) are investigated. The background is measured using three different radioactive sources and the results are compared with those of other pulse forming techniques.

  12. Residual stress measurement with high energy x-rays at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

    2000-03-02

    Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

  13. Structural studies of BSCCO/Ag-tapes by high-energy synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Frello, T.; Andersen, N.H.

    1998-01-01

    High-energy (100 keV) synchrotron X-ray diffraction has been identified as a powerful tool for characterizing texture and structural phases,within Ag clad high T-c, superconducting tapes of the (Bi,Pb)-Sr-Ca-Cu-O (BSSCO) type during synthesis of (Bi,Pb)(2)Sr2Ca2Cu3Ox (Bi-2223) from (Bi,Pb)(2)Sr2CaCu...

  14. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron source

    Indian Academy of Sciences (India)

    K K Pandey; H K Poswal; A K Mishra; Abhilash Dwivedi; R Vasanthi; Nandini Garg; Surinder M Sharma

    2013-04-01

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic powdered samples. A few recent high-pressure investigations are presented to demonstrate the capabilities of the beamline.

  15. Effective attenuation lengths for photoelectrons emitted by high-energy laboratory X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, A., E-mail: ajablonski@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Powell, C.J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MA (United States)

    2015-02-15

    Highlights: • Effective attenuation lengths (EALs) for high kinetic energy photoelectrons. • Weak influence of the non-dipole approximation on the EAL. • New analytical algorithm for calculating the effective attenuation length. - Abstract: We report calculations of effective attenuation lengths (EALs) for Si 2s{sub 1/2}, Cu 2p{sub 3/2}, Ag 3d{sub 5/2}, and Au 4f{sub 7/2} photoelectrons excited by Mg Kα, Al Kα, Zr Lα, and Ti Kα X-rays, where the photoelectron energies ranged from 321 eV to 4.426 keV. These EALs, appropriate for determining overlayer-film thicknesses, were calculated from the transport-approximation formalism and from Monte Carlo simulations using photoionization cross sections from the dipole and non-dipole approximations. Satisfactory consistency was found between EALs determined from the TA formalism and from MC simulations, while differences between EALs for Au 4f{sub 7/2} photoelectrons from the dipole and non-dipole approximations were between 1% (for Mg and Al Kα X-rays) and 2.5% (for Ti Kα X-rays) for photoelectron emission angles less than 50°. As in past work for electron energies less than 2 keV, we found a simple linear relation between the ratio of the average EAL (for emission angles less than 50°) to the inelastic mean free path (IMFP) and the single-scattering albedo, a function of the IMFP and the transport mean free path. The root-mean-square difference between our average EALs and those from the linear expression was 1.44%. This expression should be useful in determinations of film thicknesses by XPS with unpolarized X-rays for photoelectron energies up to about 5 keV.

  16. An investigation of X-ray and radio isotope energy absorption of heavyweight concretes containing barite

    Indian Academy of Sciences (India)

    Yüksel Esen; Berivan Yilmazer

    2011-02-01

    This study investigated the X-ray and radioisotope energy absorption capacity of heavyweight concrete containing barite aggregate. Concrete plates were prepared using differing amounts of barite aggregate instead of normal aggregate. Density–thickness–energy variations of these concretes for 85 keV, 118 keV, 164 keV, 662 keV and 1250 keV ray energies were recorded. It was observed that the concretes with greater barite content had a higher density and energy absorption capacity.

  17. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    Science.gov (United States)

    Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro; Hanzel, Kelly; Brown, Adam; Frano, Alex; Qiao, Ruimin; Smith, Brian; Domning, Edward; Huang, Shih-Wen; Wray, L. Andrew; Lee, Wei-Sheng; Shen, Zhi-Xun; Devereaux, Thomas P.; Chiou, Jaw-Wern; Pong, Way-Faung; Yashchuk, Valeriy V.; Gullikson, Eric; Reininger, Ruben; Yang, Wanli; Guo, Jinghua; Duarte, Robert; Hussain, Zahid

    2017-01-01

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (˜1 μ m) and detector pixels (˜5 μ m) with high line density gratings (˜3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

  18. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Science.gov (United States)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  19. An InGrid based Low Energy X-ray Detector

    CERN Document Server

    Krieger, Christoph; Kaminski, Jochen; Lupberger, Michael; Vafeiadis, Theodoros

    2014-01-01

    An X-ray detector based on the combination of an integrated Micromegas stage with a pixel chip has been built in order to be installed at the CERN Axion Solar Telescope. Due to its high granularity and spatial resolution this detector allows for a topological background suppression along with a detection threshold below $1\\,\\text{keV}$. Tests at the CAST Detector Lab show the detector's ability to detect X-ray photons down to an energy as low as $277\\,\\text{eV}$. The first background data taken after the installation at the CAST experiment underline the detector's performance with an average background rate of $5\\times10^{-5}\\,/\\text{keV}/\\text{cm}^2/\\text{s}$ between 2 and $10\\,\\text{keV}$ when using a lead shielding.

  20. A new solid-conversion gas detector for high energy X-ray industrial computed tomography

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ri-feng; CHEN Wei-min; DUAN Xiao-jiao

    2011-01-01

    A new type of solid-conversion gas detector is investigated for high energy X-ray industrial computed tomography(H ECT).The conversion efficiency is calculated by using the EGSnrc Monte Carlo code on the Linux platform to simulate the transport process of photons and electrons in the detector.The simulation results show that the conversion efficiency could be more than 65%,if the X-ray beam width is less than about 0.2 mm,and a tungsten slab with 0.2 mum thickness and 30 mm length is employed as a radiation conversion medium.Meanwhile the results indicate that this new detector has higher conversion efficiency as well as less volume.Theoretically this new kind of detector could take place of the traditional scintillation detector for HECT.

  1. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  2. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    Science.gov (United States)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  3. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    Science.gov (United States)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  4. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  5. Co marker determination in rumen liquid sample by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Nascimento Filho, Virgilio F.; Massoni, Paulo R. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Leite, Laudi C.; Lanna, Dante P.D. [Escola Superior de Agricultura ' Luiz de Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia. Lab. de Anatomia e Fisiologia Animal (LAFA)]. E-mail: lcleite@ciagri.usp.br

    2007-07-01

    The Co element is used in nutritional studies as marker. This paper describes an analytical methodology for Co determination in rumen liquid sample using energy dispersive X-ray spectrometry (EDXRF). 200 {mu}L of the sample were dried at 60 deg C on 6.35 {mu}m Mylar film. Ga was used as internal standard. The excitation was carried out utilizing Mo target X-ray tube (Zr filter) at 30 kV / 20 mA. The acquisition time was 200 s. The accuracy of this methodology was assessed through standard addition method, the recovery obtained was 98.7 % for Co. The detection limit was 0.15 mg / L for this element. (author)

  6. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Gomide, Catarina A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Zootecnia]. E-mail: cbgomide@usp.br

    2007-07-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 {mu}m thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  7. Experimental validation of a multi-energy x-ray adapted scatter separation method

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  8. A synthetic diamond probe for low-energy X-ray dose measurements.

    Science.gov (United States)

    Assiamah, M; Nam, T L; Keddy, R J

    2007-05-01

    The desirable physical properties of diamond have made the mineral a choice material in radiation measurements. Diamond detectors are currently used extensively in high-energy physics. Their use for low-energy beams such as, for example, in mammography X-ray beams however, has not been fully investigated. This paper describes a diamond probe which has been constructed for the evaluation, as the radiation sensing material, of polycrystalline synthetic diamonds produced by chemical vapour deposition (CVD). The specimens were fabricated in wafer form and so the exposure orientation geometry of the diamond wafers, to give optimum absorption of the incident X-ray beam, was also investigated both experimentally and theoretically. The samples were characterized to obtain information regarding the elemental impurity levels, especially nitrogen, and consequently to establish the material quality. Nitrogen impurities and concentration levels in the diamond lattice have been shown to have a profound effect on the radiation detection properties of diamond. The probe described has the diamond surfaces metallized with titanium, platinum and gold to provide ohmic contacts. The probe was connected independently to both Wellhöfer Dosimetrie (model CU 500) and PTW Unidos E commercial electrometers. In all of the measurements, the incident radiation beam was normal to the edge of the diamond wafer to optimize absorption of the X-ray beam after establishing that this orientation was the optimum geometry. The results of the study are presented in both tabular and graphical forms.

  9. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    Science.gov (United States)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  10. Advanced ceramic matrix composites for high energy x-ray generation

    Science.gov (United States)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-12-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle.

  11. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  12. Medium-sized grazing incidence high-energy X-ray telescopes employing continuously graded multilayers

    DEFF Research Database (Denmark)

    Joensen, K. D.; Christensen, Finn Erland; Schnopper, H. W.;

    1993-01-01

    The authors present a concept of continuously graded multilayer structures for medium-sized X-ray telescopes which is based on several material combinations. They show that the theoretical reflectivity characteristics of these structures make them very advantageous when applied to high energy X......-ray grazing incidence telescopes. They consider the performance of continuously graded Ni/C multilayers in a multi-focus, Kirkpatrick-Baez, geometry and show a significant improvement when compared to standard coatings of gold. For a total length of 3.3 m, a total aperture of 48 cm by 48 cm and 64 foci......, an effective area of 250 cm2 at 60 keV and a FWHM field of view of 6' is obtained. It is shown that a modular array of conical telescopes (conical approximation to a Wolter-I geometry), with the same length and aperture provides similar effective areas. Energy-dispersive X-ray reflectivity data (15-70 ke...

  13. The SLcam: A full-field energy dispersive X-ray camera

    CERN Document Server

    Bjeoumikhov, A; Langhoff, N; Ordavo, I; Radtke, M; Reinholz, U; Riesemeier, H; Scharf, O; Soltau, H; Wedell, R

    2012-01-01

    The color X-ray camera (SLcam) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 um and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 um. We present a measurement with a laboratory source showing the camera capa...

  14. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  15. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis

    National Research Council Canada - National Science Library

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne

    2014-01-01

    ... accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC...

  16. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    CERN Document Server

    Suvorov, A; Chubar, O; Cai, Y Q

    2015-01-01

    A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the "Synchrotron Radiation Workshop" software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. It was shown that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  17. Probing dark energy with the next generation X-ray surveys of galaxy clusters

    CERN Document Server

    Sartoris, B; Rosati, P; Weller, J

    2011-01-01

    We present forecasts on the capability of future wide-area high-sensitivity X-ray surveys of galaxy clusters to yield constraints on the parameters defining the Dark Energy (DE) equation of state (EoS). Our analysis is carried out for future X-ray surveys which have enough sensitivity to provide accurate measurements of X-ray mass proxies and Fe-line based redshifts for about 2x10^4 clusters. We base our analysis on the Fisher Matrix formalism, by combining information on the cluster number counts and power spectrum, also including, for the first time in the analysis of the large scale cluster distribution, the effect of linear redshift-space distortions (RSDs). This study is performed with the main purpose of dissecting the cosmological information provided by geometrical and growth tests, which are both included in the analysis of number counts and clustering of galaxy clusters. We compare cosmological constraints obtained by assuming different levels of prior knowledge of the parameters which define the ob...

  18. Identification of inorganic dust particles in bronchoalveolar lavage macrophages by energy dispersive x-ray microanalysis.

    Science.gov (United States)

    Johnson, N F; Haslam, P L; Dewar, A; Newman-Taylor, A J; Turner-Warwick, M

    1986-01-01

    This study shows that energy dispersive x-ray microprobe analysis to identify and quantify intracellular particles in macrophages obtained by the minimally invasive method of bronchoalveolar lavage (BAL) can detect inorganic dust exposures of many different kinds. Bronchoalveolar lavage macrophages from 22 patients have been examined. Twelve patients had occupational exposure to asbestos, talc, silica, hard metal or printing ink, while 10 had no known history of dust exposure. X-ray microprobe analysis identified particles which related to the known exposures, superimposed on a background of other particles related to smoking (kaolinite and mica) or to the general environment (silicon, titanium, and iron). The particle identification provided useful objective confirmation of the known exposures, except for silica, which could not be distinguished from the general background levels. X-ray microanalysis using BAL macrophages can be helpful for clarification of mixed dust exposures, to identify particles when light microscopy indicates retained dust in patients with no known history of exposure, and to monitor retained particles after removal from exposure.

  19. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    CERN Document Server

    Mekaru, H; Hattori, T

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the p...

  20. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  1. Relative response of the alanine dosimeter to medium energy x-rays.

    Science.gov (United States)

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  2. A dual-mode phase-shift modulation control scheme for voltage multiplier based X-ray power supply

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, S [School of Electrical and Electronics Engineering, University Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Besar, R; Venkataseshaiah, C, E-mail: shahidsidu@hotmail.co [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2010-05-15

    This paper proposes a dual-mode phase-shift modulation control scheme for series resonant inverter fed voltage multiplier (VM) based X-ray power supply. In this control scheme the outputs voltage of two parallel connected series resonant inverters are mixed before supplying to VM circuit. The output voltage of the power supply is controlled by varying the phase-shift between the output voltages of two inverters. In order to achieve quick rise of output voltage, the power supply is started with zero phase-shift and as the output voltage reaches 90% of the target voltage, the phase-shift is increased to a value which corresponds to target output voltage to prevent overshoot. The proposed control scheme has been shown to have good performance. Experimental results based on the scaled-down laboratory prototype are presented to validate the effectiveness of proposed dual-mode phase shift modulation control scheme.

  3. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  4. A Spectrometer for X-Ray Energy-Dispersive Diffraction using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Staun Olsen, Janus; Buras, B; Gerward, Leif

    1981-01-01

    Describes a white-beam X-ray energy-dispersive diffractometer built for Hasylab in Hamburg, FRG, using the synchrotron radiation from the electron storage ring DORIS. The following features of the instrument are discussed: horizontal or vertical scattering plane, collimators, sample environment, ......, remote control of the goniometer, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH2 using a diamond anvil cell....

  5. Twin image removal in X-ray fluorescence holography with two energies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the last decade,X-ray fluorescence holography has been developed for the study of 3D atomic arrangements in solids.However,it encounters the twin image problem which may disturb the reconstructed atomic images.In this paper,the formation of twin image is discussed and we propose a modified two-energy algorithm to remove the twin image.The simulation shows that the method is valid and more efficient than the multiple-energy algorithm proposed by Barton.

  6. Flare onsets in hard and soft X-rays. [magnetic energy conversion in sun

    Science.gov (United States)

    Machado, Marcos E.; Orwig, Larry E.; Antonucci, Ester

    1986-01-01

    It is shown that the onset of solar flares, within about 2 min or less before the impulsive peaks, is characterized by an increase in high-energy emission at E less than 100 keV, and strong broadening of soft X-ray lines characteristic of the 10-million-K plasma already present at this stage. The observations are interpreted in terms of the early signature of energy release, during a phase preceding the instability that leads to strong particle acceleration.

  7. On filtration for high-energy phase-contrast x-ray imaging

    Science.gov (United States)

    Riess, Christian; Mohamed, Ashraf; Hinshaw, Waldo; Fahrig, Rebecca

    2015-03-01

    Phase-sensitive x-ray imaging promises unprecedented soft-tissue contrast and resolution. However, several practical challenges have to be overcome when using the setup in a clinical environment. The system design that is currently closest to clinical use is the grating-based Talbot-Lau interferometer (GBI).1-3 The requirements for patient imaging are low patient dose, fast imaging time, and high image quality. For GBI, these requirements can be met most successfully with a narrow energy width, high- ux spectrum. Additionally, to penetrate a human-sized object, the design energy of the system has to be well above 40 keV. To our knowledge, little research has been done so far to investigate optimal GBI filtration at such high x-ray energies. In this paper, we study different filtration strategies and their impact on high-energy GBI. Specifically, we compare copper filtration at low peak voltage with equal-absorption, equal-imaging time K-edge filtration of spectra with higher peak voltage under clinically realistic boundary conditions. We specifically focus on a design energy of 59 keV and investigate combinations of tube current, peak voltage, and filtration that lead to equal patient absorption. Theoretical considerations suggest that the K edge of tantalum might provide a transmission pocket at around 59 keV, yielding a well-shaped spectrum. Although one can observe a slight visibility benefit when using tungsten or tantalum filtration, experimental results indicate that visibility benefits most from a low x-ray tube peak voltage.

  8. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    Science.gov (United States)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  9. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft, Stephen Benson, Michael Borland, David Douglas, David Dowell, Carlos Hernandez-Garcia, Dmitry Kayran, Robert Legg, Elizabeth Moog, Takashi Obina, Robert Rimmer, Vitaly Yakimenko

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersberg, Maryland on September 15-17, 2009. A first iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of reasonably short duration.

  10. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  11. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    Science.gov (United States)

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed.

  12. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    Science.gov (United States)

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  13. X-ray Shield for High Energy Gamma Spectrometry using a n-type HPGe Detector

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jong In; Yun, Ju Yong [University of Science and Technology, Daejeon (Korea, Republic of); Row, Jeong Hwan; Lee, Ji Yun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-04-15

    In the last several decades HPGe detectors have been used popularly because of good energy resolution and high efficiency. And HPGe detectors to measure low energy gamma rays also have been developed by several companies. The detectors are generally called as a n-type HPGe detector or LEGe. The commercial n-type HPGe detectors have the front window made from carbonate or beryllium to increase the detection efficiency for low energy photons. For that reason, cascade coincidence summing effects by X- and Gamma rays can be produced. In order to use the n-type HPGe detector for high energy gamma rays, therefore, we should eliminate incidence of X-rays or correct the effects. The correction for X- and Gamma rays might be so complicate and difficult. On the other hand, the summing effects can be terminated by additional X-ray shields at the end cap. In this study, we optimized the thickness of shielding material selected for the purpose. This paper demonstrates the optimization process and the shield' s applicability for detection efficiency calibration and radioactivity analysis.

  14. HEAO 1 A-2 low-energy detector X-ray spectra of the Cygnus Loop

    Science.gov (United States)

    Leahy, D. A.; Fink, R.; Nousek, J.

    1990-01-01

    The Cygnus Loop supernova remnant was observed by the A-2 low-energy detector (LED) proportional counters on the HEAO 1 satellite. Recent improvements to the non-X-ray background rejection and detector response simulation have allowed production of the most accurate spectra of the Cygnus Loop to date. Three separate regions of the Cygnus Loop were observed. Single-temperature, Raymond-Smith models are inadequate to describe the spectra, but two component model fits are good. Temperature, column density, and emission measure variations across the Cygnus Loop are found. These results are interpreted and compared with previous work.

  15. Measurements of X-ray relectivities of Au-coatings at several energies

    DEFF Research Database (Denmark)

    Hornstrup, Allan; Christensen, Finn Erland; Garnaes, J.

    1990-01-01

    of a density variation model are able to explain the data. We find a strong dependence on the microroughness of thickness of the Au coating and of the Au deposition rates. We present data suggesting important correspondence between X-ray measurements and scanning tunneling microscopy measurements. We find...... no dependence on curing temperatures (70°C to 130°C). Finally, we have performed an energy scan of one of the foils in the range of 6 keV to 12 keV....

  16. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies.

  17. Characterization of a free air ionization chamber for low energy X-rays

    Science.gov (United States)

    Silva, N. F.; Xavier, M.; Vivolo, V.; Caldas, L. V. E.

    2016-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition.

  18. Feasibility of kilovoltage x-ray energy modulation by gaseous media and its application in contrast-enhanced radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Facundo-Flores, E. L.; Garnica-Garza, H. M. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201 Parque PIIT, Apodaca, Nuevo León 66600 (Mexico)

    2013-09-15

    Purpose: To present a method to modulate the energy contents of a kilovoltage x-ray beam that makes use of a gas as the modulating medium. The method is capable of producing arbitrary x-ray spectra by varying the pressure of the modulating gas and the peak kilovoltage (kVp) of the x-ray beams whose energy is being modulated.Methods: An aluminum chamber was machined with a 0.5 cm wall thickness, designed to withstand pressures of more than 80 atm. A pressure sensor and electrovalves were used to monitor and regulate the gas pressure. Argon was used as the modulating gas. A CdTe spectrometer was used to measure x-ray spectra for different combinations of kVp and gas pressure, thus obtaining a set of basis x-ray functions. An arbitrary x-ray spectrum can then be formed by the linear combination of such basis functions. In order to show one possible application of the modulation method, a contrast-enhanced radiotherapy prostate treatment was optimized with respect to the x-ray beam energy, without restrictions on the possible shape of the resultant x-ray spectra.Results: The x-ray spectra basis functions obtained display a smooth and gradual variation of their average energy as a function of the gas pressure for a given kVp, sometimes in the order of 1 or 2 keV. This gradual variation would be difficult to obtain with a conventional aluminum or copper filters, as the change in thickness necessary to reproduce the data presented would be in the order of micrometers, making necessary the use of a large number of such filters. Using the modulation method presented here, the authors were able to reconstruct the optimized x-ray spectra from the measured basis functions, for different optimization objectives.Conclusions: A method has been developed that allows for the controlled modulation of the energy contents of kilovoltage x-ray spectra. The method has been shown to be able to reproduce spectra of arbitrary shape, such as those obtained from the optimization of contrast

  19. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  20. A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging

    Science.gov (United States)

    Diemoz, Paul C.; Bravin, Alberto; Sztrókay-Gaul, Anikó; Ruat, Marie; Grandl, Susanne; Mayr, Doris; Auweter, Sigrid; Mittone, Alberto; Brun, Emmanuel; Ponchut, Cyril; Reiser, Maximilian F.; Coan, Paola; Olivo, Alessandro

    2016-12-01

    Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.

  1. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Farmand, Maryam [George Washington Univ., Washington, DC (United States)

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  2. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    Science.gov (United States)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  3. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    Energy Technology Data Exchange (ETDEWEB)

    Worley, Christopher G [Los Alamos National Laboratory

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  4. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms

    Science.gov (United States)

    Toyota, Koudai; Son, Sang-Kil; Santra, Robin

    2017-04-01

    In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

  5. Exploring coherent phenomena and energy discrimination in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas

    2011-05-04

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  6. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, Artur; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  7. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  8. Development of improved free-air ionisation chamber as absolute dosimetry standard for low-energy X rays in INER.

    Science.gov (United States)

    Chu, Chien-Hau; Kuan, Wei-Peng; Kurosawa, T; Lin, Uei-Tyng; Chen, Ing-Jane; Chen, Wei-Li

    2010-02-01

    The National Radiation Standard Laboratory of the Institute of Nuclear Energy Research (INER) designed and constructed an improved Attix style free-air ionisation chamber (FAC) for low-energy X-ray measurements. Clinically, X rays in this energy range are used in mammography radiology. This chamber is also used to perform air-kerma measurements. The original Attix two-sectional design was redesigned by INER using the piston design. The correction factors were determined experimentally for volume estimation, ion recombination and air attenuation. The aperture transmission, wall transmission, electron loss and photon scatter correction factors were determined using Monte Carlo calculations. INER established the Bureau International des Poids et Mesures (BIPM) X-ray beam code and performed a comparison of secondary standard air-kerma calibration factors for 10-50 kV low- energy X rays to verify the experimental accuracy and measurement consistency of the improved chamber. The INER-NMIJ/National Institute of Advanced Industrial Science and Technology (AIST) experimental results comparison using a transfer chamber yielded a difference energy X-ray calibration services in Taiwan and even forming a basis for the future mammography X-ray air-kerma primary standard.

  9. Improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R; Dunn, J; Filevich, J; Moon, S; Nilsen, J; Keenan, R; Shlyaptsev, V; Rocca, J; Hunter, J; Shepherd, R; Booth, R; Marconi, M

    2004-10-05

    We present within this paper a series of experiments, which yield new observations to further our understanding of the transient collisional x-ray laser medium. We use the recently developed technique of picosecond x-ray laser interferometry to probe the plasma conditions in which the x-ray laser is generated and propagates. This yields two dimensional electron density maps of the plasma taken at different times relative to the peak of the 600ps plasma-forming beam. In another experimental campaign, the output of the x-ray laser plasma column is imaged with a spherical multilayer mirror onto a CCD camera to give a two-dimensional intensity map of the x-ray laser output. Near-field imaging gives insights into refraction, output intensity and spatial mode structure. Combining these images with the density maps gives an indication of the electron density at which the x-ray laser is being emitted at (yielding insights into the effect of density gradients on beam propagation). Experimental observations coupled with simulations predict that most effective coupling of laser pump energy occurs when the duration of the main heating pulse is comparable to the gain lifetime ({approx}10ps for Ni-like schemes). This can increase the output intensity by more than an order of magnitude relative to the case were the same pumping energy is delivered within a shorter heating pulse duration (< 3ps). We have also conducted an experiment in which the output of the x-ray laser was imaged onto the entrance slit of a high temporal resolution streak camera. This effectively takes a one-dimensional slice of the x-ray laser spatial profile and sweeps it in time. Under some conditions we observe rapid movement of the x-ray laser ({approx} 3 {micro}m/ps) towards the target surface.

  10. Quantification of metals in lipstick by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wouk, Luana Cristina; Melquiades, Fabio Luiz [Universidade Estadual do Centro Oeste (UNICENTRO), PR (Brazil). Dept. de Fisica

    2011-07-01

    Full text: The objective of this work is to analyze lipstick and lip balm by Energy Dispersive X-Ray Fluorescence and verify if the concentration of the found elements are in accordance with federal rules. Two lip balm and 30 lipstick commercially available were analyzed without preparation. The samples were rubbed on a mylar film until they form a relatively homogeneous layer over entire surface of the film. The superficial density of the samples ranged from 0,0004 to 0,015 g cm{sup -2} , which characterize thin film geometry. Sensitivity values were determined using MicroMatter standards. The measurement system, from Applied Nuclear Physics Laboratory of UEL, consists in a Si-PIN X-ray detector (221 eV resolution for 5,9 keV line, 25 {mu}m Be window) and a mini X-ray tube (4W, Ag target, 50 {mu}m Ag filter). One of the lip balm presented 2620 {+-} 477 {mu}g g{sup -1} of Ti and in the other sample none inorganic elements, which characterize a formulation based on organic compounds. In the lipstick were found the following elements and the number of samples in which it appears, with its respective range of concentration in {mu}g g{sup -1}: Ti (17) 691 to 12721, Fe (22) 237 to 16377, Zn (3) 105 to 2850, Br (2) 510 to 3097, Sr(4) 254 to 1170, Ba (2) 58170 to 90506 and Bi (1) 16275 {+-} 798. According to Brazilian federal rules (ANVISA 79.094) it is not permitted the presence of As and Pb in the formulations. The methodology demonstrated to be suitable for quantification of metals at in natura samples of lipsticks, discarding sample preparation. In sequence a detailed study of the influence of these elements on human health will be performed. (author)

  11. Large field-of-view asymmetric masks for high-energy x-ray phase imaging with standard x-ray tube

    Science.gov (United States)

    Endrizzi, M.; Astolfo, A.; Price, B.; Haig, I.; Olivo, A.

    2016-09-01

    We report on a new approach to large field-of-view laboratory-based X-ray phase-contrast imaging. The method is based upon the asymmetric mask design that enables the retrieval of the absorption, refraction and ultra-small- angle scattering properties of the sample without the need to move any component of the imaging system. The sample is scanned through the imaging system, which also removes possible aliasing problems that might arise from partial sample illumination when using the edge illumination technique. This concept can be extended to any desired number of apertures providing, at the same time, intensity projections at complementary illumination conditions. Experimental data simultaneously acquired at seven different illumination fractions are presented along with the results obtained from a numerical model that incorporates the actual detector performance. The ultimate shape of the illumination function is shown to be significantly dependent on these detector-specific characteristics. Based on this concept, a large field-of-view system was designed, which is also capable to cope with relatively high (100 kVp) X-ray energies. The imaging system obtained in this way, where the asymmetric mask design enables the data to be collected without moving any element of the instrumentation, adapts particularly well to those situations in medical, industrial and security imaging where the sample has to be scanned through the system.

  12. Dental x-rays

    Science.gov (United States)

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  13. [Analysis of pine pollen by using FTIR, SEM and energy-dispersive X-ray analysis].

    Science.gov (United States)

    Wang, Ya-min; Wang, Hong-jie; Zhang, Zhuo-yong

    2005-11-01

    Infrared spectroscopy (IR), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDX) were used to analyze nutrients in four pine pollen powder samples. The IR fingerprints showed that each of the samples, pinus massoniana, pinus yunnanensis, pinus tabulaeformis, and pinus densiflora, respectively had its own characteristic infrared spectrum. Based on the difference of the relative intensity of those characteristic absorption peaks, the IR fingerprints can be used for the identification of the four kinds of pine pollen samples. The broken pollen of pinus was more easily to release nutritional components for the distinct difference IR fingerprints of natural and broken masson pine pollen samples. As a result of SEM, four kinds of pollen grains were oblong or subspheroidal in distal face and proximal face. The exine sculpture of the four kinds of samples were granulous and almost the same, but there was some difference of the size of pollen grains. The main morphologic change of the broken pollen was that the air bags were separated from pollen particles, and part of the main body of pollen particles was broken. The energy-dispersive X-ray analysis results showed that eleven elements, including Mg, Se, Si, Sr, P, S, Cl, K, Ca, Mn, and Fe, existed and the highest content in pollen of pinus was K element. The contents of trace elements were different in different kinds of pollen of pinus. The element intensity in broken masson pine pollen was distinctlyhigher than that innatural masson pine pollen.

  14. The LCLS variable-energy hard X-ray single-shot spectrometer.

    Science.gov (United States)

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  15. The New Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-rays

    CERN Document Server

    Shang, Zhaohui; Wills, Beverley J; Wills, Derek; Cales, Sabrina; Dale, Daniel A; Green, Richard F; Runnoe, Jessie; Nemmen, Rodrigo S; Gallagher, Sarah; Ganguly, Rajib; Hines, Dean C; Kelly, Benjamin; Kriss, Gerard A; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-01-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. (1994) by using high-quality data obtained with several space and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared IRS spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite spectral energy distributions for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar...

  16. High-energy x-ray Talbot-Lau radiography of a human knee

    Science.gov (United States)

    Horn, F.; Gelse, K.; Jabari, S.; Hauke, C.; Kaeppler, S.; Ludwig, V.; Meyer, P.; Michel, T.; Mohr, J.; Pelzer, G.; Rieger, J.; Riess, C.; Seifert, M.; Anton, G.

    2017-08-01

    We report on a radiographic measurement of an ex vivo human knee using a grating-based phase-contrast imaging setup and a medical x-ray tube at a tube voltage of 70 kV. The measurement has been carried out using a Talbot-Lau setup that is suitable to achieve a high visibility in the energy regime of medical imaging. In a medical reading by an experienced trauma surgeon signatures of chondrocalcinosis in the medial meniscus have been identified more evidently using the dark-field image in comparison to the conventional attenuation image. The analysis has been carried out at various dose levels down to 0.14 mGy measured as air kerma, which is a dose comparable to clinically used radiographic devices. The diagnosis has been confirmed by a histological analysis of the meniscus tissue. In the introduced high-frequency filtered phase-contrast image the anterior and posterior horn of the medial meniscus and the posterior cruciate ligament have also been visible. Furthermore, atherosclerotic plaque is visible in both imaging modalities, attenuation and dark-field, despite the presence of overlaying bone. This measurement, for the first time, proves the feasibility of Talbot-Lau x-ray imaging at high-energy spectra above 40 kVp and reasonable dose levels with regard to spacious and dense objects.

  17. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.D.; Gibson, D. (Univ. of Western Ontario, London (Canada))

    1990-03-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses.

  18. On the influence of noise correlations in measurement data on basis image noise in dual-energylike x-ray imaging.

    Science.gov (United States)

    Roessl, Ewald; Ziegler, Andy; Proksa, Roland

    2007-03-01

    In conventional dual-energy systems, two transmission measurements with distinct spectral characteristics are performed. These measurements are used to obtain the line integrals of two basis material densities. Usually, the measurement process is such that the two measured signals can be treated as independent and therefore uncorrelated. Recently, however, a readout system for x-ray detectors has been introduced for which this is no longer the case. The readout electronics is designed to obtain simultaneous measurements of the total number of photons N and the total energy E they deposit in the sensor material. Practically, this is realized by a signal replication and separate counting and integrating processing units. Since the quantities N and E are (electronically) derived from one and the same physical sensor signal, they are statistically correlated. Nevertheless, the pair N and E can be used to perform a dual-energy processing following the well-known approach by Alvarez and Macovski. Formally, this means that N is to be identified with the first dual-energy measurement M1 and E with the second measurement M2. In the presence of input correlations between M1 = N and M2 = E, however, the corresponding analytic expressions for the basis image noise have to be modified. The main observation made in this paper is that for positively correlated data, as is the case for the simultaneous counting and integrating device mentioned above, the basis image noise is suppressed through the influence of the covariance between the two signals. We extend the previously published relations for the basis image noise to the case where the original measurements are not independent and illustrate the importance of the input correlations by comparing dual-energy basis image noise resulting from the device mentioned above and a device measuring the photon numbers and the deposited energies consecutively.

  19. Osteopoikilosis: A Cause of Elevated Bone Mineral Density on Dual X-Ray Absorptiometry Measurement in a Young Woman: Case Report

    Directory of Open Access Journals (Sweden)

    Asylbek Kaparov

    2010-04-01

    Full Text Available Osteopoikilosis (OPK is an asymptomatic, rare bone dysplasia. It causes an increase in bone density. The etiology and pathogenesis is unknown. OPK is generally diagnosed incidentally on plain radiographies which were performed for other locomotor system symptoms. Diagnostic lesions of OPK are typically diffuse, round, symmetrically shaped sclerotic bone areas. Laboratory findings and bone scintigraphy are usually normal. OPK should be considered in the differential diagnosis of osteoblastic bone disorders. OPK is a benign disease and invasive diagnostic procedures as well as aggressive treatment modalities should be avoided. In young individuals who have elevated scores on dual-energy X-Ray absoptiometry measurement, OPK as well as other sclerosing bone disorders would be considered. (From the World of Osteoporosis 2010;16:25-8

  20. Improving the energy resolution of bent crystal X-ray spectrometers with position-sensitive detectors.

    Science.gov (United States)

    Honkanen, Ari Pekka; Verbeni, Roberto; Simonelli, Laura; Moretti Sala, Marco; Al-Zein, Ali; Krisch, Michael; Monaco, Giulio; Huotari, Simo

    2014-07-01

    Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanen et al. (2014). J. Synchrotron Rad. 21, 104-110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.

  1. On reachable energy resolution of SiPM based scintillation counters for X-ray detection

    Science.gov (United States)

    Kuper, K. E.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.; Drozdowski, W.

    2017-01-01

    Presently, silicon photomultipliers (SiPMs) are very attractive devices to replace photomultipliers for light detection in many different fields. For example, they could be used in detectors of photons with energies of 20-150 keV for medical and nondestructive testing applications. The small size and high electron gain of SiPMs make them very attractive candidates for pixelated X-ray detectors operating in a photon counting mode. In this research we evaluated the detector performance that can be reached with up-to-date Lu-based scintillators. Application of LYSO:Ce and LFS-3 scintillators provides high count rate capability because of a short scintillator decay time of ~ 40 ns but enables reaching just a moderate energy resolution. Meanwhile, with a LuYAG:Pr scintillator of quite low non-proportionality one can attain much better energy resolution at a reduced rate.

  2. Emerging operando and x-ray pair distribution function methods for energy materials development

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Karena W.

    2016-03-01

    Our energy needs drive widespread materials research. Advances in materials characterization are critical to this research effort. Using new characterization tools that allow us to probe the atomic structure of energy materials in situ as they operate, we can identify how their structure is linked to their functional properties and performance. These fundamental insights serve as a roadmap to enhance performance in the next generation of advanced materials. In the last decade, developments in synchrotron instrumentation have made the pair distribution function (PDF) method and operando x-ray studies more readily accessible tools capable of providing valuable insights into complex materials systems. Here, the emergence of the PDF method as a versatile structure characterization tool and the further enhancement of this method through developments in operando capabilities and multivariate data analytics are described. These advances in materials characterization are demonstrated by several highlighted studies focused on energy storage in batteries.

  3. High-energy gamma-ray and hard X-ray observations of Cyg X-3

    Science.gov (United States)

    Hermsen, W.; Bloemen, J. B. G. M.; Jansen, F. A.; Bennett, K.; Buccheri, R.; Mastichiadis, A.; Mayer-Hasselwander, H. A.; Strong, A. W.; Oezel, M. E.; Pollock, A. M. T.

    1987-01-01

    COS-B viewed the Cyg X-3 region seven times between November, 1975, and February, 1982; a search for steady gamma-ray emission pulsed at the characteristic 4.8-hour period did not reveal its source. Leiden-MIT balloon experiment observations of Cyg X-3 in May, 1979 show the 4.8-hour modulation with sinusoidal light curve and modulation depth of 0.30, for energies of up to about 140 keV. The strong variability of Cyg X-3 over more than one order of magnitude at energies below 20 keV does not emerge in the data collected at hard X-ray energies.

  4. An inelastic X-ray spectrometer with 2.2 meV energy resolution

    CERN Document Server

    Sinn, H; Alatas, A; Barraza, J; Bortel, G; Burkel, E; Shu, D; Sturhahn, W; Sutter, J P; Toellner, T S; Zhao, J

    2001-01-01

    We present a new spectrometer at the Advanced Photon Source for inelastic X-ray scattering with an energy resolution of 2.2 meV at an incident energy of 21.6 keV. For monochromatization, a nested structure of one silicon channel cut and one 'artificial' channel cut is used in forward-scattering geometry. The energy analysis is achieved by a two-dimensional focusing silicon analyzer in backscattering geometry. In the first demonstration experiments, elastic scattering from a Plexiglas sup T sup M sample and two dispersion curves in a beryllium single crystal were measured. Based on these data sets, the performance of the new spectrometer is discussed.

  5. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    Science.gov (United States)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  6. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Sarapata, A., E-mail: adrian.sarapata@tum.de [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 and Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany); Stayman, J. W.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Finkenthal, M.; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Pfeiffer, F. [Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany)

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  7. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    Science.gov (United States)

    Sarapata, A.; Stayman, J. W.; Finkenthal, M.; Siewerdsen, J. H.; Pfeiffer, F.; Stutman, D.

    2014-01-01

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  8. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  9. Calibration of the NuSTAR High Energy Focusing X-ray Telescope

    CERN Document Server

    Madsen, Kristin K; Markwardt, Craig; An, Hongjun; Grefenstette, Brian W; Bachetti, Matteo; Miyasaka, Hiromasa; Kitaguchi, Takao; Bhalerao, Varun; Christensen, Finn E; Craig, William W; Fuerst, Felix; Walton, Dominic J; Hailey, Charles J; Rana, Vikram; Stern, Daniel; Westergaard, Niels-Jørgen; Zhang, William

    2015-01-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than +/-2% up to 40 keV and 5--10% above due to limited counting statistics. An empirical adjustment to the theoretical 2D point spread function (PSF) was found using several strong point sources, and no increase of the PSF half power diameter (HPD) has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of +/-3ms. Finally we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories Chandra, Swift, Suzaku and XMM-Newton, conducted in 2012 and 2013 on the s...

  10. Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Crespy, C., E-mail: charles.crespy@insa-lyon.f [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Duvauchelle, P., E-mail: philippe.duvauchelle@insa-lyon.f [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Kaftandjian, V.; Soulez, F. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Ponard, P. [Thales Components and Subsystems, 2 rue Marcel Dassault 78491, Velizy cedex (France)

    2010-11-21

    To detect the presence of explosives in packages, automated systems are required. Energy dispersive X-ray diffraction (EDXRD) represents a powerful non-invasive tool providing information on the atomic structure of samples. In this paper, EDXRD is investigated as a suitable technique for explosive detection and identification. To this end, a database has been constructed, containing measured X-ray diffraction spectra of several explosives and common materials. In order to quantify spectral resolution influence, this procedure is repeated with two different detectors which have different spectral resolution. Using our database, some standard spectrum analysis procedures generally used for this application have been implemented. Regarding to the results, it is possible to conclude on the robustness and the limits of each analysis procedure. The aim of this work is to define a robust and efficient sequence of EDXRD spectra analysis to discriminate explosive substances. Since our explosive substances are crystalline, the first step consists in using characteristic of the spectrum to estimate a crystallinity criterion which allows to remove a large part of common materials. The second step is a more detailed analysis, it consists in using similarity criterion and major peaks location to differentiate explosive from crystalline common materials. The influence of the spectral resolution on the detection is also examined.

  11. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    Science.gov (United States)

    Wyroba, Elżbieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafał

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment.

  12. Calibration of the NuSTAR High-energy Focusing X-ray Telescope.

    Science.gov (United States)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.; An, Hongjun; Grefenstette, Brian W.; Bachetti, Matteo; Miyasaka, Hiromasa; Kitaguchi, Takao; Bhalerao, Varun; Boggs, Steve; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fuerst, Felix; Hailey, Charles J.; Perri, Matteo; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Walton, Dominic J.; Jørgen Westergaard, Niels; Zhang, William W.

    2015-09-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%-10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ˜10% for all instruments with respect to NuSTAR.

  13. First TDCR measurements at low energies using a miniature x-ray tube.

    Science.gov (United States)

    Halter, E; Thiam, C; Bobin, C; Bouchard, J; Chambellan, D; Chauvenet, B; Hamel, M; Rocha, L; Trocmé, M; Woo, R

    2014-11-01

    Developed for radionuclide standardization using liquid scintillation, the Triple to Double Coincidence Ratio (TDCR) method is applied using coincidence counting obtained with a specific three-photomultiplier system. For activity determination, a statistical model of light emission is classically used to establish a relation between the detection efficiency and the experimental TDCR value. At LNE-LNHB, a stochastic approach of the TDCR modeling was developed using the Monte Carlo code Geant4. The interest of this TDCR-Geant4 model is the possibility to simulate the propagation of optical photons from their creation in the scintillation vial to the production of photoelectrons in photomultipliers. As an alternative to the use of radionuclide sources, first TDCR measurements are presented using a miniature x-ray tube closely coupled to the scintillation vial. The objective of this new set-up was to enable low-energy depositions (lower than 20 keV) in liquid scintillator in order to study the influence of both time and geometrical dependence between PMTs already observed with radioactive sources. As for the statistical TDCR model, the non-linearity of light emission is implemented in the TDCR-Geant4 model using the Birks formula which depends on the kB factor and the scintillation yield. Measurements performed with the x-ray tube are extended to the assessment of these parameters and they are tested afterwards in the TDCR-Geant4 model for activity measurements of (3)H. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Miyasaka, Hiromasa; Forster, Karl; Fuerst, Felix; Rana, Vikram; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Markwardt, Craig B. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Kitaguchi, Takao [RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bhalerao, Varun [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steve; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); Perri, Matteo; Puccetti, Simonetta [ASI Science Data Center, via Galileo Galilei, I-00044, Frascati (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-09-15

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ∼10% for all instruments with respect to NuSTAR.

  15. X-ray photoelectron spectroscopy for characterization of bionanocomposite functional materials for energy-harvesting technologies.

    Science.gov (United States)

    Artyushkova, Kateryna; Atanassov, Plamen

    2013-07-22

    The analysis of hybrid multicomponent bioorganic and bioinorganic composite materials related to energy technologies by using X-ray photoelectron spectroscopy is discussed. The approaches and considerations of overcoming the difficulties of analyzing hybrid multicomponent materials are demonstrated for different types of materials used in bioenzyme fuel cells, that is, enzyme immobilization in a hybrid inorganic-organic matrix, analysis of peptide binding and structure in the mediation of silica nanoparticle formation, analysis of enzyme-polymeric multilayered architectures obtained through layer-by-layer assembly, and study of the mechanism of electropolymerization. Thorough optimization of experimental design through analysis of an adequate set of reference materials, relevant timescales of sample preparation and X-ray exposure, careful peak decomposition and cross-correlation between elemental speciation, results in a detailed understanding of the chemistry of nanocomposite constituents and interactions between them. The methodology presented and examples discussed are of significant importance to the scientific and engineering communities focused on the immobilization of enzymes, proteins, peptides, and other large biological molecules on solid substrates.

  16. Radio Through X-ray Spectral Energy Distributions of 38 Broad Absorption Line Quasars

    CERN Document Server

    Gallagher, S C; Brandt, W N; Egami, E; Hines, D C; Priddey, R S

    2007-01-01

    We have compiled the largest sample of multiwavelength spectral energy distributions (SEDs) of Broad Absorption Line (BAL) quasars to date, from the radio to the X-ray. We present new Spitzer MIPS (24, 70, and 160 micron) observations of 38 BAL quasars in addition to data from the literature and public archives. In general, the mid-infrared properties of BAL quasars are consistent with those of non-BAL quasars of comparable luminosity. In particular, the optical-to-mid-infrared luminosity ratios of the two populations are indistinguishable. We also measure or place upper limits on the contribution of star formation to the far-infrared power. Of 22 (57%) upper limits, seven quasars have sufficiently sensitive constraints to conclude that star formation likely contributes little (<20%) to their far-infrared power. The 17 BAL quasars (45%) with detected excess far-infrared emission likely host hyperluminous starbursts with L_fir,SF=10^{13-14} L_sun. Mid-infrared through X-ray composite BAL quasar SEDs are pre...

  17. Novel correction method for X-ray beam energy fluctuation of high energy DR system with a linear detector

    Institute of Scientific and Technical Information of China (English)

    YANG Min; CHEN Hao; MENG Fan-Yong; WEI Dong-Bo

    2011-01-01

    A high energy digital radiography (DR) testing system has generated diverse scientific and technological interest in the field of industrial non-destructive testing.However,due to the limitations of manufacturing technology for accelerators,an energy fluctuation of the X-ray beam exists and leads to bright and dark streak artifacts in the DR image.Here we report the utilization of a new software-based method to correct the fluctuation artifacts.The correction method is performed using a high pass filtering operation to extract the high frequency information that reflects the X-ray beam energy fluctuation,and then subtracting it from the original image.Our experimental results show that this method is able to rule out the artifacts effectively and is readily implemented on a practical scanning system.

  18. Measurement of x-ray energy spectrum by using HPGe detection in 14.5 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Chang, Dae Sik; Oh, Byung Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, Chang Seog; Kim, Yong Kyun [Institute for Basic Science, Daejeon (Korea, Republic of)

    2013-04-15

    The Electron Cyclotron Resonance (ECR) ion source is used to produce intense, high charge state ion beams of intermediate and heavy mass elements. It is widely used to produce ion beams for accelerator, atomic physics research and industrial application. The basic principle of the ECR ion source is the resonance absorption of energy by electron from microwave that has the same frequency as the electron's frequency in the resonance zone. The ECR ion source produces soft and hard x-rays because of efficient heating of electrons. The x-rays are created by electron-ion collisions in the ECR plasma or, when free electrons collide with ECR plasma chamber wall. The generated x-rays are influenced by various input parameters of the ECR ion source. In this study, The x-ray spectrum was measured by using a 14.5 GHz ECR ion source at Korea Atomic Energy Research Institute (KAERI). ECR ion source is used to generate ion beams of heavy mass elements. KAERI has a 14.5 GHz ECR ion source to produce high current ion beam. In this study, experimental condition is provided to generate stable plasma through x-ray spectrum measurement. In the future, x-rays spectra will be measured at various operation conditions such as gas-pressure, trim coil and solenoid current.

  19. A graded d-spacing multilayer telescope for high-energy x-ray astronomy

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; WESTERGAARD, NJ

    1992-01-01

    A high energy telescope design is presented which combines grazing incidence geometry with Bragg reflection in a graded d-spacing multilayer coating to obtain significant sensitivity up to --6O keV. The concept utilizes total reflection and first order Bragg reflection in a graded d-spacing...... multilayer structure in a way that higher energies are reflected from the deepest layers in the stack. The specific design presented in this paper is based on Ni/C and Mo/C structures with dspacings ranging from 25A to 100 A. X-ray reflectivity data obtained with Cu Kc1 (8. 05 keV) are presented from...... the first graded d-spacing structures of this kind....

  20. Biological effects induced by low energy x-rays: effects of nanoparticles

    Science.gov (United States)

    Liehn, S.; Le Sech, C.; Porcel, E.; Zielbauer, B.; Habib, J.; Kazamias, S.; Guilbaud, O.; Pittman, M.; Ros, D.; du Penhoat, M.-A. Hervé; Touati, A.; Remita, H.; Lacombe, S.

    2009-08-01

    Samples of plasmid DNA were irradiated with pulsed 18.9 nm radiation originating from a Mo X-ray laser (XRL) pumped in GRIP configuration at the LASERIX facility. Up to 21 000 pulses were delivered with a repetition rate of 10 Hz and average pulse energy of 200 nJ. Radiosensitization by two different platinum compounds (platinum terpyridine chloride (PtTC) and platinum nanoparticles) were investigated. SSB and DSB yields were measured using agarose gel electrophoresis. The occurrence of single and double strand breaks not present in controls having undergone the same treatment except for the XRL irradiation can be seen as a clear effect of the XRL irradiation. This confirms the role of direct effects in DNA damages as previously seen with low energy ions and electrons (1) (2). In addition we demonstrate a DNA breaks enhancement in the presence of platinum. No difference of enhancement was seen between these two radiosensitizers.

  1. Detective quantum efficiency dependence on x-ray energy weighting in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, R. N. [Lawrence Berkeley National Laboratory, Berkeley, California 94707 (United States); Cederstroem, B. [Royal Institute of Technology, Frescativaegen 24, 10405 Stockholm, (Sweden); Danielsson, M. [Royal Institute of Technology, Frescativaegen 24, 10405 Stockholm, (Sweden); Hall, A. [Royal Institute of Technology, Frescativaegen 24, 10405 Stockholm, (Sweden); Lundqvist, M. [Royal Institute of Technology, Frescativaegen 24, 10405 Stockholm, (Sweden); Nygren, D. [Lawrence Berkeley National Laboratory, Berkeley, California 94707 (United States)

    1999-12-01

    An evaluation of the dependence of detective quantum efficiency (DQE) on the incident energy spectrum has been made for mammography. The DQE dependence on the energy spectrum has been evaluated for energy-integrating detectors, photon-counting detectors, and detectors that measure the energy of each photon. To isolate the effect of the x-ray energy spectrum the detector has been assumed to be ideal, i.e., all noise sources are assumed to be zero except for quantum fluctuations. The result shows that the improvement in DQE, if the energy-integrating detector is compared to a single-photon counting detector, is of the order of 10%. Comparing the energy-integrating detector and the detector measuring the energy for each photon the improvement is around 30% using a molybdenum anode spectrum typical in mammography. It is shown that the optimal weight factors to combine the data in the case the energy is measured are very well approximated if the weight factors are proportional to E{sup -3}. Another conclusion is that in calculating the DQE, a detector should be compared to one that uses ideal energy weighting for each photon since this provides the best signal-to-noise ratio. This has generally been neglected in the literature. (c) 1999 American Association of Physicists in Medicine.

  2. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials

    Indian Academy of Sciences (India)

    N L Misra

    2011-02-01

    Nuclear energy is one of the clean options of electricity generation for the betterment of human life. India has an ambitious program for such electricity generation using different types of nuclear reactors. The safe and efficient generation of electricity from these reactors requires quality control of different nuclear materials, e.g. nuclear fuel, structural materials, coolant, moderators etc. These nuclear materials have to undergo strict quality control and should have different specified parameters for their use in nuclear reactors. The concentration of major and trace elements present in these materials should be within specified limits. For such chemical quality control of these materials, major and trace elemental analytical techniques are required. Since some of these materials are radioactive, the ideal chemical characterization techniques should have multielement analytical capability, should require very less sample (micrograms level) for analysis so that the radioactive waste generated, and radiation exposure to the detector and operator are minimum. Total reflection X-ray fluorescence (TXRF) and energy dispersive X-ray fluorescence (EDXRF) with improved features, e.g. application of filters, secondary target and instrumental geometry require very small amount of sample and thus can be suitably used for the characterization of nuclear materials mainly for the determination of elements at trace and major concentration levels. In Fuel Chemistry Division, TXRF analytical methods have been developed for trace element determinations in uranium and thorium oxides, chlorine determination in nuclear fuel and cladding materials, sulphur in uranium, uranium in sea water etc. Similarly, EDXRF analytical methods with radiation filters (to reduce background) and improved sample preapartion techniques, e.g. fusion bead and taking samples in the form of solution on filter papers have been used for developing analytical methods for the determination of U

  3. Harmonic Generation at Lower Electron Energies for a Hard X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marksteiner, Quinn R. [Los Alamos National Laboratory

    2011-01-01

    There are several schemes currently being investigated to pre-bunch the electron beam and step the coherent bunching up to higher harmonics, all which require modulator sections which introduce additional energy modulation. X-ray FELs operate in a regime where the FEL parameter, {rho} is equal to or less than the effective energy spread introduced from the emittance in the electron beam. Because of this large effective energy spread, the energy modulation introduced from harmonic generation schemes would seriously degrade FEL performance. This problem can be mitigated by incorporating the harmonic generation scheme at a lower electron kinetic energy than the energy at the final undulator. This will help because the effective energy spread from emittance is reduced at lower energies, and can be further reduced by making the beam transversely large. Then the beam can be squeezed down slowly enough in the subsequent accelerator sections so that geometric debunching is mitigated. The beam size inside the dispersive chicanes and in the accelerator sections must be carefully optimized to avoid debunching, and each subharmonic modulator section must generate enough energy modulation to overcome the SASE noise without significantly increasing the gain length in the final undulator. Here we show analytical results that demonstrate the feasibility of this harmonic pre-bunching scheme.

  4. Coded Mask Imaging of High Energy X-rays with CZT Detectors

    Science.gov (United States)

    Matteson, J. L.; Dowkontt, P. F.; Duttweiler, F.; Heindl, W. A.; Hink, P. L.; Huszar, G. L.; Kalemci, E.; Leblanc, P. C.; Rothschild, R. E.; Skelton, R. T.; Slavis, K. R.; Stephan, E. A.

    1998-12-01

    Coded mask imagers are appropriate for important objectives of high energy X-ray astronomy, e.g., gamma- ray burst localization, all-sky monitors and surveys, and deep surveys of limited regions. We report results from a coded mask imager developed to establish the proof-of-concept for this technique with CZT detectors. The detector is 2 mm thick with orthogonal crossed strip readout and an advanced electrode design to improve the energy resolution. Each detector face has 22 strip electrodes, and the strip pitch and pixel size are 500 microns. ASIC readout is used and the energy resolution varies from 3 to 6 keV FWHM over the 14 to 184 keV keV range. A coded mask with 2 x 2 cycles of a 23 x 23 MURA pattern (860 micron unit cell) was built from 600 micron thick tantalum to provide good X-ray modulation up to 200 keV. The detector, mask, and a tiny Gd-153 source of 41 keV X-rays were positioned with a spacing that caused the mask cells in the shadowgram to have a projected size of 1300 microns at the detector. Multiple detector positions were used to measure the shadowgram of a full mask cycle and this was recorded with 100 percent modulation transfer by the detector, due to its factor of 2.6 oversampling of the mask unit cell, and very high strip-to-strip selectivity and spatial accuracy. Deconvolution of the shadowgram produced a correlation image in which the source was detected as a 76-sigma peak with the correct FWHM and base diameter. Off-source image pixels had gaussian fluctuations that agree closely with the measurement statistics. Off-source image defects such as might be produced by systematic effects were too small to be seen and limited to <0.5 percent of the source peak. These results were obtained with the "raw" shadowgram and image; no "flat fielding" corrections were used.

  5. X-Ray Surveys

    CERN Document Server

    Giommi, P; Perri, M

    1998-01-01

    A review of recent developments in the field of X-ray surveys, especially in the hard (2-10 and 5-10 keV) bands, is given. A new detailed comparison between the measurements in the hard band and extrapolations from ROSAT counts, that takes into proper account the observed distribution of spectral slopes, is presented. Direct comparisons between deep ROSAT and BeppoSAX images show that most hard X-ray sources are also detected at soft X-ray energies. This may indicate that heavily cutoff sources, that should not be detectable in the ROSAT band but are expected in large numbers from unified AGN schemes, are in fact detected because of the emerging of either non-nuclear components, or of reflected, or partially transmitted nuclear X-rays. These soft components may complicate the estimation of the soft X-ray luminosity function and cosmological evolution of AGN.

  6. High energy X-ray emission from recurrent novae in quiescence: T CrB

    CERN Document Server

    Luna, Gerardo J M; Mukai, Koji

    2007-01-01

    We present Suzaku X-ray observations of the recurrent nova T CrB in quiescence. T CrB is the first recurrent nova to be detected in the hard-X-ray band (E ~ 40.0 keV) during quiescence. The X-ray spectrum is consistent with cooling-flow emission emanating from an optically thin region in the boundary layer of an accretion disk around the white dwarf. The detection of strong stochastic flux variations in the light curve supports the interpretation of the hard X-ray emission as emanating from a boundary layer.

  7. The Prospects for Constraining Dark Energy withFuture X-ray Cluster Gas Mass Fraction Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rapetti, David; Allen, Steven W.

    2007-10-15

    We examine the ability of a future X-ray observatory, with capabilities similar to those planned for the Constellation-X mission, to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of {approx}500 hot (kT{approx}> 5keV), X-ray bright, dynamically relaxed clusters, to a precision of {approx}5 percent, can be used to constrain dark energy with a Dark Energy Task Force (DETF; Albrecht et al. 2006) figure of merit of 20-50. Such constraints are comparable to those predicted by the DETF for other leading, planned 'Stage IV' dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short 'snapshot' observations with the new X-ray observatory should then be able to identify a sample of {approx}500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work to be made; these surveys also show that X-ray flux contamination from point sources is likely to be small for the majority of the targets of interest. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilities the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties, for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment offers a competitive and complementary approach to the best other large, planned dark energy experiments. In particular, the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic

  8. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  9. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  10. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    Science.gov (United States)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  11. Performance of bent-crystal x-ray microscopes for high energy density physics research.

    Science.gov (United States)

    Schollmeier, Marius S; Geissel, Matthias; Shores, Jonathon E; Smith, Ian C; Porter, John L

    2015-06-01

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. The analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. This enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  12. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Morgan, J.; Lee, S.H.; Shang, H.

    2017-03-25

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole image will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.

  13. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy

    Science.gov (United States)

    Neiva, Augusto Camara; Marcondes, Marli A.; Pinto, Herbert Prince Favero; Almeida, Paula Aline Durães

    2014-02-01

    A collection of Brazilian family photographs and photo-paintings from the beginning of the XX Century was analyzed by portable EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy. The spectrometer uses a Si-drift Amptek detector and an Oxford Cr-tube or an Oxford W-tube. For every region un