WorldWideScience

Sample records for dual energy use systems

  1. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  2. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  3. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  4. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    Science.gov (United States)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  5. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  6. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Sawada, A [Kyoto college of medical science, Nantan, Kyoto (Japan); Uehara, T; Yuasa, Y; Koike, M; Kawamura, S [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the

  7. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  8. Dual fan, dual-duct system meets air quality, energy-efficiency needs

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, M. [Pageau Morel and Associates, Montreal, Quebec (Canada)

    1996-03-01

    Canada`s Space Centre in Saint-Hubert Quebec is a 300,000 ft{sup 2} (27,871 m{sup 2}) complex that houses the headquarters of the Canadian Space Agency, the Canadian Astronaut Training Centre, mission ground control installations, research facilities, offices and the required support facilities. A comfortable, pleasant research environment was a primary concern for the Space Centre, given its elite clientele. The objectives were high indoor-air quality, design flexibility, energy efficiency and low capital costs. Dual duct systems which are the heart of the mechanical concept allowed the designers to meet these objectives. The Space Centre`s offices, laboratories and conference center are all served by dual-duct systems. All operate using an air economizer cycle. Gas boilers provide them with hot water for heating and steam for humidification while centrifugal chillers provide chilled water for cooling. This article describes the design.

  9. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    Science.gov (United States)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  10. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    tube loading. The results of this study can be used to help develop an optimal dual-energy imaging system

  11. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  12. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  13. In vitro differentiation of renal stone composition using dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Zhou Changsheng; Zhang Longjiang; Xu Feng; Qi Li; Zhao Yan'e; Zheng Ling; Huang Wei; Liu Youhuang; Lu Guangming

    2012-01-01

    Objective: To evaluate the ability of dual-source. dual-energy CT in differentiating uric acid stones from non-uric acid stones with infrared spectroscopy as reference standard. Materials and Methods: Urinary calculus from 308 patients were scanned in first generation dual-source CT with dual-energy mode between July 2011 and June 2012. Renal Stone application was used to analyze their composition. The uric acid stones color were coded red and non-uric acid stones were blue. CT values were measured in 60 selective urinary calculus including 30 uric acid stones and 30 non-uric acid stones. The accuracy of dual energy CT to differentiate uric acid and no-uric acid stones was calculated. Results: Of 308 patients, 60 patients had uric acid stones and 248 non-uric acid stones. No difference was found for uric acid stone at 80 kV and 140 kV (375.8±69.2 HU vs. 374.1±69.4 HU; t=-0.217, P=0.830), while CT values of non-uric acid stones were higher at 80 kV than those at 140 kV (1455.1±312.4 HU vs. 1039.6±194.4 HU; t=-12.16. P<0.001). CT values of non-uric acid stones at 80 kV, 140 kV, and average weighted images (1455.1±312.4 HU, 1 039.6±194.4 HU, and 882.0±176.4 HU, respectively) were higher than those of uric acid stones (375.8±69.2 HU, 374.1±69.4 HU, and 366.3±80.1 HU, respectively; P<0.001). With infrared spectrum findings as reference standard, the accuracy of dual energy CT in differentiating uric acid stones from non-uric acid stones was 100%. Conclusions: Dual-source, dual-energy CT can accurately differentiate uric acid stones from non-uric acid stones, and plays an important role in treatment planning of renal stones. (authors)

  14. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    OBJECTIVE: To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. METHODS: Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic

  15. Optimal Design of Dual-Hop VLC/RF Communication System With Energy Harvesting

    KAUST Repository

    Rakia, Tamer

    2016-07-28

    In this letter, we consider a dual-hop heterogeneous visible light communication (VLC)/radio frequency (RF) communication system to extend the coverage of VLC systems. Besides detecting the information over VLC link, the relay is able to harvest energy from the first-hop VLC link, by extracting the direct current component of the received optical signal, and uses the harvested energy to retransmit the data to a mobile terminal over the second-hop RF link. We investigate the optimal design of the hybrid system in terms of data rate maximization.

  16. Customer loyalty program for the dual-energy clientele

    International Nuclear Information System (INIS)

    Lagace, C.

    1997-01-01

    Hydro-Quebec''s plans to provide a dual energy residential heating program, combining a main electric heating system and a fossil fuel back-up system, were described as an example of a customer loyalty program. It provides a portfolio of products and services answering to the different needs of customers. Dual-energy heating systems were first offered in Quebec as far back as the 1980s. Currently there are 115,000 Quebec households making use of this service. Some 35,000 of them have heat pumps and subscribe to Hydro-Quebec''s DT rate which is based on fuel mode usage being determined by exterior temperatures. The dual-energy system permits a peak-saving of some 600 MW, while maintaining electricity sales of 1,000 GWh in off-peak periods. Experiences with this system and some of the important lessons learned, especially in terms of consumer relations, were summarized. 2 refs., 1 tab

  17. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  18. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  19. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  20. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  1. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C [Mayo Clinic, Rochester, MN (United States); Halaweish, A [Siemens Healthcare, Rochester, MN (United States)

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  2. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  3. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    Energy Technology Data Exchange (ETDEWEB)

    Pelgrim, Gert Jan; Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); Hamersvelt, Robbert W. van; Willemink, Martin J.; Schilham, Arnold; Leiner, Tim [Utrecht University Medical Center, Department of Radiology, Utrecht (Netherlands); Schmidt, Bernhard T.; Flohr, Thomas [Siemens Healthcare GmbH, Forchheim (Germany); Milles, Julien [Philips Healthcare, Best (Netherlands); Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen (Netherlands)

    2017-09-15

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. (orig.)

  4. Theory and applications of the dual energy technique

    International Nuclear Information System (INIS)

    Chuang, K.S.K.

    1986-01-01

    Three important principles in the dual energy technique applied to radiography are studied in this dissertation: the decomposition method, x-ray scatter consideration, and the selection of an optimal energy pair. First, two new methods namely, iso-transmission lines and sub-region direct approximation methods, are proposed for dual energy decomposition calculation. These two methods are compared with two other conventional techniques, i.e. nonlinear equations and direct approximation. The accuracy, efficiency, and smoothness are used as indices for comparison. The authors conclude that the two new proposed methods, iso-transmission lines and sub-region, are superior than the nonlinear equations and direct approximation methods. In this dissertation, a method to perform scatter correction based on the knowledge of scatter primary ratio is presented. First, the relation between scatter primary ratio and attenuation coefficient is determined by a Monte Carlo simulation. The selection of an optimal energy pair for a dual energy system is described in this dissertation. The selection is based on the calculation of an optimum factor which takes into consideration of the noise in the high and low energy images, the radiation dose to the patient, as well as the error produced during the dual energy decomposition process. The calculation of this optimum factor is obtained using monoenergetic radiation sources on various sizes of water phantom. In addition to these three aspects, this dissertation also addresses some clinical applications of the dual energy techniques and shows some of the results

  5. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  6. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  7. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different

  8. Residential dual energy programs: Tariffs and incentives

    International Nuclear Information System (INIS)

    Doucet, J.A.

    1992-01-01

    The problem of efficiently pricing electricity has been of concern to economists and policy makers for some time. A natural solution to variable demand is tariffs to smooth demand and reduce the need for excessive reserve margins. An alternative approach is dual energy programs whereby electric space heating systems are equipped with a secondary system (usually oil) which is used during periods of peak demand. Comments are presented on two previous papers (Bergeron and Bernard, 1991; Sollows et al., 1991) published in Energy Studies Review, applying them to Hydro Quebec tariff structure and dual energy programs. The role of tariffs in demand-side management needs to be considered more fully. Hydro-Quebec's bi-energy tariff structure could be modified by using positive incentives to make use of bi-energy attractive below -12 C to give the following benefits. The modified tariff would be easier for consumers to understand, corrects the misallocation problem due to differential pricing in the current tariff, transfers the risk related to price fluctuations of the alternative energy source from the consumer to the utility, and corrects the potential avoidance problem due to the negative incentive of the current tariff. 21 refs

  9. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  10. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  11. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    International Nuclear Information System (INIS)

    Bowman, Wesley; Sattarivand, Mike

    2016-01-01

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  12. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Wesley; Sattarivand, Mike [Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority, Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority (Canada)

    2016-08-15

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  13. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  14. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  15. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  16. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  17. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Lamberto, Salvatore; Bottari, Antonio; Caloggero, Simona; Racchiusa, Sergio; Mileto, Achille; Scribano, Emanuele

    2011-06-01

    The purpose of our study was to evaluate the value of dual-source dual-energy CT with colored iodine overlay for detection of endoleaks after endovascular abdominal aortic aneurysm repair. We also calculated the potential dose reduction by using a dual-energy CT single-phase protocol. From November 2007 to November 2009, 74 patients underwent CT angiography 2-7 days after endovascular repair during single-energy unenhanced and dual-energy venous phases. By using dual-energy software, the iodine overlay was superimposed on venous phase images with different percentages ranging between 0 (virtual unenhanced images) and 50-75% to show the iodine in an orange color. Two blinded readers evaluated the data for diagnosis of endoleaks during standard unenhanced and venous phase images (session 1, standard of reference) and virtual unenhanced and venous phase images with colored iodine overlay images (session 2). We compared the effective dose radiation of a single-energy biphasic protocol with that of a single-phase dual-energy protocol. The diagnostic accuracy of session 2 was calculated. The mean dual-energy effective dose was 7.27 mSv. By using a dual-energy single-phase protocol, we obtained a mean dose reduction of 28% with respect to a single-energy biphasic protocol. The diagnostic accuracy of session 2 was: 100% sensitivity, 100% specificity, 100% negative predictive value, and 100% positive predictive value. Statistically significant differences in the level of confidence for endoleak detection between the two sessions were found by reviewers for scores 3-5. Dual-energy CT with colored iodine overlay is a useful diagnostic tool in endoleak detection. The use of a dual-energy single-phase study protocol will lower radiation exposure to patients.

  18. Dual-energy subtraction radiography of the breast

    International Nuclear Information System (INIS)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-01-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses. (author)

  19. Dual-energy subtraction radiography of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-06-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses.

  20. Dual-Energy CT of Rectal Cancer Specimens

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Beets-Tan, Regina G H; Madsen, Gunvor

    2016-01-01

    is represented by a certain effective Z value, which allows for information on its composition. OBJECTIVE: We wanted to standardize a method for dual-energy scanning of rectal specimens to evaluate the sensitivity and specificity of benign versus malignant lymph node differentiation. Histopathological evaluation...... cancer. MAIN OUTCOME MEASURES: We measured accuracy of differentiating benign from malignant lymph nodes by investigating the following: 1) gadolinium, iodine, and water concentrations in lymph nodes; 2) dual-energy ratio; 3) dual-energy index; and 4) effective Z value. RESULTS: Optimal discriminations...... between benign and malignant lymph nodes were obtained using the following cutoff values: 1) effective Z at 7.58 (sensitivity, 100%; specificity, 90%; and accuracy, 93%), 2) dual-energy ratio at 1.0 × 10 (sensitivity, 96%; specificity, 87%; and accuracy, 90%), 3) dual-energy index at 0.03 (sensitivity, 97...

  1. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  2. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  3. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  4. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  5. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  6. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  7. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  9. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  10. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  11. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  12. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  13. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  14. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  15. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  16. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  17. PVAL breast phantom for dual energy calcification detection

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Velissarakos, K; Gkremos, D; Michail, C; Kandarakis, I; Fountos, G; Fountzoula, C; Bakas, A

    2015-01-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy. (paper)

  18. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  19. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  20. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual-energy

  1. Development of Dual Power Multirotor System

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2017-01-01

    Full Text Available Vertical take-off and landing (VTOL aircraft has good flight characteristics and system performance without runway. The multirotor system has been tried to expand into larger size for longer endurance or higher payload. But the motor power to endurance ratio has been limited. Due to the specific energy of gasoline being much higher than battery, introducing gasoline engine into multirotor system can be considered. This paper proposes a dual power multirotor system to combine a quadrotor using gasoline engines to provide major lift in shorter arm with another quadrotor using brushless DC motors to offer most controllable force with longer arm. System design, fabrication, and verification of the proposed dual power multirotor system development are presented. Preliminary flights have achieved 16 kg payload for long endurance flight. This is useful for various applications with advanced improvements.

  2. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  3. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  4. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  5. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  6. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Clinical Evaluation.

    Science.gov (United States)

    Hyodo, Tomoko; Yada, Norihisa; Hori, Masatoshi; Maenishi, Osamu; Lamb, Peter; Sasaki, Kosuke; Onoda, Minori; Kudo, Masatoshi; Mochizuki, Teruhito; Murakami, Takamichi

    2017-04-01

    Purpose To assess the clinical accuracy and reproducibility of liver fat quantification with the multimaterial decomposition (MMD) algorithm, comparing the performance of MMD with that of magnetic resonance (MR) spectroscopy by using liver biopsy as the reference standard. Materials and Methods This prospective study was approved by the institutional ethics committee, and patients provided written informed consent. Thirty-three patients suspected of having hepatic steatosis underwent non-contrast material-enhanced and triple-phase dynamic contrast-enhanced dual-energy computed tomography (CT) (80 and 140 kVp) and single-voxel proton MR spectroscopy within 30 days before liver biopsy. Percentage fat volume fraction (FVF) images were generated by using the MMD algorithm on dual-energy CT data to measure hepatic fat content. FVFs determined by using dual-energy CT and percentage fat fractions (FFs) determined by using MR spectroscopy were compared with histologic steatosis grade (0-3, as defined by the nonalcoholic fatty liver disease activity score system) by using Jonckheere-Terpstra trend tests and were compared with each other by using Bland-Altman analysis. Real non-contrast-enhanced FVFs were compared with triple-phase contrast-enhanced FVFs to determine the reproducibility of MMD by using Bland-Altman analyses. Results Both dual-energy CT FVF and MR spectroscopy FF increased with increasing histologic steatosis grade (trend test, P algorithm quantifying hepatic fat in dual-energy CT images is accurate and reproducible across imaging phases. © RSNA, 2017 Online supplemental material is available for this article.

  7. Optimal design of detector thickness for dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The projection of three-dimensional (3D) human body on a two-dimensional (2D) radiograph results in the superimposition of normal tissue that can obscure abnormalities and in some common cases be misread as abnormalities. To reduce or eliminate this effect, 3D depth-discrimination techniques such as computed tomography can be used. Another method for improving conspicuity of abnormalities is an energy discrimination technique such as dual-energy imaging (DEI). The DEI discriminates, or enhances, material content (e.g. bone or soft tissue) within a 2D radiograph by combining images obtained at separte low and high energies. A commercial DEI system uses the fast kilovoltage (kVp) switching technique, which acquires low and highkVp projections in successive x-ray exposure. To obtain better quality in DE images, a large energy separation between the low and high-kVp setups is typically used for chest (e.g. 60/120 kVp). The optimal CsI thickness for dual-energy chest imaging has been theoretically investigated by evaluating prewhitening observer model detectability indexes. To evaluate the PW and PWE detectability indexes, dual-energy fluence and MTF have reviewed compared to the conventional descriptions.

  8. PEMANAS FLUIDA MENGGUNAKAN ENERGI MATAHARI DENGAN KOLEKTOR SEPERTIGA SILINDER PADA SISTEM KOMPOR DUAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Tri Tjahjono

    2016-08-01

    Full Text Available Sebagian besar masyarakat Indonesia yang sehari-harinya menggunakan energi fosil, seperi minyak tanah, gas dan batubara, serta bahan bakar kayu. Dengan pertumbuhan penduduk yang sangat cepat, hal ini dikhawatirkan cadangan ketersediaan energi akan menipis dan bahkan habis sama sekali. Untuk mengantisipasi hal tersebut dicari energi alternatif yaitu energi matahari yang dianggap tidak pernah habis.               Pemanas ini menggunakan energi matahari, dengan kolektor sepertiga silinder yang merupakan bagian dari sistem kompor dual system. Hal ini adalah upaya pemanfaatan energi yang tersedia banyak dan murah serta pengembangan teknologi penangkapan energi matahari. Cahaya matahari yang dipancarkan akan dipantulkan oleh kolektor sepertiga silinder untuk memanaskan fluida yang ada dalam pipa pada kolektor. Fluida tersebut akan menyerap kalor yang akan diberikan pada kompor dual system. Pemberian energi pada kompor masih perlu proses peningkatan energi lebih lanjut sebelum masuk kompor. Untuk air dapat memberikan energi dengan melepaskan kalor dari uap air panas lanjut, sedangkan pada udara-panas dengan memberikan kalor dengan melepas kalor yang dikandungnya atau secara bersama-sama dalam proses pembakaran biogas atau gas alam (LPG. Untuk minyak solar dapat memberikan kalornya dengan proseas pembakaran dari uap panas minyak solar tersebut.               Hasilnya menunjukkan bahwa penangkapan energi matahari yang tinggi pada saat kisaran jam 11.00 sampai jam 14.30 WIB. Pada pemanasan fluida air, udara dan minyak solar ternyata penyerapan energi yang paling tinggi dihasilkan oleh pemanas air sebesar 381,345 kJ. Hali ini menunjukkan bahwa air merupakan media penyerap kalor yang baik demikian pula pelepasannya.

  9. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  10. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  11. A new dual injection system for AMS facility

    International Nuclear Information System (INIS)

    Liu Lin; Zhou Weijian; Cheng Peng; Yu Huagui; Chen Maobai

    2007-01-01

    In order to measure long-lived radioisotopes such as 10 Be with high sensitivity using an HVEE model 4130 AMS system, as well as to guarantee 14 C measurements of high precision, a new dual injection system for the AMS system is proposed. The proposal is to add a Wien filter located between the ion source system and the recombinator of the HVEE model 4130. When a pulsing voltage is optionally applied to the Wien filter, a sequential injection mode is turned on. The isotopes would alternately pass on different trajectories through the recombinator. When the pulsing voltage and magnetic field are turned off, the Wien filter acts as a field-free drift space and the standard simultaneous injection mode is on. Beam optics calculation show that the new dual injection system will increase the number of radio-nuclides which can be analyzed, keep the high precision capability for radiocarbon dating and achieve high sensitivity for 10 Be and 26 Al measurements, together with simplifying the layout as compared to existing dual-injector and dual high-energy beam line systems

  12. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  13. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  14. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  15. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  16. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  17. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  18. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  19. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  20. Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system

    International Nuclear Information System (INIS)

    Gil, Youngmi; Oh, Youngdo; Cho, Moohyun; Namkung, Won

    2011-01-01

    We propose a method to identify materials in the dual energy X-ray (DeX) inspection system. This method identifies materials by combining information on the relative proportions T of high-energy and low-energy X-rays transmitted through the material, and the ratio R of the attenuation coefficient of the material when high-energy are used to that when low energy X-rays are used. In Monte Carlo N-Particle Transport Code (MCNPX) simulations using the same geometry as that of the real container inspection system, this T vs. R method successfully identified tissue-equivalent plastic and several metals. In further simulations, the single-shot mode of operating the accelerator led to better distinguishing of materials than the dual-shot system.

  1. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  2. Use of Multibeam and Dual-Beam Sonar Systems to Observe Cavitating Flow Produced by Ferryboats: In a Marine Renewable Energy Perspective

    Directory of Open Access Journals (Sweden)

    Francisco Francisco

    2017-07-01

    Full Text Available With the prospect to deploy hydrokinetic energy converters in areas with heavy boat traffic, a study was conducted to observe and assess the depth range of cavitating flow produced by ferryboats in narrow channels. This study was conducted in the vicinity of Finnhamn Island in Stockholm Archipelago. The objectives of the survey were to assess whether the sonar systems were able to observe and measure the depth of what can be cavitating flow (in a form of convected cloud cavitation produced by one specific type of ferryboats frequently operating in that route, as well as investigate if the cavitating flow within the wake would propagate deep enough to disturb the water column underneath the surface. A multibeam and a dual-beam sonar systems were used as measurement instruments. The hypothesis was that strong and deep wake can disturb the optimal operation of a hydrokinetic energy converter, therefore causing damages to its rotors and hydrofoils. The results showed that both sonar system could detect cavitating flows including its strength, part of the geometrical shape and propagation depth. Moreover, the boat with a propeller thruster produced cavitating flow with an intense core reaching 4 m of depth while lasting approximately 90 s. The ferry with waterjet thruster produced a less intense cavitating flow; the core reached depths of approximately 6 m, and lasted about 90 s. From this study, it was concluded that multibeam and dual-beam sonar systems with operating frequencies higher than 200 kHz were able to detect cavitating flows in real conditions, as long as they are properly deployed and the data properly analyzed.

  3. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    International Nuclear Information System (INIS)

    Lell, Michael M.; Hinkmann, Fabian; Nkenke, Emeka; Schmidt, Bernhard; Seidensticker, Peter; Kalender, Willi A.; Uder, Michael; Achenbach, Stephan

    2010-01-01

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations 10% resulting in a total luminal reduction 50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously reported. The ophthalmic artery still cannot be adequately visualized.

  4. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  5. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  6. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  7. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  8. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  9. Vortex dynamics in self-dual Chern-Simons-Higgs systems

    International Nuclear Information System (INIS)

    Kim, Y.; Lee, K.

    1994-01-01

    We consider vortex dynamics in self-dual Chern-Simons-Higgs systems. We show that the naive Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons-Higgs systems in which vortices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single ''dual electromagnetic'' interaction. This dual electromagnetic interaction leads to the right statistical phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be bounded to each other by the Magnus force

  10. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  11. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    Science.gov (United States)

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  12. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2007-01-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues

  13. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    Science.gov (United States)

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol

  14. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography

    International Nuclear Information System (INIS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-01-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented. - Highlights: • A material discrimination algorithm for dual MV energy X-ray digital radiography is proposed. • To solve the materials overlapping problem of the current dual energy algorithm. • The experimental results with the 4/7 MV container inspection system are shown.

  15. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  16. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  17. Temporal subtraction of dual-energy chest radiographs

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Caligiuri, Philip; MacMahon, Heber

    2006-01-01

    Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained

  18. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual-energy

  19. Dual-source dual-energy CT for the differentiation of urinary stone composition: preliminary study

    International Nuclear Information System (INIS)

    Yang Qifang; Zhang Wanshi; Meng Limin; Shi Huiping; Wang Dong; Bi Yongmin; Li Xiangsheng; Fang Hong; Guo Heqing; Yan Jingmin

    2011-01-01

    Objective: To evaluate dual-source dual-energy CT (DSCT) for the differentiation of' urinary stone composition in vitro. Methods: Ninety-seven urinary stones were obtained by endoscopic lithotripsy and scanned using dual-source dual-energy CT. The stones were divided into six groups according to infrared spectroscopy stone analysis: uric acid (UA) stones (n=10), cystine stones (n=5), struvite stones (n=6), calcium oxalate (CaOx) stones (n=22), mixed UA stones (n=7) and mixed calcium stones (n=47). Hounsfield units (HU) of each stone were recorded for the 80 kV and the 140 kV datasets by hand-drawing method. HU difference, HU ratio and dual energy index (DEI) were calculated and compared among the stone groups with one-way ANOVA. Using dual energy software to determine the composition of all stones, results were compared to infrared spectroscopy analysis. Results: There were statistical differences in HU difference [(-17±13), (229±34), (309±45), (512±97), (201±64) and (530±71) HU respectively], in HU ratio (0.96±0.03, 1.34±0.04, 1.41±0.03, 1.47±0.03, 1.30±0.07, and 1.49±0.03 respectively), and DEI (-0.006±0.004, 0.064±0.007, 0.080± 0.007, 0.108±0.011, 0.055±0.014 and 0.112±0.008 respectively) among different stone groups (F= 124.894, 407.028, 322.864 respectively, P<0.01). There were statistical differences in HU difference, HU ratio and DEI between UA stones and the other groups (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between CaOx or mixed calcium stones and the other four groups (P< 0.01). There was statistical difference in HU ratio between cystine and struvite stones (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between struvite and mixed UA stones (P< 0.05). Dual energy software correctly characterized 10 UA stones, 4 cystine stones, 22 CaOx stones and 6 mixed UA stones. Two struvite stones were considered to contain cystine. One cystine stone, 1 mixed UA stone, 4

  20. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Dhont, J; Poels, K; Verellen, D; Tournel, K; Gevaert, T; Steenbeke, F; Burghelea, M; De Ridder, M [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium)

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to match the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in

  1. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    International Nuclear Information System (INIS)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-01-01

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  2. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    Science.gov (United States)

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  3. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  4. Bateman's dual system revisited: quantization, geometric phase and relation with the ground-state energy of the linear harmonic oscillator

    International Nuclear Information System (INIS)

    Blasone, Massimo; Jizba, Petr

    2004-01-01

    By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint

  5. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    Energy Technology Data Exchange (ETDEWEB)

    Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Hinkmann, Fabian [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Nkenke, Emeka [Department of Maxillofacial Surgery, University Erlangen (Germany); Schmidt, Bernhard [Bayer-Schering Healthcare, Berlin (Germany); Seidensticker, Peter [Siemens Healthcare, CT-Division, Forchheim (Germany); Kalender, Willi A. [Institute of Medical Physics, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany)

    2010-11-15

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations <10%, 27 segments (3.1%) lumen alterations >10% resulting in a total luminal reduction <50%, 17 segments (2%) lumen alterations of more than 10% resulting in a total luminal reduction >50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously

  6. Feasibility of dual-energy computed tomography in radiation therapy planning

    Science.gov (United States)

    Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih

    2017-12-01

    In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

  7. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  8. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  9. Dual-energy contrast-enhanced mammography.

    Science.gov (United States)

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  10. Dual-mode, high energy utilization system concept for mars missions

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ∼1-5 kW e for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and I sp >35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kW e prototype are presented and discussed to illustrate the operation and design principles of the proposed system

  11. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  12. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Experimental Validation.

    Science.gov (United States)

    Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi

    2017-02-01

    Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.

  13. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  14. Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2014-01-01

    Full Text Available This study was conducted to characterize carbon nanotube (CNT/water nanofluids (CNWNFs and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER, were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.

  15. The dual sustainability of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jonathan B.; Venkateswaran, Anand [413 Hayden Hall, College of Business, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States)

    2009-06-15

    Academics, practitioners, and policy makers continue to debate the benefits and costs of alternative sources of energy. Environmental and economic concerns have yet to be fully reconciled. One view is that decisions that incorporate both society's concern with the environment and investors' desire for shareholder value maximization are more likely to be truly sustainable. We coin the term dual sustainability to mean the achievement of environmental and financial sustainability simultaneously. Many experts believe that wind energy can help to meet society's needs without harming future generations. It is clean and renewable. Because the fuel is free it provides the ultimate in energy independence. Wind energy has emerged as a leading prospect, in part, because it is considered by many to be environmentally sustainable. However, a key question that remains is whether wind energy is financially sustainable without the extensive government support that has helped to create and nurture this growth industry. Using reliable, proprietary data from field research, our analysis employs a capital budgeting framework to evaluate the financial economics of investments in wind energy. We find that because of the convergence of improved technology, greater efficiency, and with the increasing cost of traditional, competing sources such as oil and natural gas, wind energy is close to becoming self-sustaining financially without the extensive federal government support that exists today. Wind energy can provide the best of both worlds. It is sustainable from an environmental perspective and it is becoming sustainable financially. In short, those companies investing in wind energy will be able to do well by doing good. Perhaps the achievement of dual sustainability is true sustainability. Our research findings and dual sustainability have several interesting and important implications for public policy towards wind energy. All imply that public policy can now be

  16. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun, E-mail: maxj802@163.com [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo; Gao, Dangzhong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Jiayun [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  17. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    International Nuclear Information System (INIS)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A.; Ziegeler, Katharina; Feist, Eugen; Mews, Juergen

    2015-01-01

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  18. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    Energy Technology Data Exchange (ETDEWEB)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A. [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Radiology, Berlin (Germany); Ziegeler, Katharina; Feist, Eugen [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Rheumatology and Clinical Immunology, Berlin (Germany); Mews, Juergen [Toshiba Medical Systems Europe, BV, Zoetermeer (Netherlands)

    2015-11-15

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  19. Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling

    International Nuclear Information System (INIS)

    Cacua, Karen; Olmos-Villalba, Luis; Herrera, Bernardo; Gallego, Anderson

    2016-01-01

    Highlights: • A micro-trigeneration system based in a diesel-biogas dual fuel engine was obtained. • Heat from engine exhaust gases was used for drying and refrigeration applications. • Energy efficiency of the microtrigeneration system in dual mode was 40%. • Peppermint was dried in the microtrigeneration system. - Abstract: A micro-trigeneration system based on a diesel-biogas dual fuel engine was evaluated experimentally. In this system, waste heat from the engine exhaust was used for heating air using a heat pipe exchanger and for driving an absorption unit freezer. The air heated was used in a convective trays dryer designed to dry peppermint. The global energy efficiency of this system at the engine full load was 40% and 31% in diesel and dual mode, respectively, while the same efficiencies of the engine at the original single generation were 23% and 18%, respectively. On the other hand, a maximum diesel substitution level of 50% was achieved in dual mode.

  20. Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Fountos, G; Michail, C; Kalyvas, N; Valais, I; Kandarakis, I; Bakas, A; Kounadi, E

    2015-01-01

    Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNR tc ) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNR tc while minimizing the entrance dose. The best compromise between SNR tc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNR tc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications

  1. Pre-reconstruction dual-energy, X-ray computerized tomography (CT): theory, implementation, results, and clinical use

    International Nuclear Information System (INIS)

    Oravez, W.T.

    1986-01-01

    For the task of bone mineral measurement, single-energy quantitative CT has demonstrated its worth in terms of precision for most longitudinal clinical studies. However, for cross-sectional clinical studies, known inaccuracy exists due to less than robust beam-hardening corrections, and negatively biased bone mineral measurement, due to the effect of unknown variable concentration of bone marrow fat within the metabolically active trabecular bone space. A dual-energy measurement technique provides a solution to these deficiencies of single-energy measurements. The fundamental theory of dual-energy measurement techniques is based on a Compton-photoelectric approximation and the mixture rule for the total attenuation coefficient. Resolution of atomic composition and electron density components of attenuation should then be possible. To take full advantage of these principles, the raw dual-energy projection values are operated on before reconstruction. This method beam-hardening and composition-selective imaging. Rapid kilovoltage switching between projection measurements, rather than serial measurements, assures the best measurement quality

  2. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  3. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  4. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  5. Reconstruction of limited-angle dual-energy CT using mutual learning and cross-estimation (MLCE)

    Science.gov (United States)

    Zhang, Huayu; Xing, Yuxiang

    2016-03-01

    Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate the connection between projections at two different energies by constructing a relationship between the linear attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate missing projections and reconstruct attenuation images from an augmented data set including projections at views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for each energy respectively. Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can much broaden DECT design in reality.

  6. Dual-energy digital radiography for the assessment of bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, Paeivi S.; Lammentausta, Eveliina; Tervonen, Osmo; Jaemsae, Timo; Nieminen, Miika T. (Dept. of Diagnostic Radiology, Univ. of Oulu, Oulu (Finland)), e-mail: paivi.tahvanainen@oulu.fi; Pulkkinen, Pasi (Dept. of Medical Technology, Univ. of Oulu, Oulu (Finland))

    2010-06-15

    Background: Bone mineral density (BMD) is usually determined by dual-energy X-ray absorptiometry (DXA). Digital radiography (DR) has enabled the application of dual-energy techniques for separating bone and soft tissue, but it is not clear yet whether BMD information can reliably be obtained using DR. Purpose: To determine the ability of dual-energy digital radiography (DEDR) to predict BMD as determined by DXA. Material and Methods: Reindeer femora (n=15) were imaged in a water bath at a typical clinical imaging voltage of 79 kVp and additionally at 100 kVp on a DR system. BMD was determined in four segmented regions (femoral neck, trochanter, inter-trochanter, Ward's triangle) from these images using the DXA calculation principle. BMD results as determined by DEDR were compared with BMD values as determined by DXA. Results: Significant moderate to high linear correlations (0.66-0.76) were observed at the femoral neck, Ward's triangle, and trochanter between BMD values as determined by the two techniques. The coefficient of variation (CVRMS) ranged between 2.2 and 4.7% and 0.2 and 1.8% for DEDR and DXA analyses, respectively. Conclusion: DXA-based BMD information can be obtained with moderate precision and accuracy using DEDR. In future, combining BMD measurements using DEDR with structural and geometrical information available on digital radiographs could enable a more comprehensive assessment of bone . Keywords: BMD, DXA, bone assessment

  7. Dual energy CT intracranial angiography: image quality, radiation dose and initial application results

    International Nuclear Information System (INIS)

    Chai Xue; Zhang Longjiang; Lu Guangming; Zhou Changsheng

    2009-01-01

    Objective: To assess the clinical value of dual-energy intracranial CT angiography (CTA). Methods: Forty-one patients suspected of intracranial vascular diseases underwent dual-energy intracranial CT angiography, and 41 patients who underwent conventional subtraction CT were enrolled as the control group. Image quality of intracranial and skull base vessels and radiation dose between dual-energy CTA and conventional subtraction CTA were compared using two independent sample nonparametric test and independent-samples t test, respectively. Prevalence and size of lesions detected by dual-energy CTA and digital subtraction CTA were compared using paired-samples t test and Spearman correlative analysis. Results: The percentage of image quality scored 5 was 70.7% (29/41) for dual-energy CTA and 75.6% (31/41) for conventional subtraction CTA. There was no significant difference between the two groups (Z= -0.455, P=0.650). Image quality of vessels at the skull base in conventional subtraction CTA was superior to that in dual-energy CTA, especially for the petrosal and syphon segment (Z=-4.087, P=0.000). Radiation exposure of dual energy CTA and conventional CTA were (396.54±17.43) and (1090.95±114.29) mGy·cm respectively. Radiation exposure was decreased by 64% (t=-38.52, P=0.000) by dual energy CTA compared with conventional subtraction CTA. Out of the 41 patients, 19 patients were diagnosed as intracranial aneurysm, 2 patients as arteriovenous malformation (AVM), 3 patients with Moya-moya's disease, and the remaining 17 patients with negative results. Nine patients with intracranial aneurysm, 2 patients with AVM, 3 patients with Moya-moya's disease, and 2 patients with negative findings underwent DSA or operation, with concordant findings from both techniques. Diameter of aneurysm neck, long axis and minor axis by dual-energy CTA was (2.90±1.61), (5.23±1.68) and (3.83±1.69) mm, respectively; Diameter of aneurysm neck, long axis and minor axis by DSA was (2.95±1

  8. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  9. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Michail, C; Kalyvas, N; Kandarakis, I; Fountos, G

    2015-01-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNR tc ) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNR tc /MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection. (paper)

  10. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  11. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  12. The dual-axis solar tracking system efficiency improving via the drive power consumption optimization

    International Nuclear Information System (INIS)

    Rambhowan, Y.; Oree, V.

    2014-01-01

    A major drawback with active dual-axis solar tracking systems is that the power used by the driving mechanism is often drawn from the output power of the solar panel itself. The net energy gain of the photo-voltaic panel is therefore less than its maximum value. This work presents a novel design which uses a three-fold strategy to minimize the power consumed by the tracking mechanism whilst maintaining the power out-put of the photovoltaic panel near its optimal value. The results reveal that the improved tracking system has a significant energy gain of about 43.6% as compared to a fixed photovoltaic panel. Experiments further show that an increase of 1.6% in energy output is achieved over conventional precise dual-axis tracking system. (author)

  13. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  14. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  15. Dual technology energy storage system applied to two complementary electricity markets using a weekly differentiated approach

    NARCIS (Netherlands)

    Ferreira, H.L.; Staňková, K.; Peças Lopes, J.; Slootweg, J.G.; Kling, W.L.

    2017-01-01

    This paper deals with integration of energy storage systems into electricity markets. We explain why the energy storage systems increase flexibility of both power systems and energy markets and why such flexibility is desirable, particularly when variable renewable energy sources are being used in

  16. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  17. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  18. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  19. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  20. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    International Nuclear Information System (INIS)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-01-01

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  1. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    Energy Technology Data Exchange (ETDEWEB)

    Elder, E; Schreibmann, E; Dhabaan, A [Department of Radiation Oncology and Winship Cancer Institute of Emory University Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  2. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  3. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  4. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  5. Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: e-mail@fnplzen.cz [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Ferdova, Eva; Mirka, Hynek; Baxa, Jan; Bednarova, Alena [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Flohr, Thomas; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography, 91301 Siemensstr. 1, Forchheim (Germany); Matejovic, Martin [1st Internal Department, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic)

    2011-02-15

    Aim: The aim of the study is to present the feasibility of using dual-energy CT and the evaluation of iodine and air distribution in differentiation of pathological conditions. Material and method: We used the data of 50 CT examinations performed due to suspected pulmonary embolism with any pathological finding except consolidation of the parenchyma. The patients underwent CT angiography of the pulmonary arteries on a dual-source CT (DSCT), with the two tubes independently operated at 140 and 80 kV. By exploiting the dual-energy information, iodine distribution maps were obtained in addition to the conventional CT images which served as a marker of pulmonary perfusion. Minimum intensity projections (MinIP) were used as a marker of air content. Results: By comparing the iodine distribution maps and MinIP images, it was possible to differentiate between the following templates of lung parenchyma: A - normal iodine and air distribution; B - iodine content deficit with minimal or with no redistribution of air; C - reduced iodine content and increased content of air; D - deficit of iodine content and increased content of air; E - increased iodine content and normal content of air; F - increased iodine content and reduced content of air; G - reduced perfusion and reduced content of air. The type A (five cases) was typical for the pulmonary embolism with preserved normal conditions of perfusion and ventilation. Type B (18 cases) occurred in pulmonary embolism; type C was found in case of inflammation of small respiratory airways (five cases); emphysema was typical for type D (nine cases); increased perfusion was observed in the parenchyma preserved from emphysema or preserved from embolism in cases of emphysema or pulmonary embolism; type F occurred in pulmonary interstitial edema (four cases) both with pulmonary infection; finally type G was found in interstitial lung diseases (five cases). Conclusion: Imaging of the pulmonary circulation by means of dual-energy CT opens

  6. A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles

    International Nuclear Information System (INIS)

    Trovão, João P.; Antunes, Carlos Henggeler

    2015-01-01

    Highlights: • Two meta-heuristic approaches are evaluated for multi-ESS management in electric vehicles. • An online global energy management strategy with two different layers is studied. • Meta-heuristic techniques are used to define optimized energy sharing mechanisms. • A comparative analysis for ARTEMIS driving cycle is addressed. • The effectiveness of the double-layer management with meta-heuristic is presented. - Abstract: This work is focused on the performance evaluation of two meta-heuristic approaches, simulated annealing and particle swarm optimization, to deal with power management of a dual energy storage system for electric vehicles. The proposed strategy is based on a global energy management system with two layers: long-term (energy) and short-term (power) management. A rule-based system deals with the long-term (strategic) layer and for the short-term (action) layer meta-heuristic techniques are developed to define optimized online energy sharing mechanisms. Simulations have been made for several driving cycles to validate the proposed strategy. A comparative analysis for ARTEMIS driving cycle is presented evaluating three performance indicators (computation time, final value of battery state of charge, and minimum value of supercapacitors state of charge) as a function of input parameters. The results show the effectiveness of an implementation based on a double-layer management system using meta-heuristic methods for online power management supported by a rule set that restricts the search space

  7. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  8. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  9. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    NARCIS (Netherlands)

    Wellenberg, Ruud H. H.; Donders, Johanna C. E.; Kloen, Peter; Beenen, Ludo F. M.; Kleipool, Roeland P.; Maas, Mario; Streekstra, Geert J.

    2017-01-01

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel

  10. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  11. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery

    Science.gov (United States)

    Rogers, Thomas W.; Jaccard, Nicolas; Griffin, Lewis D.

    2017-05-01

    Previously, we investigated the use of Convolutional Neural Networks (CNNs) to detect so-called Small Metallic Threats (SMTs) hidden amongst legitimate goods inside a cargo container. We trained a CNN from scratch on data produced by a Threat Image Projection (TIP) framework that generates images with realistic variation to robustify performance. The system achieved 90% detection of containers that contained a single SMT, while raising 6% false positives on benign containers. The best CNN architecture used the raw high energy image (single-energy) and its logarithm as input channels. Use of the logarithm improved performance, thus echoing studies on human operator performance. However, it is an unexpected result with CNNs. In this work, we (i) investigate methods to exploit material information captured in dual-energy images, and (ii) introduce a new CNN training scheme that generates `spot-the-difference' benign and threat pairs on-the-fly. To the best of our knowledge, this is the first time that CNNs have been applied directly to raw dual-energy X-ray imagery, in any field. To exploit dual-energy, we experiment with adapting several physics-derived approaches to material discrimination from the cargo literature, and introduce three novel variants. We hypothesise that CNNs can implicitly learn about the material characteristics of objects from the raw dual-energy images, and use this to suppress false positives. The best performing method is able to detect 95% of containers containing a single SMT, while raising 0.4% false positives on benign containers. This is a step change improvement in performance over our prior work

  12. Dual-energy CT can detect malignant lymph nodes in rectal cancer

    DEFF Research Database (Denmark)

    Al-Najami, I.; Lahaye, M. J.; Beets-Tan, Regina G H

    2017-01-01

    a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. Results DECT scanning showed statistical difference between...... quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI....

  13. Comparison of dual photon and dual energy X-ray bone densitometers in a clinic setting

    International Nuclear Information System (INIS)

    Nelson, D.A.; Shaffer, S.; Brown, E.B.; Flynn, M.J.; Cody, D.D.

    1991-01-01

    Two separate studies were conducted. We evaluated the relationships between results of lumbar spine measurements using two dual photon absorptiometry (DPA1 and DPA2) instruments and one dual energy X-ray (DXA) instrument with the same subject (49 volunteers), and also in 65 patients who were measured on the DPA1 and DXA machines. Second, we measured the lumbar spine and the proximal femur in three groups of 12 female volunteers three times on one instrument within 1 week. We purposely simulated a busy clinic setting with different technologists, older radioactive sources, and a heterogeneous patient group. The comparison study indicated a significant difference between the mean bone density values reported by the machines, but the results were highly correlated (R 2 = 0.89-0.96). This study emphasizes the differences between instruments, the potential for greater error in busy clinic environments, and the apparent superiority of dual energy X-ray absorptiometry under these less than ideal conditions. (orig./GDG)

  14. Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition

    Directory of Open Access Journals (Sweden)

    S. Ogorodnikov

    2002-10-01

    Full Text Available The aim of this article is to demonstrate the practical value of radioscopic differentiation of materials in the 1–10 MeV energy range to the work of customs services. The proposed method for achieving singling out and identifying four basic groups of materials according to an atomic number is complex. Atomic numbers are identified using high- and low-energy profiles obtained through the irradiation of materials on an alternate pulse-by-pulse basis. This is done using a bremsstrahlung beam with 8   MeV/4   MeV dual boundary energies and by using scintillating crystals coupled with silicon photodiodes as detecting elements. An image segmentation technique is then used to discern the distribution of an atomic number on any given image. The color visualization of integral absorption and a material’s atomic composition is carried out according to the intensity hue saturation (IHS colorization scheme. The experiments were carried out on a full-scale prototype of an 8 MeV customs inspection system developed by the Efremov Research Institute.

  15. Monopolar radiofrequency ablation using a dual-switching system and a separable clustered electrode: Evaluation of the in vivo efficiency

    International Nuclear Information System (INIS)

    Yoon, Jeong Hee; Lee, Jeong Min; Hwang, Eui Jin; Hwang, In Pyung; Beak, Jee Hyun; Han, Joon Koo; Choi, Byung Ihn

    2014-01-01

    To determine the in vivo efficiency of monopolar radiofrequency ablation (RFA) using a dual-switching (DS) system and a separable clustered (SC) electrode to create coagulation in swine liver. Thirty-three ablation zones were created in nine pigs using a DS system and an SC electrode in the switching monopolar mode. The pigs were divided into two groups for two experiments: 1) preliminary experiments (n = 3) to identify the optimal inter-electrode distances (IEDs) for dual-switching monopolar (DSM)-RFA, and 2) main experiments (n = 6) to compare the in vivo efficiency of DSM-RFA with that of a single-switching monopolar (SSM)-RFA. RF energy was alternatively applied to one of the three electrodes (SSM-RFA) or concurrently applied to a pair of electrodes (DSM-RFA) for 12 minutes in in vivo porcine livers. The delivered RFA energy and the shapes and dimensions of the coagulation areas were compared between the two groups. No pig died during RFA. The ideal IEDs for creating round or oval coagulation area using the DSM-RFA were 2.0 and 2.5 cm. DSM-RFA allowed more efficient RF energy delivery than SSM-RFA at the given time (23.0 ± 4.0 kcal vs. 16.92 ± 2.0 kcal, respectively; p 0.0005). DSM-RFA created a significantly larger coagulation volume than SSM-RFA (40.4 ± 16.4 cm 3 vs. 20.8 ± 10.7 cm 3 ; p < 0.001). Both groups showed similar circularity of the ablation zones (p = 0.29). Dual-switching monopolar-radiofrequency ablation using an SC electrode is feasible and can create larger ablation zones than SSM-RFA as it allows more RF energy delivery at a given time.

  16. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  17. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  18. Dual-energy CT can detect malignant lymph nodes in rectal cancer.

    Science.gov (United States)

    Al-Najami, I; Lahaye, M J; Beets-Tan, R G H; Baatrup, G

    2017-05-01

    There is a need for an accurate and operator independent method to assess the lymph node status to provide the most optimal personalized treatment for rectal cancer patients. This study evaluates whether Dual Energy Computed Tomography (DECT) could contribute to the preoperative lymph node assessment, and compared it to Magnetic Resonance Imaging (MRI). The objective of this prospective observational feasibility study was to determine the clinical value of the DECT for the detection of metastases in the pelvic lymph nodes of rectal cancer patients and compare the findings to MRI and histopathology. The patients were referred to total mesorectal excision (TME) without any neoadjuvant oncological treatment. After surgery the rectum specimen was scanned, and lymph nodes were matched to the pathology report. Fifty-four histology proven rectal cancer patients received a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. DECT scanning showed statistical difference between malignant and benign lymph nodes in the measurements of iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value. Dual energy CT classified 42% of the cases correctly according to N-stage compared to 40% for MRI. This study showed statistical difference in several quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  20. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  1. Design and optimisation of dual-mode heat pump systems using natural fluids

    International Nuclear Information System (INIS)

    Zhang Wenling; Klemeš, Jiří Jaromír; Kim, Jin-Kuk

    2012-01-01

    The paper introduces new multi-period modelling and design methodology for dual-mode heat pumps using natural fluids. First, a mathematical model is developed to capture thermodynamic and operating characteristics of dual-mode heat pump systems, subject to different ambient temperatures. The multi-period optimisation framework has been developed to reflect different ambient conditions and its influences on heat pump performance, as well as to determine a system capacity of heat pump which allows systematic economic trade-offs between supplementary heating (or cooling) and operating cost for heat pump. Case study considering three geographical locations with different heating and cooling demands is presented to illustrate the importance of using multi-period optimisation for the design of heat pump systems.

  2. Optimal Design of Dual-Hop VLC/RF Communication System With Energy Harvesting

    KAUST Repository

    Rakia, Tamer; Yang, Hong Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2016-01-01

    In this letter, we consider a dual-hop heterogeneous visible light communication (VLC)/radio frequency (RF) communication system to extend the coverage of VLC systems. Besides detecting the information over VLC link, the relay is able to harvest

  3. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks

    International Nuclear Information System (INIS)

    Bishop, C.M.; James, G.D.

    1993-01-01

    Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of data from dual-energy gamma densitometers, allowing both the phase configuration and the phase fractions to be determined with high accuracy, whilst avoiding the uncertainties associated with modelling. The technique is well suited to the determination of oil, water and gas fractions in multiphase oil pipelines. Results from linear and non-linear network models are compared, and a new technique for validating the network output is described. (orig.)

  4. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  5. [Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].

    Science.gov (United States)

    Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia

    2014-01-01

    Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.

  6. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast

    International Nuclear Information System (INIS)

    Patel, B.N.; Thomas, J.V.; Lockhart, M.E.; Berland, L.L.; Morgan, D.E.

    2013-01-01

    Aim: To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. Materials and methods: The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Results: Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40–77). The mean ± SD lesion contrast values (non-tumoural pancreas – tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 ke

  7. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  8. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  9. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  10. Assessment of hepatic fatty infiltration using dual-energy computed tomography: a phantom study

    International Nuclear Information System (INIS)

    Li, Jung-Hui; Tsai, Chang-Yu; Huang, Hsuan-Ming

    2014-01-01

    The purpose of this study was to examine the performance of dual-energy computed tomography (DECT) for the quantification of liver fat content (LFC). We prepared two phantoms: homogenized mixtures of porcine liver and fat and homogeneous mixtures of liver- and fat-equivalent solutions. Tubes containing mixtures with known fat concentrations were scanned on a dual-source CT scanner using two DE scanning protocols (80 kV/Sn140 kV and 100 kV/Sn140 kV). Attenuation curves obtained from DECT were used to describe attenuations of various degrees of LFC at different energies. LFC was calculated from DECT data and compared with the known LFC. The phantom made of liver/fat mixtures was not used for liver fat quantification because the increase of fat content did not show a decline of CT numbers. This may be due to inhomogeneity as observed in CT images. Attenuation curves obtained from two DE scanning protocols had the ability to discriminate small differences in fat concentrations. Our results also showed a strong correlation between DECT measurements and known LFC (R 2  > 0.99, P < 0.005). DECT will be a reliable tool for liver fat quantification. Furthermore, attenuation curves obtained from DECT data can be used for discriminating various degrees of LFC. (paper)

  11. Recent developments of dual-energy CT in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Simons, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Kachelriess, Marc [Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-15

    Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging. circle Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging. (orig.)

  12. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Anyang (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

  13. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    International Nuclear Information System (INIS)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk; Lee, Woo Seung; Kang, Hyoung Ku

    2017-01-01

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level

  14. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  15. Detection of simulated pulmonary nodules by single-exposure dual-energy computed radiography of the chest: effect of a computer-aided diagnosis system (Part 2)

    International Nuclear Information System (INIS)

    Kido, Shoji; Kuriyama, Keiko; Kuroda, Chikazumi; Nakamura, Hironobu; Ito, Wataru; Shimura, Kazuo; Kato, Hisatoyo

    2002-01-01

    Objective: To evaluate the performance of the computer-aided diagnosis (CAD) scheme on the detection of pulmonary nodules (PNs) in single-exposure dual-energy subtraction computed radiography (CR) images of the chest, and to evaluate the effect of this CAD scheme on radiologists' detectabilities. Methods and material: We compared the detectability by the CAD scheme with the detectability by 12 observers by using conventional CR (C-CR) and bone-subtracted CR (BS-CR) images of 25 chest phantoms with a low-contrast nylon nodule. Results: Both in the CAD scheme and for the observers, the detectability of BS-CR images was superior to that of C-CR images (P<0.005). The detection performance of the CAD scheme was equal to that of the observers. The nodules detected by the CAD did not necessarily coincide with those by the observers. Thus, if observers can use the results of the CAD system as a 'second opinion', their detectabilities increase. Conclusion: The CAD system for detection of PNs in the single-exposure dual-energy subtraction method is promising for improving radiologists' detectabilities of PNs

  16. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  18. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  19. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  20. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  1. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    International Nuclear Information System (INIS)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander

    2017-01-01

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  2. Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network

    International Nuclear Information System (INIS)

    Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.

    2015-01-01

    The prediction of volume fractions in order to measure the multiphase flow rate is a very important issue and is the key parameter of multi-phase flow meters (MPFMs). Currently, the gamma ray attenuation technique is known as one of the most precise methods for obtaining volume fractions. The gamma ray attenuation technique is based on the mass attenuation coefficient, which is sensitive to density changes; density is sensitive in turn to temperature and pressure fluctuations. Therefore, MPFM efficiency depends strongly on environmental conditions. The conventional solution to this problem is the periodical recalibration of MPFMs, which is a demanding task. In this study, a method based on dual-modality densitometry and artificial intelligence (AI) is presented, which offers the advantage of the measurement of the oil–gas–water volume fractions independent of density changes. For this purpose, several experiments were carried out and used to validate simulated dual modality densitometry results. The reference density point was established at a temperature of 20 °C and pressure of 1 bar. To cover the full range of likely density fluctuations, four additional density sets were defined (at changes of ±4% and ±8% from the reference point). An annular regime with different percentages of oil, gas and water at different densities was simulated. Four features were extracted from the transmission and scattered detectors and were applied to the artificial neural network (ANN) as inputs. The input parameters included the "2"4"1Am full energy peak, "1"3"7Cs Compton edge, "1"3"7Cs full energy peak and total scattered count, and the outputs were the oil and air percentages. A multi-layer perceptron (MLP) neural network was used to predict the volume fraction independent of the oil and water density changes. The obtained results show that the proposed ANN model achieved good agreement with the real data, with an estimated root mean square error (RMSE) of less than 3

  3. Design and implementation of a Sun tracker with a dual-axis single motor for an optical sensor-based photovoltaic system.

    Science.gov (United States)

    Wang, Jing-Min; Lu, Chia-Liang

    2013-03-06

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  4. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chia-Liang Lu

    2013-03-01

    Full Text Available The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  5. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    Science.gov (United States)

    Wang, Jing-Min; Lu, Chia-Liang

    2013-01-01

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications. PMID:23467030

  6. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2015-01-01

    Highlights: • H 2 energy share increased from 18% with DDM to 36% with WDM (water injection). • H 2 energy share improved marginally with retarded injection timing mode (RDM). • Energy efficiency increased with increasing amount of H 2 in dual-fuel engine. • NO x emission decreased with water injection and retarded pilot fuel injection. • HC, CO and smoke emissions increased slightly with low temperature combustion. - Abstract: A limited hydrogen (H 2 ) energy share due to knocking is the major hurdle for effective utilization of H 2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H 2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H 2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H 2 energy share under dual-fuel operation; however, for a particular energy share of 18% H 2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H 2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H 2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions

  7. The role of dual-energy computed tomography in the assessment of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jeon [Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796 (Korea, Republic of); Hoffman, Eric A. [Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241 (United States); Lee, Chang Hyun; Goo, Jin Mo [Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Levin, David L. [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505 (Korea, Republic of)

    2017-01-15

    Highlights: • The dual-energy CT technique enables the differentiation of contrast materials with material decomposition algorithm. • Pulmonary functional information can be evaluated using dual-energy CT with anatomic CT information, simultaneously. • Pulmonary functional information from dual-energy CT can improve diagnosis and severity assessment of diseases. - Abstract: The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.

  8. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  9. An experimental implementation of the 90 .deg. compton scattering inspection method for identifying explosive materials using dual energy x-ray

    International Nuclear Information System (INIS)

    Park, Ji Sung

    2012-02-01

    In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective

  10. Dual-energy radiographic absorptiometry of the lumbar spine and proximal femur

    International Nuclear Information System (INIS)

    Moscona, A.; Gundry, C.; Sartoris, D.J.; Barrett-Connor, E.; Stein, J.A.; Resnick, D.

    1988-01-01

    Dual-energy radiographic absorptiometry (DRA), dual-photon absorptiometry (DPA), and single-photon absorptiometry (SPA) were used for comprehensive densitometry of 500 men and women aged 65-100 years, within an epidemiologic study of osteoporosis risk factors. DRA and DPA of the lumbar spine (L1-L4) and proximal femur were performed with a Hologic QDR-100 system and a Lunar DP3 system, respectively, and SPA of the 33% shaft and ultradistal forearm sites was performed with a Lunar SP2 system. DRA and DPA results showed high correlation at both sites (tau=.9,P<.001); data conversion factors were derived. SPA results for the ultradistal site correlated better with vertebral and femoral density (tau=.6,P<.1) than did those for the shaft site (tau=.4,P<.5) but neither forearm measurement was reliable predictive of axial mineral status. The various measurements displayed an age-dependent interrelationship. The DRA method offers the advantage of short examination times (about 5 minutes per site) and high precision (about 1%)

  11. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  12. Dual-Axis Solar Tracking System for Maximum Power Production in PV Systems

    Directory of Open Access Journals (Sweden)

    Muhd.Ikram Mohd. Rashid

    2015-12-01

    Full Text Available The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses generated from the data acquisition (DAQ card fed into four relays. This approach was so chosen to effectively avoid the error that usually arises in sensor-based methods. The programming of the mathematical models of the solar elevation and azimuth angles was done using Borland C++ Builder. The performance and accuracy of the developed system was evaluated with a PV panel at latitude 3.53o N and longitude 103.5o W in Malaysia. The results obtained reflect the effectiveness of the developed tracking system in terms of the energy yield when compared with that generated from a fixed panel. Overall, 20%, 23% and 21% additional energy were produced for the months of March, April and May respectively using the tracker developed in this study.

  13. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  14. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    Science.gov (United States)

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  15. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  16. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  17. Single- and dual energy QCT around acetabular cups in total hip arthroplasty using 3-dimensional segmentation

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    of segmentation software and to compare bone mineral density (BMD) measurements in single- and dual energy CT (SECT and DECT) Materials and Methods: 24 male patients with total hip arthroplasty (12 cemented and 12 uncemented) were scanned and rescanned using SECT and virtual monochromatic DECT images. 3D- ROIs......Background: Bone density measurements around hip implants are challenged by artifacts and the complex anatomy of the acetabulum. We developed 3D segmentation software and used dual energy CT to reduce artifacts. Purpose / Aim of Study: To test the between-scan agreement and reliability...... the cemented cup the mean BMD for SECT was 523 mg/ccm with a between-scan difference of 14 mg/ccm, p=0.25 and 186 mg/ccm in DECT with a difference of 6 mg/ccm, p=0.15. ICC was >0.95 with more narrow limits of agreement in DECT compared with SECT. Computed tomography dose index (CTDI) was 25% higher with DECT...

  18. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3{sup rd} generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander [Univ. Hospital Wuerzburg (Germany). Inst. of Diagnostic and Interventional Radiology

    2017-06-15

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  19. A feasibility study of stationary and dual-axis tracking grid-connected photovoltaic systems in the Upper Midwest

    Science.gov (United States)

    Warren, Ryan Duwain

    Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental

  20. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.

    Science.gov (United States)

    Patel, B N; Thomas, J V; Lockhart, M E; Berland, L L; Morgan, D E

    2013-02-01

    To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40-77). The mean ± SD lesion contrast values (non-tumoural pancreas - tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 keV was 31 ± 25 HU (p = 0

  1. Evaluation of useful treatment which uses dual-energy when curing lung-cancer patient with stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyeong Jun; Lee, Yeong Gyu; Kim, Yeong Jae; Park, Yeong Gyu [Dept. of Radiation Oncology, Catholic University Seoul St Mary' s hospital, Seoul (Korea, Republic of)

    2016-12-15

    This study will evaluate the clinical utility by applying clinical schematic that uses monoenergy or dual energy as according to the location of tumors to the stereotactic radiotherapy to compare the change in actual dose given to the real tumor and the dose that locates adjacent to the tumor. CT images from a total of 10 patients were obtained and the clinical planning were planned based on the volumetric modulated arc therapy on monoenergy and dual energy. To analyze the change factor in the tumor, Conformity Index(CI) and Homogeneity Index(HI) and maximum dose quantity were each calculated and comparing the dose distribution on normal tissues, v{sub 10} and v{sub 5}, first ⁓ fourth ribs closest to the tumor (1st ⁓ 4th Rib), Spinal Cord, Esophagus and Trachea were selected. Also, in order to confirm the accuracy on which the planned dose distribution is really measured, the 2-dimensional ion chamber array was used to measure the dose distribution. As of the tumor factor, CI and HI showed a number close to 1 when the two energies were used. As of the maximum dose, the front chest wall showed 2% and the dorsal tumor showed equivalent value. As of normal tissue, the front chest wall tumors were reduced by 4%, 5% when both energies were used in the adjacent rib and as of trachea, reduced by 11%, 17%. As of the dose in the lung, as of v{sub 10}, it reduced by 1.5%, v{sub 5} by 1%. As of the rear chest wall, when both energies were used, the ribs adjacent to the tumors showed 6%, 1%, 4%, 12% reduction, and in the lung dose distribution, v{sub 10} reduced by 3%, and v{sub 5} reduced by 3.1%. The dose measurement in all energies were in accordance to the results of Gamma Index 3mm/3%. Conclusion : It is considered that rather than using monoenergy, utilizing double energy in the clinical setting can be more effectively applied to the superficial tumors.

  2. Real-time simulator for designing electron dual scattering foil systems.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system

  3. Development of a Dual-PIV system for high-speed flow applications

    Science.gov (United States)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  4. Estimation of free-hydrocarbon recovery from dual-pump systems

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1995-01-01

    Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized

  5. The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping

    International Nuclear Information System (INIS)

    Boellaard, T.N.; Henneman, O.D.F.; Streekstra, G.J.; Venema, H.W.; Nio, C.Y.; Dorth-Rombouts, M.C. van; Stoker, J.

    2013-01-01

    Aim: To assess the feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping and without bowel preparation or bowel distension. Materials and methods: Consecutive patients scheduled for preoperative staging computed tomography (CT) because of diagnosed or high suspicion for colorectal cancer were prospectively included in the study. A single contrast-enhanced abdominal CT acquisition using dual-source mode (100 kV/140 kV) was performed without bowel preparation. Weighted average 120 kV images and iodine maps were created with post-processing. Two observers performed a blinded read for colorectal lesions after being trained on three colorectal cancer patients. One observer performed an unblinded read for lesion detectability and placed a region of interest (ROI) within each lesion. Results: In total 21 patients were included and 18 had a colorectal cancer at the time of the CT acquisition. Median cancer size was 43 mm [interquartile range (IQR) 27–60 mm] and all 18 colorectal cancers were visible on the 120 kV images and iodine map during the unblinded read. During the blinded read, observers found 90% (27/30) of the cancers with 120 kV images only and 96.7% (29/30) after viewing the iodine map in addition (p = 0.5). Median enhancement of colorectal cancers was 29.9 HU (IQR 23.1–34.6). The largest benign lesions (70 and 25 mm) were visible on the 120 kV images and iodine map, whereas four smaller benign lesions (7–15 mm) were not. Conclusion: Colorectal cancers are visible on the contrast-enhanced dual-energy CT without bowel preparation or insufflation. Because of the patient-friendly nature of this approach, further studies should explore its use for colorectal cancer detection in frail and elderly patients

  6. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  7. On the Suitability of Interleaved Switched Capacitor Converter as an Interface for Electric Vehicle Dual Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Zahra; Williamson, Sheldon

    2010-09-15

    This paper presents the analysis and novel hybrid controller design for an interleaved 2-quadrant switched capacitor (SC) bidirectional DC/DC converter for a hybrid electric vehicle (HEV) dual energy storage system. The designed novel control strategy enables simpler dynamics compared to a standard buck converter with input filter, good regulation capability, low EMI, lower source current ripple, ease of control, and continuous input current waveform in both buck as well as boost modes of operation.

  8. Clinical Application of Colour Modulation of Gamma Energy and Depth by Dual-Channel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Ben-Porath, M. [Veterans Administration Hospital, Hines, IL (United States)

    1969-01-15

    A dual-channel scanning system has been described permitting the simultaneous imaging in individual color of the distribution of two gamma-emitting radioisotopes. In those cases where two organs are adjacent and concentrate the same isotope, they may be displayed in separate color if one of the organs concentrates another gamma-emitting isotope with a different energy. This is accomplished by individual color readout of this isotope and the display of the subtraction of this isotope from the common isotope in another color. By using two facing scintillation probes on either side of the individual being scanned, two overlapping organs at different depths concentrating the same isotope can be color differentiated by a dual-channel playout of each probe. The principal application of these dual-channel scanning methods to date has been the simultaneous display of the liver and pancreas in individual colors using {sup 198}Au and {sup 75}selenomethionine. Characteristic scans have been obtained which differentiate a number of disease states from the normal pancreas and liver. The pancreatic and liver diseases studied and characterized are carcinoma of the pancreas, pancreatic insufficiency, acute recurrent pancreatitis, pancreatic pseudocyst and Laennec's cirrhosis, hepatoma and metastatic malignancy in the liver. The uptake of {sup 75}selenomethionine in malignant lesions in many instances produces positive scans of these tumors in contrasting color to the liver. Depth discrimination in color with the two-probe system has permitted the lateralization of intracranial lesions, the color of the display being proportional to the depth of the lesion. The discrimination of depth and gamma-ray energy by dual-channel color scanning and its general application in visualizing other organs has been accomplished. (author)

  9. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  10. Simultaneous dual-energy X-ray stereo imaging

    Czech Academy of Sciences Publication Activity Database

    Mokso, R.; Oberta, Peter

    2015-01-01

    Roč. 22, Jul (2015), 1078-1082 ISSN 0909-0495 Institutional support: RVO:68378271 Keywords : optics * crystal * imaging * dual-energy Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.736, year: 2014

  11. WE-FG-207B-08: Dual-Energy CT Iodine Accuracy Across Vendors and Platforms

    International Nuclear Information System (INIS)

    Jacobsen, M; Wood, C; Cody, D

    2016-01-01

    Purpose: Although a major benefit of dual-energy CT is its quantitative capabilities, it is critical to understand how results vary by scanner manufacturer and/or model before making clinical patient management decisions. Each manufacturer utilizes a specific dual-energy CT approach; cross-calibration may be required for facilities with more than one dual-energy CT scanner type. Methods: A solid dual-energy quality control phantom (Gammex, Inc.; Appleton, WI) representing a large body cross-section containing three Iodine inserts (2mg/ml, 5mg/ml, 15 mg/ml) was scanned on these CT systems: GE HD-750 (80/140kVp), prototype GE Revolution CT with GSI (80/140kVp), Siemens Flash (80/140kVp and 100/140kVp), and Philips IQon (120kVp and 140kVp). Iodine content was measured in units of concentration (mg/ml) from a single 5mm-thick central image. Three to five acquisitions were performed on each scanner platform in order to compute standard deviation. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were as consistent as possible (thickness, kernel, no noise reduction applied). Results: Iodine measurement error ranges were −0.24-0.16 mg/ml for the 2mg/ml insert (−12.0 − 8.0%), −0.28–0.26 mg/ml for the 5mg/ml insert (−5.6 − 5.2%), and −1.16−0.99 mg/ml for the 15mg/ml insert (−7.7 − 6.6%). Standard deviations ranged from 0 to 0.19 mg/ml for the repeated acquisitions from each scanner. The average iodine measurement error and standard deviation across all systems and inserts was −0.21 ± 0.48 mg/ml (−1.5 ± 6.48%). The largest absolute measurement error was found in the 15mg/ml iodine insert. Conclusion: There was generally good agreement in Iodine quantification across 3 dual-energy CT manufacturers and 4 scanner models. This was unexpected given the widely different underlying dual-energy CT mechanisms employed. Future work will include additional scanner platforms, independent verification of the Iodine

  12. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  13. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    Science.gov (United States)

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  14. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    Science.gov (United States)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  15. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Margareta; Liden, Mats; Geijer, Haakan; Andersson, Torbjoern [Dept. of Radiology, Oerebro Univ. Hospital, Oerebro Univ., Oerebro (Sweden)], E-mail: margareta.lundin@orebroll.se; Magnuson, Anders [Clinical Epidemiology and Biostatistic Unit, Oerebro Univ. Hospital, Oerebro (Sweden); Mohammed, Ahmed Abdulilah [Dept. of Radiology, Linkoeping Univ. Hospital, Linkoeping (Sweden); Persson, Anders [CMIV Center for Medical Image Science and Visualization, Linkoeping (Sweden)

    2012-07-15

    Background. Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. Purpose. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Material and Methods. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. Results. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Conclusion. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system.

  16. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study.

    Science.gov (United States)

    Lundin, Margareta; Lidén, Mats; Magnuson, Anders; Mohammed, Ahmed Abdulilah; Geijer, Håkan; Andersson, Torbjörn; Persson, Anders

    2012-07-01

    Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system.

  17. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study

    International Nuclear Information System (INIS)

    Lundin, Margareta; Liden, Mats; Geijer, Haakan; Andersson, Torbjoern; Magnuson, Anders; Mohammed, Ahmed Abdulilah; Persson, Anders

    2012-01-01

    Background. Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. Purpose. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Material and Methods. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. Results. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Conclusion. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system

  18. Evaluation of Nonlinear Behavior of Dual Steel Frame-Shear Wall System by a Group of Real Earthquakes

    Directory of Open Access Journals (Sweden)

    Reza Bemanian

    2016-03-01

    Full Text Available Dual system of steel moment frame and steel plate shear wall has many advantages in comparison to the other systems. Since the last four decades the dual system has been used more frequently in new and existing structures. the steel shear wall has many advantages such as high ductility, strength, stiffness and it has light weight, it consequent reduce lateral forces and time efficiency in contracture procedure. The aim of this study is to evaluate the seismic performance of the dual steel frame steel plate shear wall system in comparison with the moment resisting frame using nonlinear dynamic analysis. A dual System of Steel Moment frame and steel Plate shear walls system and a moment resisting frame is chosen a frame of four stories building were designed by used existing code. The height of each floor is 3.5 m. Seismic behavior of frame evaluate using nonlinear dynamic analysis. For this purpose a set of seven earthquake ground motions were appropriately selected and applied to the systems. Interstory drift ratio, input energy, distribution frames responses in height were compared for the systems under two different hazard level of ground motion and the results were analyzed.

  19. Illegal intra-corporeal packets: can dual energy CT be used for the evaluation of cocaine concentration? A cross sectional study

    International Nuclear Information System (INIS)

    Platon, Alexandra; Becker, Minerva; Becker, Christoph D.; Lock, Eric; Wolff, Hans; Perneger, Thomas; Poletti, Pierre-Alexandre

    2016-01-01

    The recent implementation of the dual energy technology on CT-scanners has opened new perspectives in tissue and material characterization. This study aims to evaluate whether dual energy CT can be used to assess the concentration of cocaine of intra-intestinal illegal packets. The study was approved by the institutional review board of our institution (CER 13-027-R). From November 2010 to May 2013, all consecutive conveyors in whom a low-dose abdominal CT (LDCT) revealed the presence of illegal intra-corporeal drug packets underwent a dual energy CT series (gemstone spectral imaging) targeted on one container. The mean radiological density (HU) of these packets was measured on the LDCT series, and on the monochromatic dual energy series, at 40 and 140 keV. The difference between the HU at 40 and 140 keV was reported as ∆HU. The effective atomic number Z(eff) was also measured on the monochromatic series. A chemical analysis was performed after expulsion to select cocaine containing packets, and to determine their cocaine concentrations. A correlation analysis was performed between HU, ∆HU and Z(eff), with regard to the percentage of cocaine. Fifty-four cocaine conveyors were included. The mean cocaine content of the packets was 36.8 % (range 11.2–80, SD 15.4), the mean radiologic density 105 HU, the mean Z(eff) 8.7 and the mean ∆HU 163. The cocaine content was correlated with the ∆HU (0.57, p < 0.001), with the Z(eff) (r = 0.56, p < 0.001) but not with radiologic density (r = 0.25, p = 0.064). ∆HU >200 was 0.9 (9 of 10) sensitive and 0.82 (36 of 44) specific to predict a cocaine concentration higher than 50 %. Measuring ∆HU or Z(eff) on dual energy monochromatic CT series can be used to detect ingested packets with cocaine concentration >50 %

  20. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Comments on shielding for dual energy accelerators

    International Nuclear Information System (INIS)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-01-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm 2 for 6 MV and 14.1x16.8 cm 2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm 2 , respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm 2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam

  2. Comments on shielding for dual energy accelerators.

    Science.gov (United States)

    Rossi, M C; Lincoln, H M; Quarin, D J; Zwicker, R D

    2008-06-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1 x 16.2 cm2 for 6 MV and 14.1 x 16.8 cm2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm2, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 degrees was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 degrees were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  3. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  4. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  5. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  6. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  7. Dual-energy radiography of bone tissues using ZnSe-based scintielectronic detectors

    International Nuclear Information System (INIS)

    Grinyov, B.; Ryzhikov, V.; Lecoq, P.; Naydenov, S.; Opolonin, A.; Lisetskaya, E.; Galkin, S.; Shumeiko, N.

    2007-01-01

    Detectors of the scintillator-photodiode type were obtained on the basis of CsI(Tl), CdWO 4 and ZnSe(Te) crystals, and their comparative study was carried out, aiming at their use in X-ray computer tomography (CT). Because of their low afterglow level (10 ppm after 10 ms), CWO and ZnSe crystals are preferable for this application. A drawback of CWO is its lower (by 3 times) light output as compared with CsI(Tl). ZnSe has low transparence to intrinsic radiation; however, up to energies of 60-70 keV it is superior, as for the whole complex of its parameter, to materials traditionally used for CT detectors. The use of a dual-energy receiving-detecting circuit with a detector pair ZnSe/CsI or ZnSe/CdWO allows efficient distinction between muscular and bone tissues, which supports our earlier theoretical assumptions that this method could be successfully used for separate detection of materials differing in their effective atomic number Z eff and local density (e.g., calcium contents in bone densitometry)

  8. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  10. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  11. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  12. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model.

    Science.gov (United States)

    Potretzke, Theodora A; Brace, Christopher L; Lubner, Meghan G; Sampson, Lisa A; Willey, Bridgett J; Lee, Fred T

    2015-04-01

    To compare dual-energy computed tomography (CT) with conventional CT for the detection of small-bowel ischemia in an experimental animal model. The study was approved by the animal care and use committee and was performed in accordance with the Guide for Care and Use of Laboratory Animals issued by the National Research Council. Ischemic bowel segments (n = 8) were created in swine (n = 4) by means of surgical occlusion of distal mesenteric arteries and veins. Contrast material-enhanced dual-energy CT and conventional single-energy CT (120 kVp) sequences were performed during the portal venous phase with a single-source fast-switching dual-energy CT scanner. Attenuation values and contrast-to-noise ratios of ischemic and perfused segments on iodine material-density, monospectral dual-energy CT (51 keV, 65 keV, and 70 keV), and conventional 120-kVp CT images were compared. Linear mixed-effects models were used for comparisons. The attenuation difference between ischemic and perfused segments was significantly greater on dual-energy 51-keV CT images than on conventional 120-kVp CT images (mean difference, 91.7 HU vs 47.6 HU; P conventional CT by increasing attenuation differences between ischemic and perfused segments on low-kiloelectron volt and iodine material density images. © RSNA, 2014.

  13. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  14. Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans

    Science.gov (United States)

    Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen

    2017-01-01

    Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p  0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce ionizing radiation dose and contrast dose. PMID:28281789

  15. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring

    OpenAIRE

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    Objective To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. Materials and Methods This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated V...

  16. Improving Sustainability through a Dual Audit System

    Directory of Open Access Journals (Sweden)

    Shun-Ji Jin

    2018-01-01

    Full Text Available As a consequence of a large-scale accounting fraud, China implemented a dual audit system for listed companies issuing foreign stocks (B shares and H shares from 2001 to 2006, before adopting Chinese-IFRS in 2007. At the end of 2010, the EU proposed that listed corporations over a certain size should be required to implement a joint audit system. However, only a few countries have implemented this system, and thus, data and references are extremely limited. The dual audit system is called the “twin” of the joint audit system. We analyze whether the dual system improves a company’s earnings quality. Earnings quality is studied by means of real earnings management, and the variable of loss aversion. We find that real earnings management of dual audited enterprises is lower than that of single audited (A-share enterprises, and the inclination toward loss aversion of enterprises in the foreign share market has not increased significantly relative to the A-share enterprises after the abolition of the dual audit system. The results indicate that a dual audit system improves earnings quality. We expect that the conclusions of this research will resolve the issues and concerns about the joint audit system.

  17. SU-E-I-45: Feasibility for Using Iodine Quantification to Assist Diagnosis in Dual Energy Contrast-Enhanced Digital Mammography

    International Nuclear Information System (INIS)

    Hwang, Y; Lin, Y; Tsai, C; Cheung, Y

    2015-01-01

    Purpose: The objective of this study is to develop quantitative calibration between image quality indexes and iodine concentration with dual-energy (DE) contrast-enhanced digital mammography (CEDM) techniques and further serve as the assistance for diagnosis. Methods: Custom-made acrylic phantom with dimensions of 24×30 cm 2 simulated breast thickness from 2 to 6 cm was used in the calibration. The phantom contained matrix of four times four holes of 3 mm deep with a diameter of 15 mm for filling contrast agent with area density ranged from 0.1 to 10 mg/cm 2 . All the image acquisitions were performed on a full-field digital mammography system (Senographe Essential, GE) with dual energy acquisitions. Mean pixel value (MPV), and contrast-to-noise ratio (CNR) were used for evaluating the relationship between image quality indexes and iodine concentration. Iodine map and CNR map could further be constructed with these calibration curves applied pixel by pixel utilized MATLAB software. Minimum iodine concentration could also be calculated with the visibility threshold of CNR=5 according the Rose model. Results: When evaluating the DE subtraction images, MPV increased linearly as the iodine concentration increased with all the phantom thickness surveyed (R 2 between 0.989 and 0.992). Lesions with increased iodine uptake could thus be enhanced in the color-encoded iodine maps, and the mean iodine concentration could be obtained through the ROI measurements. As for investigating CNR performance, linear relationships were also shown between the iodine concentration and CNR (R 2 between 0.983 and 0.990). Minimum iodine area density of 1.45, 1.73, 1.80, 1.73 and 1.72 mg/cm 2 for phantom thickness of 2, 3, 4, 5, 6 cm were calculated based on Rose’s visualization criteria. Conclusion: Quantitative calibration between image quality indexes and iodine concentrations may further serving as the assistance for analyzing contrast enhancement for patient participating the dual

  18. Dual energy CT of the chest: how about the dose?

    Science.gov (United States)

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 m

  19. Use of dual energy X-ray absorptiometry in pediatric patients.

    Science.gov (United States)

    Wasserman, Halley; O'Donnell, Jennifer M; Gordon, Catherine M

    2017-11-01

    Dual Energy X-ray Absorptiometry (DXA) is a vital tool for assessing bone health in patients at risk for fragility fractures. In pediatric patients, this technology is used in conjunction with clinical fracture history to diagnosis osteoporosis and monitor treatment response. Childhood and adolescence is characterized by linear growth and bone mass accrual; thus there are important differences in the interpretation of bone measurements obtained by DXA in these young patients. This review aims to explore the current indications for DXA use and interpretation of DXA in the pediatric age group using currently available reference databases. Limitations of DXA in pediatric patients, specifically in children with short stature, will be explored. We will review several pathophysiologic mechanisms that may lead to low bone density in children, discussing representative diseases and the recommendations for monitoring bone health with DXA in these conditions. Finally, we will highlight new methods by which DXA imaging can gather additional information on bone health in children and may improve our ability to predict fractures and osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    International Nuclear Information System (INIS)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C

    2016-01-01

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare

  1. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.

  2. Development of a dual-energy silicon X-ray diode and its application to gadolinium imaging

    International Nuclear Information System (INIS)

    Sato, Yuichi; Sato, Eiichi; Ehara, Shigeru; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2015-01-01

    To perform dual-energy X-ray imaging, we developed a dual-energy silicon X-ray diode (DE-Si-XD) consisting of two ceramic-substrate silicon X-ray diodes (Si-XD) and a 0.2-mm-thick copper filter. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-rays. In the front Si-XD, X-ray photons from an X-ray tube are directly detected. Because low-energy photons are absorbed by the front Si-XD and the filter, the average photon energy increases when the back Si-XD is used. In the front Si-XD, the photocurrents flowing through the Si-XD are converted into voltages and amplified using current–voltage and voltage–voltage (V–V) amplifiers. The output from the V–V amplifier is input to an analog-digital converter through an integrator for smoothing the voltage. The same amplification method is also used in the back Si-XD. Dual-energy computed tomography (DE–CT) is accomplished by repeated linear scans and rotations of the object, and two projection curves of the object are obtained simultaneously by linear scanning at a tube voltage of 90 kV and a current of 1.0 mA. In the DE–CT, the exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. Using gadolinium-based contrast media, energy subtraction was performed. - Highlights: • Dual-energy X-ray diode consists of two Si diodes and a Cu filter. • Low and high-energy X-rays are detected using front and back diodes. • Two-different-energy tomograms were easily obtained simultaneously. • Gd-K-edge CT was accomplished using the back diode. • Energy subtraction was performed easily to image a target object

  3. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  4. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E.; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Mangold, Stefanie; Ball, B.D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-04-15

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. (orig.)

  5. Clinical usefulness of calcaneal measurements using dual energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Kohno, Jun; Nakata, Tomoko; Ito, Masako

    1999-01-01

    To investigate the clinical usefulness of calcaneal measurement using dual-energy x-ray absorptiometry (DXA), the ability to detect bone loss and fracture risk were evaluated in comparison with spinal bone mineral density (BMD) measured using DXA and quantitative CT (QCT) and with calcaneal quantitative ultrasound (QUS). Furthermore, to investigate the region in calcaneus in which to detect bone change sensitively, the ability to detect bone loss and fracture risk were also evaluated using new regions of interest (ROIs) that were manually defined. The subjects were 165 healthy women, and 188 female patients with fracture, estrogen deficiency, and steroid-induced osteoporosis. Calcaneal BMD with some manually defined ROIs showed lower precision and less sensitivity in detecting bone loss than BMD measured with automatically defined ROIs. Calcaneal DXA, spinal DXA, and QCT demonstrated significant age-related bone loss, and all measurements could discriminate fracture cases from non-fracture cases. Calcaneal DXA could discriminate the bone loss associated with estrogen deficiency as well as spinal DXA. Furthermore, calcaneal measurements showed a greater ability to detect steroid-induced bone loss than spinal DXA, probably because this group included subjects of advanced age with spondylosis. In conclusion, calcaneal DXA is useful to assess BMD in subjects who are not suitable for spinal measurement, although the ability to detect age-related bone loss in calcaneal DXA is less than in spinal measurements. (author)

  6. IAEA's dual function

    International Nuclear Information System (INIS)

    1967-01-01

    'A factor of paramount importance is the dual nature of atomic energy, which is reflected in the dual function of the Agency; not only to promote, but also to safeguard the peaceful uses of atomic energy'. In taking the above statement as a theme in his address to the 1474th Plenary Meeting of the United Nations General Assembly (22nd November), the Director General, Dr. Sigvard Eklund, went on to speak of a few of the many areas in which society was feeling the impact of atomic energy. During the discussion which followed his report on the Agency's work nearly all speakers referred to the importance of the safeguards system as well as to positive achievements in developing nuclear potential for peaceful purposes

  7. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    Science.gov (United States)

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  8. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  9. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism

    International Nuclear Information System (INIS)

    Okada, Munemasa; Kunihiro, Yoshie; Nakashima, Yoshiteru; Nomura, Takafumi; Kudomi, Shohei; Yonezawa, Teppei; Suga, Kazuyoshi; Matsunaga, Naofumi

    2015-01-01

    Purpose: To investigate the added value of lung perfused blood volume (LPBV) using dual-energy CT for the evaluation of intrapulmonary clot (IPC) in patients suspected of having acute pulmonary embolism (PE). Materials and methods: Institutional review board approval was obtained for this retrospective study. Eighty-three patients suspected of having PE who underwent CT pulmonary angiography (CTPA) using a dual-energy technique were enrolled in this study. Two radiologists who were blinded retrospectively and independently reviewed CTPA images alone and the combined images with color-coded LPBV over a 4-week interval, and two separate sessions were performed with a one-month interval. Inter- and intraobserver variability and diagnostic accuracy were evaluated for each reviewer with receiver operating characteristic (ROC) curve analysis. Results: Values for inter- and intraobserver agreement, respectively, were better for CTPA combined with LPBV (ICC = 0.847 and 0.937) than CTPA alone (ICC = 0.748 and 0.861). For both readers, diagnostic accuracy (area under the ROC curve [A z ]) were also superior, when CTPA alone (A z = 0.888 [reader 1] and 0.912 [reader 2]) was compared with that after the combination with LPBV images (A z = 0.966 [reader 1] and 0.959 [reader 2]) (p < 0.001). However, A z values of both images might not have significant difference in statistics, because A z value of CTPA alone was high and 95% confidence intervals overlapped in both images. Conclusion: Addition of dual-energy perfusion CT to CTPA improves detection of peripheral IPCs with better interobserver agreement

  10. Comparison of the effect of radiation exposure from dual-energy CT versus single-energy CT on double-strand breaks at CT pulmonary angiography.

    Science.gov (United States)

    Tao, Shu Min; Li, Xie; Schoepf, U Joseph; Nance, John W; Jacobs, Brian E; Zhou, Chang Sheng; Gu, Hai Feng; Lu, Meng Jie; Lu, Guang Ming; Zhang, Long Jiang

    2018-04-01

    To compare the effect of dual-source dual-energy CT versus single-energy CT on DNA double-strand breaks (DSBs) in blood lymphocytes at CT pulmonary angiography (CTPA). Sixty-two patients underwent either dual-energy CTPA (Group 1: n = 21, 80/Sn140 kVp, 89/38 mAs; Group 2: n = 20, 100/Sn140 kVp, 89/76 mAs) or single-energy CTPA (Group 3: n = 21, 120 kVp, 110 mAs). Blood samples were obtained before and 5 min after CTPA. DSBs were assessed with fluorescence microscopy and Kruskal-Walls tests were used to compare DSBs levels among groups. Volume CT dose index (CTDIvol), dose length product (DLP) and organ radiation dose were compared using ANOVA. There were increased excess DSB foci per lymphocyte 5 min after CTPA examinations in three groups (Group 1: P = .001; Group 2: P = .001; Group 3: P = .006). There were no differences among groups regarding excess DSB foci/cell and percentage of excess DSBs (Group 1, 23%; Group 2, 24%; Group 3, 20%; P = .932). CTDIvol, DLP and organ radiation dose in Group 1 were the lowest among the groups (all P dual-source and single-source CTPA, while dual-source dual-energy CT protocols do not increase the estimated radiation dose and also do not result in a higher incidence of DNA DSBs in patients undergoing CTPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control

    International Nuclear Information System (INIS)

    Sidek, M.H.M.; Azis, N.; Hasan, W.Z.W.; Ab Kadir, M.Z.A.; Shafie, S.; Radzi, M.A.M.

    2017-01-01

    This paper presents a study on an automated positioning open-loop dual-axis solar tracking system. The solar tracker was designed and fabricated using standard cylindrical aluminium hollow and Polyuthrene (PE). The control system of the solar tracker was governed by Micro Controller Unit (MCU) with auxiliary devices which includes encoder and Global Positioning System (GPS). The sun path trajectory algorithm utilizing the astronomical equation and GPS information was also embedded in the system. The power generation performance of the dual-axis solar tracking system was compared with the fixed-tilted Photovoltaic (PV) system. It is found that the solar tracker is able to position itself automatically based on sun path trajectory algorithm with an accuracy of ±0.5°. The embedded Proportional Integral Derivative (PID) positioning system improves the tracking of elevation and azimuth angles with minimum energy consumption. It is reveals that the proposed solar tracker is able generate 26.9% and 12.8% higher power than fixed-tilted PV system on a clear and heavy overcast conditions respectively. Overall, the open-loop dual-axis solar tracker can be deployed automatically at any location on the earth with minimal configurations and is suitable for mobile solar tracking system. - Highlights: • Self-positioning dual-axis solar tracking system. • Precise control of elevation and azimuth angle. • Sun path trajectory based on astronomical equation and GPS. • Can achieve up to 26.9% higher power than fixed-tilted PV system under clear weather condition.

  12. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  13. Designing compensator of dual servo system for high precision positioning

    International Nuclear Information System (INIS)

    Choi, Hyeun Seok; Song, Chi Woo; Han, Chang Soo; Choi, Tae Hoon; Lee, Nak Kyu; Na, Kyung Hwan

    2003-01-01

    The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism

  14. Comparison of Singh index accuracy and dual energy X-ray absorptiometry bone mineral density measurement for evaluating osteoporosis

    International Nuclear Information System (INIS)

    Salamat, M. R.; Rostampour, N.; Zofaghari, Sh. J.; Hoseyni-Panah, H.; Javdan, M.

    2010-01-01

    The Singh index is an inexpensive simple method to evaluate bone density, commonly used to assess osteoporosis is based on the radiological appearance of the trabecular bone structure of the proximal femur on a plain antero-posterior radiograph. The purpose of this study was to compare between Singh index and bone mineral density measurement using dual energy X-ray absorptiometry. Materials and Methods: Three orthopedists evaluated radiographs of 72 patients suspected with osteoporosis. The inter-observer agreements of the Singh index were obtained by using kappa statistics. The bone mineral density of proximal femur was measured by dual energy X-ray absorptiometry in all patients, and then the bone mineral density results were compared with those of Singh index by using reference radiographic charts of the Singh index method. Dual-energy X-ray absorptiometry was used to measure bone mineral density. A Norland XR46 system was used for the investigations. Results: The inter-observer agreement kappa values were 0.01, 0.07 and 0.09 (mean value: 0.05) and the strength of the observer agreements was negligible. The obtained Osteoporosis prevalence among the studied patients was 38.9%. Conclusion: The inter-observer variation was large, there was no any correlation between the Singh index and bone densitometry. So, the index cannot be used; for evaluating and osteoporosis diagnosis, because of its low reliability.

  15. Quantitative analysis of bone mineral measurements in different types of dual-energy absorptiometry systems: Comparison of CT vs DEXA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Seong [Dept. of Radiology, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    Generally assessing bone mineral density (BMD) were performed on dual energy X-ray absorptiometry (DEXA) the same as dual energy CT (DECT) with a rapid-kVp switching. The purpose of this study is to compare the different of BMD value between DEXA and DECT method, and evaluate usefulness of DECT method. Using scanner for BMD measurements were GE, Healthcare Discovery 750 HD for DECT and Hologic QDR 4500W for DEXA. For compare BMD value in each method, scanned lumbar spine phantom and subjects visiting Korean National Cancer Center from April 2015 to December 2015, records of 50 patients. This study was approved by the Institutional Review Board. The mean BMD value measures for spine phantom and for subjects in each scanners presented strong correlation (r=0.948 with p<0.05 for phantom; r=0.635 with p<0.05 and Kendall's tau (τ)=0.46 with p<0.05 for subjects) and linear relationship between DECT and conventional DEXA. DECT technique for BMD measurement will provide a very useful methodology without additional radiation dose.

  16. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  17. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  18. Visualization of the dissipation of energy during the cutting process. Presentation of energy value flows by means of dual energy signatures; Energieverschwendung beim Zerspanungsprozess sichtbar machen. Darstellung von Energiewertstroemen mittels dualer Energiesignaturen

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, Rainer [Hochschule Aalen (Germany). Professur Fertigungsorganisation und Prozessmanagement; Kalhoefer, Eckehard [Hochschule Aalen (Germany). Stiftungslehrstuhl Spanende Fertigung; Stock, Timo [Hochschule Aalen (Germany). Studiengang Maschinenbau/Produktion und Management

    2012-09-15

    Lean production systems are the minimization of wastage. Therefore, process steps are divided in value-added and non-value-added process steps. Using the value stream analysis non-value-adding process shares can be identified easily.The main aim usually are the two factors processing time and inventory. By means of a cutting process, the authors of the paper under consideration report on a method which divides the process-related utilization of energy in value-adding and non-value-adding energy use. Due to the dual consideration of energy use, the energy consumption can be easily integrated in the value stream analysis.

  19. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring.

    Science.gov (United States)

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  20. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    International Nuclear Information System (INIS)

    Wigmans, Richard; Nural, Akchurin

    2013-01-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals

  1. WE-EF-BRA-01: A Dual-Use Optical Tomography System for Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Bin, Z; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD (United States); He, X; Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We develop a novel dual-use configuration for a tri-modality, CBCT/bioluminescence tomography(BLT)/fluorescence tomography(FT), imaging system with the SARRP that can function as a standalone system for longitudinal imaging research and on-board the SARRP to guide irradiation. BLT provides radiation guidance for soft tissue target, while FT offers functional information allowing mechanistic investigations. Methods: The optical assembly includes CCD camera, lens, filter wheel, 3-way mirrors, scanning fiber system and light-tight enclosure. The rotating mirror system directs the optical signal from the animal surface to the camera at multiple projection over 180 degree. The fiber-laser system serves as the external light source for the FT application. Multiple filters are used for multispectral imaging to enhance localization accuracy using BLT. SARRP CBCT provides anatomical information and geometric mesh for BLT/FT reconstruction. To facilitate dual use, the 3-way mirror system is cantilevered in front of the camera. The entire optical assembly is driven by a 1D linear stage to dock onto an independent mouse support bed for standalone application. After completion of on-board optical imaging, the system is retracted from the SARRP to allow irradiation of the mouse. Results: A tissue-simulating phantom and a mouse model with a luminescence light source are used to demonstrate the function of the dual-use optical system. Feasibility data have been obtained based on a manual-docking prototype. The center of mass of light source determined in living mouse with on-board BLT is within 1±0.2mm of that with CBCT. The performance of the motorized system is expected to be the same and will be presented. Conclusion: We anticipate the motorized dual use system provide significant efficiency gain over our manual docking and off-line system. By also supporting off-line longitudinal studies independent of the SARRP, the dual-use system is a highly efficient and cost

  2. Dual fuel injection piggyback controller system

    Science.gov (United States)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  3. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process

    International Nuclear Information System (INIS)

    Altaee, Ali; Zaragoza, Guillermo; Drioli, Enrico; Zhou, John

    2017-01-01

    Highlights: •Single and dual stage PRO was evaluated at different membrane configurations. •Impact of increasing module area or numbers on the power efficiency was studied. •DSPRO reduced the impact of CP & restored the osmotic potential of salinity gradient. •DSPRO outperforms single stage PRO process but depends on salinity gradient type. -- Abstract: Power generation by means of Pressure Retarded Osmosis (PRO) has been proposed for harvesting the energy of a salinity gradient. Energy recovery by the PRO process decreases along the membrane module due to depleting of the chemical potential across the membrane and concentration polarization effects. A dual stage PRO (DSPRO) design can be used to rejuvenate the chemical potential difference and reduce the concentration polarization on feed solution. Several design configurations were suggested for the membrane module arrangements in the first and second stage of the PRO process. PRO performance was evaluated for a number of salinity gradients proposed by coupling Dead Sea water or Reverse Osmosis (RO) brine with seawater or wastewater effluent. Maximum specific energy of inlet and outlet feeds was calculated using a developed computer model to identify the amount of recovered and remaining energy. Initially, specific power generation by the PRO process increased by increasing the number of modules of the first stage. Maximum specific energy is calculated along the PRO module to understand the degradation of the maximum specific energy in each module before introducing a second stage PRO process. Adding a second stage PRO process resulted in a sharp increase of the chemical potential difference and the specific energy yield of the process. Between 10% and 13% increase of the specific power generation was achieved by the DSPRO process for the Dead Sea-seawater salinity gradient depending on the dual stage design configuration. For Dead Sea-RO brine, 12–16% increase of the specific power generation was

  4. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...

  5. Dual-systems and the development of reasoning: competence-procedural systems.

    Science.gov (United States)

    Overton, Willis F; Ricco, Robert B

    2011-03-01

    Dual-system, dual-process, accounts of adult cognitive processing are examined in the context of a self-organizing relational developmental systems approaches to cognitive growth. Contemporary adult dual-process accounts describe a linear architecture of mind entailing two split-off, but interacting systems; a domain general, content-free 'analytic' system (system 2) and a domain specific highly contextualized 'heuristic' system (system 1). In the developmental literature on deductive reasoning, a similar distinction has been made between a domain general competence (reflective, algorithmic) system and a domain specific procedural system. In contrast to the linear accounts offered by empiricist, nativist, and/or evolutionary explanations, the dual competence-procedural developmental perspective argues that the mature systems emerge through developmental transformations as differentiations and intercoordinations of an early relatively undifferentiated action matrix. This development, whose microscopic mechanism is action-in-the-world, is characterized as being embodied, nonlinear, and epigenetic. WIREs Cogni Sci 2011 2 231-237 DOI: 10.1002/wcs.120 For further resources related to this article, please visit the WIREs website. © 2010 John Wiley & Sons, Ltd.

  6. Local differences in mineral content in vertebral trabecular bone measured by dual-energy computed tomography

    International Nuclear Information System (INIS)

    Nepper-Rasmussen, J.; Mosekilde, L.; Aarhus Univ.

    1989-01-01

    Twelve lumbar vertebral bodies from cadavers were examined with dual-energy CT, to measure the calcium content in a big central region of interest (ROI). In each of five vertebrae the calcium content was also measured in six small ROI. After completed scanning, six small cylinders were drilled out from each vertebra, and the ash-density of each cylinder was measured. The dual-energy CT measurements correlated well with the ash-density. Both ash-density and dual-energy CT showed a significantly higher mineral content in the posterior part of the vertebrae than in the anterior part, and this difference might be responsible for problems encountered with the reproducibility of dual-energy CT. (orig.)

  7. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  8. Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Daniele; Pratts-Emanuelli, Jose J.; Mileto, Achille; Bashir, Mustafa R.; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Husarik, Daniela B. [University Hospital Zurich, Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-10-03

    To assess the impact of patient habitus, acquisition parameters, detector efficiencies, and reconstruction techniques on the accuracy of iodine quantification using dual-source dual-energy CT (DECT). Two phantoms simulating small and large patients contained 20 iodine solutions mimicking vascular and parenchymal enhancement from saline isodensity to 400 HU and 30 iodine solutions simulating enhancement of the urinary collecting system from 400 to 2,000 HU. DECT acquisition (80/140 kVp and 100/140 kVp) was performed using two DECT systems equipped with standard and integrated electronics detector technologies. DECT raw datasets were reconstructed using filtered backprojection (FBP), and iterative reconstruction (SAFIRE I/V). Accuracy for iodine quantification was significantly higher for the small compared to the large phantoms (9.2 % ± 7.5 vs. 24.3 % ± 26.1, P = 0.0001), the integrated compared to the conventional detectors (14.8 % ± 20.6 vs. 18.8 % ± 20.4, respectively; P = 0.006), and SAFIRE V compared to SAFIRE I and FBP reconstructions (15.2 % ± 18.1 vs. 16.1 % ± 17.6 and 18.9 % ± 20.4, respectively; P ≤ 0.003). A significant synergism was observed when the most effective detector and reconstruction techniques were combined with habitus-adapted dual-energy pairs. In a second-generation dual-source DECT system, the accuracy of iodine quantification can be substantially improved by an optimal choice and combination of acquisition parameters, detector, and reconstruction techniques. (orig.)

  9. Diagnosis value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Ma Zhoupeng; Zhou Jianjun; Liu Xueling; Wang Chun; Zhang Shunzhuang

    2012-01-01

    Objective: To explore the diagnostic value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma. Methods: Sixty patients who were suspected of clear cell renal cell carcinoma underwent non-enhanced CT and contrast enhancement CT of early interface-phase between cortex -medulla and parenchymal phase on a dual-energy CT. The true non-enhanced kidney CT (TNCT) was performed in a single-energy acquisition mode, but the dual-phase contrast enhancement CT were performed in a dual-energy mode of 80 kV and 140 kV respectively. The virtual non-enhanced CT (VNCT) images were derived from the data of early interface phase using liver virtual non-contrast software. The diagnose according to VNCT combined dual-phase contrast enhancement CT and dual-phase contrast enhancement CT only were made respectively and compared with χ 2 test. Between the true non-contrast CT and the virtual non-contrast CT, the image quality was compared with Wilcoxon test; The radiation dose of volume CT dose index (CTDIvol) and dose length product(DLP) in a single-phase and total examination, the mean CT HU values of the tumours were compared with t test. Results: The accuracy of VNCT combined dual-phase contrast enhancement CT was higher than that of dual-phase contrast enhancement CT only [93.3% (56/60) vs.78.3% (47/60); χ 2 =5.6, P<0.05]. The detective ability (score) of VNCT was near to that of TNCT and the difference was not obvious (Z=0.00, P>0.05). The radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination of VNCT [(8.85 ± 1.28) mGy, (196.45 ±21.12) mGy·cm, (17.69±2.35) mGy, (392.90±42.25) mGy · cm] were lower than that of TNCT [(10.20 ± 1.44) mGy,(218.29 ± 29.60) mGy · cm, (30.61 ± 3.27) mGy and (654.86 ± 88.81) mGy ·cm], t=4.21, 3.58, 23.63, 16.12 respectively, P<0.05. The mean CT HU values of tumours on VNCT images was higher than that

  10. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  11. Dual-Level Game-Based Energy Efficiency and Fairness for Green Cellular Networks

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2016-01-01

    Full Text Available In the recent decades, cellular networks have revolutionized the way of next generation communication networks. However, due to the global climate change, reducing the energy consumption of cellular infrastructures is an important and urgent problem. In this study, we propose a novel two-level cooperative game framework for improving the energy efficiency and fairness in cellular networks. For the energy efficiency, base stations (BSs constantly monitor the current traffic load and cooperate with each other to maximize the energy saving. For the energy fairness, renewable energy can be shared dynamically while ensuring the fairness among BSs. To achieve an excellent cellular network performance, the concepts of the Raiffa Bargaining Solution and Jain’s fairness are extended and practically applied to our dual-level cooperative game model. Through system level simulations, the proposed scheme is evaluated and compared with other existing schemes. The simulation results show that our two-level game approach outperforms the existing schemes in providing a better fair-efficient system performance.

  12. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  13. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria; Ljungberg, Michael; Hendrik Pretorius, P.; Prasad, Rameshwar; Liu, Chi; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99m Tc/ 123 I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99m Tc and 123 I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  14. Use of an audience response system (ARS) in a dual-campus classroom environment.

    Science.gov (United States)

    Medina, Melissa S; Medina, Patrick J; Wanzer, Donald S; Wilson, Jane E; Er, Nelson; Britton, Mark L

    2008-04-15

    To implement an audience response system in a dual-campus classroom that aggregated data during graded (attendance and quizzes) and non-graded classroom activities (formative quizzes, case discussions, examination reviews, and team activities) and explore its strengths, weaknesses, and impact on active learning. After extensive research, an appropriate audience response system was selected and implemented in a dual-classroom setting for a third-year required PharmD course. Students were assigned a clicker and training and policies regarding clicker use were reviewed. Activities involving clicker use were carefully planned to simultaneously engage students in both classrooms in real time. Focus groups were conducted with students to gather outcomes data. Students and faculty members felt that the immediate feedback the automated response system (ARS) provided was most beneficial during non-graded activities. Student anxiety increased with use of ARS during graded activities due to fears regarding technology failure, user error, and academic integrity. ARS is a viable tool for increasing active learning in a doctor of pharmacy (PharmD) program, especially when used for non-graded class activities. Faculty members should proceed cautiously with using ARS for graded classroom activities and develop detailed and documented policies for ARS use.

  15. Dual fermion approach to disordered correlated systems

    International Nuclear Information System (INIS)

    Haase, Patrick

    2015-01-01

    Disorder is ubiquitous in real materials and influences the physical properties like the conductivity to varying degrees. If electron-electron interactions are strong, theoretical and numerical treatment of these systems becomes challenging. In this thesis a numerical approach is developed to address these systems, treating both interactions and disorder on equal footing. The approach is based on the dual fermion approach for interacting systems developed by Rubtsov et al. Terletska et al. applied the ideas of the dual fermion approach to disordered non-interacting systems. In this approach, the replica trick is used to integrate out the disorder in favor of an effective electron-electron interaction. We extended the approach from Terletska et al. to treat disordered interacting systems. Dual Fermions allow to take into account non-local fluctuations by means of a perturbative expansion around an impurity problem. The impurity reference system is determined self-consistently, analogously to the dynamical mean-field theory. The perturbative expansion is expected to yield good results for small and large values of interaction strength and disorder. A priori, it is not clear what to expect for intermediate values, but experience shows that oftentimes good results are obtained for this region. An advantage of the dual fermion approach is that there is no sign-problem for a single orbital model if quantum Monte Carlo is used to solve the interacting reference system. Additionally, perturbation theory is usually numerically much cheaper than fully solving an interacting lattice or cluster problem. Thus, the dual fermion approach allows to address regions of parameter space that are not accessible to lattice quantum Monte Carlo calculations or cluster extension of dynamical mean-field theory. Cluster extensions of the dynamical mean-field theory are for example the dynamical cluster approximation or the cellular dynamical mean-field theory. The new approach is benchmarked

  16. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  17. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  18. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  19. Human Factors Engineering: Current and Emerging Dual-Use Applications

    Science.gov (United States)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  20. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    Science.gov (United States)

    Wellenberg, Ruud H H; Donders, Johanna C E; Kloen, Peter; Beenen, Ludo F M; Kleipool, Roeland P; Maas, Mario; Streekstra, Geert J

    2017-08-25

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal. The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

  1. Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT.

    Science.gov (United States)

    Uyeda, Jennifer W; Richardson, Ian J; Sodickson, Aaron D

    2017-12-01

    To determine whether virtual monochromatic imaging (VMI) increases detectability of noncalcified gallstones on dual-energy CT (DECT) compared with conventional CT imaging. This retrospective IRB-approved, HIPAA-compliant study included consecutive patients who underwent DECT of the abdomen in the Emergency Department during a 30-month period (July 1, 2013-December 31, 2015), with a comparison US or MR within 1-year. 51 patients (36F, 15M; mean age 52 years) fulfilled the inclusion criteria. All DECT were acquired on a dual-source 128 × 2 slice scanner using either 80/Sn140 or 100/Sn140 kVp pairs. Source images at high and low kVp were used for DE post-processing with VMI. Within 3 mm reconstructed images, regions of interest of 0.5 cm 2 were placed on noncalcified gallstones and bile to record hounsfield units (HU) at VMI energy levels ranging between 40 and 190 keV. Noncalcified gallstones uniformly demonstrated lowest HU at 40 keV and increase at higher keV; the HU of bile varied at higher keV. Few of the noncalcified stones are visible at 70 keV (simulating a conventional 120 kVp scan), with measured contrast (bile-stone HU difference) 20 HU in 2%. Contrast was maximal at 40 keV, where 100% demonstrated >20 HU difference from surrounding bile, 75% >44 HU difference, and 50% >60 HU difference. A paired t test demonstrated a significant difference (p < 0.0001) between this stone-bile contrast at 40 vs. 70 keV and 70 vs. 190 keV. Low keV virtual monochromatic imaging increased conspicuity of noncalcified gallstones, improving their detectability.

  2. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    International Nuclear Information System (INIS)

    Knizley, Alta A.; Mago, Pedro J.; Smith, Amanda D.

    2014-01-01

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  3. WE-FG-207B-10: Dual-Energy CT Monochromatic Image Consistency Across Vendors and Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, M; Wood, C; Cody, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Although dual-energy CT provides improved sensitivity of HU for certain tissue types at lower simulated energy levels, if these values vary by scanner type they may impact clinical patient management decisions. Each manufacturer has selected a specific dual-energy CT approach (or in one case, three different approaches); understanding HU variability among low monochromatic images may be required when more than one dual-energy CT scanner type is available for use. Methods: A large elliptical dualenergy quality control phantom (Gammex Inc.; Middleton, WI) containing several standard tissue type materials was scanned at least three times on each of the following systems: GE HD750, prototype GE Revolution CT with GSI, Siemens Flash, Siemens Edge, Siemens AS 128, and Philips IQon. Images were generated at 50, 70, and 140 keV. Soft tissue and Iodine HU were measured on a single central 5mm-thick image; NIST constants were used to calculate the ideal HU for each material. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were held as consistent as possible (thickness, kernel, no noise reduction). Results: Measured soft tissue (29 HU at 120 kVp) varied from 28 HU to 44 HU at 50 keV (excluding one outlier), from 21 HU to 31 HU at 70 keV, and from 19 HU to 32 HU at 140 keV. Measured iodine (5mg/ml, 106 HU at 120 kVp) varied from 246 HU to 280 HU at 50 keV, from 123 HU to 129 HU at 70 keV, and from 22 HU to 32 HU at 140 keV. Conclusion: Measured HU in standard rods across 3 dual-energy CT manufacturers and 6 scanner models varied directly with monochromatic level, with the most variability was observed at 50 keV and least variability at 70keV. Future work will include additional scanner platforms and how measurement variability impacts radiologists. This research has been supported by funds from Dr. William Murphy, Jr., the John S. Dunn, Sr. Distinguished Chair in Diagnostic Imaging at MD Anderson Cancer Center.

  4. Robot Kinematics, using Dual Quaternions

    Directory of Open Access Journals (Sweden)

    Mahmoud Gouasmi

    2012-03-01

    Full Text Available From the point of view of classical mechanics, deriving the equations of motion for systems of coupled rigid bodies is regarded as a straightforward procedure: once a suitable set of generalized coordinates and reference frames have been chosen, what remains is to either apply Lagrange’s equations or Newton and Euler’s equations to obtain the differential equations of motion. As the complexity of multibody system increases, the need for more elegant formulation of the equation of motion becomes an issue of paramount importance. Our primary focus is on the kinematic analysis of rigid bodies and serial manipulators (robotic systems  using simultaneously, both homogeneous transformations (4x4 matrices and Dual Quaternions, for the sake of results comparisons (cost,complexity,storage capacity etc. . This paper has been done mainly for educational and peadagogical purposes, hoping that the scientific community will finally adopt and use Dual Quaternions at least when dealing with multibody systems and specially robotics.

  5. A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems

    International Nuclear Information System (INIS)

    Mielke, Alexander

    2011-01-01

    In recent years the theory of the Wasserstein metric has opened up new treatments of diffusion equations as gradient systems, where the free energy or entropy take the role of the driving functional and where the space is equipped with the Wasserstein metric. We show on the formal level that this gradient structure can be generalized to reaction–diffusion systems with reversible mass-action kinetic. The metric is constructed using the dual dissipation potential, which is a quadratic functional of all chemical potentials including the mobilities as well as the reaction kinetics. The metric structure is obtained by Legendre transform from the dual dissipation potential. The same ideas extend to systems including electrostatic interactions or a correct energy balance via coupling to the heat equation. We show this by treating the semiconductor equations involving the electron and hole densities, the electrostatic potential, and the temperature. Thus, the models in Albinus et al (2002 Nonlinearity 15 367–83), which stimulated this work, have a gradient structure

  6. Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study

    Science.gov (United States)

    Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas

    2016-03-01

    This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, pwomen and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.

  7. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  8. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    Science.gov (United States)

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  10. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  11. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector

    International Nuclear Information System (INIS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J.M.

    2004-01-01

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm 2 digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  12. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    International Nuclear Information System (INIS)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia; Halaweish, Ahmed

    2016-01-01

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE

  13. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Halaweish, Ahmed [Siemens Medical Solutions, Malvern, Pennsylvania 19355 (United States)

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  14. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  15. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Coronary calcium visualization using dual energy chest radiography with sliding organ registration

    Science.gov (United States)

    Wen, Di; Nye, Katelyn; Zhou, Bo; Gilkeson, Robert C.; Wilson, David L.

    2016-03-01

    Coronary artery calcification (CAC) is the lead biomarker for atherosclerotic heart disease. We are developing a new technique to image CAC using ubiquitously ordered, low cost, low radiation dual energy (DE) chest radiography (using the two-shot GE Revolution XRd system). In this paper, we proposed a novel image processing method (CorCalDx) based on sliding organ registration to create a bone-image-like, coronary calcium image (CCI) that significantly reduces motion artifacts and improves CAC conspicuity. Experiments on images of a physical dynamic cardiac phantom showed that CorCalDx reduced 73% of the motion artifact area as compared to standard DE over a range of heart rates up to 90 bpm and varying x-ray radiation exposures. Residual motion artifact in the phantom CCI is greatly suppressed in gray level and area (0.88% of the heart area). In a Functional Measurement Test (FMT) with 20 clinical exams, image quality improvement of CorCalDx against standard DE (measured from -10 to +10) was significantly suggested (panatomy visibility (6.1+/-3.5). CorCalDx was always chosen best in every image tested. In preliminary assessments of 12 patients with 18 calcifications, 90% of motion artifact regions in standard DE results were removed in CorCalDx results, with 100% sensitivity of calcification detection, showing great potential of CorCalDx to improve CAC detection and grading in DE chest radiography.

  17. Dual-Readout Calorimetry for High-Quality Energy

    CERN Multimedia

    During the past seven years, the DREAM collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development ${(dual}$ ${readout}$), the fluctuations in the electromagnetic shower fraction could be measured event by event their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contirbutions of nuclear evaporation neutrons to the signals and thus reduce the effects of fluctuations in "invisible energy". We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrat...

  18. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    International Nuclear Information System (INIS)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee; Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC

  19. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  20. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ralf W., E-mail: ralfwbauer@aol.co [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Schulz, Julian R., E-mail: julian.schulz@t-online.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Zedler, Barbara, E-mail: zedler@em.uni-frankfurt.d [Department of Forensic Medicine, Clinic of the Goethe University Frankfurt, Kennedyallee 104, 60596 Frankfurt (Germany); Graf, Thomas G., E-mail: thomas.gt.graf@siemens.co [Siemens AG Healthcare Sector, Computed Tomography, Physics and Applications, Siemensstrasse 1, 91313 Forchheim (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)

    2010-07-15

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 {+-} 4 HU at 80 kV and +22 {+-} 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  1. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    International Nuclear Information System (INIS)

    Bauer, Ralf W.; Schulz, Julian R.; Zedler, Barbara; Graf, Thomas G.; Vogl, Thomas J.

    2010-01-01

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 ± 4 HU at 80 kV and +22 ± 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  2. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    Science.gov (United States)

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2017-07-01

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Characterisation of urinary stones in the presence of iodinated contrast medium using dual-energy CT: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia; Qu, Mingliang; Duan, Xinhui; Takahashi, Naoki; Kawashima, Akira; Leng, Shuai; McCollough, Cynthia H. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2012-12-15

    To develop a dual-energy CT (DECT) method for differentiating uric acid (UA) from non-UA stones in the presence of iodinated contrast medium. Thirty UA and 45 non-UA stones were selected after infra-red spectroscopic analysis and independently placed in a 1.5-ml vial, which was filled first with saline and then with increasing concentrations of iodine. For each condition, tubes were put in a 35-cm water phantom and examined using a dual-source CT system at 100 and 140 kV. Virtual unenhanced images created from CT data sets of the stones in iodine-containing solutions provided position and volume information. This map was used to calculate a CT number ratio to differentiate stone type. A region-growing method was developed to improve the ability to differentiate between UA and non-UA stones with iodinated contrast medium. The sensitivity for detecting UA stones was 100 % for unenhanced images but fell to 18 % with 20 mgI/ml iodine solution and 0 % for higher concentrations. With region growing, the sensitivity for detecting UA stones was increased to 100 %, 82 %, 57 %, 50 % and 21 % for iodine solutions of 20, 40, 60, 80 and 100 mgI/ml. The region-growing method improves differentiation of UA from non-UA stones on contrast-enhanced DECT urograms. (orig.)

  4. Dual use of electronic nicotine delivery systems (ENDS) and smoked tobacco: a qualitative analysis.

    Science.gov (United States)

    Robertson, Lindsay; Hoek, Janet; Blank, Mei-Ling; Richards, Rosalina; Ling, Pamela; Popova, Lucy

    2018-02-01

    Electronic nicotine delivery systems (ENDS) arguably pose fewer health risks than smoking, yet many smokers adopt ENDS without fully relinquishing smoking. Known as 'dual use', this practice is widespread and compromises the health benefits that ENDS may offer. To date, few studies have explored how dual use practices arise and manifest. We conducted in-depth, semi-structured interviews with 20 current ENDS users from New Zealand who reported smoking tobacco at least once a month. We explored participants' smoking history, their recent and current smoking, trial, uptake and patterns of ENDS use, and future smoking and vaping intentions. We managed the data using NVivo V.11 and used a thematic analysis approach to interpret the transcripts. Dual use practices among participants evolved in four ways. First, as an attempt to manage the 'inauthenticity' of vaping relative to smoking and to retain meaningful rituals. Second, as complex rationalisations that framed decreased tobacco use, rather than smoking cessation, as 'success'. Third, as a means of alleviating the financial burden smoking imposed and to circumvent smoke-free policies. Lastly, dual use reflected attempts to comply with social group norms and manage stigma. Dual use reflects both social and physical cues. It assisted participants to navigate smoking restrictions and allowed them to manage divergent norms. Policies that discourage smoking, particularly excise tax increases on smoked tobacco and smoke-free space restrictions, appear important in prompting ENDS use. Future research could explore whether these policies also help foster complete transition from smoking to exclusive ENDS use. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Linking the dual system with higher education in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    2013-01-01

    As more than half of every new generation of youth enter higher education in Den-mark the strength of the dual system of vocational education is becoming its weakness. Completing a programme in the dual system doesn’t give access to higher ed-ucation, and the system is increasingly seen as a ‘blind...... alley’. This weakness is closely related to the strengths of the dual system. The dual system is successful in giving direct and fast access to employment for the students, and this contributes to a very low rate of youth unemployment in Denmark. Students who complete a programme in the dual system......, become well integrated into the labour market, but at the same time they are diverted from higher education. This has lately put the question of hybrid qualifications on the agenda in Denmark....

  6. Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Duan, Xinhui; Xi, Yin; Lewis, Matthew A; Pearle, Margaret S; Antonelli, Jodi A; Goerne, Harold; Kolitz, Elysha M; Abbara, Suhny; Lenkinski, Robert E; Fielding, Julia R; Leyendecker, John R

    2018-04-07

    To assess the non-inferiority of dual-layer spectral detector CT (SDCT) compared to dual-source dual-energy CT (dsDECT) in discriminating uric acid (UA) from non-UA stones. Fifty-seven extracted urinary calculi were placed in a cylindrical phantom in a water bath and scanned on a SDCT scanner (IQon, Philips Healthcare) and second- and third-generation dsDECT scanners (Somatom Flash and Force, Siemens Healthcare) under matched scan parameters. For SDCT data, conventional images and virtual monoenergetic reconstructions were created. A customized 3D growing region segmentation tool was used to segment each stone on a pixel-by-pixel basis for statistical analysis. Median virtual monoenergetic ratios (VMRs) of 40/200, 62/92, and 62/100 for each stone were recorded. For dsDECT data, dual-energy ratio (DER) for each stone was recorded from vendor-specific postprocessing software (Syngo Via) using the Kidney Stones Application. The clinical reference standard of X-ray diffraction analysis was used to assess non-inferiority. Area under the receiver-operating characteristic curve (AUC) was used to assess diagnostic performance of detecting UA stones. Six pure UA, 47 pure calcium-based, 1 pure cystine, and 3 mixed struvite stones were scanned. All pure UA stones were correctly separated from non-UA stones using SDCT and dsDECT (AUC = 1). For UA stones, median VMR was 0.95-0.99 and DER 1.00-1.02. For non-UA stones, median VMR was 1.4-4.1 and DER 1.39-1.69. SDCT spectral reconstructions demonstrate similar performance to those of dsDECT in discriminating UA from non-UA stones in a phantom model.

  7. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto; Patrie, James T.; Wintermark, Max

    2016-01-01

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  8. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto [University of Virginia, Department of Radiology, Division of Neuroradiology, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2016-11-15

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  9. Tuning controllers using the dual Youla parameterization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2000-01-01

    This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla parameteriza......This paper describes the application of the Youla parameterization of all stabilizing controllers and the dual Youla parameterization of all systems stabilized by a given controller in connection with tuning of controllers. In the uncertain case, it is shown that the use of the Youla...

  10. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  11. Generalized shift-invariant systems and approximately dual frames

    DEFF Research Database (Denmark)

    Benavente, Ana; Christensen, Ole; Zakowicz, Maria I.

    2017-01-01

    Dual pairs of frames yield a procedure for obtaining perfect reconstruction of elements in the underlying Hilbert space in terms of superpositions of the frame elements. However, practical constraints often force us to apply sequences that do not exactly form dual frames. In this article, we...... consider the important case of generalized shift-invariant systems and provide various ways of estimating the deviation from perfect reconstruction that occur when the systems do not form dual frames. The deviation from being dual frames will be measured either in terms of a perturbation condition...

  12. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    Science.gov (United States)

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  13. Black start research of the wind and storage system based on the dual master-slave control

    Science.gov (United States)

    Leng, Xue; Shen, Li; Hu, Tian; Liu, Li

    2018-02-01

    Black start is the key to solving the problem of large-scale power failure, while the introduction of new renewable clean energy as a black start power supply was a new hotspot. Based on the dual master-slave control strategy, the wind and storage system was taken as the black start reliable power, energy storage and wind combined to ensure the stability of the micorgrid systems, to realize the black start. In order to obtain the capacity ratio of the storage in the small system based on the dual master-slave control strategy, and the black start constraint condition of the wind and storage combined system, obtain the key points of black start of wind storage combined system, but also provide reference and guidance for the subsequent large-scale wind and storage combined system in black start projects.

  14. Dual-energy CT myelography on detection of spontaneous spinal cerebrospinal fluid leaks: initial study

    International Nuclear Information System (INIS)

    Zhang Qiaowei; Wang Dan; Zhang Jinhua; Wang Jin; Zhang Shizheng

    2011-01-01

    Objective: To assess the value of dual-energy computed tomography myelography (CTM) on detecting leaks of cerebrospinal fluid (CSF) in patients with spontaneous intracranial hypotension (SIH). Methods: Six patients with SIH underwent spinal CTM on a 2nd generation dual-source CT with tube voltage set at 100 and 140 kVp (with tin filter). The virtual non-contrast (VNC) and iodine map images were calculated from dual-energy images. The average weighted (AW) CTM images were mixed from two kVp images with mix factor of 0.5. Two radiologists evaluated CSF leak using two sets of images respectively: VNC + iodine map images and AW-CTM images. The results from two reading methods were compared. The level of CSF leaks along the nerve roots, C1-2 retrospinal CSF collections, epidural CSF collections and spinal epidural venous plexus were marked. The consensus about leak sites and CSF collections was made by two radiologists in the third session. Kappa statistics were used to measure the agreement between the two methods. Results: Forty-one leaks were detected using VNC + iodine map images. Forty-three leaks were detected on AW images. The agreement between two methods was excellent (Kappa = 0.997, P<0.01). There were no differences in the detection of C1-2 retrospinal CSF collections (n=2), epidural CSF collections (n=3) or spinal epidural venous plexus (n=1). VNC and iodine map images demonstrated superior visual effects than AW images. Conclusion: Dual-energy CTM can be used to diagnose spontaneous spinal cerebrospinal fluid leaks in SIH patient, (authors)

  15. Diagnosis of acute ischemia using dual energy CT after mechanical thrombectomy.

    Science.gov (United States)

    Gariani, Joanna; Cuvinciuc, Victor; Courvoisier, Delphine; Krauss, Bernhard; Mendes Pereira, Vitor; Sztajzel, Roman; Lovblad, Karl-Olof; Vargas, Maria Isabel

    2016-10-01

    To assess the performance of dual energy unenhanced CT in the detection of acute ischemia after mechanical thrombectomy. Retrospective study, approved by the local institutional review board, including all patients that underwent intra-arterial thrombectomy in our institution over a period of 2 years. The presence of acute ischemia and hemorrhage was evaluated by three readers. Sensitivity and specificity of the non-contrast CT weighted sum image (NCCT) and the virtual non-contrast reconstructed image (VNC) were estimated and compared using generalized estimating equations to account for the non-independence of regions in each patient. 58 patients (27 women and 31 men; mean age 70.4 years) were included in the study, yielding 580 regions of interest. Sensitivity and specificity in detecting acute ischemia were higher for all readers when using VNC, with a significant increase in sensitivity for two readers (pVNC images were superior in the identification of acute ischemia in comparison with NCCT. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    Science.gov (United States)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.

    2017-12-01

    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  17. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  18. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  19. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  20. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  1. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  2. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min [Dept. of Radiology, Seoul National University College of Medicine and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  3. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    International Nuclear Information System (INIS)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  4. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    results in less noise and higher CNR in pulmonary arteries. • Subjective image quality is improved when using advanced monoenergetic reconstructions for dual-energy CT pulmonary angiography. • Attenuation in the pulmonary artery circulation is higher in advanced monoenergetic image reconstructions.

  5. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT.

    Science.gov (United States)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kaetsu, Yasuhiro; Kitao, Shinichiro; Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro; Ogawa, Toshihide

    2017-07-01

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. • Computed tomography angiography tends to overestimate stenosis in calcified coronary artery. • Dual-energy CT enables us to suppress calcification of coronary artery lesions. • Calcification-suppressed material density imaging reduces false-positive diagnosis of calcified lesion.

  6. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  7. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  8. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan

    2018-02-06

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  9. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter A.; Mielke, Alexander

    2018-01-01

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  10. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille; Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Sofue, Keitaro [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Kobe University School of Medicine, Department of Radiology, Kobe (Japan)

    2016-10-15

    Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons. Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum. (orig.)

  11. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  12. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  13. Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations.

    Science.gov (United States)

    Schindera, Sebastian T; Zaehringer, Caroline; D'Errico, Luigia; Schwartz, Fides; Kekelidze, Maka; Szucs-Farkas, Zsolt; Benz, Matthias R

    2017-10-01

    To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDI vol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDI vol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p dual-energy and the single-energy protocol. A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.

  14. Some practical aspects of dual-energy CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J. (Charing Cross Group of Hospitals, London (UK))

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number.

  15. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    International Nuclear Information System (INIS)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J

    2016-01-01

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  16. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Szczykutowicz, T; Bayouth, J; Miller, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between the acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials

  17. Thermodynamic modeling, energy equipartition, and nonconservation of entropy for discrete-time dynamical systems

    Directory of Open Access Journals (Sweden)

    Chellaboina Vijaysekhar

    2005-01-01

    Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.

  18. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal

    2018-01-01

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  19. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna

    2018-04-30

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  20. A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-02-01

    Full Text Available Traditional Wireless Power Transfer (WPT systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc. due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.

  1. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography

    International Nuclear Information System (INIS)

    Lee, Choong Wook; Seo, Joon Beom; Song, Jae-Woo; Kim, Mi-Young; Lee, Ha Young; Park, Yang Shin; Chae, Eun Jin; Jang, Yu Mi; Kim, Namkug; Krauss, Bernard

    2011-01-01

    To evaluate the sensitivity of computer-aided detection(CAD) and dual-energy software('Lung PBV', 'Lung Vessels') for detecting peripheral pulmonary embolism(PE). Between Jan-2007 and Jan-2008, 309 patients underwent dual-energy CT angiography(DECTA) for the evaluation of suspected PE. Among them, 37 patients were retrospectively selected; 21 with PE at segmental-or-below levels and 16 without PE according to clinical reports. A standard computer assisted detection (CAD) package and two new types of software('Lung PBV', 'Lung Vessels') were applied on a dedicated workstation. This resulted in four alternative tests for detecting PE: DECTA alone and DECTA with CAD, 'Lung Vessels' and 'Lung PBV'. Two radiologists independently read all cases at different reading sessions. Two thoracic radiologists set the reference standard by combining all information from DECTA and software. The sensitivity of detection for all, segmental and subsegmental-or-below PE were assessed. The reference standard contained 136 PE(segmental 65, subsegmental-or-below 71). With DECTA alone, the sensitivity of detection for all, segmental and subsegmental-or-below pulmonary arteries was 54.5%/73.7%/34.4%; DECTA with CAD, 57.8%/76.8%/37.9%; DECTA with 'Lung PBV', 61.1%/79.9%/41.4%; DECTA with 'Lung Vessels', 64.0%/78.3%/48.5% respectively. The use of CAD, Lung Vessels and Lung PBV shows improved capability to detect peripheral PE. (orig.)

  2. Multiscale deformable registration for dual-energy x-ray imaging

    International Nuclear Information System (INIS)

    Gang, G. J.; Varon, C. A.; Kashani, H.; Richard, S.; Paul, N. S.; Van Metter, R.; Yorkston, J.; Siewerdsen, J. H.

    2009-01-01

    Dual-energy (DE) imaging of the chest improves the conspicuity of subtle lung nodules through the removal of overlying anatomical noise. Recent work has shown double-shot DE imaging (i.e., successive acquisition of low- and high-energy projections) to provide detective quantum efficiency, spectral separation (and therefore contrast), and radiation dose superior to single-shot DE imaging configurations (e.g., with a CR cassette). However, the temporal separation between high-energy (HE) and low-energy (LE) image acquisition can result in motion artifacts in the DE images, reducing image quality and diminishing diagnostic performance. This has motivated the development of a deformable registration technique that aligns the HE image onto the LE image before DE decomposition. The algorithm reported here operates in multiple passes at progressively smaller scales and increasing resolution. The first pass addresses large-scale motion by means of mutual information optimization, while successive passes (2-4) correct misregistration at finer scales by means of normalized cross correlation. Evaluation of registration performance in 129 patients imaged using an experimental DE imaging prototype demonstrated a statistically significant improvement in image alignment. Specific to the cardiac region, the registration algorithm was found to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during diastole. Modulation transfer function (MTF) analysis reveals additional advantages in DE image quality in terms of noise reduction and edge enhancement. This algorithm could offer an important tool in enhancing DE image quality and potentially improving diagnostic performance.

  3. The analysis of hydrocarbons by dual-energy gamma-ray densitometry

    International Nuclear Information System (INIS)

    Taylor, T.; Reynolds, P.W.; Lipsett, J.J.

    1985-11-01

    Various hydrocarbons have been analyzed noninvasively by dual-energy gamma-ray densitometry. The hydrogen/carbon atomic ratio was deduced for pure hydrocarbons while for heavy oil process samples, the ash content was inferred

  4. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    Science.gov (United States)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  5. The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement. A phantom study

    International Nuclear Information System (INIS)

    Yamada, Sachiko; Ueguchi, Takashi; Ukai, Isao; Nagai, Yumiko; Yamakawa, Masanobu; Shimosegawa, Eku; Shimazu, Takeshi; Hatazawa, Jun

    2012-01-01

    Renal cyst pseudoenhancement, an artifactual increase of computed tomography (CT) attenuation for cysts with increased iodine concentrations in the renal parenchyma, complicates the classification of cysts and may thus lead to the mischaracterization of a benign non-enhancing lesion as an enhancing mass. The purpose of this study was to use a phantom model to assess the ability of dual-energy virtual monochromatic imaging to reduce renal pseudoenhancement. A water-filled cylindrical cyst model suspended in varying concentrations of iodine solution, to simulate varying levels of parenchymal enhancement, was scanned with a dual-energy CT scanner using the following three scanning protocols with different combinations of tube voltage: 80 and 140 kV; 80 and 140 kV with tin filter; and 100 and 140 kV with tin filter. Virtual monochromatic images were then synthesized for each dual-energy scan. Single-energy scan with a tube voltage of 120 kV was also performed to obtain polychromatic images as controls. Mean attenuation values (in Hounsfield units) of cyst proxies were measured on both polychromatic and virtual monochromatic images. Pseudoenhancement was considered to be present when the cyst attenuation level increased by more than 10 HU (Hounsfield Unit) as the background iodine concentration increased from 0.0% to 0.4%, 1.5%, or 2.5%. Our results revealed that pseudoenhancement was not observed on any of the monochromatic images, but appeared on polychromatic images at a background iodine concentration of 2.5%. We thus conclude that dual-energy virtual monochromatic images have a potential to reduce renal pseudoenhancement. (author)

  6. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  7. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.

    Science.gov (United States)

    Thomas, Christoph; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Reimann, Anja; Werner, Matthias; Schilling, David; Hennenlotter, Jörg; Claussen, Claus D; Schlemmer, Heinz-Peter; Heuschmid, Martin

    2010-07-01

    In dual energy (DE) computed tomography (CT), spectral shaping by additional filtration of the high energy spectrum can theoretically improve dual energy contrast. The aim of this in vitro study was to examine the influence of an additional tin filter for the differentiation of human urinary calculi by dual energy CT. A total of 36 pure human urinary calculi (uric acid, cystine, calciumoxalate monohydrate, calciumoxalate dihydrate, carbonatapatite, brushite, average diameter 10.5 mm) were placed in a phantom and imaged with 2 dual source CT scanners. One scanner was equipped with an additional tin (Sn) filter. Different combinations of tube voltages (140/80 kV, 140/100 kV, Sn140/100 kV, Sn140/80 kV, with Sn140 referring to 140 kV with the tin filter) were applied. Tube currents were adapted to yield comparable dose indices. Low- and high energy images were reconstructed. The calculi were segmented semiautomatically in the datasets and DE ratios (attenuation@low_kV/attenuation@high_kV) and were calculated for each calculus. DE contrasts (DE-ratio_material1/DE-ratio_material2) were computed for uric acid, cystine and calcified calculi and compared between the combinations of tube voltages. Using exclusively DE ratios, all uric acid, cystine and calcified calculi (as a group) could be differentiated in all protocols; the calcified calculi could not be differentiated among each other in any examination protocol. The highest DE ratios and DE contrasts were measured for the Sn140/80 protocol (53%-62% higher DE contrast than in the 140/80 kV protocol without additional filtration). The DE ratios and DE contrasts of the 80/140 kV and 100/Sn140 kV protocols were comparable. Uric acid, cystine and calcified calculi could be reliably differentiated by any of the protocols. A dose-neutral gain of DE contrast was found in the Sn-filter protocols, which might improve the differentiation of smaller calculi (Sn140/80 kV) and improve image quality and calculi differentiation in

  8. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.

    Science.gov (United States)

    Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen

    2018-02-02

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.

  9. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  10. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  11. The clinical determination of absolute density in bone utilizing single and dual energy compton scattering

    International Nuclear Information System (INIS)

    Huddleston, A.L.; Weaver, J.

    1980-01-01

    Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)

  12. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.

    Science.gov (United States)

    Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K

    2013-06-01

    The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  14. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography.

    Science.gov (United States)

    Schwarz, Florian; Nance, John W; Ruzsics, Balazs; Bastarrika, Gorka; Sterzik, Alexander; Schoepf, U Joseph

    2012-09-01

    To evaluate the feasibility of using virtual noncontrast material-enhanced (VNC) computed tomographic (CT) series derived from dual-energy CT imaging studies for coronary artery calcium quantification. This HIPAA-compliant study was institutional review board approved; all patients provided written informed consent. Thirty-six patients prospectively underwent noncontrast-enhanced CT calcium scoring followed by coronary CT angiography performed in dual-energy mode. By using different reconstruction algorithms, three VNC series were generated and evaluated for noise and efficiency of virtual iodine removal. Two readers independently quantified calcium on VNC images and true noncontrast-enhanced conventional calcium scoring series. A leave-one-out cross validation was used to assess the accuracy of calcium score prediction from VNC series by means of linear regression. CT value histograms of the VNC series closely resembled the profile in the true noncontrast-enhanced series. There was excellent correlation between calcium volumes on the VNC series and true noncontrast-enhanced series on a per-patient (r = 0.94, P VNC series was excellent (r = 0.82). Multiethnic Study of Atherosclerosis rankings that were derived from the predicted calcium scores also showed excellent agreement (intraclass correlation coefficient = 0.909). Coronary artery calcium identification and quantification based on dual-energy coronary CT angiographic studies may obviate the need for dedicated CT calcium scoring studies. © RSNA, 2012

  15. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  16. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    Science.gov (United States)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  17. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  18. Dual-Alloy Disks are Formed by Powder Metallurgy

    Science.gov (United States)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  19. Some practical aspects of dual-energy CT scanning

    International Nuclear Information System (INIS)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J.

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number. (U.K.)

  20. Design of an ultra-thin dual band infrared system

    Science.gov (United States)

    Du, Ke; Cheng, Xuemin; Lv, Qichao; Hu, YiFei

    2014-11-01

    The ultra-thin imaging system using reflective multiple-fold structure has smaller volume and less weight while maintaining high resolution compared with conventional optical systems. The multi-folded approach can significantly extend focal distance within wide spectral range without incurring chromatic aberrations. In this paper, we present a dual infrared imaging system of four-folded reflection with two air-spaced concentric reflective surfaces. The dual brand IR system has 107mm effective focal length, 0.7NA, +/-4° FOV, and 50mm effective aperture with 80mm outer diameter into a 25mm total thickness, which spectral response is 3~12μm.

  1. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures.

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Lautenschlager, Katrin; Flach, Patricia M; Ott, Daniel; Strautz, Tamara; Vock, Peter; Ruder, Thomas D

    2011-08-01

    To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p=0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p=0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, prib fractures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Dual-energy contrast-enhanced spectral mammography (CESM).

    Science.gov (United States)

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  3. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  4. Evaluation of optimal dual axis concentrated photovoltaic thermal system with active ventilation using Frog Leap algorithm

    International Nuclear Information System (INIS)

    Gholami, H.; Sarwat, A.I.; Hosseinian, H.; Khalilnejad, A.

    2015-01-01

    Highlights: • Electro-thermal performance of open-loop controlled dual axis CPVT is investigated. • For using the absorbed heat, active ventilation with a heat storage tank is used. • Economic optimization of the system is performed, using Frog Leap algorithm. • Detailed model of all sections is simulated with their characteristics evaluation. • Triple-junction photovoltaic cells, which are the most recent technology, are used. - Abstract: In this study, design and optimization of a concentrated photovoltaic thermal (CPVT) system considering electrical, mechanical, and economical aspects is investigated. For this purpose, each section of the system is simulated in MATLAB, in detail. Triple-junction photovoltaic cells, which are the most recent technology, are used in this study. They are more efficient in comparison to conventional photovoltaic cells. Unlike ordinary procedures, in this work active ventilation is used for absorbing the thermal power of radiation, using heat storage tanks, which not only results in increasing the electrical efficiency of the system through decreasing the temperature, but also leads to storing and managing produced thermal energy and increasing the total efficiency of the system up to 85 percent. The operation of the CPVT system is investigated for total hours of the year, considering the needed thermal load, meteorological conditions, and hourly radiation of Khuznin, a city in Qazvin province, Iran. Finally, the collector used for this system is optimized economically, using frog leap algorithm, which resulted in the cost of 13.4 $/m"2 for a collector with the optimal distance between tubes of 6.34 cm.

  5. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    Science.gov (United States)

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-12-26

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  6. Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator

    International Nuclear Information System (INIS)

    Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen

    2011-01-01

    Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)

  7. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content...... in porous materials relevant for the building industry. The theory of dual-energy x-ray absorptiometry (DEXA) is presented. DEXA results on two combinations of aluminium and acrylic plastic are compared with corresponding values calculated from the geometry of the experimental setup. The results from the x......-ray measurements show good agreement with results from the two standard materials which imitate water in a porous material. On this background the dual-energy x-ray absorptiometry measurement principle can be used on porous structural materials....

  8. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    Science.gov (United States)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  9. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    Science.gov (United States)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  10. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    Science.gov (United States)

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real - time systems , and present a...scheduling algorithm and apply it to two real-life task sets. Our results show that energy can be conserved in embedded real - time systems using energy...aware task scheduling. We also show that switching times have a significant effect on the energy consumed in hard real - time systems .

  11. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  12. Dual-energy contrast-enhanced digital mammography: initial clinical results

    International Nuclear Information System (INIS)

    Dromain, Clarisse; Thibault, Fabienne; Tardivon, Anne; Muller, Serge; Rimareix, Francoise; Delaloge, Suzette; Balleyguier, Corinne

    2011-01-01

    To assess the diagnostic accuracy of Dual-Energy Contrast-Enhanced Digital Mammography (CEDM) as an adjunct to mammography (MX) versus MX alone and versus mammography plus ultrasound (US). 120 women with 142 suspect findings on MX and/or US underwent CEDM. A pair of low- and high-energy images was acquired using a modified full-field digital mammography system. Exposures were taken in MLO at 2 min and in CC at 4 min after the injection of 1.5 ml/kg of an iodinated contrast agent. One reader evaluated MX, US and CEDM images during 2 sessions 1 month apart. Sensitivity, specificity, and area under the ROC curve were estimated. The results from pathology and follow-up identified 62 benign and 80 malignant lesions. Areas under the ROC curves were significantly superior for MX+CEDM than it was for MX alone and for MX+US using BI-RADS. Sensitivity was higher for MX+CEDM than it was for MX (93% vs. 78%; p < 0.001) with no loss in specificity. The lesion size was closer to the histological size for CEDM. All 23 multifocal lesions were correctly detected by MX+CEDM vs. 16 and 15 lesions by MX and US respectively. Initial clinical results show that CEDM has better diagnostic accuracy than mammography alone and mammography+ultrasound. (orig.)

  13. A Triangulated Qualitative Study of Veteran Decision-Making to Seek Care During Heart Failure Exacerbation: Implications of Dual Health System Use

    Science.gov (United States)

    Pope, Charlene A.; Davis, Boyd H.; Wine, Leticia; Nemeth, Lynne S.; Axon, Robert N.

    2018-01-01

    Among Veterans, heart failure (HF) contributes to frequent emergency department visits and hospitalization. Dual health care system use (dual use) occurs when Veterans Health Administration (VA) enrollees also receive care from non-VA sources. Mounting evidence suggests that dual use decreases efficiency and patient safety. This qualitative study used constructivist grounded theory and content analysis to examine decision making among 25 Veterans with HF, for similarities and differences between all-VA users and dual users. In general, all-VA users praised specific VA providers, called services helpful, and expressed positive capacity for managing HF. In addition, several Veterans who described inadvertent one-time non-VA health care utilization in emergent situations more closely mirrored all-VA users. By contrast, committed dual users more often reported unmet needs, nonresponse to VA requests, and faster services in non-VA facilities. However, a primary trigger for dual use was VA telephone referral for escalating symptoms, instead of care coordination or primary/specialty care problem-solving. PMID:29482411

  14. A Dual System Model of Preferences under Risk

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and…

  15. Single- versus dual-energy quantitative computed tomography for spinal densitometry in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laan, R.F.J.M.; Erning, L.J.Th.O. van; Lemmens, J.A.M.; Putte, L.B.A. van de; Ruijs, S.H.J.; Riel, P.L.C.M. van

    1992-01-01

    Lumbar bone mineral density was measured by both single- and dual-energy quantitative computed tomography in 109 patients with rheumatoid arthritis. The results were corrected for the age-related increase in vertebral fat content by converting them to percentages of expected densities, using sex and energy-level specific regression equations obtained in a normal reference population. The percentages of expected density are approximately 10% lower in the single- than in the dual-energy mode, both in the patients with and without prednisone therapy. This difference is statistically highly significant, and is positively correlated with the duration of the disease and with the degree of radiological joint destruction. The data suggest that the vertebral fat content may be increased in patients with rheumatoid arthritis, as a consequence of disease-dependent mechanisms. (Author)

  16. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  17. On-site analysis of modified surface using dual beam system

    Energy Technology Data Exchange (ETDEWEB)

    Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Goppelt-Langer, P; Mingle, Gan; Jianer, Zeng; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Recent results obtained using a dual ion beam system at JAERI/Takasaki are reported. In this system, both of ion implantation and ion beam analysis can be made alternatively or simultaneously at low temperatures. In sapphire implanted with {sup 51}V{sup +} ions, the amorphization process is analyzed referring to the <0001> aligned spectra taken at different temperatures. The discussion is made on the defect profiles different from the simple accumulation of standard Gaussian form. The depth showing the maximum damage at the initial stage of implantation is quite shallow compared with those reported before. The thermal annealing behaviors of lattice damage and the implanted V atoms are also different between the samples implanted at low and room temperatures. In the former one fine particles of vanadium oxide are formed coherently with the easy recovery in high dose sample but in the latter the mixed oxide alloy is formed. (author)

  18. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  19. Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit

    2018-02-01

    Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.

  20. Comparative Investigation on 0.4 inch SBLOCA Scenario with Single and Dual Train Passive Safety Injection Systems using SMART-ITL

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sik; Bae, Hwang; Ryu, Sung-Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yun, Eun-Koo; Choi, Nam-Hyun; Min, Kyoung-Ho; Shin, Yong-Cheol; Bang, Yoon-Gon; Kim, Myoung-Jun; Seo, Chan-Jong; Yi, Sung-Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Standard Design Approval (SDA) for SMART was certificated in 2012 at the Korea Atomic Energy Research Institute (KAERI). In December 2015, Saudi Arabia and Korea started conducting a three-year project of Pre-Project Engineering (PPE) to prepare a Preliminary Safety Analysis Report (PSAR) and to review the feasibility of constructing SMART reactors in Saudi Arabia. In addition, an Integral Test Loop for the SMART design (SMART-ITL, or FESTA) has been constructed and it finished its commissioning tests in 2012. Consequently, a set of Design Base Accident (DBA) scenarios have been simulated using SMART-ITL. In this paper, a comparative investigation was performed on 0.4 inch SBLOCA scenario with single and dual train passive safety injection systems using SMART-ITL. In this paper, the effect of the train number of PSIS on a SBLOCA scenario is investigated for a break size of 0.4 inch. The single and dual train tests show a similar trend in general but the injected water migrates slightly differently in the RV and is discharged through the break nozzle. The parameters of the RV pressure, RV water level, accumulated break mass, and injection flowrates from the CMT and SIT were compared. Compared with the single train test, the increased injection rates from the two trains of the PSIS during the dual train test raised the RV water level, ensuring the safety of the reactor core.

  1. Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography

    International Nuclear Information System (INIS)

    Uotani, Kensuke; Watanabe, Yoshiyuki; Higashi, Masahiro; Nakazawa, Tetsuro; Kono, Atsushi K.; Hori, Yoshiro; Fukuda, Tetsuya; Kanzaki, Suzu; Yamada, Naoaki; Naito, Hiroaki; Itoh, Toshihide; Sugimura, Kazuro

    2009-01-01

    We evaluated quantification of calcified carotid stenosis by dual-energy (DE) CTA and dual-energy head bone and hard plaque removal (DE hard plaque removal) and compared the results to those of digital subtraction angiography (DSA). Eighteen vessels (13 patients) with densely calcified carotid stenosis were examined by dual-source CT in the dual-energy mode (tube voltages 140 kV and 80 kV). Head bone and hard plaques were removed from the dual-energy images by using commercial software. Carotid stenosis was quantified according to NASCET criteria on MIP images and DSA images at the same plane. Correlation between DE CTA and DSA was determined by cross tabulation. Accuracies for stenosis detection and grading were calculated. Stenosis could be evaluated in all vessels by DE CTA after applying DE hard plaque removal. In contrast, conventional CTA failed to show stenosis in 13 out of 18 vessels due to overlapping hard plaque. Good correlation between DE plaque removal images and DSA images was observed (r 2 =0.9504) for stenosis grading. Sensitivity and specificity to detect hemodynamically relevant (>70%) stenosis was 100% and 92%, respectively. Dual-energy head bone and hard plaque removal is a promising tool for the evaluation of densely calcified carotid stenosis. (orig.)

  2. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  3. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  4. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.

    Science.gov (United States)

    Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang

    2014-10-01

    The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.

  5. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  6. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    Science.gov (United States)

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  7. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  8. System state estimation and optimal energy control framework for multicell lithium-ion battery system

    International Nuclear Information System (INIS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu

    2017-01-01

    Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.

  9. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  10. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  11. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  12. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    Energy Technology Data Exchange (ETDEWEB)

    Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-06-07

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (

  13. Single- and dual-energy quantitative CT adjacent to acetabular prosthetic components

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    2017-01-01

    and to compare BMD measurements in single and dual energy CT (SECT and DECT). Methods and Materials: 10 male patients with uncemented hip prosthetics were scanned and rescanned using 120 kVp SECT and DECT with virtual monochromatic images reconstructed at 130 keV. Hemispherical ROIs were defined slice...... that the intraobserver agreement of the scan modes is equal. BMD cannot be measured interchangeably with SECT and DECT....

  14. Site-selective dopant profiling of p-n junction specimens in the dual-beam FIB/SEM system

    International Nuclear Information System (INIS)

    Chee, K W A; Beanland, R; Midgley, P A; Humphreys, C J

    2010-01-01

    Results from site-specific dopant profiling in a dual-beam FIB/SEM system are reported. Si specimens containing p-n junctions were milled using Ga + ion beam energies ranging from 30 keV to 2 keV, and analysed in situin the vacuum chamber. We compare the dopant contrast observed when milling a cleaved surface to that obtained from a side-wall of a trench cut using 30 kV Ga + ions, and using successively lower ion beam energies. The latter technique is suitable for site-specific dopant profiling. We find that lower energy ion beam milling significantly improves contrast, but only achieves 50 % of that observed on a freshly-cleaved surface. Furthermore, the contrast on a side-wall previously milled using high energy Ga + ions is less than that of a cleaved surface subjected to the same ion beam energy.

  15. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mark [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Norwich Radiology Academy, Norwich (United Kingdom); Reid, Karen [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P. [Norfolk and Norwich University Hospital and University of East Anglia, Norwich (United Kingdom)

    2013-02-15

    The aim of this study was to determine whether high keV monoenergetic reconstruction of dual energy computed tomography (DECT) could be used to overcome the effects of beam hardening artefact that arise from preferential deflection of low energy photons. Two phantoms were used: a Charnley total hip replacement set in gelatine and a Catphan 500. DECT datasets were acquired at 100, 200 and 400 mA (Siemens Definition Flash, 100 and 140 kVp) and reconstructed using a standard combined algorithm (1:1) and then as monoenergetic reconstructions at 10 keV intervals from 40 to 190 keV. Semi-automated segmentation with threshold inpainting was used to obtain the attenuation values and standard deviation (SD) of the streak artefact. High contrast line pair resolution and background noise were assessed using the Catphan 500. Streak artefact is progressively reduced with increasing keV monoenergetic reconstructions. Reconstruction of a 400 mA acquisition at 150 keV results in reduction in the volume of streak artefact from 65 cm{sup 3} to 17 cm{sup 3} (74 %). There was a decrease in the contrast to noise ratio (CNR) at higher tube voltages, with the peak CNR seen at 70-80 keV. High contrast spatial resolution was maintained at high keV values. Monoenergetic reconstruction of dual energy CT at increasing theoretical kilovoltages reduces the streak artefact produced by beam hardening from orthopaedic prostheses, accompanied by a modest increase in heterogeneity of background image attenuation, and decrease in contrast to noise ratio, but no deterioration in high contrast line pair resolution. (orig.)

  16. Dual-use benefits of the CTBT verification system

    International Nuclear Information System (INIS)

    Meade, C.E.F.

    1999-01-01

    Since it has been completed in September 1996, the CTBT has been signed by 151 countries. Awaiting the 44 ratifications and entry into force, all of the nuclear powers have imposed unilateral moratoriums on nuclear test explosions. The end of these weapons development activities is often cited as the principal benefit of the CTBT. As the world begins to implement the Treaty, it has become clear that the development and operation of the CTBT verification system will provide a wide range of additional benefits if the data analysis products are available for dual-purpose applications. As this paper describes these could have economic and social implications, especially for countries with limited technical infrastructures. These involve, seismic monitoring, mineral exploration, scientific and technical training

  17. An economic analysis comparison of stationary and dual-axis tracking grid-connected photovoltaic systems in the US Upper Midwest

    Science.gov (United States)

    Choi, Wongyu; Pate, Michael B.; Warren, Ryan D.; Nelson, Ron M.

    2018-05-01

    This paper presents an economic analysis of stationary and dual-axis tracking photovoltaic (PV) systems installed in the US Upper Midwest in terms of life-cycle costs, payback period, internal rate of return, and the incremental cost of solar energy. The first-year performance and energy savings were experimentally found along with documented initial cost. Future PV performance, savings, and operating and maintenance costs were estimated over 25-year assumed life. Under the given assumptions and discount rates, the life-cycle savings were found to be negative. Neither system was found to have payback periods less than the assumed system life. The lifetime average incremental costs of energy generated by the stationary and dual-axis tracking systems were estimated to be 0.31 and 0.37 per kWh generated, respectively. Economic analyses of different scenarios, each having a unique set of assumptions for costs and metering, showed a potential for economic feasibility under certain conditions when compared to alternative investments with assumed yields.

  18. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  19. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    International Nuclear Information System (INIS)

    Thieme, Sven F.; Becker, Christoph R.; Hacker, Marcus; Nikolaou, Konstantin; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2008-01-01

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam

  20. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  1. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface

  2. Volumetric evaluation of dual-energy perfusion CT by the presence of intrapulmonary clots using a 64-slice dual-source CT

    International Nuclear Information System (INIS)

    Okada, Munemasa; Nakashima, Yoshiteru; Kunihiro, Yoshie; Nakao, Sei; Matsunaga, Naofumi; Morikage, Noriyasu; Sano, Yuichi; Suga, Kazuyoshi

    2013-01-01

    Background: Dual-energy perfusion CT (DE p CT) directly represents the iodine distribution in lung parenchyma and low perfusion areas caused by intrapulmonary clots (IPCs) are visualized as low attenuation areas. Purpose: To evaluate if volumetric evaluation of DE p CT can be used as a predictor of right heart strain by the presence of IPCs. Material and Methods: One hundred and ninety-six patients suspected of having acute pulmonary embolism (PE) underwent DE p CT using a 64-slice dual-source CT. DE p CT images were three-dimensionally reconstructed with four threshold ranges: 1-120 HU (V 120 ), 1-15 HU (V 15 ), 1-10 HU (V 10 ), and 1-5 HU (V 5 ). Each relative ratio per V 120 was expressed as the %V 15 , %V 10 , and %V 5 . Volumetric data-sets were compared with D-dimer, pulmonary arterial (PA) pressure, right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio, PA diameter, and PA/aorta (PA/Ao) diameter ratio. The areas under the ROC curves (AUCs) were examined for their relationship to the presence of IPCs. This study was approved by the local ethics committee. Results: PA pressure and D-dimer were significantly higher in the patients who had IPCs. In the patients with IPCs, V 15 , V 10 , V 5 , %V 15 , %V 10 , and %V 5 were also significantly higher than those without IPC (P = 0.001). %V 5 had a better correlation with D-dimer (r = 0.30, P p CT had a correlation with D-dimer and RV/LV diameter ratio, and the relative ratio of volumetric CT measurements with a lower attenuation threshold might be recommended for the analysis of acute PE

  3. A phantom test of proton-induced dual-energy X-ray angiography using iodinated contrast media

    International Nuclear Information System (INIS)

    Oguri, Y.; Hasegawa, J.; Ogawa, M.; Kaneko, J.; Sasa, K.

    2007-01-01

    Characteristic-line radiation from heavy metal targets bombarded by MeV proton beams has been tested as an X-ray source for dual-energy K-edge subtraction imaging for human angiography (blood vessel imaging) based on iodinated contrast media. To utilize the strong absorption by iodine (Z=53) at its K-absorption edge (33.2 keV), we used K α -line of La (lanthanum, Z=57) at 33.4 keV. As a reference, also K α X emission of Sn (tin, Z=50) at 25.2 keV was employed. Metallic plates of La and Sn were irradiated by 7-MeV protons to produce these characteristic X-rays. Energy-subtraction method was tested using Lucite phantoms which contain aqueous solutions of KI (potassium iodide) with different concentrations. Also Ca(H 2 PO 4 ) 2 powder was stuffed in these phantoms to simulate bones. The transmission images of the phantoms were recorded on imaging plates. During the exposure, the energy spectra of the X-rays were monitored by a CdTe detector. We found that the contrast of images of iodide solutions taken with La X-rays was higher than that with Sn X-rays. Also the energy subtraction procedure was successfully applied to reduce the graphical noise due to the bones and inhomogeneity of the soft tissue. However, to apply the present method to actual clinical use, the X-ray intensity must be increased by several orders of magnitude. Also the transmission of the 'lower-energy' photons has to be a few orders higher for imaging of objects as thick as human chest. (author)

  4. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  5. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  6. Monte Carlo Modeling of Dual and Triple Photon Energy Absorptiometry Technique

    Directory of Open Access Journals (Sweden)

    Alireza Kamali-Asl

    2007-12-01

    Full Text Available Introduction: Osteoporosis is a bone disease in which there is a reduction in the amount of bone mineral content leading to an increase in the risk of bone fractures. The affected individuals not only have to go through lots of pain and suffering but this disease also results in high economic costs to the society due to a large number of fractures.  A timely and accurate diagnosis of this disease makes it possible to start a treatment and thus preventing bone fractures as a result of osteoporosis. Radiographic methods are particularly well suited for in vivo determination of bone mineral density (BMD due to the relatively high x-ray absorption properties of bone mineral compared to other tissues. Materials and Methods: Monte Carlo simulation has been conducted to explore the possibilities of triple photon energy absorptiometry (TPA in the measurement of bone mineral content. The purpose of this technique is to correctly measure the bone mineral density in the presence of fatty and soft tissues. The same simulations have been done for a dual photon energy absorptiometry (DPA system and an extended DPA system. Results: Using DPA with three components improves the accuracy of the obtained result while the simulation results show that TPA system is not accurate enough to be considered as an adequate method for the measurement of bone mineral density. Discussion: The reason for the improvement in the accuracy is the consideration of fatty tissue in TPA method while having attenuation coefficient as a function of energy makes TPA an inadequate method. Conclusion: Using TPA method is not a perfect solution to overcome the problem of non uniformity in the distribution of fatty tissue.

  7. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.

    Science.gov (United States)

    Midgley, Stewart; Schleich, Nanette

    2015-05-01

    A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.

  8. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    Science.gov (United States)

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  9. Dual energy computed tomography for the head.

    Science.gov (United States)

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  10. Developments in dual-energy, single-exposure chest radiography

    International Nuclear Information System (INIS)

    Ho Jungtsuoe.

    1990-01-01

    Conventional chest radiography (CCR), the most commonly performed technique for the diagnosis of lung cancer, does not detect a high percentage of these tumors. One reason for errors is the overlap of tumor image with bone image in a chest radiograph. Dual-energy (DE) radiography has been suggested as the most effective method to eliminate bone contrast for better lung tumor visualization. DE radiography also provides a bone image from which benign nodules can be identified by the presence of nodule calcification. The purpose of this study is to evaluate the performance of a film-screen based DE, single exposure technique in lung nodule detection and to improve its performance by both hardware (HD) and software developments (SD) to increase the accuracy of lung cancer diagnosis. Previous implementation of the technique resulted in small residual tissue contrast and incomplete tissue subtraction due to screen selection and x-ray beam hardening, respectively. HD, including uses of a new screen pair (Y 2 O 2 S/CaWO 4 ) and a K-edge filter (europium), were studied to improve residual tissue contrast by increasing the energy separation. Successful SD included a three-dimensional interpolation algorithm and noise suppression methods to achieve complete tissue subtraction and noise reduction, respectively. The results show that the new screen pair performed better than LaOBr/CaWo 4 ; the use of K-edge filter produced more residual tissue contrast than that obtained without it. Even though the dual exposure technique performed better than the single exposure technique in a simulated lung nodule detection study, the difference between the two techniques was statistically insignificant and they both performed better than CCR. Based on these encouraging results, the author concludes that the film-screen based DE, single exposure technique, with the HD and SD holds promise for further clinical study

  11. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  12. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  13. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  14. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  15. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raudabaugh, J; Moore, B [Duke Medical Physics, Duke Radiation Dosimetry Laboratory (United States); Nguyen, G; Yoshizumi, T [Duke Radiology, Duke Radiation Dosimetry Laboratory (United States); Lowry, C; Nelson, R [Duke Radiology (United States)

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDI phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.

  16. Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography

    International Nuclear Information System (INIS)

    Eriksson, S.; Isberg, B.; Lindgren, U.; Huddinge Univ. Hospital

    1988-01-01

    The lumbar spine of 14 cadavers was studied both by 153 Gd dual photon absorptiometry (DPA) and quantitative computed tomography (QCT) at 96 and 125 kVp. The intact spine and the individual vertebrae were analyzed. After these measurements the ash content of the vertebral body, the posterior elements, and the transverse processes was determined. The fat content of the vertebral body as well as its volume was also measured. With DPA, the bone mineral content (BMC) determined in situ as well as on excised spine specimens correlated highly with the amount of total vertebral ash (r > 0.92, SEE 0.81, SEE 3 ). The so-called corpus density and central density determinations were less accurate. No difference in accuracy was found between measurements when using 3 mm and 4.5 mm step intervals. Variations in the distribution of mineral between the vertebral body and the posterior elements contribute to the error in predicting vertebral body mineral with DPA. QCT gave a smaller error when a cylindric portion of the vertebral body with a 20 diameter was measured compared with one with a 9 mm diameter, when the dual energy technique was used (p 3 ). Single energy QCT was insignificantly less accurate than dual energy QCT. Only small differences were found between vertebrae with high fat density of the vertebral body when single or dual QCT was used. QCT was more accurate than DPA in the prediction of the mineral density of individual vertebral bodies (p < 0.05) but no difference was found when the average values for the lumbar spine were calculated. (orig.)

  17. SU-E-I-39: Combining Conventional Tomographic Imaging Strategy and Interior Tomography for Low Dose Dual-Energy CT (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Xiong, G; Elmore, K; Min, J [Dalio Institute of Cardiovascular Imaging, New York- Presbyterian Hospital and Weill Cornell Medical College, New York, NY (United States)

    2015-06-15

    Purpose: Dual-energy CT (DECT) affords quantitative information of tissue density and provides a new dimension for disease diagnosis and treatment planning. The technique, however, increases the imaging dose because of the doubled scans, and thus hinders its widespread clinical applications. The purpose of this work is to develop a novel hybrid DECT image acquisition and reconstruction strategy, in which one of the energies is dealt by interior tomography while the other one is obtained using conventional tomography approach. Methods: In the proposed hybrid imaging strategy, the projection data of one of the energies (e.g., high-energy) were acquired and processed in an interior scanning model, whereas the other energy in the conventional tomographic approach. It known that, if the ROI is piecewise constant or polynomial, the interior ROI can be reconstructed with TV or HOT minimization. Here we extend the TV based interior reconstruction method into dual-energy situation. The ROI images so obtained were overlaid in the context of conventional CT of the companion energy. A material based composition in ROI was used in the proposed reconstruction framework. Results: In the simulation experiment with a diagnostic DECT geometry and energies, we were able to derive the densities of soft-tissues and bones in the ROI with high fidelity. In the experimental CBCT study, both kV and MV data were collected using the on-board kV and MV imaging system. The MV data were truncated only across the ROI. Using the interior tomography reconstruction above, we were able to obtain the ROI images as that obtained using un-truncated MV data with known tissue densities. Conclusion: The proposed DECT imaging strategy provides an effective way to extract tissue density information in the ROI and in the context of anatomical images of CT imaging, with much reduced imaging dose.

  18. Dual energy CT at the synchrotron: A piglet model for neurovascular research

    International Nuclear Information System (INIS)

    Schueltke, Elisabeth; Kelly, Michael E.; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-01-01

    Background: Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. Materials and methods: All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360 o . CT images were reconstructed from two half-acquisitions with 720 projections each. Results: The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models.

  19. Dual energy CT at the synchrotron: a piglet model for neurovascular research.

    Science.gov (United States)

    Schültke, Elisabeth; Kelly, Michael E; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo

    2011-08-01

    Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360°. CT images were reconstructed from two half-acquisitions with 720 projections each. The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for