WorldWideScience

Sample records for dual energy mammography

  1. Dual-energy contrast-enhanced mammography.

    Science.gov (United States)

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  2. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  3. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  4. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  5. Dual-energy contrast-enhanced spectral mammography (CESM).

    Science.gov (United States)

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  6. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  7. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  8. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  9. Dual-energy contrast-enhanced digital mammography: initial clinical results

    International Nuclear Information System (INIS)

    Dromain, Clarisse; Thibault, Fabienne; Tardivon, Anne; Muller, Serge; Rimareix, Francoise; Delaloge, Suzette; Balleyguier, Corinne

    2011-01-01

    To assess the diagnostic accuracy of Dual-Energy Contrast-Enhanced Digital Mammography (CEDM) as an adjunct to mammography (MX) versus MX alone and versus mammography plus ultrasound (US). 120 women with 142 suspect findings on MX and/or US underwent CEDM. A pair of low- and high-energy images was acquired using a modified full-field digital mammography system. Exposures were taken in MLO at 2 min and in CC at 4 min after the injection of 1.5 ml/kg of an iodinated contrast agent. One reader evaluated MX, US and CEDM images during 2 sessions 1 month apart. Sensitivity, specificity, and area under the ROC curve were estimated. The results from pathology and follow-up identified 62 benign and 80 malignant lesions. Areas under the ROC curves were significantly superior for MX+CEDM than it was for MX alone and for MX+US using BI-RADS. Sensitivity was higher for MX+CEDM than it was for MX (93% vs. 78%; p < 0.001) with no loss in specificity. The lesion size was closer to the histological size for CEDM. All 23 multifocal lesions were correctly detected by MX+CEDM vs. 16 and 15 lesions by MX and US respectively. Initial clinical results show that CEDM has better diagnostic accuracy than mammography alone and mammography+ultrasound. (orig.)

  10. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  11. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  12. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  13. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  14. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  15. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  16. Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Fountos, G; Michail, C; Kalyvas, N; Valais, I; Kandarakis, I; Bakas, A; Kounadi, E

    2015-01-01

    Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNR tc ) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNR tc while minimizing the entrance dose. The best compromise between SNR tc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNR tc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications

  17. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis.

    Science.gov (United States)

    Cheung, Yun-Chung; Lin, Yu-Ching; Wan, Yung-Liang; Yeow, Kee-Min; Huang, Pei-Chin; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chang, Chee-Jen

    2014-10-01

    To analyse the accuracy of dual-energy contrast-enhanced spectral mammography in dense breasts in comparison with contrast-enhanced subtracted mammography (CESM) and conventional mammography (Mx). CESM cases of dense breasts with histological proof were evaluated in the present study. Four radiologists with varying experience in mammography interpretation blindly read Mx first, followed by CESM. The diagnostic profiles, consistency and learning curve were analysed statistically. One hundred lesions (28 benign and 72 breast malignancies) in 89 females were analysed. Use of CESM improved the cancer diagnosis by 21.2 % in sensitivity (71.5 % to 92.7 %), by 16.1 % in specificity (51.8 % to 67.9 %) and by 19.8 % in accuracy (65.9 % to 85.8 %) compared with Mx. The interobserver diagnostic consistency was markedly higher using CESM than using Mx alone (0.6235 vs. 0.3869 using the kappa ratio). The probability of a correct prediction was elevated from 80 % to 90 % after 75 consecutive case readings. CESM provided additional information with consistent improvement of the cancer diagnosis in dense breasts compared to Mx alone. The prediction of the diagnosis could be improved by the interpretation of a significant number of cases in the presence of 6 % benign contrast enhancement in this study. • DE-CESM improves the cancer diagnosis in dense breasts compared with mammography. • DE-CESM shows greater consistency than mammography alone by interobserver blind reading. • Diagnostic improvement of DE-CESM is independent of the mammographic reading experience.

  18. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  19. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    International Nuclear Information System (INIS)

    Contillo, Adriano; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2016-01-01

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  20. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2016-06-15

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  1. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    Science.gov (United States)

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  2. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2007-01-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues

  3. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  4. Validation of a modified PENELOPE Monte Carlo code for applications in digital and dual-energy mammography

    Science.gov (United States)

    Del Lama, L. S.; Cunha, D. M.; Poletti, M. E.

    2017-08-01

    The presence and morphology of microcalcification clusters are the main point to provide early indications of breast carcinomas. However, the visualization of those structures may be jeopardized due to overlapping tissues even for digital mammography systems. Although digital mammography is the current standard for breast cancer diagnosis, further improvements should be achieved in order to address some of those physical limitations. One possible solution for such issues is the application of the dual-energy technique (DE), which is able to highlight specific lesions or cancel out the tissue background. In this sense, this work aimed to evaluate several quantities of interest in radiation applications and compare those values with works present in the literature to validate a modified PENELOPE code for digital mammography applications. For instance, the scatter-to-primary ratio (SPR), the scatter fraction (SF) and the normalized mean glandular dose (DgN) were evaluated by simulations and the resulting values were compared to those found in earlier studies. Our results present a good correlation for the evaluated quantities, showing agreement equal or better than 5% for the scatter and dosimetric-related quantities when compared to the literature. Finally, a DE imaging chain was simulated and the visualization of microcalcifications was investigated.

  5. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Knogler, Thomas; Pinker-Domenig, Katja; Leitner, Sabine; Helbich, Thomas H. [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Molecular and Gender Imaging, Vienna (Austria); Homolka, Peter; Leithner, Robert [Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna (Austria); Hoernig, Mathias [Siemens AG, Healthcare, X-Ray Products, Erlangen (Germany); Langs, Georg; Waitzbauer, Martin [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Computational Imaging Research Laboratory, Vienna (Austria)

    2016-06-15

    To demonstrate the feasibility of contrast-enhanced dual-energy mammography (CEDEM) using titanium (Ti) filtering at 49 kVp for high-energy images and a novel artefact reducing image-subtraction post-processing algorithm. Fifteen patients with suspicious findings (ACR BI-RADS 4 and 5) detected with digital mammography (MG) that required biopsy were included. CEDEM examinations were performed on a modified prototype machine. Acquired HE and low-energy raw data images were registered non-rigidly to compensate for possible subtle tissue motion. Subtracted CEDEM images were generated via weighted subtraction, using a fully automatic, locally adjusted tissue thickness-dependent subtraction factor to avoid over-subtraction at the breast border. Two observers evaluated the MG and CEDEM images according to ACR BI-RADS in two reading sessions. Results were correlated with histopathology. Seven patients with benign and eight with malignant findings were included. All malignant lesions showed a strong contrast enhancement. BI-RADS assessment was altered in 66.6 % through the addition of CEDEM, resulting in increased overall accuracy. With CEDEM, additional lesions were depicted and false-positive rate was reduced compared to MG. CEDEM using Ti filtering with 49 kVp for HE exposures is feasible in a clinical setting. The proposed image-processing algorithm has the potential to reduce artefacts and improve CEDEM images. (orig.)

  6. SU-E-I-45: Feasibility for Using Iodine Quantification to Assist Diagnosis in Dual Energy Contrast-Enhanced Digital Mammography

    International Nuclear Information System (INIS)

    Hwang, Y; Lin, Y; Tsai, C; Cheung, Y

    2015-01-01

    Purpose: The objective of this study is to develop quantitative calibration between image quality indexes and iodine concentration with dual-energy (DE) contrast-enhanced digital mammography (CEDM) techniques and further serve as the assistance for diagnosis. Methods: Custom-made acrylic phantom with dimensions of 24×30 cm 2 simulated breast thickness from 2 to 6 cm was used in the calibration. The phantom contained matrix of four times four holes of 3 mm deep with a diameter of 15 mm for filling contrast agent with area density ranged from 0.1 to 10 mg/cm 2 . All the image acquisitions were performed on a full-field digital mammography system (Senographe Essential, GE) with dual energy acquisitions. Mean pixel value (MPV), and contrast-to-noise ratio (CNR) were used for evaluating the relationship between image quality indexes and iodine concentration. Iodine map and CNR map could further be constructed with these calibration curves applied pixel by pixel utilized MATLAB software. Minimum iodine concentration could also be calculated with the visibility threshold of CNR=5 according the Rose model. Results: When evaluating the DE subtraction images, MPV increased linearly as the iodine concentration increased with all the phantom thickness surveyed (R 2 between 0.989 and 0.992). Lesions with increased iodine uptake could thus be enhanced in the color-encoded iodine maps, and the mean iodine concentration could be obtained through the ROI measurements. As for investigating CNR performance, linear relationships were also shown between the iodine concentration and CNR (R 2 between 0.983 and 0.990). Minimum iodine area density of 1.45, 1.73, 1.80, 1.73 and 1.72 mg/cm 2 for phantom thickness of 2, 3, 4, 5, 6 cm were calculated based on Rose’s visualization criteria. Conclusion: Quantitative calibration between image quality indexes and iodine concentrations may further serving as the assistance for analyzing contrast enhancement for patient participating the dual

  7. Dual-energy digital mammography: Calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2003-01-01

    Breast cancer may manifest as microcalcifications in x-ray mammography. Small microcalcifications, essential to the early detection of breast cancer, are often obscured by overlapping tissue structures. Dual-energy imaging, where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Transmission measurements at two different kVp values were made on breast-tissue-equivalent materials under narrow-beam geometry using an indirect flat-panel mammographic imager. The imaging scenario consisted of variable aluminum thickness (to simulate calcifications) and variable glandular ratio (defined as the ratio of the glandular-tissue thickness to the total tissue thickness) for a fixed total tissue thickness--the clinical situation of microcalcification imaging with varying tissue composition under breast compression. The coefficients of the inverse-mapping functions used to determine material composition from dual-energy measurements were calculated by a least-squares analysis. The linear function poorly modeled both the aluminum thickness and the glandular ratio. The inverse-mapping functions were found to vary as analytic functions of second (conic) or third (cubic) order. By comparing the model predictions with the calibration values, the root-mean-square residuals for both the cubic and the conic functions were ∼50 μm for the aluminum thickness and ∼0.05 for the glandular ratio

  8. Dual-energy subtraction radiography of the breast

    International Nuclear Information System (INIS)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-01-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses. (author)

  9. Dual-energy subtraction radiography of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-06-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses.

  10. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  11. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  12. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  13. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    International Nuclear Information System (INIS)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-01-01

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  14. Monte Carlo simulation studies for the determination of microcalcification thickness and glandular ratio through dual-energy mammography

    Science.gov (United States)

    Del Lama, L. S.; Godeli, J.; Poletti, M. E.

    2017-08-01

    The majority of breast carcinomas can be associated to the presence of calcifications before the development of a mass. However, the overlapping tissues can obscure the visualization of microcalcification clusters due to the reduced contrast-noise ratio (CNR). In order to overcome this complication, one potential solution is the use of the dual-energy (DE) technique, in which two different images are acquired at low (LE) and high (HE) energies or kVp to highlight specific lesions or cancel out tissue background. In this work, the DE features were computationally studied considering simulated acquisitions from a modified PENELOPE Monte Carlo code. The employed irradiation geometry considered typical distances used in digital mammography, a CsI detection system and an updated breast model composed of skin, microcalcifications and glandular and adipose tissues. The breast thickness ranged from 2 to 6 cm with glandularities of 25%, 50% and 75%, where microcalcifications with dimensions from 100 up to 600 μm were positioned. In general, results pointed an efficiency index better than 87% for the microcalcification thicknesses and better than 95% for the glandular ratio. The simulations evaluated in this work can be used to optimize the elements from the DE imaging chain, in order to become a complementary tool for the conventional single-exposure images, especially for the visualization and estimation of calcification thicknesses and glandular ratios.

  15. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease

    International Nuclear Information System (INIS)

    Trokhanova, O V; Okhapkin, M B; Korjenevsky, A V

    2008-01-01

    Electrical impedance tomography (EIT) enables one to determine and visualize non-invasively the spatial distribution of the electrical properties of the tissues inside the body, thus providing valuable diagnostic information. The electrical impedance mammography (EIM) system is a specialized EIT system for diagnostics and imaging of the breast. While breast cancer is the main target for any investigation conducted in this area, the diagnosis of non-cancerous diseases is also very important because it opens the way to improve the quality of life for many women and it may also reduce the incidence of breast cancer through effective treatment of mastopathy. This paper presents the main results of a comprehensive examination of 166 women using four methods: multifrequency electrical impedance mammography, ultrasonic investigation, x-ray mammography and puncture biopsy. The objective of the investigation is to estimate the usefulness of multifrequency electrical impedance mammography for diagnosing dyshormonal mammary gland diseases. The results demonstrate the advantages of the multifrequency EIM method. In particular, dual-frequency electrical impedance mammography in contrast with the single-frequency variant enables one not only to diagnose mastopathy, but also allows accurate detection of its cystless form based on observation of the absence of any difference between average conductivity in both phases of the menstrual cycle. Because the cystless form of mastopathy is associated with a higher risk of cancer development, this method allows identification of a higher risk group of patients for more frequent investigations

  16. Contrast-enhanced spectral mammography: comparison with conventional mammography and histopathology in 152 women.

    Science.gov (United States)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an "iodine" image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p mammography.

  17. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    Energy Technology Data Exchange (ETDEWEB)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia [Department of Radiology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Blecharz, Pawel [Department of Gynecologic Oncology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Rys, Janusz [Department of Tumour Pathology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Reinfuss, Marian [Department of Radiotherapy, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland)

    2014-07-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an 'iodine' image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography.

  18. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    International Nuclear Information System (INIS)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an 'iodine' image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography

  19. Dual-Energy Contrast-Enhanced Spectral Mammography: Enhancement Analysis on BI-RADS 4 Non-Mass Microcalcifications in Screened Women.

    Directory of Open Access Journals (Sweden)

    Yun-Chung Cheung

    Full Text Available Mammography screening is a cost-efficient modality with high sensitivity for detecting impalpable cancer with microcalcifications, and results in reduced mortality rates. However, the probability of finding microcalcifications without associated cancerous masses varies. We retrospectively evaluated the diagnosis and cancer probability of the non-mass screened microcalcifications by dual-energy contrast-enhanced spectral mammography (DE-CESM.With ethical approval from our hospital, we enrolled the cases of DE-CESM for analysis under the following inclusion criteria: (1 referrals due to screened BI-RADS 4 microcalcifications; (2 having DE-CESM prior to stereotactic biopsy; (3 no associated mass found by sonography and physical examination; and (4 pathology-based diagnosis using stereotactic vacuum-assisted breast biopsy. We analyzed the added value of post-contrast enhancement on DE-CESM.A total of 94 biopsed lesions were available for analysis in our 87 women, yielding 27 cancers [19 ductal carcinoma in situ (DCIS, and 8 invasive ductal carcinoma (IDC], 32 pre-malignant and 35 benign lesions. Of these 94 lesions, 33 showed associated enhancement in DE-CESM while the other 61 did not. All 8 IDC (100% and 16 of 19 DCIS (84.21% showed enhancement, but the other 3 DCIS (15.79% did not. Overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 88.89%, 86.56%, 72.72%, 95.08% and 87.24%, respectively. The performances of DE-CESM on both amorphous and pleomorphic microcalcifications were satisfactory (AUC 0.8 and 0.92, respectively. The pleomorphous microcalcifications with enhancement showed higher positive predictive value (90.00% vs 46.15%, p = 0.013 and higher cancer probability than the amorphous microcalcifications (46.3% VS 15.1%. The Odds Ratio was 4.85 (95% CI: 1.84-12.82.DE-CESM might provide added value in assessing the non-mass screened breast microcalcification, with enhancement favorable to the

  20. Dual-Energy Contrast-Enhanced Spectral Mammography: Enhancement Analysis on BI-RADS 4 Non-Mass Microcalcifications in Screened Women.

    Science.gov (United States)

    Cheung, Yun-Chung; Juan, Yu-Hsiang; Lin, Yu-Ching; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chen, Shin-Cheh

    2016-01-01

    Mammography screening is a cost-efficient modality with high sensitivity for detecting impalpable cancer with microcalcifications, and results in reduced mortality rates. However, the probability of finding microcalcifications without associated cancerous masses varies. We retrospectively evaluated the diagnosis and cancer probability of the non-mass screened microcalcifications by dual-energy contrast-enhanced spectral mammography (DE-CESM). With ethical approval from our hospital, we enrolled the cases of DE-CESM for analysis under the following inclusion criteria: (1) referrals due to screened BI-RADS 4 microcalcifications; (2) having DE-CESM prior to stereotactic biopsy; (3) no associated mass found by sonography and physical examination; and (4) pathology-based diagnosis using stereotactic vacuum-assisted breast biopsy. We analyzed the added value of post-contrast enhancement on DE-CESM. A total of 94 biopsed lesions were available for analysis in our 87 women, yielding 27 cancers [19 ductal carcinoma in situ (DCIS), and 8 invasive ductal carcinoma (IDC)], 32 pre-malignant and 35 benign lesions. Of these 94 lesions, 33 showed associated enhancement in DE-CESM while the other 61 did not. All 8 IDC (100%) and 16 of 19 DCIS (84.21%) showed enhancement, but the other 3 DCIS (15.79%) did not. Overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 88.89%, 86.56%, 72.72%, 95.08% and 87.24%, respectively. The performances of DE-CESM on both amorphous and pleomorphic microcalcifications were satisfactory (AUC 0.8 and 0.92, respectively). The pleomorphous microcalcifications with enhancement showed higher positive predictive value (90.00% vs 46.15%, p = 0.013) and higher cancer probability than the amorphous microcalcifications (46.3% VS 15.1%). The Odds Ratio was 4.85 (95% CI: 1.84-12.82). DE-CESM might provide added value in assessing the non-mass screened breast microcalcification, with enhancement favorable to the

  1. The diagnostic accuracy of dual-view digital mammography, single-view breast tomo-synthesis and a dual-view combination of breast tomo-synthesis and digital mammography in a free-response observer performance study

    International Nuclear Information System (INIS)

    Svahn, T.; Andersson, I.; Chakraborty, D.; Svensson, S.; Ikeda, D.; Foernvik, D.; Mattsson, S.; Tingberg, A.; Zackrisson, S.

    2010-01-01

    The purpose of the present study was to compare the diagnostic accuracy of dual-view digital mammography (DM), single view breast tomo-synthesis (BT) and BT combined with the opposite DM view. Patients with subtle lesions were selected to undergo BT examinations. Two radiologists who are non-participants in the study and have experience in using DM and BT determined the locations and extents of lesions in the images. Five expert mammographers interpreted the cases using the free-response paradigm. The task was to mark and rate clinically reportable findings suspicious for malignancy and clinically relevant benign findings. The marks were scored with reference to the outlined regions into lesion localization or non-lesion localization, and analysed by the jackknife alternative free-response receiver operating characteristic method. The analysis yielded statistically significant differences between the combined modality and dual-view DM (p < 0.05). No differences were found between single-view BT and dual-view DM or between single-view BT and the combined modality. (authors)

  2. Contrast enhanced digital mammography: Is it useful in detecting lesions in edematous breast?

    Directory of Open Access Journals (Sweden)

    Noha Abd ElShafy ElSaid

    2015-09-01

    Conclusion: Dual-energy contrast-enhanced digital mammography is a useful technique in identification of lesions in mammographically dense edematous breasts and proved to be a useful tool in the follow-up of cases presenting by edema after conservative breast surgery and chemotherapy.

  3. Adding the power of iodinated contrast media to the credibility of mammography in breast cancer diagnosis.

    Science.gov (United States)

    Tsigginou, Alexandra; Gkali, Christina; Chalazonitis, Athanasios; Feida, Eleni; Vlachos, Dimitrios Efthymios; Zagouri, Flora; Rellias, Ioannis; Dimitrakakis, Constantine

    2016-11-01

    Dual-energy contrast-enhanced spectral mammography (CESM) represents a relatively new diagnostic tool adjunct to mammography. The aim of this study was to strengthen the breast imaging-reporting and data system (BIRADS) classification score in order to improve early breast cancer diagnosis. For this reason, we propose a sum score, termed malignancy potential score (MPS), incorporating the standard BIRADS score and our proposed CESM score. From September 2014 to September 2015, 216 females (age range, 26-85 years; mean age 54.6 years) underwent CESM evaluation of mammographic findings that were primarily assessed as BIRADS 2-5. 10 of these patients had bilateral findings; a total of 226 lesions were examined. High-energy image evaluation was based on the intensity of contrast enhancement of the lesion compared with background enhancement, categorized as Type -1, 0, 1 or 2 enhancement. Histopathology reports were compared with imaging assessment. 98 of 226 lesions were malignant and 128 of 226 lesions were benign. The area under the curve was 0.843, 0.888 and 0.917 for mammographic BIRADS score, CESM score and MPS, respectively, with p-value mammography or CESM alone. MPS empowers the credibility of the digital mammography BIRADS score and our proposed type of enhancement in dual-energy CESM and is a diagnostic tool that increases the accuracy rate in early breast cancer diagnosis.

  4. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  5. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  6. Performance tests of a special ionization chamber for X-rays in mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goiás (UFG), Goiânia (Brazil). Instituto de Física; Caldas, L.V.E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil). Centro de Metrologia das Radiações

    2017-07-01

    A special mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a total sensitive volume of 6 cm{sup 3} and is made of a PMMA body and graphite coated collecting electrode. Performance tests as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with this special homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs of mammography energy range. All measurements were carried out at the Calibration Laboratory of IPEN. (author)

  7. Performance evaluation of a 'dual-side read' dedicated mammography computed radiography system

    International Nuclear Information System (INIS)

    Fetterly, Kenneth A.; Schueler, Beth A.

    2003-01-01

    The image quality of a dedicated mammography computed radiography (CR) system was characterized. A unique feature of this system is that it collects image signals from both sides of the storage phosphor. Measurements of the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were made. This work included improvements in our measurement methods to specifically account for the detrimental effects of system glare on the MTF and to accurately characterize the low-frequency NPS components. Image quality measurements were performed using a 25 kVp beam filtered with 2 mm Al and an exposure range of 1 to 100 mR (87 to 870 μGy). The DQE was found to decrease with increasing exposure due to an increased contribution of storage phosphor structure noise. The DQE of this system was compared to similar measurements made using a standard CR system. The dual-side read system demonstrated superior DQE compared to the standard system. The decrease in DQE with increasing exposure was more severe for the standard system than the dual-side read system. This finding suggests that the CR system noise was reduced for the dual-side read system compared to the standard system

  8. MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.

    Science.gov (United States)

    Yaffe, M; Hill, M

    2012-06-01

    To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.

  9. Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: a preliminary analysis.

    Science.gov (United States)

    Cheung, Yun-Chung; Tsai, Hsiu-Pei; Lo, Yung-Feng; Ueng, Shir-Hwa; Huang, Pei-Chin; Chen, Shin-Chih

    2016-04-01

    To assess the utility of dual-energy contrast-enhanced spectral mammography (DE-CESM) for evaluation of suspicious malignant microcalcifications. Two hundred and fifty-six DE-CESMs were reviewed from 2012-2013, 59 cases fulfilled the following criteria and were enrolled for analysis: (1) suspicious malignant microcalcifications (BI-RADS 4) on mammogram, (2) no related mass, (3) with pathological diagnoses. The microcalcification morphology and associated enhancement were reviewed to analyse the accuracy of the diagnosis and cancer size measurements versus the results of pathology. Of the 59 microcalcifications, 22 were diagnosed as cancers, 19 were atypical lesions and 18 were benign lesions. Twenty (76.9 %) cancers, three (11.55 %) atypia and three (11.55 %) benign lesions revealed enhancement. The true-positive rate of intermediate- and high-concern microcalcifications was significantly higher than that of low-concern lesions (93.75 % vs. 50 %). Overall, the diagnostic sensitivity of enhancement was 90.9 %, with 83.78 % specificity, 76.92 % positive predictive value, 93.94 % negative predictive value and 86.4 % accuracy. Performance was good (AUC = 0.87) according to a ROC curve and cancer size correlation with a mean difference of 0.05 cm on a Bland-Altman plot. DE-CESM provides additional enhancement information for diagnosing breast microcalcifications and measuring cancer sizes with high correlation to surgicohistology. • DE-CESM provides additional enhancement information for diagnosing suspicious breast microcalcifications. • The enhanced cancer size closely correlates to microscopy by Bland-Altman plot. • DE-CESM could be considered for evaluation of suspicious malignant microcalcifications.

  10. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  11. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  12. Quantitative contrast-enhanced mammography for contrast medium kinetics studies

    Science.gov (United States)

    Arvanitis, C. D.; Speller, R.

    2009-10-01

    Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.

  13. Radiation dose in mammography: an energy-balance approach

    International Nuclear Information System (INIS)

    Shrivastava, P.N.

    1981-01-01

    An energy-balance approach for calculation of mean, integral, and midpoint doses in mammography is introduced. Estimation of mean absorbed dose for individual applications is described. Calculations made for a range of xeromammographic techniques used at various breast cancer detection centers show that although increasing the beam h.v.l. dramatically decreases breast surface exposure, it is insignificant in lowering mean breast dose or radiation risk. Thus selection of a moderate h.v.l. to optimize image quality in xeromammography may be more beneficial than unduly increasing h.v.l. merely to reduce surface exposure. The mean breast dose per mammogram with low h.v.l. screen-film techniques was 3 to 9 times lower than for xeromammography, suggesting that general acceptance of screen-film techniques can significantly reduce the risk associated with mammography

  14. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, Ferrara I-44122 (Italy)

    2015-11-15

    Purpose: Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. Methods: In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. Results: The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. Conclusions: The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.

  15. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    International Nuclear Information System (INIS)

    Ding, H; Zhou, B; Beidokhti, D; Molloi, S

    2016-01-01

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.

  16. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Zhou, B; Beidokhti, D; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.

  17. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  18. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    International Nuclear Information System (INIS)

    Smith, Mark F; Raylman, Raymond R; Majewski, Stan; Weisenberger, Andrew G

    2004-01-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artefacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumour models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation

  19. Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement.

    Science.gov (United States)

    Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad

    2017-08-01

    Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.

  20. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  1. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  2. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  3. Radiation dose in mammography: an energy-balance approach

    International Nuclear Information System (INIS)

    Shrivastava, P.N.

    1981-01-01

    An energy-balance approach for calculation of mean, integral, and midpoint doses in mammography is introduced. Estimation of mean absorbed dose for individual applications is described. Differences in breast composition and thickness are accounted for by simple measurements of entrance and exit exposures. Calculations made for a range of xeromammographic techniques used at various breast cancer detection centers show that although increasing the beam h.v.l. dramatically decreases breast surface exposure, it is insignificant in lowering mean breast dose or radiation risk. Thus selection of a moderate h.v.l. to optimize image quality (soft-tissue contrast) in xeromammography may be more beneficial than unduly increasing h.v.l. merely to reduce surface exposure. The mean breast dose per mammogram with low-h.v.l. screen-film techniques was 3 to 9 times lower than for xeromammography, suggesting that general acceptance of screen-film techniques can significantly reduce the risk associated with mammography

  4. Evidence on Synthesized Two-dimensional Mammography Versus Digital Mammography When Using Tomosynthesis (Three-dimensional Mammography) for Population Breast Cancer Screening.

    Science.gov (United States)

    Houssami, Nehmat

    2017-09-28

    One limitation of using digital breast tomosynthesis (3-dimensional [3D] mammography) technology with conventional (2-dimensional [2D]) mammography for breast cancer (BC) screening is the increased radiation dose from dual acquisitions. To resolve this problem, synthesized 2D (s2D) reconstruction images similar to 2D mammography were developed using tomosynthesis acquisitions. The present review summarizes the evidence for s2D versus digital mammography (2D) when using tomosynthesis (3D) for BC screening to address whether using s2D instead of 2D (alongside 3D) will yield similar detection measures. Comparative population screening studies have provided consistent evidence that cancer detection rates do not differ between integrated 2D/3D (range, 5.45-8.5/1000 screens) and s2D/3D (range, 5.03-8.8/1000 screens). Also, although the recall measures were relatively heterogeneous across included studies, little difference was found between the 2 modalities. The mean glandular dose for s2D/3D was 55% to 58% of that for 2D/3D. In the context of BC screening, s2D/3D involves substantially less radiation than 2D/3D and provides similar detection measures. Thus, consideration of transitioning to tomosynthesis screening should aim to use s2D/3D to minimize harm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.

  6. Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography

    International Nuclear Information System (INIS)

    Baldelli, P; Bravin, A; Maggio, C Di; Gennaro, G; Sarnelli, A; Taibi, A; Gambaccini, M

    2006-01-01

    Early manifestation of breast cancer is often very subtle and is displayed in a complex and variable pattern of normal anatomy that may obscure the disease. The use of dual-energy techniques, that can remove the structural noise, and contrast media, that enhance the region surrounding the tumour, could help us to improve the detectability of the lesions. The aim of this work is to investigate the use of an iodine-based contrast medium in mammography with two different double exposure techniques: K-edge subtraction mammography and temporal subtraction mammography. Both techniques have been investigated by using an ideal source, like monochromatic beams produced at a synchrotron radiation facility and a clinical digital mammography system. A dedicated three-component phantom containing cavities filled with different iodine concentrations has been developed and used for measurements. For each technique, information about the minimum iodine concentration, which provides a significant enhancement of the detectability of the pathology by minimizing the risk due to high dose and high concentration of contrast medium, has been obtained. In particular, for cavities of 5 and 8 mm in diameter filled with iodine solutions, the minimum concentration needed to obtain a contrast-to-noise ratio of 5 with a mean glandular dose of 2 mGy has been calculated. The minimum concentrations estimated with monochromatic beams and K-edge subtraction mammography are 0.9 mg ml -1 and 1.34 mg ml -1 for the biggest and smallest details, respectively, while for temporal subtraction mammography they are 0.84 mg ml -1 and 1.31 mg ml -1 . With the conventional clinical system the minimum concentrations for the K-edge subtraction mammography are 4.13 mg ml -1 (8 mm diameter) and 5.75 mg ml -1 (5 mm diameter), while for the temporal subtraction mammography they are 1.01 mg ml -1 (8 mm diameter) and 1.57 mg ml -1 (5 mm diameter)

  7. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    International Nuclear Information System (INIS)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung

    2014-01-01

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  8. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)

    2014-06-15

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  9. Modeling indirect detectors for performance optimization of a digital mammographic detector for dual energy applications

    International Nuclear Information System (INIS)

    Martini, N; Koukou, V; Sotiropoulou, P; Nikiforidis, G; Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Bakas, A

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. The advent of two X-ray energies (low and high) requires a suitable detector. The scope of this work is to determine optimum detector parameters for dual energy applications. The detector was modeled through the linear cascaded (LCS) theory. It was assumed that a phosphor material was coupled to a CMOS photodetector (indirect detection). The pixel size was 22.5 μm. The phosphor thickness was allowed to vary between 20mg/cm 2 and 160mg/cm 2 The phosphor materials examined where Gd 2 O 2 S:Tb and Gd 2 O 2 S:Eu. Two Tungsten (W) anode X-ray spectra at 35 kV (filtered with 100 μm Palladium (Pd)) and 70 kV (filtered with 800 pm Ytterbium (Yb)), corresponding to low and high energy respectively, were considered to be incident on the detector. For each combination the contrast- to-noise ratio (CNR) and the detector optical gain (DOG), showing the sensitivity of the detector, were calculated. The 40 mg/cm 2 and 70 mg/cm 2 Gd 2 O 2 S:Tb exhibited the higher DOG values for the low and high energy correspondingly. Higher CNR between microcalcification and mammary gland exhibited the 70mg/cm 2 and the 100mg/cm 2 Gd 2 O 2 S:Tb for the low and the high energy correspondingly

  10. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  11. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  12. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  13. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    Science.gov (United States)

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However

  14. Mammography-oncogenecity at low doses

    International Nuclear Information System (INIS)

    Heyes, G J; Mill, A J; Charles, M W

    2009-01-01

    Controversy exists regarding the biological effectiveness of low energy x-rays used for mammography breast screening. Recent radiobiology studies have provided compelling evidence that these low energy x-rays may be 4.42 ± 2.02 times more effective in causing mutational damage than higher energy x-rays. These data include a study involving in vitro irradiation of a human cell line using a mammography x-ray source and a high energy source which matches the spectrum of radiation observed in survivors from the Hiroshima atomic bomb. Current radiation risk estimates rely heavily on data from the atomic bomb survivors, and a direct comparison between the diagnostic energies used in the UK breast screening programme and those used for risk estimates can now be made. Evidence highlighting the increase in relative biological effectiveness (RBE) of mammography x-rays to a range of x-ray energies implies that the risks of radiation-induced breast cancers for mammography x-rays are potentially underestimated by a factor of four. A pooled analysis of three measurements gives a maximal RBE (for malignant transformation of human cells in vitro) of 4.02 ± 0.72 for 29 kVp (peak accelerating voltage) x-rays compared to high energy electrons and higher energy x-rays. For the majority of women in the UK NHS breast screening programme, it is shown that the benefit safely exceeds the risk of possible cancer induction even when this higher biological effectiveness factor is applied. The risk/benefit analysis, however, implies the need for caution for women screened under the age of 50, and particularly for those with a family history (and therefore a likely genetic susceptibility) of breast cancer. In vitro radiobiological data are generally acquired at high doses, and there are different extrapolation mechanisms to the low doses seen clinically. Recent low dose in vitro data have indicated a potential suppressive effect at very low dose rates and doses. Whilst mammography is a low

  15. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  16. Dual-Energy CT of Rectal Cancer Specimens

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Beets-Tan, Regina G H; Madsen, Gunvor

    2016-01-01

    is represented by a certain effective Z value, which allows for information on its composition. OBJECTIVE: We wanted to standardize a method for dual-energy scanning of rectal specimens to evaluate the sensitivity and specificity of benign versus malignant lymph node differentiation. Histopathological evaluation...... cancer. MAIN OUTCOME MEASURES: We measured accuracy of differentiating benign from malignant lymph nodes by investigating the following: 1) gadolinium, iodine, and water concentrations in lymph nodes; 2) dual-energy ratio; 3) dual-energy index; and 4) effective Z value. RESULTS: Optimal discriminations...... between benign and malignant lymph nodes were obtained using the following cutoff values: 1) effective Z at 7.58 (sensitivity, 100%; specificity, 90%; and accuracy, 93%), 2) dual-energy ratio at 1.0 × 10 (sensitivity, 96%; specificity, 87%; and accuracy, 90%), 3) dual-energy index at 0.03 (sensitivity, 97...

  17. X-ray dosimetry of low energy using ZrO2 in Mammography

    International Nuclear Information System (INIS)

    Palacios P, L.L.; Rivera M, T.; Ortiz C, H.; Guzman, G.; Azorin, J.; Garcia H, M.

    2008-01-01

    This work reports the experimental results of the thermoluminescent dosemeters (DTL) of nano particles of zirconium dioxide (ZrO 2 ), prepared by the precipitation for X rays method of low energy that are used in mammography equipment. It is observed that the response of the TL curve for X rays of low energy coincides with the TL curve of ZrO 2 reported for conventional X rays. This curve presents two peaks, at 160 and 270 C respectively, being that of more intensity the second peak. (Author)

  18. Image quality in mammography

    International Nuclear Information System (INIS)

    Haus, A.G.; Doi, K.; Metz, C.E.; Bernstein, J.

    1976-01-01

    In mammography, image quality is a function of the shape, size, and x-ray absorption properties of the anatomic part to be radiographed and of the lesion to be detected; it also depends on geometric unsharpness, and the resolution, characteristic curve and noise properties of the recording system. X-ray energy spectra, modulation transfer functions, Wiener spectra, characteristic and gradient curves, and radiographs of a breast phantom and of a resected breast specimen containing microcalcifications are used in a review of some current considerations of the factors, and the complex relationship among factors, that affect image quality in mammography. Image quality and patient radiation exposure in mammography are interrelated. An approach to the problem of evaluating the trade-off between diagnostic certainty and the cost or risk of performing a breast imaging procedure is discussed

  19. Quality Imaging - Comparison of CR Mammography with Screen-Film Mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Azorin Nieto, J.; Iran Diaz Gongora, J. A.; Arreola, M.; Casian Castellanos, G.; Perdigon Castaneda, G. M.; Franco Enriquez, J. G.

    2006-01-01

    The aim of this work is a quality imaging comparison of CR mammography images printed to film by a laser printer with screen-film mammography. A Giotto and Elscintec dedicated mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in screen-film mammography. Four CR mammography units from two different manufacturers and three dedicated x-ray mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in CR mammography. The tests quality image included an assessment of system resolution, scoring phantom images, Artifacts, mean optical density and density difference (contrast). In this study, screen-film mammography with a quality control program offers a significantly greater level of quality image relative to CR mammography images printed on film

  20. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  1. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  2. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  3. Digital mammography

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2010-01-01

    This state-of-the-art reference book provides in-depth coverage of all aspects of digital mammography, including detector technology, image processing, computer-aided diagnosis, soft-copy reading, digital workflow, and PACS. Specific advantages and disadvantages of digital mammography in comparison to screen-film mammography are thoroughly discussed. By including authors from both North America and Europe, the book is able to outline variations in the use, acceptance, and quality assurance of digital mammography between the different countries and screening programs. Advanced imaging techniques and future developments such as contrast mammography and digital breast tomosynthesis are also covered in detail. All of the chapters are written by internationally recognized experts and contain numerous high-quality illustrations. This book will be of great interest both to clinicians who already use or are transitioning to digital mammography and to basic scientists working in the field. (orig.)

  4. Mammography quality assurance in Morocco

    International Nuclear Information System (INIS)

    Zaoui, F.; Talsmat, K.; Lalaoui, K.

    2001-01-01

    The 'Centre National de l'Energie, des Sciences et des Techniques Nucleaires' (CNESTEN) realised, from February 1999 to March 2000, a quality control of 41 mammography facilities in Morocco. The protocol and standards adopted for achieving the control of elements constituting the mammography chain are those elaborated by GIM and Qualix association. Statistics and conformities results are presented. The program was performed in order to demonstrate to the practitioners in mammography field, the utility and necessity to have a national quality assurance policy. The main objective of CNESTEN is to be accredited by the Moroccan government as a reference laboratory in quality control and dose evaluation in medical imaging and radiotherapy. To achieve this goal the CNESTEN has set up Medical Physic Unit well trained and equipped with the necessary instruments. (author)

  5. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria

    OpenAIRE

    Lalji, U. C.; Jeukens, C. R. L. P. N.; Houben, I.; Nelemans, P. J.; van Engen, R. E.; van Wylick, E.; Beets-Tan, R. G. H.; Wildberger, J. E.; Paulis, L. E.; Lobbes, M. B. I.

    2015-01-01

    Objective Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). Methods A total of 147 cases with both FFDM and LE images were independently scored by two experienced r...

  7. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  8. The Future of Contrast-Enhanced Mammography.

    Science.gov (United States)

    Covington, Matthew F; Pizzitola, Victor J; Lorans, Roxanne; Pockaj, Barbara A; Northfelt, Donald W; Appleton, Catherine M; Patel, Bhavika K

    2018-02-01

    The purpose of this article is to discuss facilitators of and barriers to future implementation of contrast-enhanced mammography (CEM) in the United States. CEM provides low-energy 2D mammographic images analogous to digital mammography and contrast-enhanced recombined images that allow assessment of neovascularity similar to that offered by MRI. The utilization of CEM in the United States is currently low but could increase rapidly given the many potential indications for its clinical use.

  9. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  10. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  11. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  12. Temporal subtraction of dual-energy chest radiographs

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Caligiuri, Philip; MacMahon, Heber

    2006-01-01

    Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained

  13. A theoretical investigation of spectra utilization for a CMOS based indirect detector for dual energy applications

    International Nuclear Information System (INIS)

    Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Martini, N; Koukou, V; Sotiropoulou, P

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm 2 Gd 2 O 2 S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output. (paper)

  14. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  15. Potential Cost Savings of Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A

    2017-06-01

    The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.

  16. Screen-film mammography

    International Nuclear Information System (INIS)

    Logan, W.W.; Janus, J.A.

    1987-01-01

    The development of screen-film mammography has resulted in the re-emergence of confidence, rather than fear, in mammography. When screen-film mammography is performed with state-of-the-art dedicated equipment utilizing vigorous breast compression and a ''soft'' x-ray beam for improved contrast, screen-film images are equivalent or superior to those of reduced-dose xeromammography and superior to those of nonscreen film mammography. Technological aids for conversion from xeromammographic or nonscreen film mammographic techniques to screen-film techniques have been described. Screen-film mammography should not be attempted until dedicated equipment has been obtained and the importance of vigorous compression has been understood

  17. In vitro differentiation of renal stone composition using dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Zhou Changsheng; Zhang Longjiang; Xu Feng; Qi Li; Zhao Yan'e; Zheng Ling; Huang Wei; Liu Youhuang; Lu Guangming

    2012-01-01

    Objective: To evaluate the ability of dual-source. dual-energy CT in differentiating uric acid stones from non-uric acid stones with infrared spectroscopy as reference standard. Materials and Methods: Urinary calculus from 308 patients were scanned in first generation dual-source CT with dual-energy mode between July 2011 and June 2012. Renal Stone application was used to analyze their composition. The uric acid stones color were coded red and non-uric acid stones were blue. CT values were measured in 60 selective urinary calculus including 30 uric acid stones and 30 non-uric acid stones. The accuracy of dual energy CT to differentiate uric acid and no-uric acid stones was calculated. Results: Of 308 patients, 60 patients had uric acid stones and 248 non-uric acid stones. No difference was found for uric acid stone at 80 kV and 140 kV (375.8±69.2 HU vs. 374.1±69.4 HU; t=-0.217, P=0.830), while CT values of non-uric acid stones were higher at 80 kV than those at 140 kV (1455.1±312.4 HU vs. 1039.6±194.4 HU; t=-12.16. P<0.001). CT values of non-uric acid stones at 80 kV, 140 kV, and average weighted images (1455.1±312.4 HU, 1 039.6±194.4 HU, and 882.0±176.4 HU, respectively) were higher than those of uric acid stones (375.8±69.2 HU, 374.1±69.4 HU, and 366.3±80.1 HU, respectively; P<0.001). With infrared spectrum findings as reference standard, the accuracy of dual energy CT in differentiating uric acid stones from non-uric acid stones was 100%. Conclusions: Dual-source, dual-energy CT can accurately differentiate uric acid stones from non-uric acid stones, and plays an important role in treatment planning of renal stones. (authors)

  18. A comparison of the performance of modern screen-film and digital mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Monnin, P [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Gutierrez, D [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Bulling, S [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Lepori, D [Department of Radiology, University Hospital Center (CHUV), CH-1011 Lausanne (Switzerland); Valley, J-F [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Verdun, F R [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland)

    2005-06-07

    This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

  19. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  20. Determination of the effective energy in X-rays standard beams, mammography level

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Eduardo de Lima; Vivolo, Vitor; Potiens, Maria da Penha A., E-mail: Vivolo@ipen.b, E-mail: mppalbu@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The X-rays beams used in diagnostic radiology are heterogeneous. This means that, in a radiological beam, it can be found photons with different energies. Because of that is common to work with the concept of effective energy. In this study the effective energy of an X-rays system used in instruments calibration was determined, as part of the mammography radiation qualities establishment. The procedure presented here was developed based on information found in the literature. The X-ray mass attenuation coefficients for aluminum, given by NIST web site, were used and the mathematical adjusts were done using the Origin 8.0 program. The results are part of the mammographic X-rays beams characteristics determination and it is important to keep the quality of this reference system. (author)

  1. A phantom for quality control in mammography

    International Nuclear Information System (INIS)

    Gambaccini, M.; Rimondi, O.; Marziani, M.; Toti, A.

    1989-01-01

    A phantom for evaluating image quality in mammography has been designed and will be used in the Italian national programme ''Dose and Quality in Mammography''. The characteristics of the phantom are (a) about the same X-ray transmission as a 5 cm 50% fat and 50% water breast for energies between 15 and 50 keV and (b) optimum energies for imaging of the test objects (included in the phantom) in very close agreement with the optimum energies for imaging of calcifications and tumours in a 5 cm 50% fat and 50% water breast. An experimental comparison between the prototype and some commercial phantoms was carried out. Measurements are in progress to test the phantom's ability to evaluate the performances of mammographic systems quantitatively. (author)

  2. Digital imaging system in mammography with X-ray of two different energies

    International Nuclear Information System (INIS)

    Swientek, K.; Dabrowski, W.; Grybos, P.; Wiacek, P.; Cabal Rodrigez, A. E.; Sanchez, C.C.; Gambaccini, M.; Gaitan, J.L.; Prino, F.; Ramello, L.

    2005-01-01

    The progress in nuclear medicine stimulates the higher quality of image processing at diminished radiation dose. In the presented apparatus system Si-microstrip detector with two-thresholds multichannel amplitude analyzer have been applied. Data acquisition system evaluates simultaneously images for two X-ray beams of different energies following the Bragg reflection of the primary beam from the mosaic crystal. The contrast cancellation technique has been tested using the simple mammography phantom. An efficacy of this method suitable for medical imaging could be significantly increased using an intensive X-ray source and sensitive detectors

  3. Theory and applications of the dual energy technique

    International Nuclear Information System (INIS)

    Chuang, K.S.K.

    1986-01-01

    Three important principles in the dual energy technique applied to radiography are studied in this dissertation: the decomposition method, x-ray scatter consideration, and the selection of an optimal energy pair. First, two new methods namely, iso-transmission lines and sub-region direct approximation methods, are proposed for dual energy decomposition calculation. These two methods are compared with two other conventional techniques, i.e. nonlinear equations and direct approximation. The accuracy, efficiency, and smoothness are used as indices for comparison. The authors conclude that the two new proposed methods, iso-transmission lines and sub-region, are superior than the nonlinear equations and direct approximation methods. In this dissertation, a method to perform scatter correction based on the knowledge of scatter primary ratio is presented. First, the relation between scatter primary ratio and attenuation coefficient is determined by a Monte Carlo simulation. The selection of an optimal energy pair for a dual energy system is described in this dissertation. The selection is based on the calculation of an optimum factor which takes into consideration of the noise in the high and low energy images, the radiation dose to the patient, as well as the error produced during the dual energy decomposition process. The calculation of this optimum factor is obtained using monoenergetic radiation sources on various sizes of water phantom. In addition to these three aspects, this dissertation also addresses some clinical applications of the dual energy techniques and shows some of the results

  4. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  5. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  6. Average glandular dose in routine mammography screening using a Sectra Microdose Mammography unit

    International Nuclear Information System (INIS)

    Hemdal, B.; Herrnsdorf, L.; Andersson, I.; Bengtsson, G.; Heddson, B.; Olsson, M.

    2005-01-01

    The Sectra MicroDose Mammography system is based on direct photon counting (with a solid-state detector), and a substantially lower dose to the breast than when using conventional system can be expected. In this work absorbed dose measurements have been performed for the first unit used in routine mammography screening (at the Hospitals of Helsingborg (Sweden)). Two European protocols on dosimetry in mammography have been followed. Measurement of half value layer (HVL) cannot be performed as prescribed, but this study has demonstrated than non-invasive measurements of HVL can be performed accurately with a sensitive and well collimated solid-state detector with simultaneous correction for the energy dependence. The average glandular dose for a 50 mm standard breast with 50% glandularity, simulated by 45 mm polymethylmethacrylate, was found to be 0.21 and 0.28 mGy in March and December 2004, respectively. These values are much lower than for any other mammography system on the market today. It has to be stressed that the measurement were made using the current clinical settings and that no systematic optimisation of the relationship between absorbed dose and diagnostic image quality has been performed within the present study. In order to further increase the accuracy of absorbed dose measurements for this unit, the existing dose protocols should be revised to account also for the tungsten/aluminium anode/filter combination, the multi-slit pre-collimator device and the occurrence of a dose profile in the scanning direction. (authors)

  7. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  8. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  9. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  10. Mammography and radiation risk; Mammographie und Strahlenrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. [Hamburg Univ. (Germany). Inst. fuer Biophysik und Strahlenbiologie

    1998-10-01

    Breast cancer is the most frequent malignant neoplasia among women in Germany. The use of mammography as the most relevant diagnostic procedure has increased rapidly over the last decade. Radiation risks associated with mammography may be estimated from the results of numerous epidemiological studies providing risk coefficients for breast cancer in relation to age at exposure. Various calculations can be performed using the risk coefficients. For instance, a single mammography examination (bilateral, two views of each breast) of a women aged 45 may enhance the risk of developing breast cancer during her lifetime numerically from about 12% of 12.0036%. This increase in risk is lower by a factor of 3,300 as compared to the risk of developing breast cancer in the absence of radiation exposure. At the age of 40 or more, the benefit of mammography exceeds the radiation risk by a factor of about 100. At higher ages this factor increases further. Finally, the dualism of individual risk and collective risk is considered. It is shown that the individual risk of a patient, even after multiple mammography examinations, is vanishingly small. Nevertheless, the basic principle of minimising radiation exposure must be followed to keep the collective risk in the total population as low as reasonably achievable. (orig.) [Deutsch] Das Mammakarzinom ist in Deutschland die haeufigste Krebserkrankung der Frau, und entsprechend oft wird die Mammographie als das derzeit wichtigste Diagnoseverfahren eingesetzt. Zur Beurteilung des mit einer mammographischen Untersuchung verbundenen Strahlenrisikos liegen die Resultate einer groesseren Anzahl strahlenepidemiologischer Studien vor. Diese liefern den Risikokoeffizienten fuer Brustkrebs in Abhaengigkeit vom Lebensalter bei Strahlenexposition und ermoeglichen somit die Berechnung des altersabhaengigen Strahlenrisikos. Beispielsweise wird durch eine einmalige Mammographie-Untersuchung (bilateral, je zwei Aufnahmen in zwei Ebenen) bei einer 45

  11. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  12. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  13. Entrance surface dose measurements in mammography using thermoluminescence technique

    International Nuclear Information System (INIS)

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  14. Experience with digital mammography

    Directory of Open Access Journals (Sweden)

    G. P. Korzhenkova

    2011-01-01

    Full Text Available The use of digital techniques in mammography has become a last step for completing the process of digitization in diagnostic imaging. It is assumed that such a spatial decision will be required for digital mammography, as well as for high-resolution intensifying screen-film systems used in conventional mammography and that the digital techniques will be limited by the digitizer pixel size on detecting minor structures, such as microcalcifications. The introduction of digital technologies in mammography involves a tight control over an image and assures its high quality.

  15. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  16. Dual-source dual-energy CT for the differentiation of urinary stone composition: preliminary study

    International Nuclear Information System (INIS)

    Yang Qifang; Zhang Wanshi; Meng Limin; Shi Huiping; Wang Dong; Bi Yongmin; Li Xiangsheng; Fang Hong; Guo Heqing; Yan Jingmin

    2011-01-01

    Objective: To evaluate dual-source dual-energy CT (DSCT) for the differentiation of' urinary stone composition in vitro. Methods: Ninety-seven urinary stones were obtained by endoscopic lithotripsy and scanned using dual-source dual-energy CT. The stones were divided into six groups according to infrared spectroscopy stone analysis: uric acid (UA) stones (n=10), cystine stones (n=5), struvite stones (n=6), calcium oxalate (CaOx) stones (n=22), mixed UA stones (n=7) and mixed calcium stones (n=47). Hounsfield units (HU) of each stone were recorded for the 80 kV and the 140 kV datasets by hand-drawing method. HU difference, HU ratio and dual energy index (DEI) were calculated and compared among the stone groups with one-way ANOVA. Using dual energy software to determine the composition of all stones, results were compared to infrared spectroscopy analysis. Results: There were statistical differences in HU difference [(-17±13), (229±34), (309±45), (512±97), (201±64) and (530±71) HU respectively], in HU ratio (0.96±0.03, 1.34±0.04, 1.41±0.03, 1.47±0.03, 1.30±0.07, and 1.49±0.03 respectively), and DEI (-0.006±0.004, 0.064±0.007, 0.080± 0.007, 0.108±0.011, 0.055±0.014 and 0.112±0.008 respectively) among different stone groups (F= 124.894, 407.028, 322.864 respectively, P<0.01). There were statistical differences in HU difference, HU ratio and DEI between UA stones and the other groups (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between CaOx or mixed calcium stones and the other four groups (P< 0.01). There was statistical difference in HU ratio between cystine and struvite stones (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between struvite and mixed UA stones (P< 0.05). Dual energy software correctly characterized 10 UA stones, 4 cystine stones, 22 CaOx stones and 6 mixed UA stones. Two struvite stones were considered to contain cystine. One cystine stone, 1 mixed UA stone, 4

  17. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  18. The dual sustainability of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jonathan B.; Venkateswaran, Anand [413 Hayden Hall, College of Business, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States)

    2009-06-15

    Academics, practitioners, and policy makers continue to debate the benefits and costs of alternative sources of energy. Environmental and economic concerns have yet to be fully reconciled. One view is that decisions that incorporate both society's concern with the environment and investors' desire for shareholder value maximization are more likely to be truly sustainable. We coin the term dual sustainability to mean the achievement of environmental and financial sustainability simultaneously. Many experts believe that wind energy can help to meet society's needs without harming future generations. It is clean and renewable. Because the fuel is free it provides the ultimate in energy independence. Wind energy has emerged as a leading prospect, in part, because it is considered by many to be environmentally sustainable. However, a key question that remains is whether wind energy is financially sustainable without the extensive government support that has helped to create and nurture this growth industry. Using reliable, proprietary data from field research, our analysis employs a capital budgeting framework to evaluate the financial economics of investments in wind energy. We find that because of the convergence of improved technology, greater efficiency, and with the increasing cost of traditional, competing sources such as oil and natural gas, wind energy is close to becoming self-sustaining financially without the extensive federal government support that exists today. Wind energy can provide the best of both worlds. It is sustainable from an environmental perspective and it is becoming sustainable financially. In short, those companies investing in wind energy will be able to do well by doing good. Perhaps the achievement of dual sustainability is true sustainability. Our research findings and dual sustainability have several interesting and important implications for public policy towards wind energy. All imply that public policy can now be

  19. Practical digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Beverly E. [Washington Univ., Seattle, WA (United States)]|[Virginia Mason Medical Center, VA (United States)

    2008-07-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques.

  20. Practical digital mammography

    International Nuclear Information System (INIS)

    Hashimoto, Beverly E.

    2008-01-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques

  1. Dual-energy CT can detect malignant lymph nodes in rectal cancer

    DEFF Research Database (Denmark)

    Al-Najami, I.; Lahaye, M. J.; Beets-Tan, Regina G H

    2017-01-01

    a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. Results DECT scanning showed statistical difference between...... quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI....

  2. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  3. Baseline Screening Mammography: Performance of Full-Field Digital Mammography Versus Digital Breast Tomosynthesis.

    Science.gov (United States)

    McDonald, Elizabeth S; McCarthy, Anne Marie; Akhtar, Amana L; Synnestvedt, Marie B; Schnall, Mitchell; Conant, Emily F

    2015-11-01

    Baseline mammography studies have significantly higher recall rates than mammography studies with available comparison examinations. Digital breast tomosynthesis reduces recalls when compared with digital mammographic screening alone, but many sites operate in a hybrid environment. To maximize the effect of screening digital breast tomosynthesis with limited resources, choosing which patient populations will benefit most is critical. This study evaluates digital breast tomosynthesis in the baseline screening population. Outcomes were compared for 10,728 women who underwent digital mammography screening, including 1204 (11.2%) baseline studies, and 15,571 women who underwent digital breast tomosynthesis screening, including 1859 (11.9%) baseline studies. Recall rates, cancer detection rates, and positive predictive values were calculated. Logistic regression estimated the odds ratios of recall for digital mammography versus digital breast tomosynthesis for patients undergoing baseline screening and previously screened patients, adjusted for age, race, and breast density. In the baseline subgroup, recall rates for digital mammography and digital breast tomosynthesis screening were 20.5% and 16.0%, respectively (p = 0.002); digital breast tomosynthesis screening in the baseline subgroup resulted in a 22% reduction in recall compared with digital mammography, or 45 fewer patients recalled per 1000 patients screened. Digital breast tomosynthesis screening in the previously screened patients resulted in recall reduction of 14.3% (p tomosynthesis than from digital mammography alone.

  4. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening.

    Science.gov (United States)

    Haas, Brian M; Kalra, Vivek; Geisel, Jaime; Raghu, Madhavi; Durand, Melissa; Philpotts, Liane E

    2013-12-01

    To compare screening recall rates and cancer detection rates of tomosynthesis plus conventional digital mammography to those of conventional digital mammography alone. All patients presenting for screening mammography between October 1, 2011, and September 30, 2012, at four clinical sites were reviewed in this HIPAA-compliant retrospective study, for which the institutional review board granted approval and waived the requirement for informed consent. Patients at sites with digital tomosynthesis were offered screening with digital mammography plus tomosynthesis. Patients at sites without tomosynthesis underwent conventional digital mammography. Recall rates were calculated and stratified according to breast density and patient age. Cancer detection rates were calculated and stratified according to the presence of a risk factor for breast cancer. The Fisher exact test was used to compare the two groups. Multivariate logistic regression was used to assess the effect of screening method, breast density, patient age, and cancer risk on the odds of recall from screening. A total of 13 158 patients presented for screening mammography; 6100 received tomosynthesis. The overall recall rate was 8.4% for patients in the tomosynthesis group and 12.0% for those in the conventional mammography group (P tomosynthesis reduced recall rates for all breast density and patient age groups, with significant differences (P tomosynthesis versus 5.2 per 1000 in patients receiving conventional mammography alone (P = .70). Patients undergoing tomosynthesis plus digital mammography had significantly lower screening recall rates. The greatest reductions were for those younger than 50 years and those with dense breasts. A nonsignificant 9.5% increase in cancer detection was observed in the tomosynthesis group. © RSNA, 2013.

  5. Dual-energy CT can detect malignant lymph nodes in rectal cancer.

    Science.gov (United States)

    Al-Najami, I; Lahaye, M J; Beets-Tan, R G H; Baatrup, G

    2017-05-01

    There is a need for an accurate and operator independent method to assess the lymph node status to provide the most optimal personalized treatment for rectal cancer patients. This study evaluates whether Dual Energy Computed Tomography (DECT) could contribute to the preoperative lymph node assessment, and compared it to Magnetic Resonance Imaging (MRI). The objective of this prospective observational feasibility study was to determine the clinical value of the DECT for the detection of metastases in the pelvic lymph nodes of rectal cancer patients and compare the findings to MRI and histopathology. The patients were referred to total mesorectal excision (TME) without any neoadjuvant oncological treatment. After surgery the rectum specimen was scanned, and lymph nodes were matched to the pathology report. Fifty-four histology proven rectal cancer patients received a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. DECT scanning showed statistical difference between malignant and benign lymph nodes in the measurements of iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value. Dual energy CT classified 42% of the cases correctly according to N-stage compared to 40% for MRI. This study showed statistical difference in several quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  7. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  8. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  9. Comparison of average glandular dose in screen-film and digital mammography using breast tissue-equivalent phantom

    International Nuclear Information System (INIS)

    Shin, Gwi Soon; Kim, Jung Min; Kim, You Hyun; Choi, Jong Hak; Kim, Chang Kyun

    2007-01-01

    In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate (IP). We measured average glandular doses (ADG) in screen-film mammography (SFM) system with slow screen-film combination, computed mammography (CM) system, indirect digital mammography (IDM) system and direct digital mammography (DDM) system using breast tissue-equivalent phantom (glandularity 30%, 50% and 70%). The results were shown as follows: AGD values for DDM system were highest than those for other systems. Although automatic exposure control (AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter (Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in order to estimate a patient radiation dose

  10. Customer loyalty program for the dual-energy clientele

    International Nuclear Information System (INIS)

    Lagace, C.

    1997-01-01

    Hydro-Quebec''s plans to provide a dual energy residential heating program, combining a main electric heating system and a fossil fuel back-up system, were described as an example of a customer loyalty program. It provides a portfolio of products and services answering to the different needs of customers. Dual-energy heating systems were first offered in Quebec as far back as the 1980s. Currently there are 115,000 Quebec households making use of this service. Some 35,000 of them have heat pumps and subscribe to Hydro-Quebec''s DT rate which is based on fuel mode usage being determined by exterior temperatures. The dual-energy system permits a peak-saving of some 600 MW, while maintaining electricity sales of 1,000 GWh in off-peak periods. Experiences with this system and some of the important lessons learned, especially in terms of consumer relations, were summarized. 2 refs., 1 tab

  11. Influence of age and menstrual cycle on mammography and MR imaging of the breast; Einfluss von Alter und Menstruationszyklus auf Mammographie und MR-Mammographie

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Schimpfle, M.; Ohmenhaeuser, K.; Claussen, C.D. [Tuebingen Univ. (Germany). Abt. fuer Radiologische Diagnostik

    1997-09-01

    Age and menstrual cycle have an important influence on the breast. This well-known fact is experienced in the daily routine of gynecologists and radiologists. The number of publications addressing the effect of these influences on imaging, however, is surprisingly low. The aim of this work is to describe the influences of age and menstrual cycle on the breast and to address their clinical relevance for mammography and MR mammography. Therefore, own data are presented concerning the age and menstrual cycle influences on breast parenchyma in dynamic MR mammography. Literature data are used to correlate mammography and MR imaging findings with these influences. The changes of the breast due to age and menstrual cycle have important direct implications on performing and reading conventional mammography and MR mammography. The knowledge of these changes is also helpful in the interpretation of findings when comparing different methods. Finally, the data gained by using imaging methods enable important basic insights into physiology and physiopathology of the breast in vivo. (orig.) [Deutsch] Alter und Menstruationszyklus stellen wichtige Einflussfaktoren auf die Mamma dar. Diese Tatsache ist klinisch lange bekannt und im Alltag des Gynaekologen wie Radiologen staendig praesent. Dagegen ist die Anzahl der Publikationen zu den Auswirkungen dieser Einfluesse auf die Bildgebung erstaunlich niedrig. Ziel dieser Arbeit ist es, die alters- und zyklusabhaengigen Veraenderungen der Mamma und deren klinische Relevanz fuer die Mammographie und MR-Mammographie darzustellen. Zu diesem Zweck werden aus einer eigenen Studie Daten der dynamischen MR-Tomographie zum Alters- und Zykluseinfluss auf das Mammaparenchym praesentiert. Darueber hinaus werden diese Einflussfaktoren mit mammographischen und MR-tomographischen Daten aus der Literatur korreliert. Dabei zeigt sich, dass sich aus den alters- und menstruationszyklusbedingten Veraenderungen der Brust wichtige unmittelbare

  12. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  13. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Michell, M.J.; Iqbal, A.; Wasan, R.K.; Evans, D.R.; Peacock, C.; Lawinski, C.P.; Douiri, A.; Wilson, R.; Whelehan, P.

    2012-01-01

    Aim: To measure the change in diagnostic accuracy of conventional film-screen mammography and full-field digital mammography (FFDM) with the addition of digital breast tomosynthesis (DBT) in women recalled for assessment following routine screening. Materials and methods: Ethics approval for the study was granted. Women recalled for assessment following routine screening with screen-film mammography were invited to participate. Participants underwent bilateral, two-view FFDM and two-view DBT. Readers scored each lesion separately for probability of malignancy on screen-film mammography, FFDM, and then DBT. The scores were compared with the presence or absence of malignancy based on the final histopathology outcome. Results: Seven hundred and thirty-eight women participated (93.2% recruitment rate). Following assessment 204 (26.8%) were diagnosed as malignant (147 invasive and 57 in-situ tumours), 286 (37.68%) as benign, and 269 (35.4%) as normal. The diagnostic accuracy was evaluated by using receiving operating characteristic (ROC) and measurement of area under the curve (AUC). The AUC values demonstrated a significant (p = 0.0001) improvement in the diagnostic accuracy with the addition of DBT combined with FFDM and film-screen mammography (AUC = 0.9671) when compared to FFDM plus film-screen mammography (AUC = 0.8949) and film-screen mammography alone (AUC = 0.7882). The effect was significantly greater for soft-tissue lesions [AUC was 0.9905 with the addition of DBT and AUC was 0.9201 for FFDM with film-screen mammography combined (p = 0.0001)] compared to microcalcification [with the addition of DBT (AUC = 0.7920) and for FFDM with film-screen mammography combined (AUC = 0.7843; p = 0.3182)]. Conclusion: The addition of DBT increases the accuracy of mammography compared to FFDM and film-screen mammography combined and film-screen mammography alone in the assessment of screen-detected soft-tissue mammographic abnormalities.

  14. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  15. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual-energy

  16. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.

    Science.gov (United States)

    Skaane, Per; Bandos, Andriy I; Gullien, Randi; Eben, Ellen B; Ekseth, Ulrika; Haakenaasen, Unni; Izadi, Mina; Jebsen, Ingvild N; Jahr, Gunnar; Krager, Mona; Niklason, Loren T; Hofvind, Solveig; Gur, David

    2013-04-01

    To assess cancer detection rates, false-positive rates before arbitration, positive predictive values for women recalled after arbitration, and the type of cancers detected with use of digital mammography alone and combined with tomosynthesis in a large prospective screening trial. A prospective, reader- and modality-balanced screening study of participants undergoing combined mammography plus tomosynthesis, the results of which were read independently by four different radiologists, is under way. The study was approved by a regional ethics committee, and all participants provided written informed consent. The authors performed a preplanned interim analysis of results from 12,631 examinations interpreted by using mammography alone and mammography plus tomosynthesis from November 22, 2010, to December 31, 2011. Analyses were based on marginal log-linear models for binary data, accounting for correlated interpretations and adjusting for reader-specific performance levels by using a two-sided significance level of .0294. Detection rates, including those for invasive and in situ cancers, were 6.1 per 1000 examinations for mammography alone and 8.0 per 1000 examinations for mammography plus tomosynthesis (27% increase, adjusted for reader; P = .001). False-positive rates before arbitration were 61.1 per 1000 examinations with mammography alone and 53.1 per 1000 examinations with mammography plus tomosynthesis (15% decrease, adjusted for reader; P tomosynthesis; P = .72). Twenty-five additional invasive cancers were detected with mammography plus tomosynthesis (40% increase, adjusted for reader; P tomosynthesis (P tomosynthesis in a screening environment resulted in a significantly higher cancer detection rate and enabled the detection of more invasive cancers. Clinical trial registration no. NCT01248546. RSNA, 2013

  17. The self-referred mammography patient

    International Nuclear Information System (INIS)

    Reynolds, H.E.; Jackson, V.P.

    1990-01-01

    This paper compares the demographics, knowledge, and attitudes of women who refer themselves for screening mammography with those who undergo mammography on the advice of their physicians. Four hundred eighty-five consecutive mammography patients (437 doctor preferred [DR], 48 self-referred [SR]) completed a survey during their mammography appointment. The sample population contained a wide range of socioeconomic groups. While similar in age, race, and employment status to DR patients, SR patients were significantly more likely to have a family income of more than 30,000 per year, be college graduates, and report that they were in good or excellent health

  18. Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)

    Energy Technology Data Exchange (ETDEWEB)

    Francescone, Mark A., E-mail: maf2184@columbia.edu [Columbia University Medical Center, ColumbiaDoctors Midtown, 51 West 51st Street, Suite 300, New York, NY 10019 (United States); Jochelson, Maxine S., E-mail: jochelsm@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Dershaw, D. David, E-mail: dershawd@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Sung, Janice S., E-mail: sungj@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Hughes, Mary C., E-mail: hughesm@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Zheng, Junting, E-mail: zhengj@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Moskowitz, Chaya, E-mail: moskowc1@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Morris, Elizabeth A., E-mail: morrise@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States)

    2014-08-15

    Purpose: Contrast enhanced digital mammography (CEDM) uses low energy and high energy exposures to produce a subtracted contrast image. It is currently performed with a standard full-field digital mammogram (FFDM). The purpose is to determine if the low energy image performed after intravenous iodine injection can replace the standard FFDM. Methods: And Materials: In an IRB approved HIPAA compatible study, low-energy CEDM images of 170 breasts in 88 women (ages 26–75; mean 50.3) undergoing evaluation for elevated risk or newly diagnosed breast cancer were compared to standard digital mammograms performed within 6 months. Technical parameters including posterior nipple line (PNL) distance, compression thickness, and compression force on the MLO projection were compared. Mammographic findings were compared qualitatively and quantitatively. Mixed linear regression using generalized estimating equation (GEE) method was performed. Intraclass correlation coefficients (ICC) with 95% confidence interval (95%CI) were estimated to assess agreement. Results: No statistical difference was found in the technical parameters compression thickness, PNL distance, compression force (p-values: 0.767, 0.947, 0.089). No difference was found in the measured size of mammographic findings (p-values 0.982–0.988). Grouped calcifications had a mean size/extent of 2.1 cm (SD 0.6) in the low-energy contrast images, and a mean size/extent of 2.2 cm (SD 0.6) in the standard digital mammogram images. Masses had a mean size of 1.8 cm (SD 0.2) in both groups. Calcifications were equally visible on both CEDM and FFDM. Conclusion: Low energy CEDM images are equivalent to standard FFDM despite the presence of intravenous iodinated contrast. Low energy CEDM images may be used for interpretation in place of the FFDM, thereby reducing patient dose.

  19. Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)

    International Nuclear Information System (INIS)

    Francescone, Mark A.; Jochelson, Maxine S.; Dershaw, D. David; Sung, Janice S.; Hughes, Mary C.; Zheng, Junting; Moskowitz, Chaya; Morris, Elizabeth A.

    2014-01-01

    Purpose: Contrast enhanced digital mammography (CEDM) uses low energy and high energy exposures to produce a subtracted contrast image. It is currently performed with a standard full-field digital mammogram (FFDM). The purpose is to determine if the low energy image performed after intravenous iodine injection can replace the standard FFDM. Methods: And Materials: In an IRB approved HIPAA compatible study, low-energy CEDM images of 170 breasts in 88 women (ages 26–75; mean 50.3) undergoing evaluation for elevated risk or newly diagnosed breast cancer were compared to standard digital mammograms performed within 6 months. Technical parameters including posterior nipple line (PNL) distance, compression thickness, and compression force on the MLO projection were compared. Mammographic findings were compared qualitatively and quantitatively. Mixed linear regression using generalized estimating equation (GEE) method was performed. Intraclass correlation coefficients (ICC) with 95% confidence interval (95%CI) were estimated to assess agreement. Results: No statistical difference was found in the technical parameters compression thickness, PNL distance, compression force (p-values: 0.767, 0.947, 0.089). No difference was found in the measured size of mammographic findings (p-values 0.982–0.988). Grouped calcifications had a mean size/extent of 2.1 cm (SD 0.6) in the low-energy contrast images, and a mean size/extent of 2.2 cm (SD 0.6) in the standard digital mammogram images. Masses had a mean size of 1.8 cm (SD 0.2) in both groups. Calcifications were equally visible on both CEDM and FFDM. Conclusion: Low energy CEDM images are equivalent to standard FFDM despite the presence of intravenous iodinated contrast. Low energy CEDM images may be used for interpretation in place of the FFDM, thereby reducing patient dose

  20. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  1. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    Science.gov (United States)

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses energies of transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays.

  2. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  3. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  4. Residential dual energy programs: Tariffs and incentives

    International Nuclear Information System (INIS)

    Doucet, J.A.

    1992-01-01

    The problem of efficiently pricing electricity has been of concern to economists and policy makers for some time. A natural solution to variable demand is tariffs to smooth demand and reduce the need for excessive reserve margins. An alternative approach is dual energy programs whereby electric space heating systems are equipped with a secondary system (usually oil) which is used during periods of peak demand. Comments are presented on two previous papers (Bergeron and Bernard, 1991; Sollows et al., 1991) published in Energy Studies Review, applying them to Hydro Quebec tariff structure and dual energy programs. The role of tariffs in demand-side management needs to be considered more fully. Hydro-Quebec's bi-energy tariff structure could be modified by using positive incentives to make use of bi-energy attractive below -12 C to give the following benefits. The modified tariff would be easier for consumers to understand, corrects the misallocation problem due to differential pricing in the current tariff, transfers the risk related to price fluctuations of the alternative energy source from the consumer to the utility, and corrects the potential avoidance problem due to the negative incentive of the current tariff. 21 refs

  5. Development of special ionization chambers for a quality control program in mammography

    International Nuclear Information System (INIS)

    Silva, Jonas Oliveira da

    2013-01-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  6. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography

    International Nuclear Information System (INIS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-01-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented. - Highlights: • A material discrimination algorithm for dual MV energy X-ray digital radiography is proposed. • To solve the materials overlapping problem of the current dual energy algorithm. • The experimental results with the 4/7 MV container inspection system are shown.

  7. Feasibility of dual-energy computed tomography in radiation therapy planning

    Science.gov (United States)

    Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih

    2017-12-01

    In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

  8. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  9. Studies Comparing Screen-Film Mammography and Full-Field Digital Mammography in Breast Cancer Screening: Updated Review

    International Nuclear Information System (INIS)

    Skaane, P.

    2009-01-01

    Full-field digital mammography (FFDM) has several potential benefits as compared with screen-film mammography (SFM) in mammography screening. Digital technology also opens for implementation of advanced applications, including computer-aided detection (CAD) and tomosynthesis. Phantom studies and experimental clinical studies have shown that FFDM is equal or slightly superior to SFM for detection and characterization of mammographic abnormalities. Despite obvious advantages, the conversion to digital mammography has been slower than anticipated, and not only due to higher costs. Until very recently, some countries did not even permit the use of digital mammography in breast cancer screening. The reason for this reluctant attitude was concern about lower spatial resolution and about using soft-copy reading. Furthermore, there was a lack of data supporting improved diagnostic accuracy using FFDM in a screening setting, since two pioneer trials both showed nonsignificantly lower cancer detection rate at FFDM. The 10 studies comparing FFDM and SFM in mammography screening published so far have shown divergent and rather conflicting results. Nevertheless, there is a rapid conversion to digital mammography in breast cancer screening in many western countries. The aim of this article is to give an updated review of these studies, discuss the conflicting findings, and draw some conclusions from the results

  10. The mammography screening employee inreach program.

    Science.gov (United States)

    Robinson, Joanne; Seltzer, Vicki; Lawrence, Loretta; Autz, George; Kostroff, Karen; Weiselberg, Lora; Colagiacomo, Maria

    2007-02-01

    To determine whether our health care employees were undergoing mammography screening according to American Cancer Society guidelines and to determine whether aggressive outreach, education and streamlining of mammography scheduling could improve compliance. All female employees at North Shore University Hospital (NSUH) and several other health system facilities (SF) were sent mailings to their homes that included breast health education and mammography screening guidelines, a questionnaire regarding their own mammography screening history and the opportunity to have their mammography screening scheduled by the Mammography Screening Employee Inreach Program (MSEIP) coordinator. Of the approximately 2,700 female employees aged 40 and over at NSUH and SF, 2,235 (82.7%) responded to the questionnaire, and 1,455 had a mammogram done via the MSEIP. Of the 1,455, 43% either were overdue for a mammogram or had never had one. During a second year of the MSEIP at NSUH and SF, an additional 1,706 mammograms were done. People employed in health care jobs do not necessarily avail themselves of appropriate health care screening. An aggressive program that utilized education, outreach and assistance with scheduling was effective in increasing compliance with mammography screening.

  11. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment

    International Nuclear Information System (INIS)

    Costa, A.M.; Caldas, L.V.E.

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy responses of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities. (author)

  12. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    Science.gov (United States)

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  13. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  14. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  15. Contrast Enhanced Spectral Mammography: A Review.

    Science.gov (United States)

    Patel, Bhavika K; Lobbes, M B I; Lewin, John

    2018-02-01

    Contrast-enhanced spectral mammography (CESM) provides low-energy 2D mammographic images comparable to standard digital mammography and a post-contrast recombined image to assess tumor neovascularity similar to magnetic resonance imaging (MRI). The utilization of CESM in the United States is currently low but could increase rapidly given many potential indications for clinical use. This article discusses historical background and literature review of indications and diagnostic accuracy of CESM to date. CESM is a growing technique for breast cancer detection and diagnosis that has levels of sensitivity and specificity on par with contrast-enhanced breast MRI. Because of its similar performance and ease of implementation, CESM is being adopted for multiple indications previously reserved for MRI, such as problem-solving, disease extent in newly diagnosed patients, and evaluating the treatment response of neoadjuvant chemotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dual energy CT intracranial angiography: image quality, radiation dose and initial application results

    International Nuclear Information System (INIS)

    Chai Xue; Zhang Longjiang; Lu Guangming; Zhou Changsheng

    2009-01-01

    Objective: To assess the clinical value of dual-energy intracranial CT angiography (CTA). Methods: Forty-one patients suspected of intracranial vascular diseases underwent dual-energy intracranial CT angiography, and 41 patients who underwent conventional subtraction CT were enrolled as the control group. Image quality of intracranial and skull base vessels and radiation dose between dual-energy CTA and conventional subtraction CTA were compared using two independent sample nonparametric test and independent-samples t test, respectively. Prevalence and size of lesions detected by dual-energy CTA and digital subtraction CTA were compared using paired-samples t test and Spearman correlative analysis. Results: The percentage of image quality scored 5 was 70.7% (29/41) for dual-energy CTA and 75.6% (31/41) for conventional subtraction CTA. There was no significant difference between the two groups (Z= -0.455, P=0.650). Image quality of vessels at the skull base in conventional subtraction CTA was superior to that in dual-energy CTA, especially for the petrosal and syphon segment (Z=-4.087, P=0.000). Radiation exposure of dual energy CTA and conventional CTA were (396.54±17.43) and (1090.95±114.29) mGy·cm respectively. Radiation exposure was decreased by 64% (t=-38.52, P=0.000) by dual energy CTA compared with conventional subtraction CTA. Out of the 41 patients, 19 patients were diagnosed as intracranial aneurysm, 2 patients as arteriovenous malformation (AVM), 3 patients with Moya-moya's disease, and the remaining 17 patients with negative results. Nine patients with intracranial aneurysm, 2 patients with AVM, 3 patients with Moya-moya's disease, and 2 patients with negative findings underwent DSA or operation, with concordant findings from both techniques. Diameter of aneurysm neck, long axis and minor axis by dual-energy CTA was (2.90±1.61), (5.23±1.68) and (3.83±1.69) mm, respectively; Diameter of aneurysm neck, long axis and minor axis by DSA was (2.95±1

  17. Simultaneous dual-energy X-ray stereo imaging

    Czech Academy of Sciences Publication Activity Database

    Mokso, R.; Oberta, Peter

    2015-01-01

    Roč. 22, Jul (2015), 1078-1082 ISSN 0909-0495 Institutional support: RVO:68378271 Keywords : optics * crystal * imaging * dual-energy Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.736, year: 2014

  18. Comparative study of dose estimation in the change a conventional mammography to digital mammography

    International Nuclear Information System (INIS)

    Vazquez Vazquez, R.; Otero Martinez, C.; Soto Bua, M.; Santamarina Vazquez, F.; Carril Iglesias, S.; Lobato Busto, R.; Luna Vega, V.; Mosquera Sueiro, J.; Sqanchez Garcia, M.; Pombar Camean, M.

    2011-01-01

    Mammographic studies are now one of the most demanding radiological because of its effectiveness in detecting breast cancer early. The introduction of digital mammography has been a major advance because it has overcome some of the limitations of conventional systems. Due to the nature of the radiosensitive glandular tissue becomes very important control of the dose given to patients. In the present study is to analyze the variations in dosimetry that can exist between a conventional mammography and digital mammography.

  19. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  20. Photographic and energy spectral evaluation of mammography

    International Nuclear Information System (INIS)

    Chiyasu, Shikibu; Ise, Toshihide; Kato, Isao; Asakawa, Yoshihisa; Nakamae, Haruo

    1980-01-01

    The combination of molybdenium anode X-ray tube (with a beryllium window and 0.03 mm molybdenium filter) and a single high resolution intensifying screen (rare earth phosphors) with a green-sensitive single emulsion film is regarded as a very useful and optimum system for mammography. In order to find the optimum exposure condition in this system that we investigated the transmission properties of the mammographic cassette, the intensifying screen and the specimen of breast. We examined four cassettes by the contrast (0.1/0.5 mm aluminium), the visibility of small particles (Mg 2 SiO 4 , 150 -- 600 mu m diameter) by five observers and dose measurements using mammographic phantom, Kodak Min-R screen and Fuji RX-M film. We measured the transmission photon spectra by using pure germanium detector through tumor and normal glandular tissue of breast cancer (3.5 kg weight, 6.5 cm, thickness and 1.0 cm tumor diameter) after surgery. We examined the relationship between the contrast and the transmission photon spectra of macro-specimen of breast cancer (fixation in 10% folmalin solution). Then we selected the phantom materials for mammography which have the same property as the specimen of cancer in the transmission spectra. From these results, the low tube voltage (25 kV) technique gives high contrast and good visibility of small particles in this system. Also in the system, the smaller X-ray absorption of cassette (or package) gives higher contrast, better visibility and lower dose. For the phantom materials, ABS resin has almost same transmission property as the measured normal glandular tissue and Lucite is almost same as the measured tumor and glandular from the point of transmission spectra. (author)

  1. Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study.

    Science.gov (United States)

    Skaane, Per; Young, Kari; Skjennald, Arnulf

    2003-12-01

    To compare screen-film and full-field digital mammography with soft-copy reading in a population-based screening program. Full-field digital and screen-film mammography were performed in 3,683 women aged 50-69 years. Two standard views of each breast were acquired with each modality. Images underwent independent double reading with use of a five-point rating scale for probability of cancer. Recall rates and positive predictive values were calculated. Cancer detection rates determined with both modalities were compared by using the McNemar test for paired proportions. Retrospective side-by-side analysis for conspicuity of cancers was performed by an external independent radiologist group with experience in both modalities. In 3,683 cases, 31 cancers were detected. Screen-film mammography depicted 28 (0.76%) malignancies, and full-field digital mammography depicted 23 (0.62%) malignancies. The difference between cancer detection rates was not significant (P =.23). The recall rate for full-field digital mammography (4.6%; 168 of 3,683 cases) was slightly higher than that for screen-film mammography (3.5%; 128 of 3,683 cases). The positive predictive value based on needle biopsy results was 46% for screen-film mammography and 39% for full-field digital mammography. Side-by-side image comparison for cancer conspicuity led to classification of 19 cancers as equal for probability of malignancy, six cancers as slightly better demonstrated at screen-film mammography, and six cancers as slightly better demonstrated at full-field digital mammography. There was no statistically significant difference in cancer detection rate between screen-film and full-field digital mammography. Cancer conspicuity was equal with both modalities. Full-field digital mammography with soft-copy reading is comparable to screen-film mammography in population-based screening.

  2. Physical and Clinical Comparison between a Screen-Film System and a Dual-Side Reading Mammography-Dedicated Computed Radiography System

    International Nuclear Information System (INIS)

    Rivetti, S.; Canossi, B.; Battista, R.; Vetruccio, E.; Torricelli, P.; Lanconelli, N.; Danielli, C.; Borasi, G.

    2009-01-01

    Background: Digital mammography systems, thanks to a physical performance better than conventional screen-film units, have the potential of reducing the dose to patients, without decreasing the diagnostic accuracy. Purpose: To achieve a physical and clinical comparison between two systems: a screen-film plate and a dual-side computed radiography system (CRM; FUJIFILM FCR 5000 MA). Material and Methods: A unique feature of the FCR 5000 MA system is that it has a clear support medium, allowing light emitted during the scanning process to be detected on the 'back' of the storage phosphor plate, considerably improving the system's efficiency. The system's physical performance was tested by means of a quantitative analysis, with calculation of the modulation transfer function, detective quantum efficiency, and contrast-detail analysis; subsequently, the results were compared with those achieved using a screen-film system (SFM; Eastmann Kodak MinR-MinR 2000). A receiver operating characteristic (ROC) analysis was then performed on 120 paired clinical images obtained in a craniocaudal projection with the conventional SFM system under standard exposure conditions and also with the CRM system working with a dose reduced by 35% (average breast thickness: 4.3 cm; mean glandular dose: 1.45 mGy). CRM clinical images were interpreted both in hard copy and in soft copy. Results: The ROC analysis revealed that the performances of the two systems (SFM and CRM with reduced dose) were similar (P>0.05): the diagnostic accuracy of the two systems, when valued in terms of the area underneath the ROC curve, was found to be 0.74 for the SFM, 0.78 for the CRM (hard copy), and 0.79 for the CRM (soft copy). Conclusion: The outcome obtained from our experiments shows that the use of the dual-side CRM system is a very good alternative to the screen-film system

  3. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  4. TU-CD-207-02: Quantification of Breast Lesion Compositions Using Low-Dose Spectral Mammography: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Ding, H; Sennung, D; Kumar, N; Molloi, S [Department of Radiological Sciences, University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To investigate the feasibility of measuring breast lesion composition with spectral mammography using physical phantoms and bovine tissue. Methods: Phantom images were acquired with a spectral mammography system with a silicon-strip based photon-counting detector. Plastic water and adipose-equivalent phantoms were used to calibrate the system for dual-energy material decomposition. The calibration phantom was constructed in range of 2–8 cm thickness and water densities in the range of 0% to 100%. A non-linear rational fitting function was used to calibrate the imaging system. The phantom studies were performed with uniform background phantom and non-uniform background phantom. The breast lesion phantoms (2 cm in diameter and 0.5 cm in thickness) were made with water densities ranging from 0 to 100%. The lesion phantoms were placed in different positions and depths on the phantoms to investigate the accuracy of the measurement under various conditions. The plastic water content of the lesion was measured by subtracting the total decomposed plastic water signal from a surrounding 2.5 mm thick border outside the lesion. In addition, bovine tissue samples composed of 80 % lean were imaged as background for the simulated lesion phantoms. Results: The thickness of measured and known water contents was compared. The rootmean-square (RMS) errors in water thickness measurements were 0.01 cm for the uniform background phantom, 0.04 cm for non-uniform background phantom, and 0.03 cm for 80% lean bovine tissue background. Conclusion: The results indicate that the proposed technique using spectral mammography can be used to accurately characterize breast lesion compositions.

  5. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  6. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    Science.gov (United States)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  7. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  8. Digital mammography; Mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, M.; Torres, R.

    2010-07-01

    Mammography represents one of the most demanding radiographic applications, simultaneously requiring excellent contrast sensitivity, high spatial resolution, and wide dynamic range. Film/screen is the most widely extended image receptor in mammography due to both its high spatial resolution and contrast. The film/screen limitations are related with its narrow latitude, structural noise and that is at the same time the medium for the image acquisition, storage and presentation. Several digital detector made with different technologies can overcome these difficulties. Here, these technologies as well as their main advantages and disadvantages are analyzed. Also it is discussed its impact on the mammography examinations, mainly on the breast screening programs. (Author).

  9. Comparison of rectangular and dual-planar positron emission mammography scanners

    International Nuclear Information System (INIS)

    Qi, Jinyi; Kuo, Chaincy; Huesman, Ronald H.; Klein, Gregory J.; Moses, William W.; Reutter, Bryan W.

    2002-01-01

    Breast imaging using dedicated positron emission tomography (PEM) has gained much interest in the medical imaging field. In this paper, we compare the performance between a rectangular geometry and a parallel dual-planar geometry. Both geometries are studied with depth of interaction (DOI) detectors and non- DOI detectors. We compare the Fisher-information matrix, lesion detection, and quantitation of the four systems. The lesion detectability is measured by the signal-to-noise ratio (SNR) of a prewhitening numerical observer for detecting a known hot spot on a uniform background. Results show that the rectangular system with DOI has the highest SNR for the detection task and the lowest bias at any given noise level for the quantitation task. They also show that for small simulated lesions the parallel dual-planar system with DOI detectors outperforms the rectangular system with non-DOI detectors, while the rectangular system with non-DOI detectors can outperform the parallel dual-planar system with DOI detectors for large simulated lesions

  10. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  11. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  12. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    International Nuclear Information System (INIS)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-01-01

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  13. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    Energy Technology Data Exchange (ETDEWEB)

    Elder, E; Schreibmann, E; Dhabaan, A [Department of Radiation Oncology and Winship Cancer Institute of Emory University Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  14. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  15. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  16. Comparison of dual photon and dual energy X-ray bone densitometers in a clinic setting

    International Nuclear Information System (INIS)

    Nelson, D.A.; Shaffer, S.; Brown, E.B.; Flynn, M.J.; Cody, D.D.

    1991-01-01

    Two separate studies were conducted. We evaluated the relationships between results of lumbar spine measurements using two dual photon absorptiometry (DPA1 and DPA2) instruments and one dual energy X-ray (DXA) instrument with the same subject (49 volunteers), and also in 65 patients who were measured on the DPA1 and DXA machines. Second, we measured the lumbar spine and the proximal femur in three groups of 12 female volunteers three times on one instrument within 1 week. We purposely simulated a busy clinic setting with different technologists, older radioactive sources, and a heterogeneous patient group. The comparison study indicated a significant difference between the mean bone density values reported by the machines, but the results were highly correlated (R 2 = 0.89-0.96). This study emphasizes the differences between instruments, the potential for greater error in busy clinic environments, and the apparent superiority of dual energy X-ray absorptiometry under these less than ideal conditions. (orig./GDG)

  17. One more hurdle to increasing mammography screening: pubescent, adolescent, and prior mammography screening experiences.

    Science.gov (United States)

    Thomas, Eileen; Usher, LaToya

    2009-01-01

    Approximately $8.1 billion dollars is spent each year in the United States alone on the treatment of breast cancer. Survival rates are dependent on access to, and utilization of, early detection services. The primary reason for disparity in breast cancer mortality is the delay in time to diagnosis, resulting in poor prognosis. Despite ongoing research to understand barriers to mammography screening, recent studies report a decrease in mammography screening among all racial groups. A qualitative approach was used to elicit information from 36 White non- Hispanic, African-American, Hispanic, and Native American women without a history of breast cancer. Women were invited to share written or audiotape-recorded narratives about experiences pertaining to their breasts and their mammography screening experiences. Major categories identified were: teasing, family norms and values, media/societal influence, body image, and mammography screening experiences. The resulting effects of these experiences left these women with feelings of shame and "conflict" regarding their breasts. The major theme identified was breast conflict. Findings suggest that breast conflict may persist throughout the lifespan and can have a negative influence on a woman's decision to participate in mammography screening. The authors hypothesize that experiences that occur during adolescence pertaining to young girls' breasts can influence a women's body image, which in turn can later in life affect health-seeking behaviors related to mammography screening. These findings have implications for public health practice in planning for breast cancer screening, education, and interventions for women from diverse racial/ethnics groups.

  18. Effects of a risk-based online mammography intervention on accuracy of perceived risk and mammography intentions.

    Science.gov (United States)

    Seitz, Holli H; Gibson, Laura; Skubisz, Christine; Forquer, Heather; Mello, Susan; Schapira, Marilyn M; Armstrong, Katrina; Cappella, Joseph N

    2016-10-01

    This experiment tested the effects of an individualized risk-based online mammography decision intervention. The intervention employs exemplification theory and the Elaboration Likelihood Model of persuasion to improve the match between breast cancer risk and mammography intentions. 2918 women ages 35-49 were stratified into two levels of 10-year breast cancer risk (<1.5%; ≥1.5%) then randomly assigned to one of eight conditions: two comparison conditions and six risk-based intervention conditions that varied according to a 2 (amount of content: brief vs. extended) x 3 (format: expository vs. untailored exemplar [example case] vs. tailored exemplar) design. Outcomes included mammography intentions and accuracy of perceived breast cancer risk. Risk-based intervention conditions improved the match between objective risk estimates and perceived risk, especially for high-numeracy women with a 10-year breast cancer risk ≤1.5%. For women with a risk≤1.5%, exemplars improved accuracy of perceived risk and all risk-based interventions increased intentions to wait until age 50 to screen. A risk-based mammography intervention improved accuracy of perceived risk and the match between objective risk estimates and mammography intentions. Interventions could be applied in online or clinical settings to help women understand risk and make mammography decisions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  20. Dual energy CT of the chest: how about the dose?

    Science.gov (United States)

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 m

  1. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  2. Mammography: MedlinePlus Health Topic

    Science.gov (United States)

    ... Questions (National Cancer Institute) Mammography for Women with Breast Implants (American Cancer Society) Also in Spanish Mammography: What You Need to Know (Food and Drug Administration) Nipple Aspirate Test Is ... Specifics Breast Tomosynthesis (American College of Radiology, Radiological Society of ...

  3. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  4. Mammography

    Science.gov (United States)

    ... breast cancer Whether there is any harm from breast cancer screening, such as side effects from testing or overtreatment of cancer when it's discovered Mammography is performed to screen women to detect early breast cancer when it is ...

  5. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  6. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    OBJECTIVE: To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. METHODS: Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic

  7. Cost-effectiveness of increasing access to mammography through mobile mammography for older women.

    Science.gov (United States)

    Naeim, Arash; Keeler, Emmett; Bassett, Lawrence W; Parikh, Jay; Bastani, Roshan; Reuben, David B

    2009-02-01

    To compare the costs of mobile and stationary mammography and examine the incremental cost-effectiveness of using mobile mammography to increase screening rates. A cost-effectiveness analysis was performed using effectiveness data from a randomized clinical trial and modeling of costs associated with the mobile mammography intervention. The trial involved 60 community-based meal sites, senior centers, and clubs. Four hundred ninety-nine individuals were enrolled in the study, of whom 463 had outcome data available for analysis. Costs were calculated for stationary and mobile mammography, as well as costs due to differences in technology and film versus digital. Incremental cost-effectiveness (cost per additional screen) was modeled, and sensitivity analysis was performed by altering efficiency (throughput) and effectiveness based on subgroup data from the randomized trial. The estimated annual costs were $435,162 for a stationary unit, $539,052 for a mobile film unit, and $456, 392 for a mobile digital unit. Assuming mobile units are less efficient (50% annual volume), the cost per screen was $41 for a stationary unit, $86 for a mobile film unit, and $102 for a mobile digital unit. The incremental cost per additional screen were $207 for a mobile film unit and $264 for a mobile digital unit over a stationary unit. Although mobile mammography is a more effective way to screen older women, the absolute cost per screen of mobile units is higher, whereas the reimbursement is no different. Financial barriers may impede the widespread use of this approach.

  8. Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams

    International Nuclear Information System (INIS)

    Palacios, L.L.; Rivera, T.; Roman, J.; Azorín, J.; Gaona, E.

    2012-01-01

    In the present work thermoluminescent (TL) response of zirconium oxide (ZrO 2 ) nanostructured induced by mammography X-ray radiation was investigated. Measurements were made of the response per unit air kerma of ZrO 2 with mammography equipment parameters (semiautomatic exposure control, 24 kVp and 108 mAs). The calibration curves were obtained by simultaneously irradiating ZrO 2 samples and ion chamber. Samples of ZrO 2 showed a linear response as a function of entrance skin air kerma. The observed results in TL properties suggest that ZrO 2 nanostructured could be considered as an effective material for X-ray beams dosimetry if appropriate calibration procedures are performed. - Highlights: ► X-ray low energy thermoluminescent of ZrO 2 dosimeter is developed. ► Air kerma measurements were made by thermoluminescent dosimeter ZrO 2 using mammography equipment parameters. ► Entrance surface skin doses were made using thermoluminescent dosimeter of ZrO 2 to X-ray beam quality control.

  9. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  10. Study on patient exposure from mammography, 3

    International Nuclear Information System (INIS)

    Sato, Miyao

    1983-01-01

    Risks and benefits of the patient from mammography performed in Japan were estimated, and the indication of mammography were discussed. 1) Breast cancers induced by mammography were estimated based on the average breast dose, the average life span, risks of radiation-induced breast cancer and the breast cancer significant factor. 2) The breast cancer significant factor was calculated, similar to those of leukemia significant factor by Hashizume, from latent periods of radiation-induced breast cancer and the excess breast cancer induction rate in female A-bomb survivors. 3) Numbers of the deaths and Lost-years were calculated from risks of radiation-induced breast cancer, incidence of breast cancer by mammography, cure rate of breast cancer, average life span and latent period of radiation-induced breast cancer. 4) Numbers of the increased life and years saved were calculated from the improved rate of the ability of diagnosis, frequency of mammography, the average life span and cure rate of breast cancer. 5) Induction of leukemia, lung cancer and thyroid cancer by mammography also were investigated. Its contribution was not significant, compared to the induction of breast cancer. 6) Comparing risk and benefit, the latter was much higher than the former by factors of 71-76. This was suggested the efficacy of mammography. 7) From a pointview of risk and benefit, routine mammography is contraindicative for 10-19 years old women because of large risk, the indication must be scrutinized for 20-29 years old ones, and the benefit increases with age for over 30 years old ones so that mammography was positively admitted for the symptomatic women. (author)

  11. Does gender discrimination impact regular mammography screening? Findings from the race differences in screening mammography study.

    Science.gov (United States)

    Dailey, Amy B; Kasl, Stanislav V; Jones, Beth A

    2008-03-01

    ABSTRACT Objective: To determine if gender discrimination, conceptualized as a negative life stressor, is a deterrent to adherence to mammography screening guidelines. African American and white women (1451) aged 40-79 years who obtained an index screening mammogram at one of five urban hospitals in Connecticut between October 1996 and January 1998 were enrolled in this study. This logistic regression analysis includes the 1229 women who completed telephone interviews at baseline and follow-up (average 29.4 months later) and for whom the study outcome, nonadherence to age-specific mammography screening guidelines, was determined. Gender discrimination was measured as lifetime experience in seven possible situations. Gender discrimination, reported by nearly 38% of the study population, was significantly associated with nonadherence to mammography guidelines in women with annual family incomes of > or =$50,000 (OR 1.99, 95% CI 1.33, 2.98) and did not differ across racial/ethnic group. Our findings suggest that gender discrimination can adversely influence regular mammography screening in some women. With nearly half of women nonadherent to screening mammography guidelines in this study and with decreasing mammography rates nationwide, it is important to address the complexity of nonadherence across subgroups of women. Life stressors, such as experiences of gender discrimination, may have considerable consequences, potentially influencing health prevention prioritization in women.

  12. Family/Friend Recommendations and Mammography Intentions: The Roles of Perceived Mammography Norms and Support

    Science.gov (United States)

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography…

  13. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  14. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation

    NARCIS (Netherlands)

    Fallenberg, E.M.; Schmitzberger, F.F.; Amer, H.; Ingold-Heppner, B.; Balleyguier, C.; Diekmann, F.; Engelken, F.; Mann, R.M.; Renz, D.M.; Bick, U.; Hamm, B.; Dromain, C.

    2017-01-01

    OBJECTIVES: To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. METHODS: One hundred seventy-eight women (mean age 53 years) with invasive breast

  15. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  16. Digital mammography and their developments

    International Nuclear Information System (INIS)

    Wienbeck, Susanne

    2015-01-01

    At the present time digital mammography is a satisfactory breast diagnostic imaging in clinical as well as screening mammography in defined age groups. Nevertheless it shows beside the application of ionizing radiation in women with dense breasts limitations in the detection of non calcification breast cancers. Tomosynthesis, digital contrast-enhanced mammography and breast-CT with or without contrast media lead to better results. Especially the application of contrast media for the visualisation of the tumor angiogenesis is invariably superior to all other non-contrast imaging modalities. However, the excellent results of breast MRI will be probably accessible with none of the new procedures.

  17. PVAL breast phantom for dual energy calcification detection

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Velissarakos, K; Gkremos, D; Michail, C; Kandarakis, I; Fountos, G; Fountzoula, C; Bakas, A

    2015-01-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy. (paper)

  18. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  19. Lead iodide films as X-ray sensors tested in the mammography energy region

    International Nuclear Information System (INIS)

    Condeles, J.F.; Ghilardi Netto, T.; Mulato, M.

    2007-01-01

    We present an alternative method for the deposition of thin films of lead iodide (PbI 2 ), which is a promising semiconductor candidate for applications in medical digital radiography. The spray pyrolysis technique enables the fabrication of thick films with a deposition rate of about 3.3 As -1 . We investigate the influence of the main deposition parameters on the final properties of the films. They were substrate temperature from 150 up to 270 o C and nozzle-spray distance to substrate from 13.0 to 16.5 cm. The films were mainly investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Photoluminescence (PL) spectroscopy. Also, electrical characterizations were made in the dark as a function of temperature, and with the samples submitted to X-ray exposures in the energy range of mammography diagnosis

  20. Comparative evaluation of average glandular dose and image of digital mammography and film mammography in Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Nogueira, M.; Leyton, F.; Rodrigue, L. L.C.; Oliveira, M.A.; Joana, G.S.; Silva, S.D.

    2015-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. Mammography is the best method for breast-cancer screening and is capable of reducing mortality rates To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. Digital mammography has been proposed as a substitute for film mammography given the benefits inherent to digital technology. The purpose of our study was to compare the technical performance of digital mammographic and screen-film mammography. A PMMA phantom with objects to simulate breast structures. For the screen/film (SF) technique the results showed that 54% mammography units did not achieve the minimum acceptable performance as far the image quality. Besides, 67% services showed inadequate performance in their processing systems, which had significant influence on the image quality. At the mean glandular dose only 44% of digital systems evaluated were compliant in all thicknesses of PMMA. The average glandular dose AGD was 90 % higher than in screen/film systems. (authors)

  1. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  2. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  3. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  4. Optimal design of detector thickness for dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The projection of three-dimensional (3D) human body on a two-dimensional (2D) radiograph results in the superimposition of normal tissue that can obscure abnormalities and in some common cases be misread as abnormalities. To reduce or eliminate this effect, 3D depth-discrimination techniques such as computed tomography can be used. Another method for improving conspicuity of abnormalities is an energy discrimination technique such as dual-energy imaging (DEI). The DEI discriminates, or enhances, material content (e.g. bone or soft tissue) within a 2D radiograph by combining images obtained at separte low and high energies. A commercial DEI system uses the fast kilovoltage (kVp) switching technique, which acquires low and highkVp projections in successive x-ray exposure. To obtain better quality in DE images, a large energy separation between the low and high-kVp setups is typically used for chest (e.g. 60/120 kVp). The optimal CsI thickness for dual-energy chest imaging has been theoretically investigated by evaluating prewhitening observer model detectability indexes. To evaluate the PW and PWE detectability indexes, dual-energy fluence and MTF have reviewed compared to the conventional descriptions.

  5. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Lamberto, Salvatore; Bottari, Antonio; Caloggero, Simona; Racchiusa, Sergio; Mileto, Achille; Scribano, Emanuele

    2011-06-01

    The purpose of our study was to evaluate the value of dual-source dual-energy CT with colored iodine overlay for detection of endoleaks after endovascular abdominal aortic aneurysm repair. We also calculated the potential dose reduction by using a dual-energy CT single-phase protocol. From November 2007 to November 2009, 74 patients underwent CT angiography 2-7 days after endovascular repair during single-energy unenhanced and dual-energy venous phases. By using dual-energy software, the iodine overlay was superimposed on venous phase images with different percentages ranging between 0 (virtual unenhanced images) and 50-75% to show the iodine in an orange color. Two blinded readers evaluated the data for diagnosis of endoleaks during standard unenhanced and venous phase images (session 1, standard of reference) and virtual unenhanced and venous phase images with colored iodine overlay images (session 2). We compared the effective dose radiation of a single-energy biphasic protocol with that of a single-phase dual-energy protocol. The diagnostic accuracy of session 2 was calculated. The mean dual-energy effective dose was 7.27 mSv. By using a dual-energy single-phase protocol, we obtained a mean dose reduction of 28% with respect to a single-energy biphasic protocol. The diagnostic accuracy of session 2 was: 100% sensitivity, 100% specificity, 100% negative predictive value, and 100% positive predictive value. Statistically significant differences in the level of confidence for endoleak detection between the two sessions were found by reviewers for scores 3-5. Dual-energy CT with colored iodine overlay is a useful diagnostic tool in endoleak detection. The use of a dual-energy single-phase study protocol will lower radiation exposure to patients.

  6. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  7. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  8. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  9. Quality control of mammography departments in Slovakia

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.

    2007-01-01

    Complete test of publication follows. Considering the fact that mammary gland is the most sensitive organ to ionizing radiation, the Commission of the Ministry of Health of SR for QA in radiology organized a pilot two-run country wide audit conducted in 42 mammography departments that have met the beforehand criteria. During the audit the methods for establishing the individual parameters in technical and clinical part of quality assurance in mammography were elaborated and implemented. Technical and clinical parameters of the imaging process that mostly affect the quality of diagnostic information were followed up. These parameters included: the object thickness compensation, optical density deviation, evaluation of the film quality by means of special phantom, etc. Important measurement of ESDs at participating departments enabled to compare the radiation load of mammography patients in Slovakia with reference values in European guidelines. The uniform standard method for QA at mammography departments was elaborated and published as the regulation of the Ministry of Health for performance of preventive mammography examinations in SR. The presented results show the improved quality of mammography examinations due to regular check-ups of technical and clinical parameters and fulfilment of the required values in all parameters. The audit results are the basis for continuous quality assessment of mammography departments as a main prerequisite for conducting preventive examinations and for health insurance purposes.

  10. The role of dual-energy computed tomography in the assessment of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jeon [Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796 (Korea, Republic of); Hoffman, Eric A. [Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241 (United States); Lee, Chang Hyun; Goo, Jin Mo [Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Levin, David L. [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505 (Korea, Republic of)

    2017-01-15

    Highlights: • The dual-energy CT technique enables the differentiation of contrast materials with material decomposition algorithm. • Pulmonary functional information can be evaluated using dual-energy CT with anatomic CT information, simultaneously. • Pulmonary functional information from dual-energy CT can improve diagnosis and severity assessment of diseases. - Abstract: The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.

  11. Classification of breast microcalcifications using spectral mammography

    Science.gov (United States)

    Ghammraoui, B.; Glick, S. J.

    2017-03-01

    Purpose: To investigate the potential of spectral mammography to distinguish between type I calcifications, consisting of calcium oxalate dihydrate or weddellite compounds that are more often associated with benign lesions, and type II calcifications containing hydroxyapatite which are predominantly associated with malignant tumors. Methods: Using a ray tracing algorithm, we simulated the total number of x-ray photons recorded by the detector at one pixel from a single pencil-beam projection through a breast of 50/50 (adipose/glandular) tissues with inserted microcalcifications of different types and sizes. Material decomposition using two energy bins was then applied to characterize the simulated calcifications into hydroxyapatite and weddellite using maximumlikelihood estimation, taking into account the polychromatic source, the detector response function and the energy dependent attenuation. Results: Simulation tests were carried out for different doses and calcification sizes for multiple realizations. The results were summarized using receiver operating characteristic (ROC) analysis with the area under the curve (AUC) taken as an overall indicator of discrimination performance and showing high AUC values up to 0.99. Conclusion: Our simulation results obtained for a uniform breast imaging phantom indicate that spectral mammography using two energy bins has the potential to be used as a non-invasive method for discrimination between type I and type II microcalcifications to improve early breast cancer diagnosis and reduce the number of unnecessary breast biopsies.

  12. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  13. Data on the cost-benefit analysis of mammography

    International Nuclear Information System (INIS)

    Zarand, P.; Pentek, Z.

    1982-01-01

    The radiation exposure and the cost per examination are compared in the case of three methods: non-screen film mammography, 10-dose mammography and xeromammography. 10-dose mammography results in the lowest radiation exposure whereas xeromammography has the lowest cost. (L.E.)

  14. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  15. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  16. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  17. Advanced Breast Cancer as Indicator of Quality Mammography

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2003-01-01

    Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is the more important screening tool for detecting early breast cancer. Screening mammography involves taking x-rays from two views from each breast, typically from above (cranial-caudal view, CC) and from an oblique or angled view (mediolateral-oblique, MLO). The purpose of this study was to carry out an exploratory survey of the issue of patients with advanced breast cancer who have had a screening mammography. A general result of the survey is that 22.5% of all patients (102) with advanced breast cancer that participated in the study had previous screening mammography. But we should consider that 10% of breast cancers are not detected by mammography. Only 70% of the family doctors prescribed a diagnostic mammography when the first symptoms were diagnosed

  18. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  19. Film-Screen Mammography versus digital storage plate mammography: Hard copy and monitor display of microcalcifications and focal findings - A retrospective clinical and histologic analysis

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Aichinger, U.; Tartsch, M.; Kuchar, I.; Bautz, W.

    2003-01-01

    Purpose: A retrospective clinical-histological study to determine the diagnostic accuracy of mammography using conventional screen-film cassettes (hard copy), high-resolution digital phosphor storage plates (hard copy) and monitor display (soft copy) for microcalcifications and focal lesions (BI-RADS TM category 4 or 5). Materials and methods: From April to November 2001, 76 patients underwent conventional film-screen mammography and, after diagnosis and preoperative wire localization, digital mammography with the same exposure parameters. Five investigators retrospectively determined the diagnosis after the operation from randomly distributed mediolateral views (hard-copy reading) and from the monitor display (soft-copy reading). These results were correlated with the final histology. Results: The accuracy of conventional screen-film mammography, digital mammography and monitor-displayed mammography was 67%, 65% and 68% for all findings, (n = 76), 59%, 59% and 68% for microcalcifications (n = 44) and 75%, 72% and 63% for focal lesions (n = 32). The overall results showed no difference. Conclusions: Our findings indicate equivalence of conventional screen-film mammography, high-resolution digital phosphor storage plate mammography and monitor-displayed mammography. (orig.) [de

  20. Local differences in mineral content in vertebral trabecular bone measured by dual-energy computed tomography

    International Nuclear Information System (INIS)

    Nepper-Rasmussen, J.; Mosekilde, L.; Aarhus Univ.

    1989-01-01

    Twelve lumbar vertebral bodies from cadavers were examined with dual-energy CT, to measure the calcium content in a big central region of interest (ROI). In each of five vertebrae the calcium content was also measured in six small ROI. After completed scanning, six small cylinders were drilled out from each vertebra, and the ash-density of each cylinder was measured. The dual-energy CT measurements correlated well with the ash-density. Both ash-density and dual-energy CT showed a significantly higher mineral content in the posterior part of the vertebrae than in the anterior part, and this difference might be responsible for problems encountered with the reproducibility of dual-energy CT. (orig.)

  1. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  2. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  3. Investigation of actual conditions of mammography in Kagoshima prefecture

    International Nuclear Information System (INIS)

    Baba, Natsuki; Tanimoto, Eriko; Kobayashi, Yasuhiro; Kuma, Kouji

    2009-01-01

    We surveyed the actual conditions of mammography with regard to image quality and radiation dose at 44 facilities in Kagoshima prefecture in 1999. In April 2004, guidelines for mammography newly included the standard of digital mammography. From September to October 2005, the survey was conducted at 48 facilities, and the results of the survey were compared with that in 1999. We visited 44 of the 48 facilities, and visually evaluated the image quality of mammograms for RMI156 and clinical mammograms. In addition, we measured average mammary gland dose at each facility. The number of the mammography device that satisfied the specified guideline criterion was larger than that in 1999. Image quality for the RMI156 mammograms improved. However, the results of the present survey revealed several problems. First, the number of facilities that had quality control instruments for mammography are few. Second, radiological technologists, medical doctors, and nurses did not share knowledge or information regarding mammography. Finally, there were differences in devices and image quality for mammography among the facilities. We achieved an understanding of the actual conditions of mammography in Kagoshima prefecture by visiting many facilities, evaluating image quality, and communicating with many staff members. Our results may be useful for the development of mammography examinations. (author)

  4. A comparison of digital mammography detectors and emerging technology

    International Nuclear Information System (INIS)

    Diffey, J.L.

    2015-01-01

    The overall diagnostic accuracy of digital mammography in the context of screening has been shown to be similar or slightly better than screen-film mammography. However, digital mammography encompasses both Computed Radiography (CR) and integrated Digital Radiography (DR) and there is increasing evidence to suggest that differences in detector technology are associated with variations in cancer detection rate, dose and image quality. These differences are examined in detail. Although digital mammography offers many advantages compared to screen-film, there are still some limitations with its use as a screening tool and reduced cancer detection in dense breasts remains an issue. Digital mammography detectors have paved the way for emerging technologies which may offer improvements. Taking the definition of mammography to only include X-ray imaging of the breast, this article focuses on tomosynthesis, contrast-enhanced digital mammography, stereoscopic mammography and dedicated breast computed tomography. Advanced software applications such as Computed Aided Detection (CAD) and quantitative breast density assessment are also presented. The benefits and limitations of each technique are discussed. - Highlights: • Digital detector technology affects cancer detection rate, dose and image quality. • Digital detectors have facilitated new technologies such as tomosynthesis. • 3-D techniques reduce superimposition and increase cancer detection in dense breasts. • Contrast-enhanced mammography demonstrates improved sensitivity and specificity.

  5. Update on new technologies in digital mammography

    Directory of Open Access Journals (Sweden)

    Patterson SK

    2014-08-01

    Full Text Available Stephanie K Patterson, Marilyn A Roubidoux Division of Breast Imaging, Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA Abstract: Despite controversy regarding mammography's efficacy, it continues to be the most commonly used breast cancer-screening modality. With the development of digital mammography, some improved benefit has been shown in women with dense breast tissue. However, the density of breast tissue continues to limit the sensitivity of conventional mammography. We discuss the development of some derivative digital technologies, primarily digital breast tomosynthesis, and their strengths, weaknesses, and potential patient impact. Keywords: screening mammography, breast cancer, contrast media, digital breast tomosynthesis

  6. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  7. Radiographic techniques for digital mammography

    International Nuclear Information System (INIS)

    Horita, Katsuhei

    2007-01-01

    Since the differences in X-ray absorption between various breast tissues are small, a dedicated X-ray system for examination of the breast and a high-contrast, high-resolution screen/film system (SFM) (light-receiving system) are employed for X-ray diagnosis. Currently, however, there is a strong trend toward digital imaging in the field of general radiography, and this trend is also reflected in the field of mammographic examination. In fact, approximately 70% of facilities purchasing new mammography systems are now selecting a digital mammography system (DRM). Given this situation, this report reviews the differences between SFM and DRM and discusses the radiographic techniques and quality assurance procedures for digital mammography. (author)

  8. Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.L. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Roman, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, 11500 Mexico D.F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco 187, 09340 Mexico D.F. (Mexico); Gaona, E. [Universidad Autonoma Metropolitana-Xochimilco. Calz. Del Hueso 1100, 04960 Mexico D.F. (Mexico)

    2012-07-15

    In the present work thermoluminescent (TL) response of zirconium oxide (ZrO{sub 2}) nanostructured induced by mammography X-ray radiation was investigated. Measurements were made of the response per unit air kerma of ZrO{sub 2} with mammography equipment parameters (semiautomatic exposure control, 24 kVp and 108 mAs). The calibration curves were obtained by simultaneously irradiating ZrO{sub 2} samples and ion chamber. Samples of ZrO{sub 2} showed a linear response as a function of entrance skin air kerma. The observed results in TL properties suggest that ZrO{sub 2} nanostructured could be considered as an effective material for X-ray beams dosimetry if appropriate calibration procedures are performed. - Highlights: Black-Right-Pointing-Pointer X-ray low energy thermoluminescent of ZrO{sub 2} dosimeter is developed. Black-Right-Pointing-Pointer Air kerma measurements were made by thermoluminescent dosimeter ZrO{sub 2} using mammography equipment parameters. Black-Right-Pointing-Pointer Entrance surface skin doses were made using thermoluminescent dosimeter of ZrO{sub 2} to X-ray beam quality control.

  9. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  10. Trimodel Mammography with Perfect Coregistration

    Science.gov (United States)

    2017-02-01

    background, the major confounding factor in reading mammography; the imaging characteristics suggest that this contrast mechanism would be preferable...image with enhanced edges and reduced anatomical background, the major confounding factor in reading mammography; the imaging characteristics suggest...subjects, vertebrate animals , biohazards, and/or select agents Describe significant deviations, unexpected outcomes, or changes in approved protocols

  11. Image Quality and Patient Dose Optimisation in Mammography in Slovakia

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.; Prikazska, M.

    2003-01-01

    Breast cancer represents also in Slovakia the greatest cancer risk for women, with great incidence and mortality. Conventional film-screen mammography is still the primary breast imaging modality with increasing number of mammography units and mammography examinations. From the radiation protection point of view achievement of good practice in mammography department by implementation of quality assurance play an important role for reduction of patients doses. Introduction of QA needs trained and experienced staff and requires close collaboration between radiologists, medical physicist and radiographers. At the beginning of nineties at the Institute of Preventive and Clinical Medicine we started with a survey of mean glandular doses at 15 existing mammography units in the country. On the basis of a questionnaire in the year 1991 were performed 10 488 mammography examinations, where due to out of date mammography units the mean glandular dose reached more as 3 mGy. In the following years the claim to the modern mammography units kept growing and in the year 1999 the total number of 63 mammography units were operating in Slovakia providing about 101 471 mammography examinations. According to the alarming increase of the number of mammography examinations it is absolutely necessary to work out criteria and principles for Quality Control at mammography workplaces in our country and make it obligatory for the staff of all mammography units. Summarising the CRP results it can be stated that they: 1) Initiated the suggestion of unified QA/QC criteria in mammography and the urgent need to implement them into the national program of radiology image quality improvement; 2) Remitted on unhomogenity not only in the equipment outfit but also in the procedure of evaluation of the measured parameters and imaging quality; 3) Revealed the shortcomings in the everyday practice of mammography units which can be removed only by comprehensive by training of personal in imaging radiology

  12. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  13. Mammography - recent technical developments and their clinical potential

    Energy Technology Data Exchange (ETDEWEB)

    Hemdal, Bengt; Mattsson, Soeren [Malmoe Univ. Hospital (Sweden). Dept. of Radiation Physics; Andersson, Ingvar [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Thilander Klang, Anne [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Medical Physics and Biomedical Engineering; Bengtsson, Gert; Jarlman, O. [Lund Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Leitz, Wolfram [Swedish Radiation Protection Authority, Stockholm (Sweden); Bjurstam, Nils [Univ. of North Norway, Troms (Norway). Dept. of Radiology

    2002-05-01

    The recent technical developments in digital as well as screen-film X-ray mammography have been reviewed in order to evaluate their clinical potential and to analyse possible lines for future development. Material and methods: The scientific literature has been reviewed, conferences covered and contacts with colleagues developed. Companies in the field have been inquired and invited for presentations. Own experience has been gathered from different screen-film and digital mammography systems. Results and conclusions: Although there are important complementary techniques such as ultrasound and magnetic resonance imaging (MRI), X-ray mammography is still the golden standard for breast imaging. It is relatively simple and cost-effective, and it is presently the only realistic technique for screening in a large scale. It is still largely the only technique that can detect breast cancer in a pre invasive stage. Equipment for digital mammography is commercially available both with small area and full field technique (FFDM). The development of FFDM systems is now intense, as well as the development of dedicated workstations and computer-aided detection (CAD). In spite of this, the introduction of digital mammography has been very slow compared to most other X-ray examinations due to high costs and technical challenges to meet the high demands on image quality and dose in mammography as well as the demands on specialised workflow support for screening mammography and suitable display techniques. Film reading of digital mammograms has been the most common display mode so far, but to take full advantage of the digital concept, diagnostic as well as logistic, monitor reading must be applied. There is a potential of FFDM systems for significantly higher image quality or significantly lower dose than screen-film mammography (SFM), or both. Further research is necessary to fully use this potential. The investment costs are much higher for digital than screen-film mammography

  14. Mammography - recent technical developments and their clinical potential

    International Nuclear Information System (INIS)

    Hemdal, Bengt; Mattsson, Soeren; Bjurstam, Nils

    2002-05-01

    The recent technical developments in digital as well as screen-film X-ray mammography have been reviewed in order to evaluate their clinical potential and to analyse possible lines for future development. Material and methods: The scientific literature has been reviewed, conferences covered and contacts with colleagues developed. Companies in the field have been inquired and invited for presentations. Own experience has been gathered from different screen-film and digital mammography systems. Results and conclusions: Although there are important complementary techniques such as ultrasound and magnetic resonance imaging (MRI), X-ray mammography is still the golden standard for breast imaging. It is relatively simple and cost-effective, and it is presently the only realistic technique for screening in a large scale. It is still largely the only technique that can detect breast cancer in a pre invasive stage. Equipment for digital mammography is commercially available both with small area and full field technique (FFDM). The development of FFDM systems is now intense, as well as the development of dedicated workstations and computer-aided detection (CAD). In spite of this, the introduction of digital mammography has been very slow compared to most other X-ray examinations due to high costs and technical challenges to meet the high demands on image quality and dose in mammography as well as the demands on specialised workflow support for screening mammography and suitable display techniques. Film reading of digital mammograms has been the most common display mode so far, but to take full advantage of the digital concept, diagnostic as well as logistic, monitor reading must be applied. There is a potential of FFDM systems for significantly higher image quality or significantly lower dose than screen-film mammography (SFM), or both. Further research is necessary to fully use this potential. The investment costs are much higher for digital than screen-film mammography

  15. Recent developments of dual-energy CT in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Simons, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Kachelriess, Marc [Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-15

    Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging. circle Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging. (orig.)

  16. Digital mammography: current state and future aspects

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Baum, F. [Womens Health Care Center Goettingen, Diagnostisches Brustzentrum Goettingen, Goettingen (Germany); Hermann, K.P. [Georg-August-Universitaet Goettingen, Abteilung Diagnostische Radiologie, Goettingen (Germany)

    2006-01-01

    The introduction of digital technique in mammography has been the last step in completing the process of digitalization in diagnostic imaging. Meanwhile, some different digital techniques as well as a couple of different digital mammography systems were developed and have already been available for some years. In this review article, the relevant data of key studies are reported, the current status is defined, and perspectives of digital mammography are described. (orig.)

  17. Mammography and breast sonography in transsexual women

    International Nuclear Information System (INIS)

    Weyers, S.; Villeirs, G.; Vanherreweghe, E.; Verstraelen, H.; Monstrey, S.; Van den Broecke, R.; Gerris, J.

    2010-01-01

    Data on the necessity of performing screening mammographies in transsexual women are lacking. The main objective of this study was to assess the possibility to perform mammography and breast sonography in transsexual women. Fifty Dutch-speaking transsexual women were interviewed about the following: attitude towards mammography and breast sonography, importance attributed to and satisfaction with breast appearance, opinion about the necessity of breast check-up, expectations regarding discomfort during the exams and knowledge about the breast surgery. A fasting blood sample, clinical breast exam, mammography and breast sonography were performed. At mammography the following parameters were noted: density, technical quality, location of the prostheses, presence of any abnormalities and painfulness. At sonography the following parameters were recorded: density, presence of cysts, visualisation of retro-areolar ducts or any abnormalities. Twenty-three percent of patients are not aware of the type of breast implants and 79% do not know their position to the pectoral muscles. Patient satisfaction with the appearance of their breasts was rather high (7.94 on a scale of 0-10). Mean expected and experienced pain from mammography was low (4.37 and 2.00 respectively). There was no statistically significant difference in expected pain between those who already had mammography and those who did not. There was a significant positive correlation between the expected and the experienced pain. Mammography and breast sonography were technically feasible and no gross anomalies were detected. Since both exams were judged as nearly painless, 98% of transsexual women intended to come back if they would be invited. Since breast cancer risk in transsexual women is largely unknown and breast exams are very well accepted, breast screening habits in this population should not differ from those of biological women.

  18. Mammography and breast sonography in transsexual women

    Energy Technology Data Exchange (ETDEWEB)

    Weyers, S., E-mail: steven.weyers@ugent.b [Department of Gynecology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent (Belgium); Villeirs, G.; Vanherreweghe, E. [Department of Radiology, Ghent University Hospital, Ghent (Belgium); Verstraelen, H. [Department of Gynecology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent (Belgium); Monstrey, S. [Department of Plastic Surgery, Ghent University Hospital, Ghent (Belgium); Van den Broecke, R.; Gerris, J. [Department of Gynecology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent (Belgium)

    2010-06-15

    Data on the necessity of performing screening mammographies in transsexual women are lacking. The main objective of this study was to assess the possibility to perform mammography and breast sonography in transsexual women. Fifty Dutch-speaking transsexual women were interviewed about the following: attitude towards mammography and breast sonography, importance attributed to and satisfaction with breast appearance, opinion about the necessity of breast check-up, expectations regarding discomfort during the exams and knowledge about the breast surgery. A fasting blood sample, clinical breast exam, mammography and breast sonography were performed. At mammography the following parameters were noted: density, technical quality, location of the prostheses, presence of any abnormalities and painfulness. At sonography the following parameters were recorded: density, presence of cysts, visualisation of retro-areolar ducts or any abnormalities. Twenty-three percent of patients are not aware of the type of breast implants and 79% do not know their position to the pectoral muscles. Patient satisfaction with the appearance of their breasts was rather high (7.94 on a scale of 0-10). Mean expected and experienced pain from mammography was low (4.37 and 2.00 respectively). There was no statistically significant difference in expected pain between those who already had mammography and those who did not. There was a significant positive correlation between the expected and the experienced pain. Mammography and breast sonography were technically feasible and no gross anomalies were detected. Since both exams were judged as nearly painless, 98% of transsexual women intended to come back if they would be invited. Since breast cancer risk in transsexual women is largely unknown and breast exams are very well accepted, breast screening habits in this population should not differ from those of biological women.

  19. Dual fan, dual-duct system meets air quality, energy-efficiency needs

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, M. [Pageau Morel and Associates, Montreal, Quebec (Canada)

    1996-03-01

    Canada`s Space Centre in Saint-Hubert Quebec is a 300,000 ft{sup 2} (27,871 m{sup 2}) complex that houses the headquarters of the Canadian Space Agency, the Canadian Astronaut Training Centre, mission ground control installations, research facilities, offices and the required support facilities. A comfortable, pleasant research environment was a primary concern for the Space Centre, given its elite clientele. The objectives were high indoor-air quality, design flexibility, energy efficiency and low capital costs. Dual duct systems which are the heart of the mechanical concept allowed the designers to meet these objectives. The Space Centre`s offices, laboratories and conference center are all served by dual-duct systems. All operate using an air economizer cycle. Gas boilers provide them with hot water for heating and steam for humidification while centrifugal chillers provide chilled water for cooling. This article describes the design.

  20. Quantification of breast arterial calcification using full field digital mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Xu Tong; Ducote, Justin; Iribarren, Carlos

    2008-01-01

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K-0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE=1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  1. The added value of contrast enhanced spectral mammography in identification of multiplicity of suspicious lesions in dense breast

    Directory of Open Access Journals (Sweden)

    Amr Farouk Ibrahim Moustafa

    2018-03-01

    Full Text Available Objective: To evaluate the additive value of Contrast Enhanced Spectral Mammography (CESM in the preoperative assessment of malignant lesions in dense breast parenchyma regarding multiplicity. Material and methods: The study included 160 women having heterogeneous dense breast parenchyma (ACR c and d with suspicious lesions identified on sono mammography examination. All patients performed contrast enhanced spectral mammography to confirm or exclude lesion multiplicity. The number of lesions was calculated in the contrast high energy subtraction images with the reference standard being histopathological analysis. Results: Adding CESM to sono-mammography the accuracy in identifying multiple malignant lesion increased from 81.8% accuracy of sono-mammography up to 100% accuracy after adding CESM. Conclusion: Contrast enhanced spectral mammogram showed an added value in the preoperative assessment of breast masses increasing the accuracy of detection of lesions and multiplicity (multifocality and multi-centricity. Keywords: Breast cancer, Contrast enhanced spectral mammogram

  2. Evaluation of breast symptoms with mammography and ultrasonography

    Directory of Open Access Journals (Sweden)

    Emine Devolli Disha

    2011-12-01

    Full Text Available Introduction: Aim of the study was to discern which are more frequent symptoms presented in malign and benign masses diagnosed by mammography and ultrasonography.Methods: Our study group consisted of 546 female patients, with breast symptoms such as palpable lumps (40.8%, pain in the breast (26%, localized lumpiness or nodularity (13.7%, nipple retraction (11.2%, nipplebloody discharge (5.1% and redness and swelling of the breast (3.1%. All 546 patients were examined by ultrasonography and mammography. Biopsy was performed according to the findings of mammography and ultrasonography.Results: In breast cancer detection ultrasonography showed an efficiency of 79.4% compared to 55.0% for mammography in detecting breast lump, in the case of nipple retraction mammography showed an efficiency of 89.1% compared to 80.4% for ultrasound, while the lowest efficiency for mammography was in the cases with localized lumpiness or nodularity 17.1% compared to 45.7% for ultrasound. In detecting fibrocystic changes where the most common symptoms was pain, ultrasonography showed an efficiency of 99.3 % compared to 84.2 % for mammography.Conclusions: Our study confirmed that breast lumps are detectable in the majority of patients with breast cancer. The most frequent symptoms in patient with benign lesions were pain or localized discomfort. The diagnostic accuracy for carcinomas of the breast and for benign lesions according to symptoms was higher for ultrasound than for mammography.

  3. A study of the response of ionization chambers to mammography beams

    International Nuclear Information System (INIS)

    Kessler, G.; Burns, D.T.; Buermann, L.; Prez, L.A. de

    2007-03-01

    Some simulated mammography radiation beams have been established at the BIPM using a low-energy x-ray tube with a tungsten anode and molybdenum as a filter. The response of two ionization chambers of different types to these beams is compared with that obtained in mammography beams at the PTB and the NMi which were produced with x-ray tubes with molybdenum anodes and molybdenum filters. The relative differences between the chamber responses to these two different types of beams were less than 7 x 10 -3 which implies the uncertainty for the transfer of a calibration from one type of beam to the other. (authors)

  4. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  5. Mammography accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, P.

    1993-12-31

    In the mid-1980`s, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded.

  6. Mammography accreditation program

    International Nuclear Information System (INIS)

    Wilcox, P.

    1993-01-01

    In the mid-1980's, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded

  7. Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Kitahama, Hiroyuki

    1991-01-01

    The aim of this study is to present efficacy of storage phosphor-based digital mammography (CR-mammography) in diagnosis of breast cancer. Ninety-seven cases with breast cancer including 44 cases less than 2 cm in macroscopic size (t1 cases) were evaluated using storage phosphor-based digital mammography (2000 x 2510 pixels by 10 bits). Abnormal findings on CR-mammography were detected in 86 cases (88.7%) of 97 women with breast cancer. Sensitivity of CR-mammography was 88.7%. It was superior to that of film-screen mammography. On t1 breast cancer cases, sensitivity on CR-mammography was 88.6%. False negative rate in t1 breast cancer cases was reduced by image processing using CR-mammography. To evaluate microcalcifications, CR-mammograms and film-screen mammograms were investigated in 22 cases of breast cancer proven pathologically the existence of microcalcifications and 11 paraffin tissue blocks of breast cancer. CR-mammography was superior to film-screen mammography in recognizing of microcalcifications. As regards the detectability for the number and the shape of microcalcifications, CR-mammography was equivalent to film-screen mammography. Receiver operating characteristic (ROC) analysis by eight observers was performed for CR-mammography and film-screen mammography with 54 breast cancer patients and 54 normal cases. The detectability of abnormal findings of breast cancer on CR-mammography (ROC area=0.91) was better than that on film-screen mammography (ROC area=0.88) (p<0.05). Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer was discussed and demonstrated in this study. (author)

  8. Prospective study aiming to compare 2D mammography and tomosynthesis + synthesized mammography in terms of cancer detection and recall. From double reading of 2D mammography to single reading of tomosynthesis.

    Science.gov (United States)

    Romero Martín, Sara; Raya Povedano, Jose Luis; Cara García, María; Santos Romero, Ana Luz; Pedrosa Garriguet, Margarita; Álvarez Benito, Marina

    2018-06-01

    To evaluate tomosynthesis compared with 2D-mammography in cancer detection and recalls in a screening-programme, and assess performing synthesized instead of 2D, and compare double reading of 2D with single reading of tomosynthesis. Women (age 50-69 years) participating in the screening-programme were included. 2D-mammography and tomosynthesis were performed. There were four reading models: 2D-mammography (first); 2D-mammography (second); tomosynthesis + synthesized (third); tomosynthesis + synthesized + 2D (fourth reading). Paired double reading of 2D (first+second) and tomosynthesis (third+fourth) were analysed. In 16,067 participants, there were 98 cancers and 1,196 recalls. Comparing double reading of 2D with single reading of tomosynthesis, there was an increase of 12.6 % in cancer detection with the third reading (p= 0.043) and 6.9 % with the fourth reading (p=0.210), and a decrease in recalls of 40.5 % (ptomosynthesis. Single reading of tomosynthesis plus synthesized increased cancer detection and decreased recalls compared with double reading 2D. 2D did not improve results when added to tomosynthesis. • Tomosynthesis increases cancer detection and decreases recall rates versus 2D mammography. • Synthesized-mammography avoids performing 2D, showing higher cancer detection. • Single reading of tomosynthesis + synthesized is feasible as a new practice.

  9. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  10. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  11. Teaching atlas of mammography

    International Nuclear Information System (INIS)

    Tabar, L.; Dean, P.B.

    1985-01-01

    The illustrated case reports in this teaching atlas cover practically the entire range of possible pathological changes and are based on in-patient case material and 80,000 screening documents. The two basic approaches, - detection and analysis of changes -, are taught comprehensively and in great detail. A systematic procedure for analysing the mammographies, in order to detect even the very least changes, and its practical application is explained using mammographies showing unclear findings at first sight. A system of coordinates is presented which allows precise localisation of the changes. Exercises for practising the technique of identifying the pathological changes round up the methodolical chapters. Additional imaging technical enhancements and detail enlargements are of great help in interpreting the findings. The specific approach adopted for this teaching atlas is a 'reverse procedure', which leaves the beaten track and starts with analysing the mammographies and evaluating the radiographic findings, in order to finally derive the diagnosis. (orig./CB) [de

  12. Mammography in women under 35

    International Nuclear Information System (INIS)

    Panzarola, P.; Bellucci, M.C.

    1991-01-01

    The detection of breast cancer in women under 35 is quite an uncommon event, accounting only for 3.2-3.4% of all breast cancers. To determine the indications for mammography in women under 35, the authors correlated clinical, mammographic, and US findings with fine-needle aspiration/surgical biopsy and follow-up results in 1040 symptomatic women examined at the Center of Senology of the Istitute of Radiology - University of Perugia, Italy, from 1984 to June 1990. Of 1040 women, 482 (41.6%) had normal findings; benign disease was diagnosed in 558 (53.7%) cases, and malignant disease in 49 (4.7%). Mammography was very useful to diagnose malignancy in palpable breast lesions, as well as to suggest the need for biopsy, to detect metachronous cancer and to define lesion sizes. In inflammatory process - e.g., mastitis and abscesses - both mammography and US were capable as its remission after therapy. Galactography had a specific role in the evaluation of the mammary duct and demonstrated intraductal pathologic conditions. In the authors'experiences, mammography never showed occult breast cancers in women with no palpable breast lesions or hematic nipple discharge

  13. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    OpenAIRE

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    Objective The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. Materials and Methods The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body...

  14. Digital mammography in breast cancer screening: Evaluation and innovation

    NARCIS (Netherlands)

    Bluekens, A.M.J.

    2015-01-01

    With all other imaging modalities in radiology being digitised and conventional mammography being ready to phase out the transition to digital mammography was inevitable. This thesis describes the performance of digital screening mammography and the consequences of implementation in a

  15. CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY (CESM (REVIEW

    Directory of Open Access Journals (Sweden)

    N. I. Rozhkova

    2015-01-01

    Full Text Available The problem of early diagnosis of a breast cancer is extremely actual. Growth of incidence at women from 19 to 39 years increased for 34% over the last 10 years. It defines need of acceleration of development and deployment of the latest technologies of identification of the earliest symptoms of diseases. The x-ray mammography is the conducting method among of all radiological methods of diagnostics. Nevertheless a number of restrictions of method reduces its efficiency. The technologies increasing informational content of x-ray mammography – the leading method of screening – due to use of artificial contrasting and advantages of digital technologies are constantly developed. In this review it is described works, in which the authors having clinical experience of application of CESM – contrastenhanced spectral mammography on representative group of women. Positive sides and restrictions of new technology in comparison with mammography, ultrasonography and MRT are shown in this article.

  16. Heavy-ion mammography and breast cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Holley, W.R.; Woodruff, K.H.; Sickles, E.A.

    1980-01-01

    Heavy-ion radiography is a new diagnostic imaging technique developed in our laboratory that produces superior density resolution at low radiation doses. Heavy-ion mammography has now emerged as a low-dose, safe, reliable, noninvasive diagnostic radiological procedure that can quantitate and image very small differences in soft tissue densities in the breast tissues of patients with clinical breast disease. The improved density resolution of heavy-ion mammography over conventional X-ray mammography and breast xerography provides the potential of detecting small breast cancers of less than 1 cm diameter. The radiation dose to the breast from carbon-ion mammorgraphy is about 50 mrad or less, and can potentially be only a fraction of this level. The results of the present clinical trial in progress of heavy-ion mammography in 37 patients, thus far studied, are extremely encouraging, and warrant continued study for application to the early diagnosis of breast cancer in women

  17. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Pain and discomfort during mammography

    DEFF Research Database (Denmark)

    Aro, A R; Absetz-Ylöstalo, P; Eerola, T

    1996-01-01

    was the most powerful factor explaining pain and discomfort among women with earlier mammography. However, it had no effect among women without earlier mammography, for whom screening-related nervousness and perceptions of staff were crucial. Suggested interventions include better information before screening......The aim of this prospective study was to investigate associations of mammography pain and discomfort with sociodemographics, personal history and psychological and situational factors. Subjects were women with a negative screening finding (n = 883) from a random sample of 50-year-old Finnish women...... attending their first breast cancer screening. Questionnaires were sent 1 month before the screening invitation and 2 months after screening. Sixty-one per cent reported painful and 59% uncomfortable mammograms (4% severely). Linear regression analyses showed that anticipation of pain and discomfort...

  19. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  20. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  1. Breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Friedewald, Sarah M; Rafferty, Elizabeth A; Rose, Stephen L; Durand, Melissa A; Plecha, Donna M; Greenberg, Julianne S; Hayes, Mary K; Copit, Debra S; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Miller, Dave P; Conant, Emily F

    2014-06-25

    Mammography plays a key role in early breast cancer detection. Single-institution studies have shown that adding tomosynthesis to mammography increases cancer detection and reduces false-positive results. To determine if mammography combined with tomosynthesis is associated with better performance of breast screening programs in the United States. Retrospective analysis of screening performance metrics from 13 academic and nonacademic breast centers using mixed models adjusting for site as a random effect. Period 1: digital mammography screening examinations 1 year before tomosynthesis implementation (start dates ranged from March 2010 to October 2011 through the date of tomosynthesis implementation); period 2: digital mammography plus tomosynthesis examinations from initiation of tomosynthesis screening (March 2011 to October 2012) through December 31, 2012. Recall rate for additional imaging, cancer detection rate, and positive predictive values for recall and for biopsy. A total of 454,850 examinations (n=281,187 digital mammography; n=173,663 digital mammography + tomosynthesis) were evaluated. With digital mammography, 29,726 patients were recalled and 5056 biopsies resulted in cancer diagnosis in 1207 patients (n=815 invasive; n=392 in situ). With digital mammography + tomosynthesis, 15,541 patients were recalled and 3285 biopsies resulted in cancer diagnosis in 950 patients (n=707 invasive; n=243 in situ). Model-adjusted rates per 1000 screens were as follows: for recall rate, 107 (95% CI, 89-124) with digital mammography vs 91 (95% CI, 73-108) with digital mammography + tomosynthesis; difference, -16 (95% CI, -18 to -14; P tomosynthesis; difference, 1.3 (95% CI, 0.4-2.1; P = .004); for cancer detection, 4.2 (95% CI, 3.8-4.7) with digital mammography vs 5.4 (95% CI, 4.9-6.0) with digital mammography + tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis was associated with an increase

  2. TL dosimetry for quality control of CR mammography imaging systems

    Science.gov (United States)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  3. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  4. Radiogenic breast cancer risk and mammography

    International Nuclear Information System (INIS)

    Jayaprakash, Shobha; Nair, C.P.R.; Rao, B.S.; Sawant, S.G.

    2001-01-01

    There is a general concern that the risks from mammography screening in inducting radiogenic breast cancer may outweigh the possible benefits to be derived from it. A review of epidemiological, case-control and cohort studies of radiogenic breast cancer, age-specific incidence and dose and dose-rate relationship reveals that such a fear is unfounded. The dose to the breast tissues in a quality assured mammography screening programme falls far below the levels that were observed to produce increased relative risk. The age-specific incidence rates also indicate that the need for mammography is for the women of age at which the relative risk is minimum

  5. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  6. A study of some technical essentials of X-ray mammography

    International Nuclear Information System (INIS)

    Cao Houde; Jiang Qin

    2000-01-01

    Objective: To improve the quality of mammography and diagnostic accuracy by analyzing and studying some of the technical essentials of X-ray mammography. Methods: The mammography quality of 21 hospitals were investigated. The image quality of normal intensifying screen-film combination was tested and compared with computerized mammography. The filming positions and operating skills were studied. Results: The important mammography details that were displayed have low conformity with the diagnostic requirements, mainly due to non-conformity of these equipment to the requirements. The optimal pressure suitable for mammography of the Chinese women was around 12 kg. Conclusion: Necessary attention must be paid to the improvement of imaging features of these equipment. The improved operating skills will greatly raise the detecting percentage of pathological changes of breasts

  7. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  8. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    Science.gov (United States)

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  9. Quality control in digital mammography: the noise components

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando [Universidade de Tarapaca, Arica (Chile). Centro de Estudios en Ciencias Radiologicas; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Duran, Maria Paz [Clinica Alemana, Santiago (Chile). Dept. de Radiologia; Dantas, Marcelino, E-mail: marcelino@inb.gov.b [Industrias Nucleares do Brasil (INB), Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Ubeda, Carlos, E-mail: cubeda@uta.c [Universidade de Tarapaca, Arica (Chile). Fac. de Ciencias de la Salud

    2011-07-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  10. Quality control in digital mammography: the noise components

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria do Socorro; Duran, Maria Paz; Dantas, Marcelino; Ubeda, Carlos

    2011-01-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  11. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Implementation of Quality Control Protocol in Mammography: A Serbian Experience

    International Nuclear Information System (INIS)

    Ciraj Bjelac, O.; Kosutic, D.; Arandjic, D.; Kovacevic, M.

    2008-01-01

    Mammography is method of choice for early detection of breast cancer. In Serbia, mammography is performed only clinically, although there is a long term plan to introduce mammography as screening method. Currently there are 60 mammography units in practice in Serbia, resulting with 70 000 mammographies annually. The purpose of this paper is preliminary evaluation of the mammography practice in Serbia, having in mind the annual number of examinations and fact that part of examination is performed on women without any clinical signs. For pilot implementation of Quality Control (QC) protocol in mammography, five hospitals with highest workload have been selected, representing the typical mammography practice in Serbia. Developed QC protocol, based on European guidelines for quality assurance in breast cancer screening and diagnosis, actual practice and resources, includes equipment testing and maintenance, staff training and QC management and allocation of responsibilities. Subsequently, it should be applied on the national scale. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Mean glandular doses ranged from 0.12 to 2.8 mGy, while reference optical density ranged from 1.2 to 2.8. Main problems were associated with film processing, viewing conditions and optical density control. The preliminary survey of mammography practice highlighted the need for optimization of radiation protection and training of operating staff, although the survey itself was very valuable learning process for all participants. Furthermore, systematic implementation of QC protocol should provide reliable performance of mammography units and maintain satisfactory image quality and keep patient doses as low as reasonably practical.(author)

  13. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  14. Contrast-enhanced spectral mammography with a photon-counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  15. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  16. Descriptive study of the quality control in mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Perdigon C, G.M.; Casian C, G.A.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2005-01-01

    The goal of mammography is to provide contrast between a lesion that is possible residing within the breast and normal surrounding tissue. Quality control is essential for maintaining the contrast imaging performance of a mammography system and incorporate tests that are relevant in that they are predictive of future degradation of contrast imaging performance. These tests will also be done at frequency that is high enough to intercept most drifts in quality imaging or performance before they become diagnostically significant. The quality control study has as objective to describe the results of the assessment of quality imaging elements (film optical density, contrast (density difference), uniformity, resolution and noise) of 62 mammography departments without quality control program and comparison these results with a mammography reference department with a quality control program. When comparing the results they allow seeing the clinical utility of to have a quality control program to reduce the errors of mammography interpretation. (Author)

  17. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  18. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  19. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  20. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  1. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  2. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  3. Mammography calibration qualities establishment in a Mo-Mo clinical system

    International Nuclear Information System (INIS)

    Correa, E.L.; Santos, L.R. dos; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained. (author)

  4. Mammography calibration qualities establishment in a Mo-Mo clinical system

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.L.; Santos, L.R. dos; Vivolo, V.; Potiens, M.P.A., E-mail: educorrea1905@gmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained. (author)

  5. Mammography parameters: compression, dose, and discomfort

    International Nuclear Information System (INIS)

    Blanco, S.; Di Risio, C.; Andisco, D.; Rojas, R.R.; Rojas, R.M.

    2017-01-01

    Objective: To confirm the importance of compression in mammography and relate it to the discomfort expressed by the patients. Materials and methods: Two samples of 402 and 268 mammographies were obtained from two diagnostic centres that use the same mammographic equipment, but different compression techniques. The patient age range was from 21 to 50 years old. (authors) [es

  6. Performance of clinical mammography: a nationwide study from Denmark

    DEFF Research Database (Denmark)

    Jensen, Allan; Vejborg, Ilse; Severinsen, Niels

    2006-01-01

    that clinical mammography worked best in patient populations of purely symptomatic women. Our data indicate that to increase the accuracy of clinical mammography at the community level, the presence of an experienced radiologist should be prioritized ahead of raising the clinic size.......Clinical mammography is the key tool for breast cancer diagnosis, but little is known about the impact of the organisational set-up on the performance. We evaluated whether organisational factors influence the performance of clinical mammography. Clinical mammography data from all clinics...... in Denmark in the year 2000 were collected and linked to cancer outcome. Use of the National Institute of Radiation Hygiene register for identification of radiology clinics ensured comprehensive nationwide registration. We used the final mammographic assessment at the end of the imaging work-up to determine...

  7. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  8. Diagnosis value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Ma Zhoupeng; Zhou Jianjun; Liu Xueling; Wang Chun; Zhang Shunzhuang

    2012-01-01

    Objective: To explore the diagnostic value of dual-phase contrast enhancement CT combined with virtual non-enhanced images by dual-energy CT in clear cell renal cell carcinoma. Methods: Sixty patients who were suspected of clear cell renal cell carcinoma underwent non-enhanced CT and contrast enhancement CT of early interface-phase between cortex -medulla and parenchymal phase on a dual-energy CT. The true non-enhanced kidney CT (TNCT) was performed in a single-energy acquisition mode, but the dual-phase contrast enhancement CT were performed in a dual-energy mode of 80 kV and 140 kV respectively. The virtual non-enhanced CT (VNCT) images were derived from the data of early interface phase using liver virtual non-contrast software. The diagnose according to VNCT combined dual-phase contrast enhancement CT and dual-phase contrast enhancement CT only were made respectively and compared with χ 2 test. Between the true non-contrast CT and the virtual non-contrast CT, the image quality was compared with Wilcoxon test; The radiation dose of volume CT dose index (CTDIvol) and dose length product(DLP) in a single-phase and total examination, the mean CT HU values of the tumours were compared with t test. Results: The accuracy of VNCT combined dual-phase contrast enhancement CT was higher than that of dual-phase contrast enhancement CT only [93.3% (56/60) vs.78.3% (47/60); χ 2 =5.6, P<0.05]. The detective ability (score) of VNCT was near to that of TNCT and the difference was not obvious (Z=0.00, P>0.05). The radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination of VNCT [(8.85 ± 1.28) mGy, (196.45 ±21.12) mGy·cm, (17.69±2.35) mGy, (392.90±42.25) mGy · cm] were lower than that of TNCT [(10.20 ± 1.44) mGy,(218.29 ± 29.60) mGy · cm, (30.61 ± 3.27) mGy and (654.86 ± 88.81) mGy ·cm], t=4.21, 3.58, 23.63, 16.12 respectively, P<0.05. The mean CT HU values of tumours on VNCT images was higher than that

  9. Mammography screening services: market segments and messages.

    Science.gov (United States)

    Scammon, D L; Smith, J A; Beard, T

    1991-01-01

    Mammography has become a vital tool for the early detection of breast cancer. Although many organizations and health care facilities are working to educate and motivate women to take advantage of the life saving opportunity that is offered through screening mammography, only twenty percent of women who should be screened actually have the procedure performed. In order to reach women who have not been screened, it is important to learn which factors most strongly motivate those women who do choose to have a mammogram. Depth interviews with 18 women attending a mobile mammography unit were conducted to explore the decision making process of women obtaining mammography screening services and to develop a profile of prevalent emotions, attitudes, and feelings associated with receiving breast cancer screening services. Analysis of the interview transcripts revealed several important themes to which health care professionals can direct marketing and health promotion strategies.

  10. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille; Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Sofue, Keitaro [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Kobe University School of Medicine, Department of Radiology, Kobe (Japan)

    2016-10-15

    Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons. Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum. (orig.)

  11. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  12. Quality control tests for conventional mammography

    International Nuclear Information System (INIS)

    Dawod, Alnazer Ahmed Ibrahim

    2014-12-01

    Mammography is this the test that allows the radiologist to look at images of the inside of the breasts. Mammograms help detect breast cancer early successful treatment of breast cancer depends on that early diagnosis. Breast cancer is a very common condition. About one in every nine women develops breast cancer by the age of eighty. In addition to the clinical examination and self-examination, mammography plays important role in the detection of breast cancer before they become clinically visible tumors. The mammography is the most common test for early detection of breast cancer. Quality control techniques that done ensured importance of this programme to produce images with good diagnostic values and help radiologist to diagnose breast discase easily and avoid exposing patient to radiation hazards.(Author)

  13. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    International Nuclear Information System (INIS)

    Kharrati, Hedi

    2005-01-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations and does not exceed 75% for the leakage radiation

  14. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2003-01-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image

  15. Quality control, mean glandular dose estimate and room shielding calculation in mammography

    International Nuclear Information System (INIS)

    Rakotomalala, H.M.

    2014-01-01

    This study focuses in the importance of Radiation Protection in mammography. A good control of the radiological risk depends on the dose optimization, room shielding calculation and the quality of equipment. The work was carried out in the three private medical centers called A, B, and C. Dosimetry estimates were made on the equipment of the three centers. Values has been compared with the Diagnostic Reference Levels established by the International Atomic Energy Agency (IAEA). Conformity control of the radiological devices has also been done with the Mammographic Quality Control Kit of the INSTN-Madagascar. Verifications of shields of the room containing the mammography equipment were done by theoretical calculations using the method provided by NCRP 147. [fr

  16. Mammography: an update of the EUSOBI recommendations on information for women.

    Science.gov (United States)

    Sardanelli, Francesco; Fallenberg, Eva M; Clauser, Paola; Trimboli, Rubina M; Camps-Herrero, Julia; Helbich, Thomas H; Forrai, Gabor

    2017-02-01

    This article summarises the information to be offered to women about mammography. After a delineation of the aim of early diagnosis of breast cancer, the difference between screening mammography and diagnostic mammography is explained. The need to bring images and reports from the previous mammogram (and from other recent breast imaging examinations) is highlighted. Mammography technique and procedure are described with particular attention to discomfort and pain experienced by a small number of women who undergo the test. Information is given on the recall during a screening programme and on the request for further work-up after a diagnostic mammography. The logic of the mammography report and of classification systems such as R1-R5 and BI-RADS is illustrated, and brief but clear information is given about the diagnostic performance of the test, with particular reference to interval cancers, i.e., those cancers that are missed at screening mammography. Moreover, the breast cancer risk due to radiation exposure from mammography is compared to the reduction in mortality obtained with the test, and the concept of overdiagnosis is presented with a reliable estimation of its extent. Information about new mammographic technologies (tomosynthesis and contrast-enhanced spectral mammography) is also given. Finally, frequently asked questions are answered. • Direct digital mammography should be preferred to film-screen or phosphor plates. • Screening (in asymptomatic women) should be distinguished from diagnosis (in symptomatic women). • A breast symptom has to be considered even after a negative mammogram. • Digital breast tomosynthesis increases cancer detection and decreases the recall rate. • Contrast-enhanced spectral mammography can help in cancer detection and lesion characterisation.

  17. The analysis of hydrocarbons by dual-energy gamma-ray densitometry

    International Nuclear Information System (INIS)

    Taylor, T.; Reynolds, P.W.; Lipsett, J.J.

    1985-11-01

    Various hydrocarbons have been analyzed noninvasively by dual-energy gamma-ray densitometry. The hydrogen/carbon atomic ratio was deduced for pure hydrocarbons while for heavy oil process samples, the ash content was inferred

  18. Mammography practices for radiation protection in Kenya

    International Nuclear Information System (INIS)

    Shadrack, Anthony K.

    2008-01-01

    All mammography units in the country, totaling fourteen in number at the time, were evaluated on the basis of performance and practice to come up with useful data for summing up the mammography practice in Kenya. The study was carried out by performing hands-on quality control tests on the units using internationally established protocols. Image quality and dose measurement data were generated in all the centers and clearly indicated that the practice of mammography, more so on optimization viewpoint is so much varied. A standard method was used to obtain these data by use of mammography accreditation phantom. Data from actual patients was also collected in three major centers in Nairobi. On the criteria used for evaluating phantom image quality, ten out of fourteen units did satisfy the set criterion. The average glandular dose was 2.79 mGy per cranio caudal (cc) view of the phantom and 3.27 mGy per cc view for the sampled patients. The internationally recommended dose level for such a view is 3.0 mGy. One worrying observation made was that most units failed on one of the easiest test of mammographic unit assembly. Of most concern was the lack of technique charts for the practice detailing the imaging parameters being employed for the procedure. Most centers do not take the servicing of equipment seriously and others merely ignore even the crucial issues of equipment performance like the automatic exposure control and viewing conditions of the reporting areas.The results of this study calls for the setting up of a programme of optimization of radiological protection in mammography using the experience of other countries that have put in place quality assurance programs, setting and adoption of Dose Reference Levels (DRLs) as part of Quality Assurance (QA). This practice needs an effective quality control program which should start with the selection of appropriate equipment for mammography and the use of qualified personnel including the radiologist, radiographer

  19. Risks, radiation dose and image quality of mammography

    International Nuclear Information System (INIS)

    Menges, V.

    1979-01-01

    For some time to come, early detection of breast cancer will remain the only way to improve the therapeutical success. Mammography is an absolutely indispensible way to take advantage of this opportunity. Today, mammography is undoubtedly the most reliable method of examination for an early detection of breast cancer. Only mammography can detect carcinomas smaller than the critical tumour size of 1cm. If carried out properly and with present dose levels, it involves hardly any radiation risk. (orig.) [de

  20. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  1. Computer-aided diagnosis in routine mammography

    International Nuclear Information System (INIS)

    Sittek, H.; Perlet, C.; Helmberger, R.; Linsmeier, E.; Kessler, M.; Reiser, M.

    1998-01-01

    Purpose: Computer-aided diagnosis in mammography is a topic many study groups have been concerned with since the first presentation of a system for computer-aided interpretation in 1967. Currently, there is only one system avilable for clinical use in mammography, the CAD-System Image Checker (R2 Technology). The purpose of our prospective study was to evaluate whether the integration of the CAD-system into the routine of a radiological breast diagnosis unit is feasible. Results: After the installation of the CAD-system, 300 patients with 1110 mammograms were included for evaluation in the present study. In 54 of these cases histological examination was indicated due to suspect criteria on conventional mammography. In 39 of 54 cases (72,2%) malignancy could be proven histologically. The CAD-system marked 82,1% of the histologically verified carcinomas correctly 94,3% of all 1797 marks made by the CAD-system indicated normal or benign structures. Routinely performed CAD analysis prolonged patients waiting time by about 15 min because the marks of the CAD system had to be interpreted in addition to the routine diagnostic investigations. Conclusion: Our experience with the use of the CAD-system in daily routine showed that CAD analysis can easily be integrated into a preexisting mammography unit. However, the diagnostic benefit is not yet clearly established. Since the rate of false negative marks by the CAD-system Image Checker is still high, the results of CAD analysis must be checked and corrected by an observer well experienced in mammography reading. (orig.) [de

  2. Mammography

    International Nuclear Information System (INIS)

    1975-01-01

    This patent reveals a method and instrument for the detection and registration of breast cancer with the aid of X-radiation, i.e. mammography. The breast is irradiated with soft X-rays whereby the radiation beam is scanned with a moving 'stripform' screen and whereby the picture from the 'stripform' screen is recorded by a television camera that moves simultaneously with the strip. The image is then projected on a monitor

  3. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  4. Mammography discomfort: a holistic perspective derived from women's experiences

    International Nuclear Information System (INIS)

    Poulos, Ann; Llewellyn, Gwynnyth

    2005-01-01

    Purpose: Mammography discomfort has the potential to deter women from attending for regular breast screening. Previous studies have focussed on the pain/discomfort of the mammography procedure itself. The purpose of this study was to consider discomfort from a holistic perspective of the mammography experience derived from the women themselves. Methods: Qualitative research methods were employed. Using theoretical sampling, 12 women who had recently experienced mammography were interviewed. The interview questions aimed to explore the experience of women attending for a mammogram from arrival to departure and beyond in order to identify aspects which potentially increase discomfort. Data analysis involved coding and categorisation and identification of key concepts and their relationships. Results: A conceptual framework was developed that demonstrates the contributors to mammography discomfort and the relationships between these as identified by the women. Conclusions: The conceptual framework has important implications for clinical practice and future research

  5. Interdisciplinary group of mammography (IGM). Quality assurance in mammography

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Assurance quality must be a preoccupation of each day in mammography. To be efficient and of low cost it must be discussed between radiologists and physicists; some countries like Federal Republic of Germany, Belgium, United Kingdom, Scandinavia and Netherlands engaged actions to make assurance quality a daily practice

  6. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  7. Analysis of mammography on breast fibroadenoma

    International Nuclear Information System (INIS)

    Fu Xiaomin; Han Benyi; Zhao Yae

    2009-01-01

    Objective: To study the imaging characteristics of breast fibroadenoma on mammograms. Methods: Mammography of 70 patients with breast fibroadenoma confirmed by pathology were analyzed retrospectively. All patients took breast X-ray of mediolateral oblique projection and craniocaudal projection before operation. Results: In 70 cases with fibroadenoma, mammography revealed 74 foci (36 left breast, 38 right breast) of 62 cases, and failed to reveal lesions in 8 cases. The shape of the lesions was round or round-like lesion in 60(31%). The border was well-defined in 46 masses, partly well-outlined in 14 and ill-defined in 4. 'Membranoid sign' can be seen in 40 cases. Conclusion: Typical X-ray findings of breast fibroadenoma is very important, mammography is a good method of choice in diagnosis of fibroadenoma. (authors)

  8. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  9. Barriers to Mammography among Inadequately Screened Women

    Science.gov (United States)

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  10. Image quality in conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Bautz, W.; Saebel, M.

    2000-01-01

    Purpose: Comparison of image quality between conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system, two digital storage plate systems and two digital systems in CCD-technique. Additionally, the radiograms of one digital phosphor storage plate system were post-processed emphasizing contrast and included in the comparison. Results: The detectability of details was the best with the digital mammography in CCD-technique in comparison with the conventional film screen technique resp. digital phosphor storage plate in magnification technique. Conclusions: Based on these results there is the possibility to replace the conventional film screen system by further studies - this has to be confirmed. (orig.) [de

  11. Traceability and quality control in mammography: measurements and models

    International Nuclear Information System (INIS)

    Peixoto, Jose Guilherme Pereira

    2002-10-01

    The success of a treatment or diagnosis using radiation, depends on the optimization of the dose determination to be administered for the patient and on the beam radiation quality. It is recognized by the international guidelines that it is necessary to improve calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control program in mammography. The contribution of the radiation metrology network to the mammography services is reviewed in this work. Steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. This work also presents the methodology and the procedures to maintain and to disseminate the traceability at the x-ray mammography range, describing the interlaboratory comparison performed at LNMRI/IRD/CNEN and at the IPEN/CNEN using the secondary standard ionization chambers traceable with the international standard. It assesses the inter-laboratory comparison consistency and decides whether a questionable value should or not be accepted, using the residual method. This thesis discusses the uncertainties involved in all steps of the calibration chain in accord once with the ISO recommendations. (author)

  12. Digital mammography with high-resolution storage plates (CR) versus full-field digital mammography (CCD) (DR) for microcalcifications and focal lesions - a retrospective clinical histologic analysis (n = 102)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Lell, M.; Wenkel, E.; Boehner, C.; Dassel, M.S.; Bautz, W.

    2005-01-01

    Purpose: to determine the diagnostic accuracy of microcalcifications and focal lesions in a retrospective clinical-histological study using high-resolution digital phosphor storage plates (hard copy) and full-field digital mammography (hard copy). Materials and methods: from May 2003 to September 2003, 102 patients underwent digital storage plate mammography (CR), using a mammography unit (Mammomat 3000 N, Siemens) in combination with a high resolution (9 lp/mm) digital storage phosphor plate system (pixel size 50 μm) (Fuji/Siemens). After diagnosis and preoperative wire localization, full-field digital mammography (CCD) (DR) was performed with the same exposure parameters. The full-field digital mammography used a CCD-detector (SenoScan) (fisher imaging) with a resolution of 10 Ip/mm and a pixel size of 50 μm. Five investigators determined the diagnosis (BI-RADS trademark I-V) retrospectively after the operation from randomly distributed mediolateral views (hard copy reading). These results were correlated with the final histology. Results: the diagnostic accuracy of digital storage plate mammography (CR) and full-field digital mammography (CCD) (DR) was 73% and 71% for all findings (n = 102), 73% and 71% for microcalcifications (n = 51), and 72% and 70% for focal lesions (n = 51). The overall results showed no difference. Conclusion: our findings indicate the equivalence of high-resolution digital phosphor storage plate mammography (CR) and full-field digital mammography (CCD) (DR). (orig.)

  13. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  14. Mammography screening among Arab American women in metropolitan Detroit.

    Science.gov (United States)

    Schwartz, Kendra; Fakhouri, Monty; Bartoces, Monina; Monsur, Joseph; Younis, Amani

    2008-12-01

    Mammography screening behavior has not been well studied among Middle Eastern immigrant women. We conducted a telephone survey of 365 Arab American women residing in metropolitan Detroit, home to one of the largest populations of Middle Eastern immigrants in the US, to determine prevalence of factors associated with mammography, and attitudes and beliefs regarding mammography screening. Of 365 participants, only five were born in the US. Mean age was 53.2 years (SD 10.8). Two hundred twelve (58.1%) reported having mammogram every 1-2 years; 70% ever had mammogram. Age 50-64 years, having health insurance, married status, being in the US over 10 years, and being Lebanese were associated with mammography every 1-2 years. After adjusting for demographic factors, perceived seriousness of disease, general health motivation, and having fewer barriers were associated with more frequent screening. Appropriate mammography screening is decreased in this group. Targeted outreach regarding screening is appropriate for this population; however, lack of insurance may prevent adequate follow-up.

  15. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  16. Mammography and ultrasound in the evaluation of male breast disease

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Carrasco, Rafaela; Alvarez Benito, Marina; Raya Povedano, Jose Luis [Hospital Universitario ' Reina Sofia' , Radiology Department, Cordoba (Spain); Munoz Gomariz, Elisa [Hospital Universitario ' Reina Sofia' , Support Unit for Research, Cordoba (Spain); Martinez Paredes, Maria [University of Cordoba, Radiology and Physical Medicine Area, Cordoba (Spain)

    2010-12-15

    To assess clinical variables that may be useful in differentiating gynaecomastia from carcinoma and to analyse the contribution of mammography and ultrasound to the evaluation of male breast disease. All men who underwent mammography and/or ultrasound between 1993 and 2006 in our hospital were retrospectively evaluated. Clinical characteristics in patients with gynaecomastia and those with carcinoma were compared. Radiological findings were classified according to the BI-RADS (Breast Imaging Reporting and Data System) criteria. The diagnostic performance of physical examination, mammography and ultrasound was determined and compared. A total of 628 patients with 518 mammograms and 423 ultrasounds were reviewed. The final diagnoses were: 19 carcinomas, 526 gynaecomastias, 84 other benign conditions and 25 normal. There were statistically significant differences in age, bilateral involvement, clinical presentation and physical examination between patients with carcinoma and those with gynaecomastia. The diagnostic performance of physical examination was lower than that of mammography and ultrasound (p < 0.05 for specificity). Mammography was the most sensitive (94.7%) and ultrasound the most specific (95.3%) for detection of malignancy (p > 0.05). We propose an algorithm for the use of mammography and ultrasound in men. Mammography and ultrasound, with a negative predictive value close to 100%, make it possible to avoid very many unnecessary surgical procedures in men. (orig.)

  17. Comments on shielding for dual energy accelerators

    International Nuclear Information System (INIS)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-01-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm 2 for 6 MV and 14.1x16.8 cm 2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm 2 , respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm 2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam

  18. Comments on shielding for dual energy accelerators.

    Science.gov (United States)

    Rossi, M C; Lincoln, H M; Quarin, D J; Zwicker, R D

    2008-06-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1 x 16.2 cm2 for 6 MV and 14.1 x 16.8 cm2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm2, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 degrees was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 degrees were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  19. Organization and standards of screening and diagnostic mammography

    International Nuclear Information System (INIS)

    Linderbraten, L.D.; Chikirdin, Eh.G.; Rozhkova, N.I.

    1999-01-01

    Problem of organizing and standards of the reference and diagnostic mammography in our country is discussed. Attention is paid to the terminology, accreditation of mammographic establishments and specialists, specifications of equipment, image quality, mammography results processing, radiation doses [ru

  20. Breast cancer imaging: Mammography among women of up to 45 years

    International Nuclear Information System (INIS)

    Schnejder-Wilk, A.

    2010-01-01

    Background: Among women under the age of 40, screening mammography examinations are not performed routinely. An ultrasonography scan is considered to be a basic breast imaging examination among younger women. The purpose of this study was to analyze mammography images, as well as to evaluate the usefulness and role of mammography in breast cancer diagnostic processes in women of up to 45 years, based on own experience. Material/Methods: A retrospective analysis of mammography images, including 144 cases of breast cancer diagnosed in the group of 140 women of 45 years of age. All the patients underwent pre-treatment mammography and surgery procedure. The images were evaluated in accordance to BIRADS criteria. Lesions detectable in mammography were grouped as follows: spiculated mass; nonmicrocalcified oval/round mass; microcalcified mass (regardless of shape); microcalcifications; architectural distortion; breast tissue asymmetry. Results: The most common mammographic symptom was solid tumor (41%), followed by microcalcified tumors (20.8%). Clusters of microcalcifications constituted 17.4% of mammography findings. In 4.9% of mammography scans, examination did not reveal any pathological lesions. Conclusions: Breast cancer mammograms of women aged up to 45 years do not differ from diagnostic pictures of breast cancer in older women. The diagnostic appearance of breast cancer in 1/3 of the patients involved microcalcifications detectable only on mammograms. All the women with suspicion of breast cancer should have their mammography examinations performed, irrespective of ultrasonography scans. (author)

  1. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E.; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Mangold, Stefanie; Ball, B.D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-04-15

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. (orig.)

  2. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual-energy

  3. Mammography: an update of the EUSOBI recommendations on information for women

    OpenAIRE

    Sardanelli, Francesco; Fallenberg, Eva M.; Clauser, Paola; Trimboli, Rubina M.; Camps-Herrero, Julia; Helbich, Thomas H.; Forrai, Gabor

    2016-01-01

    Abstract This article summarises the information to be offered to women about mammography. After a delineation of the aim of early diagnosis of breast cancer, the difference between screening mammography and diagnostic mammography is explained. The need to bring images and reports from the previous mammogram (and from other recent breast imaging examinations) is highlighted. Mammography technique and procedure are described with particular attention to discomfort and pain experienced by a sma...

  4. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    International Nuclear Information System (INIS)

    Wigmans, Richard; Nural, Akchurin

    2013-01-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals

  5. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model.

    Science.gov (United States)

    Potretzke, Theodora A; Brace, Christopher L; Lubner, Meghan G; Sampson, Lisa A; Willey, Bridgett J; Lee, Fred T

    2015-04-01

    To compare dual-energy computed tomography (CT) with conventional CT for the detection of small-bowel ischemia in an experimental animal model. The study was approved by the animal care and use committee and was performed in accordance with the Guide for Care and Use of Laboratory Animals issued by the National Research Council. Ischemic bowel segments (n = 8) were created in swine (n = 4) by means of surgical occlusion of distal mesenteric arteries and veins. Contrast material-enhanced dual-energy CT and conventional single-energy CT (120 kVp) sequences were performed during the portal venous phase with a single-source fast-switching dual-energy CT scanner. Attenuation values and contrast-to-noise ratios of ischemic and perfused segments on iodine material-density, monospectral dual-energy CT (51 keV, 65 keV, and 70 keV), and conventional 120-kVp CT images were compared. Linear mixed-effects models were used for comparisons. The attenuation difference between ischemic and perfused segments was significantly greater on dual-energy 51-keV CT images than on conventional 120-kVp CT images (mean difference, 91.7 HU vs 47.6 HU; P conventional CT by increasing attenuation differences between ischemic and perfused segments on low-kiloelectron volt and iodine material density images. © RSNA, 2014.

  6. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process

    International Nuclear Information System (INIS)

    Altaee, Ali; Zaragoza, Guillermo; Drioli, Enrico; Zhou, John

    2017-01-01

    Highlights: •Single and dual stage PRO was evaluated at different membrane configurations. •Impact of increasing module area or numbers on the power efficiency was studied. •DSPRO reduced the impact of CP & restored the osmotic potential of salinity gradient. •DSPRO outperforms single stage PRO process but depends on salinity gradient type. -- Abstract: Power generation by means of Pressure Retarded Osmosis (PRO) has been proposed for harvesting the energy of a salinity gradient. Energy recovery by the PRO process decreases along the membrane module due to depleting of the chemical potential across the membrane and concentration polarization effects. A dual stage PRO (DSPRO) design can be used to rejuvenate the chemical potential difference and reduce the concentration polarization on feed solution. Several design configurations were suggested for the membrane module arrangements in the first and second stage of the PRO process. PRO performance was evaluated for a number of salinity gradients proposed by coupling Dead Sea water or Reverse Osmosis (RO) brine with seawater or wastewater effluent. Maximum specific energy of inlet and outlet feeds was calculated using a developed computer model to identify the amount of recovered and remaining energy. Initially, specific power generation by the PRO process increased by increasing the number of modules of the first stage. Maximum specific energy is calculated along the PRO module to understand the degradation of the maximum specific energy in each module before introducing a second stage PRO process. Adding a second stage PRO process resulted in a sharp increase of the chemical potential difference and the specific energy yield of the process. Between 10% and 13% increase of the specific power generation was achieved by the DSPRO process for the Dead Sea-seawater salinity gradient depending on the dual stage design configuration. For Dead Sea-RO brine, 12–16% increase of the specific power generation was

  7. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.

    Science.gov (United States)

    Rafferty, Elizabeth A; Park, Jeong Mi; Philpotts, Liane E; Poplack, Steven P; Sumkin, Jules H; Halpern, Elkan F; Niklason, Loren T

    2014-02-01

    The purpose of this study was to compare two methods of combining tomosynthesis with digital mammography by assessing diagnostic accuracy and recall rates for digital mammography alone and digital mammography combined with one-view tomosynthesis and two-view tomosynthesis. Three hundred ten cases including biopsy-proven malignancies (51), biopsy-proven benign findings (47), recalled screening cases (138), and negative screening cases (74) were reviewed by 15 radiologists sequentially using digital mammography, adding one-view tomosynthesis, and then two-view tomosynthesis. Cases were assessed for recall and assigned a BI-RADS score and probability of malignancy for each imaging method. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Screening recall rates were compared using pooled logistical regression analysis. A p value of tomosynthesis, and DM plus two-view tomosynthesis was 0.828, 0.864, and 0.895, respectively. Both one-view and two-view tomosynthesis plus DM were significantly better than DM alone (Δ AUCs 0.036 [p = 0.009] and 0.068 [p tomosynthesis, and DM plus two-view tomosynthesis were 44.2%, 27.2%, and 24.0%, respectively. Combined with DM, one-view and two-view tomosynthesis both showed significantly lower noncancer recall rates than digital mammography alone (p tomosynthesis showed a significantly lower recall rate than digital mammography with one-view tomosynthesis (p tomosynthesis compared with digital mammography alone. Compared with digital mammography, diagnostic sensitivity for invasive cancers increased with the addition of both one-view (Δ12.0%, p tomosynthesis. The addition of one-view tomosynthesis to conventional digital mammography improved diagnostic accuracy and reduced the recall rate; however, the addition of two-view tomosynthesis provided twice the performance gain in diagnostic accuracy while further reducing the recall rate.

  8. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  9. Pre-reconstruction dual-energy, X-ray computerized tomography (CT): theory, implementation, results, and clinical use

    International Nuclear Information System (INIS)

    Oravez, W.T.

    1986-01-01

    For the task of bone mineral measurement, single-energy quantitative CT has demonstrated its worth in terms of precision for most longitudinal clinical studies. However, for cross-sectional clinical studies, known inaccuracy exists due to less than robust beam-hardening corrections, and negatively biased bone mineral measurement, due to the effect of unknown variable concentration of bone marrow fat within the metabolically active trabecular bone space. A dual-energy measurement technique provides a solution to these deficiencies of single-energy measurements. The fundamental theory of dual-energy measurement techniques is based on a Compton-photoelectric approximation and the mixture rule for the total attenuation coefficient. Resolution of atomic composition and electron density components of attenuation should then be possible. To take full advantage of these principles, the raw dual-energy projection values are operated on before reconstruction. This method beam-hardening and composition-selective imaging. Rapid kilovoltage switching between projection measurements, rather than serial measurements, assures the best measurement quality

  10. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  11. Control of quality in mammography

    International Nuclear Information System (INIS)

    2006-10-01

    The present protocol of quality control/quality assurance in mammography is the result of the work of two regional projects realised in Latin America within the frame of ARCAL with the support of the IAEA. The first is ARCAL LV (RLA/6/043) project on quality assurance/quality control in mammography studies which analysed the present situation of the mammography in the member countries of the project which include: Bolivia, Colombia, Costa Rica, Cuba, El Salvador, Guatemala, Nicaragua, Panama, Paraguay, Peru, Dominican Republic and Republic of Venezuela and the second is ARCAL XLIX (RLA/9/035) project, whose members were Brazil, Colombia, Cuba, Chile, Mexico, and Peru, worked the application of Basic Safety Standards for the protection against ionising radiation with the aim to improve radiation protection in X-ray diagnosis medical practices through the implementation of the Basic Safety Standards (BSS) related to x-ray diagnosis in selected hospitals located in each country involved in the project. The work of both projects had been consolidated and harmonized in the present publication

  12. Understanding women's mammography intentions: a theory-based investigation.

    Science.gov (United States)

    Naito, Mikako; O'Callaghan, Frances V; Morrissey, Shirley

    2009-01-01

    The present study compared the utility of two models (the Theory of Planned Behavior and Protection Motivation Theory) in identifying factors associated with intentions to undertake screening mammography, before and after an intervention. The comparison was made between the unique components of the two models. The effect of including implementation intentions was also investigated. Two hundred and fifty-one women aged 37 to 69 years completed questionnaires at baseline and following the delivery of a standard (control) or a protection motivation theory-based informational intervention. Hierarchical multiple regressions indicated that theory of planned behavior variables were associated with mammography intentions. Results also showed that inclusion of implementation intention in the model significantly increased the association with mammography intentions. The findings suggest that future interventions aiming to increase screening mammography participation should focus on the theory of planned behavior variables and that implementation intention should also be targeted.

  13. Dual-wavelength laser transmission photoscanner for breast cancer detection

    International Nuclear Information System (INIS)

    Kaneko, M.; He, P.; Tanaka, H.; Takahashi, M.; Takai, M.; Baba, K.; Yamashita, Y.; Ohta, K.

    1989-01-01

    This paper reports on the prototype of a laser transmission photoscanner (LTPS) constructed and used for the detection of breast cancer and compared with x-ray mammography. LTPS has been improved to enable spectroanalysis and application in breast cancer screening. The new type is introduced. In order to obtain higher sensitivity, the output of lasers was increased in intensity. The signal integration time was increased 10-fold, and the width of the detector area was doubled. The gated operation of the detector enables the good throughput. Simultaneous scanning in the dual wavelengths of 630 and 830 nm makes it possible to differentiate hemoglobin (Hb) and oxyhemoglobin (HbO 2 ) in spectroanalysis by means of Lambert--Beer's law. Clinical application of dual-wavelength LTPS shows good correlation with pathology

  14. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  15. Cancer of the breast: induction by radiation and role of mammography

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N

    1977-10-01

    Conflict in the management of cancer of the breast exists. Diagnosis by x-ray mammography provides early effective treatment, but x-ray exposure to the breast is cancerogenic. Prudence requires the use of low dose x-rays in mammography, and limits the use of x-ray mammography in the young. Guide lines for the indications for mammography are changing, and large scale population exposure to radiation should await results of demonstration projects in the United States.

  16. Comparison of the effect of radiation exposure from dual-energy CT versus single-energy CT on double-strand breaks at CT pulmonary angiography.

    Science.gov (United States)

    Tao, Shu Min; Li, Xie; Schoepf, U Joseph; Nance, John W; Jacobs, Brian E; Zhou, Chang Sheng; Gu, Hai Feng; Lu, Meng Jie; Lu, Guang Ming; Zhang, Long Jiang

    2018-04-01

    To compare the effect of dual-source dual-energy CT versus single-energy CT on DNA double-strand breaks (DSBs) in blood lymphocytes at CT pulmonary angiography (CTPA). Sixty-two patients underwent either dual-energy CTPA (Group 1: n = 21, 80/Sn140 kVp, 89/38 mAs; Group 2: n = 20, 100/Sn140 kVp, 89/76 mAs) or single-energy CTPA (Group 3: n = 21, 120 kVp, 110 mAs). Blood samples were obtained before and 5 min after CTPA. DSBs were assessed with fluorescence microscopy and Kruskal-Walls tests were used to compare DSBs levels among groups. Volume CT dose index (CTDIvol), dose length product (DLP) and organ radiation dose were compared using ANOVA. There were increased excess DSB foci per lymphocyte 5 min after CTPA examinations in three groups (Group 1: P = .001; Group 2: P = .001; Group 3: P = .006). There were no differences among groups regarding excess DSB foci/cell and percentage of excess DSBs (Group 1, 23%; Group 2, 24%; Group 3, 20%; P = .932). CTDIvol, DLP and organ radiation dose in Group 1 were the lowest among the groups (all P dual-source and single-source CTPA, while dual-source dual-energy CT protocols do not increase the estimated radiation dose and also do not result in a higher incidence of DNA DSBs in patients undergoing CTPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effectiveness of a Mobile Mammography Program.

    Science.gov (United States)

    Stanley, Elizabeth; Lewis, Madelene C; Irshad, Abid; Ackerman, Susan; Collins, Heather; Pavic, Dag; Leddy, Rebecca J

    2017-12-01

    Mobile mammography units have increasingly been used to address patient health care disparities; however, there are limited data comparing mobile units to stationary sites. This study aims to evaluate the characteristics of women who underwent mammography screening in a mobile unit versus those who underwent mammography screening at a cancer center. In this retrospective study, we analyzed all screening mammography examinations performed in a mobile unit in 2014 (n = 1433 examinations). For comparison, we randomized and reviewed an equivalent number of screening mammography examinations performed at our cancer center in 2014 (n = 1434 examinations). BI-RADS assessment, adherence to follow-up, biopsies performed, cancer detection rate, and sociodemographic variables were recorded. An independent-samples t test was conducted to identify potential differences in age between cancer center patients and mobile unit patients. Chi-square analyses were used to test for associations between location and factors such as health insurance, race, marital status, geographic area, adherence to screening guidelines, recall rate, adherence to follow-up, and cancer detection rates. Patients visiting our cancer center (mean = 57.74 years; SD = 10.55) were significantly older than those visiting the mobile unit (mean = 52.58 years; SD = 8.19; p mobile van (cancer center = 3.70%, mobile unit = 38.73%). There was a significant association between screening location and patient race (χ 2 = 118.75, p mobile unit = 33.30%), more black patients being screened in the mobile van (cancer center = 49.30%, mobile unit = 54.15%), and more Hispanic patients being screened in the mobile van (cancer center = 1.05%, mobile unit = 6.77%). There was a significant association between location and patient marital status (χ 2 = 135.61, p mobile unit = 38.31%), more single patients screened in the mobile van (cancer center = 25.17%, mobile unit = 34.47%), and more widowed patients being screened at the

  18. Radiology Residents' Performance in Screening Mammography Interpretation

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lyou, Chae Yeon

    2013-01-01

    To evaluate radiology residents' performance in screening mammography interpretation and to analyze the factors affecting performance. We enrolled 203 residents from 21 institutions and performed mammography interpretation tests. Between the trainee and non-trainee groups, we compared the interpretation score, recall rate, sensitivity, positive predictive value (PPV) and false-positive rate (FPR). We estimated the training effect using the score differences between trainee and non-trainee groups. We analyzed the factors affecting performance between training-effective and non-effective groups. Trainees were superior to non-trainees regarding interpretation score (43.1 vs. 37.1), recall rate (11.0 vs. 15.5%), sensitivity (83.6 vs. 72.0%), PPV (53.0 vs. 32.4%) and FPR (13.5 vs. 25.5). The longer the training period, the better were the interpretation score, recall rate, sensitivity, PPV and FPR (rho = 0.486, -0.375, 0.343, 0.504, -0.446, respectively). The training affected an increase by an average of 6 points; however, 31.6% of institutions showed no effect. A difference was noted in the volume of mammography interpretation during a month (594.0 vs. 476.9) and dedication of breast staff (61.5 vs. 0%) between training-effective and non-effective groups. Trainees showed better performance in mammography interpretation compared to non-trainees. Moreover, performance was correlated with the training period. The factors affecting performance were the volume of mammography interpretation and the dedication of the breast staff.

  19. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  20. Exposure and roentgen-area-product in xeromammography and conventional mammography

    Energy Technology Data Exchange (ETDEWEB)

    Baxt, J H; Bushong, S C; Glaze, S; Kothari, S [Baylor Univ., Houston, Tex. (USA). Coll. of Medicine

    1976-01-01

    X-ray mammography is assuming increasing importance in the early detection of breast cancer. The principal disadvantage to conventional mammography is high patient dose. Xeromammography offers three advantages over conventional mammography: (a) lower patient dose, (b) better image quality and (c) no special mammography tube required. A transmission ionization chamber and thermoluminescent dosimeters were used to measure the roentgen-area-product and the exposure for three view examination. Average roentgen-area-product values of 6500 and 4200 R-cm/sup 2/ were observed for conventional mammography and xeromammography respectively. The medial surface of the breast received the highest radiation exposure for both types of examinations and this was shown to be 11.5 and 5.1 R respectively. Omission of the axillary view from the examination reduces the patient dose in both types by approximately 60 %.

  1. Quality assurance programme at Slovak mammography departments

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.

    2004-01-01

    A co-ordinated research program (CRP) for optimisation of image quality in mammography in some Eastern European countries has been initiated by IAEA between 1999 and 2001 and the Slovak Republic took part in this program. The aim of this program was to implement the European QA/QC protocol in a sample of mammography departments and to achieve improvement of the image quality and patient dose reduction. On the national level 28 mammography units were chosen in accordance with equipment performance for quality control programme at this departments, for the first part of the mammography audit in the years 2002-2004. Realisation of CRP project contains: 1) Collection and evaluation of clinical images in agreement with EC criteria; 2) Evaluation of the image quality using mammography test phantom; 3) Measurements of the ESD at patients using TLD; 4) Intercomparison of TLD system calibration with IAEA laboratory; 5) Film reject analysis; 6) Implementation of QC program to the mammography units. The measurements of ESD on patients were performed with TLD (LiF 700 Harshaw). In the 6 month period were collected the results of measurements of: 1) object thickness compensation (measured weekly); 2) long time reproducibility (measured daily); 3) phantom image quality on the standard RMI 156 phantom (measured weekly); 4) ESD on phantom with TLD (once during the audit). Automatic Exposure Control compensation for the object thickness variation was measured by exposing different PMMA plates of thickness ranging from 20 to 60 mm, using the clinical settings. The long term reproducibility has been assessed from the measurements of the optical density and mAs product resulted from the exposure on the PMMA plates. In order to estimate the quality of the images the RMI 156 mammography accreditation phantom was chosen. The accreditation phantom contains test objects which simulate small structures seen in the breast (microcalcifications, fibrils, and tumor like masses). Results of

  2. Does health status influence intention regarding screening mammography?

    International Nuclear Information System (INIS)

    Park, Keeho; Park, Jong-Hyock; Park, Jae-Hyun; Kim, Hui-Jeong; Park, Bo-Yoon

    2010-01-01

    We analyzed information surveyed from a community-based sample of Korean women older than 40 years of age to understand the relationships between health status and screening behavior. In a cross-sectional population-based study, a two-stage, geographically stratified household-based sampling design was used for assembly of a probability sample of women aged 40-69 years living in Gunpo in Korea, resulting in a total sample size of 503 women. The primary outcome variable for this analysis was the respondent's intention to obtain a mammogram. Predictor variables included health status and other factors known to influence the use of cancer screening, such as age, education, income, marital status and the presence of co-morbid illnesses. Health status was assessed by using the EuroQol (EQ-5D). The median EQ visual analogue scale score was 75.0, ranging from 20 to 100. In bivariate analyses, the percentage of women reporting to have intention toward mammography use decreased with worsening health status. Women who had problems with mobility or anxiety/depression showed lower intention to undergo future screening mammography. Multivariate logistic regression confirmed that health status was significantly associated with intention toward mammography use. Anxiety or depression was an independent predictor of future screening mammography use. Health status is significantly associated with intention regarding screening mammography use. Physicians or other health professionals should be aware that health status is an important component for health promotion, and should pay more attention to clients' possible vulnerability in screening mammography use due to their poor health status. (author)

  3. The accuracy of digital breast tomosynthesis compared with coned compression magnification mammography in the assessment of abnormalities found on mammography

    International Nuclear Information System (INIS)

    Morel, J.C.; Iqbal, A.; Wasan, R.K.; Peacock, C.; Evans, D.R.; Rahim, R.; Goligher, J.; Michell, M.J.

    2014-01-01

    Aim: To compare the diagnostic accuracy of the digital breast tomosynthesis (DBT) with coned compression magnification mammography (CCMM). Materials and methods: The study design included two reading sessions completed by seven experienced radiologists. In the first session, all readers read bilateral standard two-view mammograms and a CCMM view of the lesion before giving a combined score for assessment. In the second session, readers read bilateral standard two-view mammograms plus one-view DBT. The two reading sessions of the experiment were separated by at least 2 weeks to reduce the chance of reader memory of the images read in the previous session from influencing the performance in the subsequent session. Results: Three hundred and fifty-four lesions were assessed and receiver-operative characteristic (ROC) analysis was used to evaluate the difference between the two modes. For standard two-view mammography plus CCMM, the area under the curve (AUC) was 0.87 [95% confidence interval (CI): 0.83–0.91] and for standard two-view mammography plus DBT the AUC was 0.93 (95% CI: 0.91–0.95). The difference between the AUCs was 0.06 with p-value of 0.0014. Conclusion: Two-view mammography with one-view DBT showed significantly improved accuracy compared to two-view mammography and CCMM in the assessment of mammographic abnormalities. These results show that DBT can be used effectively in the further evaluation of mammographic abnormalities found at screening and in symptomatic diagnostic practice. - Highlights: • Diagnostic accuracy of magnification mammography and digital breast tomosynthesis. • There is statistical difference between CCMM and DBT. • DBT has a role in evaluating mammographic abnormalities

  4. Digital breast tomosynthesis versus mammography and breast ultrasound: a multireader performance study

    International Nuclear Information System (INIS)

    Thibault, Fabienne; Malhaire, Caroline; Tardivon, Anne; Dromain, Clarisse; Balleyguier, Corinne S.; Breucq, Catherine; Steyaert, Luc; Baldan, Enrica; Drevon, Harir

    2013-01-01

    To compare the diagnostic performance of single-view breast tomosynthesis (BT) with that of dual-view mammography (MX); to assess the benefit of adding the craniocaudal (CC) mammographic view to BT, and of adding BT to MX plus breast ultrasound, considered to be the reference work-up. One hundred and fifty-five consenting patients with unresolved mammographic and/or ultrasound findings or breast symptoms underwent conventional work-up plus mediolateral oblique-view BT of the affected breast. The final study set in 130 patients resulted in 55 malignant and 76 benign and normal cases. Seven breast radiologists rated the cases through five sequential techniques using a BIRADS-based scale: MX, MX + ultrasound, MX + ultrasound + BT, BT, BT + MX(CC). Multireader, multicase receiver operating characteristic (ROC) analysis was performed and performance of the techniques was assessed from the areas under ROC curves. The performance of BT and of BT + MX(CC) was tested versus MX; the performance of MX + ultrasound + BT tested versus MX + ultrasound. Tomosynthesis was found to be non-inferior to mammography. BT + MX(CC) did not appear to be superior to MX, and MX + ultrasound + BT not superior to MX + ultrasound. Overall, none of the five techniques tested outperformed the others. Further clinical studies are needed to clarify the role of BT as a substitute for traditional work-up in the diagnostic environment. (orig.)

  5. Quality assurance in mammography

    International Nuclear Information System (INIS)

    Fosmark, H.; Olerud, H.M.

    1992-01-01

    Guidelines in mammography are given, including competence of staff, performance of equipment and quality control procedures. The purpose of the guidelines is to ensure optimum diagnostic quality. 5 refs

  6. Digital mammography: what do we and what don't we know?

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2007-01-01

    High-quality full-field digital mammography has been available now for several years and is increasingly used for both diagnostic and screening mammography. A number of different detector technologies exist, which all have their specific advantages and disadvantages. Diagnostic accuracy of digital mammography has been shown to be at least equivalent to film-screen mammography in a general screening population. Digital mammography is superior to screen-film mammography in younger women with dense breasts due to its ability to selectively optimize contrast in areas of dense parenchyma. This advantage is especially important in women with a genetic predisposition for breast cancer, where intensified early detection programs may have to start from 25 to 30 years of age. Tailored image processing and computer-aided diagnosis hold the potential to further improve the early detection of breast cancer. However, at present no consensus exists among radiologists on which processing is optimal for digital mammograms. Image processing may also vary significantly among vendors with so far limited interoperability. This review aims to summarize the available information regarding the impact of digital mammography on workflow and breast cancer diagnosis. (orig.)

  7. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  8. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    Science.gov (United States)

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2017-07-01

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Combination of one-view digital breast tomosynthesis with one-view digital mammography versus standard two-view digital mammography: per lesion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, Gisella; Bezzon, Elisabetta; Pescarini, Luigi; Polico, Ilaria; Proietti, Alessandro; Baldan, Enrica; Pomerri, Fabio; Muzzio, Pier Carlo [Veneto Institute of Oncology (IRCCS), Padua (Italy); Hendrick, R.E. [University of Colorado-Denver, Department of Radiology, School of Medicine, Aurora, CO (United States); Toledano, Alicia [Biostatistics Consulting, LLC, Kensington, MD (United States); Paquelet, Jean R. [Advanced Medical Imaging Consultants, Fort Collins, CO (United States); Breast Imaging, McKee Medical Center, Loveland, CO (United States); Chersevani, Roberta [Private Medical Practice, Gorizia (Italy); Di Maggio, Cosimo [Private Medical Practice, Padua (Italy); La Grassa, Manuela [Department of Radiology, Oncological Reference Center (IRCCS), Aviano (Italy)

    2013-08-15

    To evaluate the clinical value of combining one-view mammography (cranio-caudal, CC) with the complementary view tomosynthesis (mediolateral-oblique, MLO) in comparison to standard two-view mammography (MX) in terms of both lesion detection and characterization. A free-response receiver operating characteristic (FROC) experiment was conducted independently by six breast radiologists, obtaining data from 463 breasts of 250 patients. Differences in mean lesion detection fraction (LDF) and mean lesion characterization fraction (LCF) were analysed by analysis of variance (ANOVA) to compare clinical performance of the combination of techniques to standard two-view digital mammography. The 463 cases (breasts) reviewed included 258 with one to three lesions each, and 205 with no lesions. The 258 cases with lesions included 77 cancers in 68 breasts and 271 benign lesions to give a total of 348 proven lesions. The combination, DBT{sub (MLO)}+MX{sub (CC)}, was superior to MX (CC+MLO) in both lesion detection (LDF) and lesion characterization (LCF) overall and for benign lesions. DBT{sub (MLO)}+MX{sub (CC)} was non-inferior to two-view MX for malignant lesions. This study shows that readers' capabilities in detecting and characterizing breast lesions are improved by combining single-view digital breast tomosynthesis and single-view mammography compared to two-view digital mammography. (orig.)

  10. Current perspectives on indications and limitations of mammography

    International Nuclear Information System (INIS)

    Pope, T.L. Jr.

    1983-01-01

    Women have a 7 percent natural lifetime risk of developing breast cancer, which is the leading cause of death in women aged 40 to 50 years. Most data suggest that the earlier the disease is diagnosed, the better the chance for cure. Women with ''minimal breast cancer'' have an actuarial 20-year survival rate of 93.2 percent. The majority of these breast cancers are diagnosed by mammography. The radiation doses from this technique have been dramatically decreased over the last ten years to about 0.1 to 0.6 rads per study. The two largest breast cancer screening studies, the Health Insurance Plan of Greater New York and the Breast Cancer Detection Demonstration Project, have shown conclusively that women over 50 years old can benefit from annual mammography and that certain groups can benefit from mammography at close intervals before the age of 50 years. This article describes the development of mammography and outlines current perspectives on its indications and limitations

  11. Influence of the radiographer on the pain felt during mammography

    International Nuclear Information System (INIS)

    Goethem, M. van; Verslegers, I.; Biltjes, I.; De Schepper, A.; Mortelmans, D.; Bruyninckx, E.; Hove, E. Van

    2003-01-01

    Mammography is the only useful examination in screening for breast cancer. Mortality from breast cancer can be reduced if women go regularly for a screening mammography. Moreover, it is still the key examination in diagnosis of breast diseases and in the follow-up of patients treated for breast cancer. Pain with mammography can deter women from going for regular screening or follow-up; therefore, it is important to reduce pain experience or discomfort from mammography. In this study we evaluate the impact of the ''radiographer'' on the pain risk during mammography by analysing questionnaires filled in by women and radiographers. Study results reveal that the opinion of the radiographer, the information and communication during the examination and the number of years of experience are important factors in pain and discomfort experience. The attitude of the radiographer plays an important role in the pain experience. (orig.)

  12. Current status of mammography

    International Nuclear Information System (INIS)

    Crymes, J.E.

    1979-01-01

    Great progress has been made in recent years in the diagnosis and treatment of breast cancer; however, breast cancer continues to be the most common and lethal cancer in women today. Early diagnosis is essential in order for treatmet to be given before the tumor spreads beyond the breast. The radiation risks of mammography have been greatly reduced with the use of newer low-dose techniques, and the benefits of mammography have increased because of a better understanding of the natural history of breast cancer, as well as improved methods of treatment. Radiologists must continue to take an active role in the early diagnosis of breast cancer. Continued research is needed in order to improve screening methods and to develop newer, noninvasive techniques

  13. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    International Nuclear Information System (INIS)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander

    2017-01-01

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  14. Evaluation of the performance characteristic for mammography by using edge device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Jwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, The Soonchunhyang University, Asan (Korea, Republic of); Lee, Eul Kyu [Dept. of Radiology, Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, The Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluation of the performance characteristic for mammography by using edge device that mammography equipment improves essential in the correct diagnosis for the maintenance. We measured the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using the 61267 RQA-M2 based on commission standard international electro-technical commission (IEC). As a results, spatial resolution of dimensions tomo and lorad selenia mammography were maintained at 10 mm-1 and NPS and DQE including the low nyquist frequency indicated to 6.0 mm-1. Therefore, regularly QA of mammography system should be necessary. This study can be contribute to evaluate QA for performance characteristic of mammography of DDR system.

  15. A Monte Carlo study of the energy dependence of Al2O3: C crystals for real-time in vivo dosimetry in mammography

    DEFF Research Database (Denmark)

    Aznar, M.C.; Medin, J.; Hemdal, B.

    2005-01-01

    large energy dependence in low-energy X-ray beams can be expected. In the present work, the energy dependence of Al2O3:C crystals was modelled with the Monte Carlo code EGSnre using three types of X-ray spectra. The results obtained (5.6-7.3%) agree with a previously determined experimental result (9...... to the thickness of the light-protective material, and a somewhat larger effect from reducing the diameter of the crystal. The outcome of this study can be used to improve the future design of the RL/OSI. dosimetry system for use in mammography....

  16. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  17. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  18. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  19. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    Science.gov (United States)

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  20. Reproducing 2D breast mammography images with 3D printed phantoms

    Science.gov (United States)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  1. TU-F-18A-09: CT Number Stability Across Patient Sizes Using Virtual-Monoenergetic Dual-Energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, G; Grimes, J; Fletcher, J; McCollough, C [Mayo Clinic, Rochester, MN (United States); Halaweish, A [Siemens Healthcare, Rochester, MN (United States)

    2014-06-15

    Purpose: Virtual-monoenergetic imaging uses dual-energy CT data to synthesize images corresponding to a single photon energy, thereby reducing beam-hardening artifacts. This work evaluated the ability of a commercial virtual-monoenergetic algorithm to achieve stable CT numbers across patient sizes. Methods: Test objects containing a range of iodine and calcium hydroxyapatite concentrations were placed inside 8 torso-shaped water phantoms, ranging in lateral width from 15 to 50 cm, and scanned on a dual-source CT system (Siemens Somatom Force). Single-energy scans were acquired from 70-150 kV in 10 kV increments; dual-energy scans were acquired using 4 energy pairs (low energy: 70, 80, 90, and 100 kV; high energy: 150 kV + 0.6 mm Sn). CTDIvol was matched for all single- and dual-energy scans for a given phantom size. All scans used 128×0.6 mm collimation and were reconstructed with 1-mm thickness at 0.8-mm increment and a medium smooth body kernel. Monoenergetic images were generated using commercial software (syngo Via Dual Energy, VA30). Iodine contrast was calculated as the difference in mean iodine and water CT numbers from respective regions-of-interest in 10 consecutive images. Results: CT numbers remained stable as phantom width varied from 15 to 50 cm for all dual-energy data sets (except for at 50 cm using 70/150Sn due to photon starvation effects). Relative to the 15 cm phantom, iodine contrast was within 5.2% of the 70 keV value for phantom sizes up to 45 cm. At 90/150Sn, photon starvation did not occur at 50 cm, and iodine contrast in the 50-cm phantom was within 1.4% of the 15-cm phantom. Conclusion: Monoenergetic imaging, as implemented in the evaluated commercial system, eliminated the variation in CT numbers due to patient size, and may provide more accurate data for quantitative tasks, including radiation therapy treatment planning. Siemens Healthcare.

  2. Effect of area x-ray beam equalization on image quality and dose in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jerry; Xu Tong; Husain, Adeel; Le, Huy; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2004-08-21

    In mammography, thick or dense breast regions persistently suffer from reduced contrast-to-noise ratio (CNR) because of degraded contrast from large scatter intensities and relatively high noise. Area x-ray beam equalization can improve image quality by increasing the x-ray exposure to under-penetrated regions without increasing the exposure to other breast regions. Optimal equalization parameters with respect to image quality and patient dose were determined through computer simulations and validated with experimental observations on a step phantom and an anthropomorphic breast phantom. Three parameters important in equalization digital mammography were considered: attenuator material (Z = 13-92), beam energy (22-34 kVp) and equalization level. A Mo/Mo digital mammography system was used for image acquisition. A prototype 16 x 16 piston driven equalization system was used for preparing patient-specific equalization masks. Simulation studies showed that a molybdenum attenuator and an equalization level of 20 were optimal for improving contrast, CNR and figure of merit (FOM = CNR{sup 2}/dose). Experimental measurements using these parameters showed significant improvements in contrast, CNR and FOM. Moreover, equalized images of a breast phantom showed improved image quality. These results indicate that area beam equalization can improve image quality in digital mammography.

  3. Calibration procedures for mammography dosemeters in Poland

    International Nuclear Information System (INIS)

    Gwiazdowska, B.; Ulkowski, P.; Tolwinski, J.; Bulski, W.

    2002-01-01

    Breast cancer is the most frequent tumour in women and the effectiveness of the treatment depends dramatically on the early detection of the disease. That is the reason why in Poland the mammography control examinations are strongly supported by the Centre of Oncology. In Poland there are over 400 mammography units which account for about 300,000 examinations per year. An investigation performed by the Medical Physics Department of the Centre of Oncology in Warsaw at about 100 mammography facilities proved that in most cases the doses absorbed by the patients could be reduced without decrease of image quality. This is one of the reasons why the Polish Secondary Standard Dosimetry Laboratory (SSDL) dealing mainly with calibration of radiotherapy dosemeters is extending its activities and therefore new facilities and equipment adapted for calibration of mammographic dosemeters have been installed. The mammography dosimetry calibration equipment is permanently installed in the same laboratory room where the radiotherapy dosemeters are calibrated. A base of a mammography unit no longer in clinical use, together with its movable system has been adapted to handle ionization chamber holders. An X-ray tube with a 50 kV high frequency generator was also installed. The tube, a Varian type OEG-50-2, (designed for laboratory applications) with molybdenum anode of an anode angle 23,7 deg. and with a large focus, effective size approximately 5 mm 2 , has an inherent filtration of 0,25 mm beryllium. It is installed in a housing with 2mm lead shielding; a cone shaped beam is formed by a system of three collimators

  4. Tests with films and film-screens using grid-mammography

    International Nuclear Information System (INIS)

    Wolf, G.; Kallinger, G.

    1982-01-01

    A comparison was made between mammography using grid-technique with a film-screen-system and mammography without grid, and with film-screens and also using industrial films. The image-quality of grid mammography looks like the same than using conventional techniques and industrial films. The problem of soft tissue grid techniques lies in the dose requirements, which was more than using film-screen-techniques without grid. New and improved recording systems, which reduce radiation dose when using the grid technique were analyzed. (orig.) [de

  5. Pain during mammography: Implications for breast screening programmes

    International Nuclear Information System (INIS)

    Andrews, F.J.

    2001-01-01

    Pain experienced during mammography can deter women from attending for breast cancer screening. Review of the current literature on pain experienced during mammography reveals three main areas of interest: reports of the frequency of pain, identification of predictors of pain and strategies for responding to pain. Implications of this literature for breast screening programmes include the need for appropriate measurements of pain during mammography that are valid for screening populations, a further understanding of organizational factors involved in screening programmes that may be predictors of pain and for the development of valid strategies for responding to pain within breast screening programmes. Copyright (2001) Blackwell Science Pty Ltd

  6. Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study

    Science.gov (United States)

    Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas

    2016-03-01

    This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, pwomen and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.

  7. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  8. Hardware for mammography

    International Nuclear Information System (INIS)

    Rozhkova, N.I.; Chikirdin, Eh.G.; Ryudiger, Yu.G.; Kochetova, G.P.; Lisachenko, I.V.; Yakobs, O.Eh.

    2000-01-01

    The comparative studies on various visualization means, in particular, the intensifying screens and films with application of quantitative methods for determining small details on photographs, including measurements of corresponding exposures, absorbed doses and verification of conclusions through the analysis of clinical observations are carried out. It is shown, that technical equipment of the modern mammography room should include the X-ray mammographic apparatus, providing for the image high-quality by low dose loads with special film holders, meeting the mammography requirements, the corresponding X-ray film and the automatic photolaboratory process, provided by one and the same company. The quality of photographs under such conditions is guarantied, the defects and errors by the image interpretation are excluded. The modern computerized information technologies for work with medical images on the basic of creating new generations of diagnostic instrumentation with digital video channels and computerized working places dispose of many medical, technological, organizational and financial problems [ru

  9. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  10. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  11. The clinical use of mammography in the male; Klinische Relevanz der Mammographie beim Mann

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, E [Ulm Univ. (Germany). Abt. Radiologie; Mueller, M [Ulm Univ. (Germany). Abt. Radiologie; Vogel, J [Ulm Univ. (Germany). Abt. Radiologie; Klatt, S [Ulm Univ. (Germany). Abt. Innere Medizin I; Goerich, J [Ulm Univ. (Germany). Abt. Radiologie; Berger, H G [Ulm Univ. (Germany). Allgemeinchirurgische Abt.; Brambs, H J [Ulm Univ. (Germany). Abt. Radiologie

    1996-01-01

    During a period of four years 104 mammograms were performed in 89 men. Mastectomies were carried out on 23 men (group 1). 66 patients (group 2) were followed up clinically and in 15 patients serial mammograms were obtained. In group 1 there were 5 patients with bilateral gynaecomastia, 9 with unilateral gynaecomastia and two with pseudogynaecomastia and there were 7 patients with malignancies. In group 2 there were 46 patients with bilateral gynaecomastia and 10 patients with unilateral gynaecomastia. Pseudogynaecomastia was found in 25 patients. There were 7 malignancies, of which 5 had been suspected clinically and one had been diagnosed as gynaecomastia by mammography. Two carcinomas in situ were missed clinically and also by mammography. When malignancy is not suspected on clinical grounds the first examination should be sonography. Where, however, malignancy is suspected, and for follow-up, mammography retains its primary position. (orig./MG) [Deutsch] In einem 4-Jahres-Zeitraum wurden bei 89 Maennern insgesamt 104 Mammogramme angefertigt. 23 Maenner (=Gruppe 1) wurden mastektomiert. 66 Patienten (=Gruppe 2) wurden klinisch und zum Teil mammographisch kontrolliert. Alle Mammogramme wurden in Unkenntnis des klinischen Befundes retrospektiv ausgewertet und, wenn moeglich, dem histologischen Ergebnis gegenuebergestellt. In der Gruppe 1 fand sich eine beidseitige Gynaekomastie in 5/23 Faellen, eine einseitige Form in 9/23 Faellen, eine Pseudogynaekomastie in 2/23 Faellen und ein Malignom in 7/23 Faellen. In Gruppe 2 ergab sich eine beidseitige Gynaekomastie in 46/81 Faellen gegenueber einer einseitigen Form in 10/81 Faellen. Eine Pseudogynaekomastie fand sich in 25/81 Faellen. Von 7 Malignomen waren 5 klinisch suspekt, wobei eines mammographisch als Gynaekomastie imponierte. Zwei In-situ-Karzinome waren sowohl mammographisch als auch klinisch okkult. Klinisch nicht malignomsuspekte Befunde sollten primaer der Mammasonographie zugefuehrt werden. Bei

  12. Breast Cancer Detection: Mammography and other methods in breast imaging, second edition

    International Nuclear Information System (INIS)

    Bassett, L.W.; Gold, R.H.

    1987-01-01

    The text addresses mammography and the advantages and limitations of other breast imaging methods presently available. The establishment of X-ray mammography as the safest and most accurate noninvasive method of early, nonpalpable breast cancer detection is addressed in the first section of the book. The second section emphasizes the signs of early cancer, the complete mammographic examination, and the team approach to diagnosis. The advantages and limitations of film-screen mammography, zero mammography, breast ultrasound, thermography, light scanning, magnetic resonance imaging, and ductography are highlighted as alternate methods of detection. The benefits of mammography, and its unmatched value in screeening for breast cancer, are presented in the final section

  13. Response costs of mammography adherence: Iranian women's perceptions.

    Science.gov (United States)

    Khodayarian, Mahsa; Mazloomi-Mahmoodabad, Seyed Saied; Lamyian, Minoor; Morowatisharifabad, Mohammad Ali; Tavangar, Hossein

    2016-01-01

    Mammography as the most common secondary prevention method has known to be helpful in detecting breast cancer at the early stages. Low level of participation among women toward mammography uptake due to cultural beliefs is a great concern. This study aimed at exploring the perceptions of women about response costs of mammography adherence (MA) in Yazd, Iran. A qualitative study using semi-structured interviews was performed. Fourteen women,one oncology nurse, and a breast cancer survivor were purposefully interviewed. Interviews were transcribed verbatim and analyzed by directed content analysis method based on protection motivation theory (PMT). One main theme was emerged from the analysis namely called "response costs".Two main categories were also emerged from the data; (1) psychological barriers with six subcategories including "embarrassment," "worry about being diagnosed with cancer," "preoccupation with underlying disease," "misconception about mammography," "need for an accompanying person," and "internalizing the experiences of the others," and (2) maladaptive coping modes which encompassed three subcategories: "religious faith," "fatalism," and"avoidance and denial." Useful information was provided about the response costs of mammography utilization based on the perceptions of women. Cognitive barriers may be decreased by conducting modifications in women's awareness and attitude toward MA as well as changing the national health system infrastructures. Incorporating religious and cultural belief systems into MA educational programs through motivational messages is recommended.

  14. Development of a dual-energy silicon X-ray diode and its application to gadolinium imaging

    International Nuclear Information System (INIS)

    Sato, Yuichi; Sato, Eiichi; Ehara, Shigeru; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2015-01-01

    To perform dual-energy X-ray imaging, we developed a dual-energy silicon X-ray diode (DE-Si-XD) consisting of two ceramic-substrate silicon X-ray diodes (Si-XD) and a 0.2-mm-thick copper filter. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-rays. In the front Si-XD, X-ray photons from an X-ray tube are directly detected. Because low-energy photons are absorbed by the front Si-XD and the filter, the average photon energy increases when the back Si-XD is used. In the front Si-XD, the photocurrents flowing through the Si-XD are converted into voltages and amplified using current–voltage and voltage–voltage (V–V) amplifiers. The output from the V–V amplifier is input to an analog-digital converter through an integrator for smoothing the voltage. The same amplification method is also used in the back Si-XD. Dual-energy computed tomography (DE–CT) is accomplished by repeated linear scans and rotations of the object, and two projection curves of the object are obtained simultaneously by linear scanning at a tube voltage of 90 kV and a current of 1.0 mA. In the DE–CT, the exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. Using gadolinium-based contrast media, energy subtraction was performed. - Highlights: • Dual-energy X-ray diode consists of two Si diodes and a Cu filter. • Low and high-energy X-rays are detected using front and back diodes. • Two-different-energy tomograms were easily obtained simultaneously. • Gd-K-edge CT was accomplished using the back diode. • Energy subtraction was performed easily to image a target object

  15. Study of mammography in mass screening for breast cancer

    International Nuclear Information System (INIS)

    Kitada, Masahiro; Sakai, Hiroko; Kubo, Yoshihiko; Samejima, Natsuki; Kurowarabi, Kunio; Iwabuchi, Shuji.

    1995-01-01

    In order to examine the rate of correct diagnosis by mammography at initial mass screening for breast cancer, we carried out a retrospective study of mammography findings in 267 cases of breast cancer detected at Asahikawa Cancer Screening Center. The screening was performed by physical examination, and in cases where disease was suspected, mammography, ultrasonography, and needle biopsy were done. Mammographically, 172 cases (64.4%) were cancer-positive, 58 cases (21.7%) were suspicious for cancer, and 37 cases (13.9%) were cancer-negative. Patients below 50 years of age and those with tumors of small diameter (<20 mm) showed a significantly lower rate of cancer positivity than patients aged 50 years or more and those with tumors 20 mm or more in diameter. Mammographic abnormalities were not specific, since these changes were also found in normal subjects and patients with benign diseases. Therefore, we concluded that mammography without physical examination at initial mass screening has a high risk of missing breast cancer. Mass screening for breast cancer should be performed by physical examination involving inspection and palpation at the first instance. If any suspicious findings are obtained, mammography, ultrasonography, and needle biopsy should be done. (author)

  16. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.

    Science.gov (United States)

    Dang, Pragya A; Freer, Phoebe E; Humphrey, Kathryn L; Halpern, Elkan F; Rafferty, Elizabeth A

    2014-01-01

    To determine the effect of implementing a screening tomosynthesis program on real-world clinical performance by quantifying differences between interpretation times for conventional screening mammography and combined tomosynthesis and mammography for multiple participating radiologists with a wide range of experience in a large academic center. In this HIPAA-compliant, institutional review board-approved study, 10 radiologists prospectively read images from screening digital mammography or screening combined tomosynthesis and mammography examinations for 1-hour-long uninterrupted sessions. Images from 3665 examinations (1502 combined and 2163 digital mammography) from July 2012 to January 2013 were interpreted in at least five sessions per radiologist per modality. The number of cases reported during each session was recorded for each reader. The experience level for each radiologist was also correlated to the average number of cases reported per hour. Analysis of variance was used to assess the number of studies interpreted per hour. A linear regression model was used to evaluate correlation between breast imaging experience and time taken to interpret images from both modalities. The mean number of studies interpreted in hour was 23.8 ± 0.55 (standard deviation) (range, 14.4-40.4) for combined tomosynthesis and mammography and 34.0 ± 0.55 (range, 20.4-54.3) for digital mammography alone. A mean of 10.2 fewer studies were interpreted per hour during combined tomosynthesis and mammography compared with digital mammography sessions (P tomosynthesis and mammography and 1.9 minutes ± 0.6 (range, 1.1-3.0) for digital mammography; interpretation time with combined tomosynthesis and mammography was 0.9 minute longer (47% longer) compared with digital mammography alone (P tomosynthesis and mammography examinations decreased (R(2) = 0.52, P = .03). Addition of tomosynthesis to mammography results in increased time to interpret images from screening examinations compared

  17. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  18. Screen-film mammography versus full-field digital mammography in a population-based screening program: The Sogn and Fjordane study

    International Nuclear Information System (INIS)

    Juel, Inger-Marie; Johannessen, Gunnar; Skaane, Per; Roth Hoff, Solveig; Hofvind, Solveig

    2010-01-01

    Background: Studies comparing analog and digital mammography in breast cancer screening have shown conflicting results. Little is known about the use of digital photon-counting detectors. Purpose: To retrospectively compare performance indicators in screen-film (SFM) and full-field digital mammography (FFDM) using a photon-counting detector in a population-based screening program. Material and Methods: The Norwegian Social Science Data Services approved the study, which was part of the Norwegian Breast Cancer Screening Program. The program invites women aged 50-69 years to two-view mammography biannually. The study period was January 2005 to June 2006 for SFM and August 2006 to December 2007 for FFDM. Independent double reading was performed using a five-point rating scale for probability of cancer. Recalls due to abnormal mammography were retrospectively reviewed by an expert panel. Performance indicators for the two techniques were compared. Attendance rate was 83.6% (7442/8901) for SFM and 82.0% (6932/8451) for FFDM. Results: The recall rate due to abnormal mammography, cancer detection rate and positive predictive value did not differ significantly between SFM and FFDM: recall 2.3% (174/7442) versus 2.4% (168/6932), cancer detection 0.39% (29/7442) versus 0.48% (33/6932), positive predictive value 16.7% (29/174) versus 19.6% (33/168), respectively (P>0.05 for all). The recall rate due to technically inadequate mammograms was 0.3% (19/7442) for SFM and 0.01% (1/6932) for FFDM. In the retrospective review, a significantly higher proportion of calcifications and asymmetric density were categorized as normal or definitively benign in FFDM compared with SFM. The average glandular dose was 2.17 mGy for SFM and 1.25 mGy for FFDM. Conclusion: Performance indicators show that FFDM using photon-counting detector is suitable for breast cancer screening. The lower radiation dose and lower recalls due to technically inadequate mammograms are of importance in mammography

  19. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  20. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    International Nuclear Information System (INIS)

    Thieme, Sven F.; Becker, Christoph R.; Hacker, Marcus; Nikolaou, Konstantin; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2008-01-01

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam

  1. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  2. Differential Effects of Social Networks on Mammography Use by Poverty Status.

    Science.gov (United States)

    Yeo, Younsook

    2016-01-01

    This study examines whether social networks have differential effects on mammography use depending on poverty status. Data were analyzed on US women (40+), employing logistic regression and simple slope analyses for a post hoc probing of moderating effects. Among women not in poverty, living with a spouse/partner and attending church, regardless of frequency, were positively associated with mammography use; family size was negatively associated. Among women living in poverty, mammography showed a positive association only with weekly church attendance. Mammography was negatively associated with health-related social interactions occurring through the Internet. Post hoc probing showed significant moderating effects of poverty on the relationship between online health-related interactions and mammography use. To make the Internet a meaningful health empowerment tool for women in poverty, future research should identify how health-related interactions that occur online affect women in poverty's psychological and behavioral reactions that will contribute to our understanding of why they are discouraged from having mammograms. The mechanisms behind the differential effects of church attendance and poverty status on mammography also need further clarification.

  3. Soft copy digital mammography

    International Nuclear Information System (INIS)

    Kim, Hak Hee

    2005-01-01

    Screen-film mammography (SFM) has been the standard method used for breast cancer screening and making a clinical diagnosis. It is a valuable modality for the detection and differentiation of breast calcifications. The advantages are the high spatital resolution, the convenient display, and inexpensiveness. However, it has some inherent limitations such as its low detective quantum efficiency and difficulty of post-processing after obtaining after an image. Digital mammography (DM) has the potential to overcome the inherent limitations of SFM. DM systems directly qualify x-ray photons and decouple the process of x-ray photon detection from the image display. The digital images can be processed by a computer and displayed in multiple formats. Thus, DM is better than SFM for the detection of mass lesions due to its high contrast resolution

  4. Determinants of mammography screening behavior in Iranian women: A population-based study

    Directory of Open Access Journals (Sweden)

    Mitra Moodi

    2012-01-01

    Full Text Available Background: Breast cancer remains a substantial health concern in Iran due to delay and late stage at diagnosis and treatment. Despite the potential benefits of mammography screening for early detection of breast cancer, the performance of this screening among Iranian women is low. For planning appropriate intervention, this study was carried out to identify mammography rates and explore determinants of mammography screening behavior in females of Isfahan, Iran. Materials and Methods: In this population-based study, 384 women of 40 years and older were interviewed by telephone. The Farsi version of Champion′s Health Belief Model scale (CHBMS was used to examine factors associated with mammography screening. The obtained data were analyzed by SPSS (version 16.0 using statistical Chi-square, Fisher Exact test, t-test and multiple logistic regression model to identify the importance rate of socio-demographic and Health Belief Model (HBM variables to predict mammography screening behavior. In all of tests, the level of significant was considered a = 0.05. Results: Mean age ΁ SD of women was 52.24 ΁ 8.2 years. Of the 384 participants, 44.3% reported at least one mammogram in their lifetime. Logistic regression analysis indicated that women were more likely to have mammography if they heard/read about breast cancer (OR = 4.17, 95% CI 2.09, 8.34, menopause in lower age (OR = 0.2, 95% CI 0.87, 0.99 and history of breast problem (OR = 0.9, 95% CI 0.12, 0.32. Also, women who perceived more benefits of mammography (OR = 1.84, 95% CI 1.63, 2.09, fewer barriers of mammography (OR = 0.91, 95% CI 0.86, 0.96 and had more motivation for health (OR = 0.94, 95% CI 0.89, 1 were more likely to have mammography. Conclusion: The findings indicated that the rate of mammography screening among women in Isfahan province is low and highlights the need for developing a comprehensive national breast cancer control program, which should be considered as the first

  5. At what age should screening mammography be recommended for Asian women?

    International Nuclear Information System (INIS)

    Tsuchida, Junko; Nagahashi, Masayuki; Rashid, Omar M; Takabe, Kazuaki; Wakai, Toshifumi

    2015-01-01

    Although regular screening mammography has been suggested to be associated with improvements in the relative survival of breast cancer in recent years, the appropriate age to start screening mammography remains controversial. In November 2009, the United States Preventive Service Task Force published updated guidelines for breast cancer, which no longer support routine screening mammography for women aged 40–49 years, but instead, defer the choice of screening in that age group to the patient and physician. The age to begin screening differs between guidelines, including those from the Task Force, the American Cancer Society and the World Health Organization. It remains unclear how this discrepancy impacts patient survival, especially among certain subpopulations. Although the biological characteristics of breast cancer and peak age of incidence differ among different ethnic populations, there have been few reports that evaluate the starting age for screening mammography based on ethnicity. Here, we discuss the benefits and harm of screening mammography in the fifth decade, and re-evaluate the starting age for screening mammography taking ethnicity into account, focusing on the Asian population. Breast cancer incidence peaked in the fifth decade in Asian women, which has been thought to be due to a combination of biological and environmental factors. Previous reports suggest that Asian women in their 40s may receive more benefit and less harm from screening mammography than the age-matched non-Asian US population. Therefore, starting screening mammography at age 40 may be beneficial for women of Asian ethnicity in well-resourced countries, such as Japanese women who reside in Japan

  6. Dual-Readout Calorimetry for High-Quality Energy

    CERN Multimedia

    During the past seven years, the DREAM collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development ${(dual}$ ${readout}$), the fluctuations in the electromagnetic shower fraction could be measured event by event their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contirbutions of nuclear evaporation neutrons to the signals and thus reduce the effects of fluctuations in "invisible energy". We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrat...

  7. Diagnosis of pulmonary artery embolism. Comparison of single-source CT and 3{sup rd} generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Petritsch, Bernhard; Kosmala, Aleksander; Gassenmeier, Tobias; Weng, Andreas Max; Veldhoen, Simon; Kunz, Andreas Steven; Bley, Thorsten Alexander [Univ. Hospital Wuerzburg (Germany). Inst. of Diagnostic and Interventional Radiology

    2017-06-15

    To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA. Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases. Dual-energy CT provides potential additional information by means of iodine distribution maps.

  8. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  9. WE-FG-207B-08: Dual-Energy CT Iodine Accuracy Across Vendors and Platforms

    International Nuclear Information System (INIS)

    Jacobsen, M; Wood, C; Cody, D

    2016-01-01

    Purpose: Although a major benefit of dual-energy CT is its quantitative capabilities, it is critical to understand how results vary by scanner manufacturer and/or model before making clinical patient management decisions. Each manufacturer utilizes a specific dual-energy CT approach; cross-calibration may be required for facilities with more than one dual-energy CT scanner type. Methods: A solid dual-energy quality control phantom (Gammex, Inc.; Appleton, WI) representing a large body cross-section containing three Iodine inserts (2mg/ml, 5mg/ml, 15 mg/ml) was scanned on these CT systems: GE HD-750 (80/140kVp), prototype GE Revolution CT with GSI (80/140kVp), Siemens Flash (80/140kVp and 100/140kVp), and Philips IQon (120kVp and 140kVp). Iodine content was measured in units of concentration (mg/ml) from a single 5mm-thick central image. Three to five acquisitions were performed on each scanner platform in order to compute standard deviation. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were as consistent as possible (thickness, kernel, no noise reduction applied). Results: Iodine measurement error ranges were −0.24-0.16 mg/ml for the 2mg/ml insert (−12.0 − 8.0%), −0.28–0.26 mg/ml for the 5mg/ml insert (−5.6 − 5.2%), and −1.16−0.99 mg/ml for the 15mg/ml insert (−7.7 − 6.6%). Standard deviations ranged from 0 to 0.19 mg/ml for the repeated acquisitions from each scanner. The average iodine measurement error and standard deviation across all systems and inserts was −0.21 ± 0.48 mg/ml (−1.5 ± 6.48%). The largest absolute measurement error was found in the 15mg/ml iodine insert. Conclusion: There was generally good agreement in Iodine quantification across 3 dual-energy CT manufacturers and 4 scanner models. This was unexpected given the widely different underlying dual-energy CT mechanisms employed. Future work will include additional scanner platforms, independent verification of the Iodine

  10. European radiographers' challenges from mammography education and clinical practice - an integrative review.

    Science.gov (United States)

    Metsälä, Eija; Richli Meystre, Nicole; Pires Jorge, José; Henner, Anja; Kukkes, Tiina; Sá Dos Reis, Cláudia

    2017-06-01

    This study aims to identify European radiographers' challenges in clinical performance in mammography and the main areas of mammography that require more and better training. An extensive search was performed to identify relevant studies focused on clinical practice, education and training in mammography published between January 2010 and December 2015 in the English language. The data were analysed by using deductive thematic analysis. A total of 27 full text articles were read, evaluating their quality. Sixteen articles out of 27 were finally selected for this integrative review. The main challenges of radiographers' mammography education/training can be divided into three groups: training needs, challenges related to radiographers, and challenges related to the organization of education. The most common challenges of clinical performance in mammography among European radiographers involved technical performance, the quality of practices, and patient-centeredness. The introduction of harmonized mammography guidelines across Europe may serve as an evidence-based tool to be implemented in practice and education. However, the variability in human and material resources as well as the different cultural contexts should be considered during this process. • Radiographers' awareness of their professional identity and enhancing multiprofessional cooperation in mammography. • Radiographers' responsibilities regarding image quality (IQ) and optimal breast imaging performance. • Patient-centred mammography services focusing on the psychosocial needs of the patient. • Challenges: positioning, QC-testing, IQ-assessment, optimization of breast compression, communication, teamwork, and patient-centred care. • Introduction of evidence-based guidelines in Europe to harmonize mammography practice and education.

  11. Dual-energy digital radiography for the assessment of bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, Paeivi S.; Lammentausta, Eveliina; Tervonen, Osmo; Jaemsae, Timo; Nieminen, Miika T. (Dept. of Diagnostic Radiology, Univ. of Oulu, Oulu (Finland)), e-mail: paivi.tahvanainen@oulu.fi; Pulkkinen, Pasi (Dept. of Medical Technology, Univ. of Oulu, Oulu (Finland))

    2010-06-15

    Background: Bone mineral density (BMD) is usually determined by dual-energy X-ray absorptiometry (DXA). Digital radiography (DR) has enabled the application of dual-energy techniques for separating bone and soft tissue, but it is not clear yet whether BMD information can reliably be obtained using DR. Purpose: To determine the ability of dual-energy digital radiography (DEDR) to predict BMD as determined by DXA. Material and Methods: Reindeer femora (n=15) were imaged in a water bath at a typical clinical imaging voltage of 79 kVp and additionally at 100 kVp on a DR system. BMD was determined in four segmented regions (femoral neck, trochanter, inter-trochanter, Ward's triangle) from these images using the DXA calculation principle. BMD results as determined by DEDR were compared with BMD values as determined by DXA. Results: Significant moderate to high linear correlations (0.66-0.76) were observed at the femoral neck, Ward's triangle, and trochanter between BMD values as determined by the two techniques. The coefficient of variation (CVRMS) ranged between 2.2 and 4.7% and 0.2 and 1.8% for DEDR and DXA analyses, respectively. Conclusion: DXA-based BMD information can be obtained with moderate precision and accuracy using DEDR. In future, combining BMD measurements using DEDR with structural and geometrical information available on digital radiographs could enable a more comprehensive assessment of bone . Keywords: BMD, DXA, bone assessment

  12. A simplified edge illumination set-up for quantitative phase contrast mammography with synchrotron radiation at clinical doses

    International Nuclear Information System (INIS)

    Longo, Mariaconcetta; Rigon, Luigi; Lopez, Frances C M; Longo, Renata; Chen, Rongchang; Dreossi, Diego; Zanconati, Fabrizio

    2015-01-01

    This work presents the first study of x-ray phase contrast imaging based on a simple implementation of the edge illumination method (EIXPCi) in the field of mammography with synchrotron radiation. A simplified EIXPCi set-up was utilized to study a possible application in mammography at clinical doses. Moreover, through a novel algorithm capable of separating and quantifying absorption and phase perturbations of images acquired in EIXPCi modality, it is possible to extract quantitative information on breast images, allowing an accurate tissue identification. The study was carried out at the SYRMEP beamline of Elettra synchrotron radiation facility (Trieste, Italy), where a mastectomy specimen was investigated with the EIXPCi technique. The sample was exposed at three different energies suitable for mammography with synchrotron radiation in order to test the validity of the novel algorithm in extracting values of linear attenuation coefficients integrated over the sample thickness. It is demonstrated that the quantitative data are in good agreement with the theoretical values of linear attenuation coefficients calculated on the hypothesis of the breast with a given composition. The results are promising and encourage the current efforts to apply the method in mammography with synchrotron radiation. (note)

  13. Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations.

    Science.gov (United States)

    Schindera, Sebastian T; Zaehringer, Caroline; D'Errico, Luigia; Schwartz, Fides; Kekelidze, Maka; Szucs-Farkas, Zsolt; Benz, Matthias R

    2017-10-01

    To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDI vol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDI vol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p dual-energy and the single-energy protocol. A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.

  14. Decision making and counseling around mammography screening for women aged 80 or older.

    Science.gov (United States)

    Schonberg, Mara A; Ramanan, Radhika A; McCarthy, Ellen P; Marcantonio, Edward R

    2006-09-01

    Despite uncertain benefit, many women over age 80 (oldest-old) receive screening mammography. To explore decision-making and physician counseling of oldest-old women around mammography screening. Qualitative research using in-depth semi-structured interviews. Twenty-three women aged 80 or older who received care at a large academic primary care practice (13 had undergone mammography screening in the past 2 years) and 16 physicians at the same center. We asked patients and physicians to describe factors influencing mammography screening decisions of oldest-old women. We asked physicians to describe their counseling about screening to the oldest-old. Patients and/or physicians identified the importance of physician influence, patient preferences, system factors, and social influences on screening decisions. Although physicians felt that patient's health affected screening decisions, few patients felt that health mattered. Three types of elderly patients were identified: (1) women enthusiastic about screening mammography; (2) women opposed to screening mammography; and (3) women without a preference who followed their physician's recommendation. However, physician counseling about mammography screening to elderly women varies; some individualize discussions; others encourage screening; few discourage screening. Physicians report that discussions about stopping screening can be uncomfortable and time consuming. Physicians suggest that more data could facilitate these discussions. Some oldest-old women have strong opinions about screening mammography while others are influenced by physicians. Discussions about stopping screening are challenging for physicians. More data about the benefits and risks of mammography screening for women aged 80 or older could inform patients and improve provider counseling to lead to more rational use of mammography.

  15. Can positron emission mammography help to identify clinically significant breast cancer in women with suspicious calcifications on mammography?

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, Almir G.V.; Lima, Eduardo N.P.; Macedo, Bruna R.C.; Conrado, Jorge L.F.A.; Marques, Elvira F.; Chojniak, Rubens [A C Camargo Cancer Center-Department of Imaging, Sao Paulo, SP (Brazil)

    2017-05-15

    To evaluate the diagnostic accuracy of positron emission mammography (PEM) for identifying malignant lesions in patients with suspicious microcalcifications detected on mammography. A prospective, single-centre study that evaluated 40 patients with suspicious calcifications at mammography and indication for percutaneous or surgical biopsy, with mean age of 56.4 years (range: 28-81 years). Patients who agreed to participate in the study underwent PEM with 18F-fluorodeoxyglucose before the final histological evaluation. PEM findings were compared with mammography and histological findings. Most calcifications (n = 34; 85.0 %) were classified as BIRADS 4. On histology, there were 25 (62.5 %) benign and 15 (37.5 %) malignant lesions, including 11 (27.5 %) ductal carcinoma in situ (DCIS) and 4 (10 %) invasive carcinomas. On subjective analysis, PEM was positive in 15 cases (37.5 %) and most of these cases (n = 14; 93.3 %) were confirmed as malignant on histology. There was one false-positive result, which corresponded to a fibroadenoma, and one false negative, which corresponded to an intermediate-grade DCIS. PEM had a sensitivity of 93.3 %, specificity of 96.0 % and accuracy of 95 %. PEM was able to identify all invasive carcinomas and high-grade DCIS (nuclear grade 3) in the presented sample, suggesting that this method may be useful for further evaluation of patients with suspected microcalcifications. (orig.)

  16. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  17. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. THE VALUE OF ULTRASOUND MAMMOGRAPHY IN PALPABLE BREAST MASSES

    NARCIS (Netherlands)

    VANOORD, JC; VANDERVLIET, AM; THYN, CJP; MAK, B; HOOGEBOOM, GJ

    Between January 1987 and May 1988 a prospective study was carried out on 232 women with a palpable breast mass. They underwent physical examination, x-ray mammography and ultrasound mammography. The results of each study were interpreted independently by separate observers, and consensus was

  19. At what age should screening mammography be recommended for Asian women?

    Science.gov (United States)

    Tsuchida, Junko; Nagahashi, Masayuki; Rashid, Omar M; Takabe, Kazuaki; Wakai, Toshifumi

    2015-07-01

    Although regular screening mammography has been suggested to be associated with improvements in the relative survival of breast cancer in recent years, the appropriate age to start screening mammography remains controversial. In November 2009, the United States Preventive Service Task Force published updated guidelines for breast cancer, which no longer support routine screening mammography for women aged 40-49 years, but instead, defer the choice of screening in that age group to the patient and physician. The age to begin screening differs between guidelines, including those from the Task Force, the American Cancer Society and the World Health Organization. It remains unclear how this discrepancy impacts patient survival, especially among certain subpopulations. Although the biological characteristics of breast cancer and peak age of incidence differ among different ethnic populations, there have been few reports that evaluate the starting age for screening mammography based on ethnicity. Here, we discuss the benefits and harm of screening mammography in the fifth decade, and re-evaluate the starting age for screening mammography taking ethnicity into account, focusing on the Asian population. Breast cancer incidence peaked in the fifth decade in Asian women, which has been thought to be due to a combination of biological and environmental factors. Previous reports suggest that Asian women in their 40s may receive more benefit and less harm from screening mammography than the age-matched non-Asian US population. Therefore, starting screening mammography at age 40 may be beneficial for women of Asian ethnicity in well-resourced countries, such as Japanese women who reside in Japan. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Time for a re-evaluation of mammography in the young? Results of an audit of mammography in women younger than 40 in a resource restricted environment.

    Science.gov (United States)

    Taylor, Liezel; Basro, Sarinah; Apffelstaedt, Justus P; Baatjes, Karin

    2011-08-01

    Mammography in younger women is considered to be of limited value. In a resource restricted environment without access to magnetic resonance imaging (MRI) and with a high incidence of breast cancer in the young, mammography remains an important diagnostic tool. Recent technical advances and better regulation of mammography make a reassessment of its value in these conditions necessary. Data of all the mammograms performed at a tertiary hospital and private breast clinic between January 2003 and July 2009 in women less than 40 years of age were collected. Indications were the presence of a mass, follow-up after primary cancer therapy, and screening for patients perceived at high risk due to a family history or the presence of atypical hyperplasia. Data acquired were as follows: Demographics, prior breast surgery, indication for mammography, outcome of mammography, diagnostic procedures, and their results. Of 2,167 mammograms, 393 were performed for a palpable mass, diagnostic mammography. In these, the overall cancer detection rate was 40%. If the mammography was reported as breast imaging reporting and data system (BIRADS(®)) 5 versus BIRADS(®) 3 and 4 versus BIRADS(®) 1 and 2, a final diagnosis of malignancy was established in 96, 48, and 5%, respectively. Of 367 mammograms done for the follow-up after primary treatment of breast cancer, seven cancers were diagnosed for a detection rate of 1.9%. Of 1,312 mammograms performed for screening, the recall rate was 4%; the biopsy rate 2%, and the cancer diagnosis rate 3/1,000 examinations. In contrast to past series, this series has shown that recent advances in mammography have made it a useful tool in the management of breast problems in young women, notably in a resource-restricted environment. Women for screening should be selected carefully.

  1. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.

    Science.gov (United States)

    Thomas, Christoph; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Reimann, Anja; Werner, Matthias; Schilling, David; Hennenlotter, Jörg; Claussen, Claus D; Schlemmer, Heinz-Peter; Heuschmid, Martin

    2010-07-01

    In dual energy (DE) computed tomography (CT), spectral shaping by additional filtration of the high energy spectrum can theoretically improve dual energy contrast. The aim of this in vitro study was to examine the influence of an additional tin filter for the differentiation of human urinary calculi by dual energy CT. A total of 36 pure human urinary calculi (uric acid, cystine, calciumoxalate monohydrate, calciumoxalate dihydrate, carbonatapatite, brushite, average diameter 10.5 mm) were placed in a phantom and imaged with 2 dual source CT scanners. One scanner was equipped with an additional tin (Sn) filter. Different combinations of tube voltages (140/80 kV, 140/100 kV, Sn140/100 kV, Sn140/80 kV, with Sn140 referring to 140 kV with the tin filter) were applied. Tube currents were adapted to yield comparable dose indices. Low- and high energy images were reconstructed. The calculi were segmented semiautomatically in the datasets and DE ratios (attenuation@low_kV/attenuation@high_kV) and were calculated for each calculus. DE contrasts (DE-ratio_material1/DE-ratio_material2) were computed for uric acid, cystine and calcified calculi and compared between the combinations of tube voltages. Using exclusively DE ratios, all uric acid, cystine and calcified calculi (as a group) could be differentiated in all protocols; the calcified calculi could not be differentiated among each other in any examination protocol. The highest DE ratios and DE contrasts were measured for the Sn140/80 protocol (53%-62% higher DE contrast than in the 140/80 kV protocol without additional filtration). The DE ratios and DE contrasts of the 80/140 kV and 100/Sn140 kV protocols were comparable. Uric acid, cystine and calcified calculi could be reliably differentiated by any of the protocols. A dose-neutral gain of DE contrast was found in the Sn-filter protocols, which might improve the differentiation of smaller calculi (Sn140/80 kV) and improve image quality and calculi differentiation in

  2. Situational quality evaluation of mammography services at state of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Joana, Georgia S.; Oliveira, Mauricio de; Andrade, Mauricio C. de; Cesar, Adriana C.Z.; Peixoto, Joao E.

    2011-01-01

    Breast cancer is the leading cause of cancer deaths in women. Currently, the most effective method for early detection of this cancer is the mammography, and to achieve the standard definition and contrast, the whole system of imaging must operate under optimal conditions. This paper presents the results of the assessment of mammography centers in the state of Minas Gerais, which was held with the aim of supporting the actions of the State Program of Quality Control in Mammography. These results indicated that less than half of mammography achieved the minimum standard of image quality, endorsing the need of a monitoring more efficient and effective, which led to the establishment, in Minas Gerais, of the monthly monitoring of image quality in mammography. (author)

  3. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  4. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  5. Factors influencing elderly women's mammography screening decisions: implications for counseling.

    Science.gov (United States)

    Schonberg, Mara A; McCarthy, Ellen P; York, Meghan; Davis, Roger B; Marcantonio, Edward R

    2007-11-16

    Although guidelines recommend that clinicians consider life expectancy before screening older women for breast cancer, many older women with limited life expectancies are screened. We aimed to identify factors important to mammography screening decisions among women aged 80 and older compared to women aged 65-79. Telephone surveys of 107 women aged 80+ and 93 women aged 65-79 randomly selected from one academic primary care practice who were able to communicate in English (60% response rate). The survey addressed the following factors in regards to older women's mammography screening decisions: perceived importance of a history of breast disease, family history of breast cancer, doctor's recommendations, habit, reassurance, previous experience, mailed reminder cards, family/friend's recommendations or experience with breast cancer, age, health, and media. The survey also assessed older women's preferred role in decision making around mammography screening. Of the 200 women, 65.5% were non-Hispanic white and 82.8% were in good to excellent health. Most (81.3%) had undergone mammography in the past 2 years. Regardless of age, older women ranked doctor's recommendations as the most important factor influencing their decision to get screened. Habit and reassurance were the next two highly ranked factors influencing older women to get screened. Among women who did not get screened, women aged 80 and older ranked age and doctor's counseling as the most influential factors and women aged 65-79 ranked a previous negative experience with mammography as the most important factor. There were no significant differences in preferred role in decision-making around mammography screening by age, however, most women in both age groups preferred to make the final decision on their own (46.6% of women aged 80+ and 50.5% of women aged 65-79). While a doctor's recommendation is the most important factor influencing elderly women's mammography screening decisions, habit and reassurance

  6. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    International Nuclear Information System (INIS)

    Bowman, Wesley; Sattarivand, Mike

    2016-01-01

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  7. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Wesley; Sattarivand, Mike [Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority, Department of Radiation Oncology, Dalhousie University at Nova Scotia Health Authority (Canada)

    2016-08-15

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknesses range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.

  8. Development of a standard operating procedure for mammography equipment used in calibration of ionized chambers

    International Nuclear Information System (INIS)

    Rodrigues, Yklys Santos; Potiens, Maria da Penha Albuquerque

    2011-01-01

    Mammography is one widely used technique in the detection of breast cancer. In order to optimize the results achieving better images with lower dose rates, a quality assurance programme must be applied to the equipment. Some control tests use ionization chambers to measure air kerma and other quantities. These tests can only be reliable if the ionization chambers used on them are correctly calibrated. In the present work, it was developed a standard operating procedure (SOP) for quality control tests in a commercial mammography equipment installed in the Calibration Laboratory (LCI) at IPEN - Brazilian Institute for energy and nuclear research). Seven tests were performed in the equipment: Tube voltage and exposition time accuracy and reproducibility, linearity and reproducibility of Air kerma and Half Value Layer (HVL). Then, it was made a measurement of the air kerma in the mammography equipment, using a reference ionization chamber with traceability to a primary laboratory in Germany (Physikalisch-Technische Bundesanstalt - PTB), that was later compared with the air kerma measured in an industrial irradiator. This industrial X-ray generator was recently used in the implementation of X-radiation Standards beams, mammography level, following the Standard IEC 61267. The HVL values varied from 0.36 (25kV) to 0.41 mmA1 (35kV), and the measured air kerma rates were between 9.78 and 17.97 mGy/min. (author)

  9. Patterns and determinants of mammography screening in Lebanese women

    Directory of Open Access Journals (Sweden)

    Nadia Elias

    2017-03-01

    Providing mammography free-of-charge may alleviate some obstacles among women with socio-economic disadvantage. Stressing that good results one year do not make the cancer less likely or repeating the test less important, as well as improving the comfort of mammography testing could ensure test repeating.

  10. The relationship of social support concept and repeat mammography among Iranian women.

    Science.gov (United States)

    Farhadifar, Fariba; Taymoori, Parvaneh; Bahrami, Mitra; Zarea, Shamsy

    2015-10-24

    Breast cancer ranks as the first most common cancer among the Iranian women. The regular repeat of mammography with 1-2 year intervals leads to the increased efficiency of early detection of breast cancer. The present study examined the predictors of repeat mammography. It was hypothesized that higher social support is connected with mammography repeat. A cross-sectional study was carried out among 400 women 50 years and older in Sanandaj, Iran. Data was collected by the questionnaire including information on socio demographical variables and measuring social support level. Data was analyzed by SPSS16 software. Multiple logistic regression was used to determine the predictive power of demographic variables and dimensions of social support for repeat mammography. Women aged 50-55 years had three times odds of repeat mammography compared to women aged 56-60 years) OR, 3.02). Married women had greater odds of repeat mammography compared to single women (P women with higher social support was 0.93 times greater than the women with lower social support (OR, 0.93; 95 % CI, 0.91-0.95; P women are less likely repeat mammography than other Asian women. Identifying the associations between perceived social support and repeat mammography may offer detailed information to allow for future study and guide the development of interventions not only for Iranian women but also for similar cultural that received pay too little attention to date in the breast cancer literature.

  11. Mammography in Norway: Image quality and total performance

    International Nuclear Information System (INIS)

    Olsen, J.B.; Skretting, A.; Widmark, A.

    1997-04-01

    This report describes a method for assessing the total performance in mammography based on Receiver Operating Characteristic (ROC) analysis. In the time period from December 1993 to March 1994 the method was applied to assess the total performance of all the 45 Norwegian mammography laboratories operative at that time. Image quality characteristics in each laboratory was established by use of well-known phantoms

  12. Object characterization simulator for estimating compressed breast during mammography

    International Nuclear Information System (INIS)

    Pinheiro, Luciana de J.S.; Rio, Margarita Chevalier del

    2011-01-01

    The measurement of the thickness of a compressed breast during the mammography test is necessary in order to calculate the glandular dose in mammography procedures, in an analysis of risk/benefit, given that the target organ in these procedures is highly sensitive to ionising radiation. However, mammography is a test of utmost importance in diagnosis. In theory, it may be possible to calculate the thickness of the compressed breast through the measurements of the focus object distance by using projections of radio opaque objects fixed to the compression tray. The facilities of the Laboratory of Applied Radioprotection to Mammography - LARAM were used for this study, as well as breast simulators with well defined thickness, in the assembly of the techniques for the measurement of the thickness of the compressed breast. The results showed that it is possible to determine this thickness through calculations and simulators through this method which is susceptible to be adequate to the dosimetry. (author)

  13. Estimation of patient dose in mammography screening examinations

    International Nuclear Information System (INIS)

    Suzuki, S.; Fujii, S.; Orito, T.; Asada, Y.; Koga, S.; Horita, K.; Kido, C.

    1996-01-01

    Mammography is one of the most effective examinations for detecting breast carcinoma. Although the dose is usually much higher than that in other types of X-ray examination, that is accepted by the patient because for fears of suffering cancer. Benefit of relatively high doses derived from mammographic examinations is considered to well exceed the risk of cancer induction by radiation exposure. The purpose of this study is to investigate patient dose of mammography in Japan by questionnaire sent to 531 institutions selected from whole Japan and direct measurements carried out in 28 hospitals in Aichi Prefecture. The user's guide in mammography published by NCRP and Quality Assurance Program of American College of Radiology were used to assess the exposure and image quality of mammogram. (author)

  14. Drywall plates evaluation as protection barriers in dental X-rays and mammography facilities

    International Nuclear Information System (INIS)

    Guevara R, V. Y.; Romero C, N.; Berrocal T, M.

    2014-08-01

    In the dental X-rays and mammography facilities, usually lead shielded walls as protective barriers are used. Lead is a good attenuator for X-rays, but has toxic properties and its cost is high. Mammography equipment s emit low-energy photons in the range of 25 keV to 35 keV, on current computers; the primary radiation beam is intercepted by the image receptor. Peri apical dental equipment s emit photons in the range of 50 to 90 keV, their filtration is fixed. These devices emit a collimated beam whose diameter is slightly larger than the diagonal dimension of a standard film of dental X-rays. When a dental x-ray is performed, the radiation beam is partially attenuated by the patient. Drywall is a material consisting of plasterboard between two cardboard layers, being its components gypsum and cellulose generally. It is used in construction for execution of interior walls, ceilings and wall coverings, could also serve as a replacement for lead as well as other materials. In this paper three drywall prototypes (Giplac), formed with 02, 04 and 06 drywall layers (13, 16 and 20 cm of thickness respectively) were tested as barriers against primary and secondary X-ray radiation that come from dental and mammography equipment s. The results show that the drywall prototype, 02 layers, efficiently attenuates the secondary radiation beam produced by conventional mammography equipment. And the prototype 04 and 06 layers, efficiently attenuates the primary radiation beam produced by peri apical dental equipment. (author)

  15. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C; Nelemans, Patty J; van Roozendaal, Lori; Smidt, Marjolein L; Heuts, Esther; Wildberger, Joachim E

    2014-07-01

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0% (+3.1%), specificity to 87.7% (+45.7%), PPV to 76.2% (+36.5%) and NPV to 100.0% (+2.9%) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. • CESM is feasible in the workflow of referrals from routine breast screening. • CESM is superior to mammography, even in low disease prevalence populations. • CESM has an extremely high negative predictive value for breast cancer. • CESM is comparable to MRI in assessment of breast cancer extent. • CESM is comparable to histopathology in assessment of breast cancer extent.

  16. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  17. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme

    Energy Technology Data Exchange (ETDEWEB)

    Lobbes, Marc B.I.; Wildberger, Joachim E. [Maastricht University Medical Center, Department of Radiology, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C. [Maastricht University Medical Center, Department of Radiology, Maastricht (Netherlands); Nelemans, Patty J. [Maastricht University, Department of Epidemiology, Maastricht (Netherlands); Roozendaal, Lori van; Heuts, Esther [Maastricht University Medical Center, Department of Surgical Oncology, Maastricht (Netherlands); Smidt, Marjolein L. [Maastricht University Medical Center, Department of Surgical Oncology, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands)

    2014-07-15

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0 % (+3.1 %), specificity to 87.7 % (+45.7 %), PPV to 76.2 % (+36.5 %) and NPV to 100.0 % (+2.9 %) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p < 0.0001). A similar trend was observed in the ROC curve. For conventional mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p < 0.0001). In addition, good agreement between tumour diameters measured using CESM, breast MRI and histopathology was observed. CESM increases diagnostic performance of conventional mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. (orig.)

  18. Compliance with European Guidelines for Diagnostic Mammography in a Decentralized Health-Care Setting

    International Nuclear Information System (INIS)

    Jensen, A.; Mikkelsen, G.J.; Vestergaard, M.; Lynge, E.; Vejborg, I.

    2005-01-01

    Purpose: To evaluate the compliance of Danish mammography clinics with requirements concerning organization, activity volume, and assessment procedures from two European guidelines for quality assurance in diagnostic mammography (EUSOMA and EUREF). Material and Methods: We used individual records on all diagnostic mammographies performed in Denmark in 2000, and questionnaires given to Danish mammography clinics in 2000, 2002, and 2004. Results: The study showed a marked centralization of the diagnostic activity from 2000 to 2004 to a smaller number of public breast assessment centers with full multidisciplinary breast assessment. However, a relatively large number of these centers did not comply with the activity volume requirement of 2000 mammograms per clinic per year. The number of private diagnostic mammography clinics performing basic diagnostic mammography has remained fairly stable in the period 2000 to 2004. Compared with public breast assessment centers, the private diagnostic mammography clinics had a lower compliance with activity volume requirements. Conclusion: A marked proportion of Danish public breast assessment centers operate with less than optimal activity volume, suggesting that further centralization would be appropriate. The situation in private diagnostic mammography clinics may cause concern, as our study showed that the majority of these clinics did not meet the activity volume requirements

  19. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme

    International Nuclear Information System (INIS)

    Lobbes, Marc B.I.; Wildberger, Joachim E.; Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C.; Nelemans, Patty J.; Roozendaal, Lori van; Heuts, Esther; Smidt, Marjolein L.

    2014-01-01

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0 % (+3.1 %), specificity to 87.7 % (+45.7 %), PPV to 76.2 % (+36.5 %) and NPV to 100.0 % (+2.9 %) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p < 0.0001). A similar trend was observed in the ROC curve. For conventional mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p < 0.0001). In addition, good agreement between tumour diameters measured using CESM, breast MRI and histopathology was observed. CESM increases diagnostic performance of conventional mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. (orig.)

  20. Analysis of medical exposures in digital mammography

    International Nuclear Information System (INIS)

    Oliveira, Sergio R.; Mantuano, Natalia O.; Albrecht, Afonso S.

    2014-01-01

    Currently, the use of digital mammography in the early diagnosis of breast cancer is increasingly common due to the production of high definition image that allows to detect subtle changes in breast images profiles. However it is necessary to be an improvement of the technique used since some devices offer minimization parameters of entrance dose to the skin. Thus, this study seeks to examine how the qualification of technical professionals in radiology interferes with the use of the techniques applied in mammography. For this, survey was carried out in a hospital in the city of Rio de Janeiro, which evaluated the scans of 1190 patients undergoing routine mammography (It is considered routinely the 4 basic exhibitions: with 2 flow skull and 2 medium oblique side, excluding repeats and supplements) in 2013. The medical exposures analyzed obtained from a single full digital equipment, model Senographe DS were compared with three different procedures performed by professionals in mammography techniques. The images were classified according to exposure techniques available in the equipment: Standard (STD), contrast (CNT) and dose (dose), and to be selected as breast density of the patient. Comparing the variation of the radiographic technique in relation to the professional who made the exhibition, what is observed is that the professional B presented the best conduct in relation to radiological protection, because she considered breast density in the choice of technical equipment parameter. The professional A, which is newly formed, and C, which has more service time, almost did not perform variations in the pattern of exposure, even for different breast densities. Thus, we can conclude that there is a need to update the professionals so that the tools available of dose limitation and mamas variability to digital mammography are efficiently employed in the service routine and thus meet the requirements of current legislation

  1. The application of microdosimetry to the metrology of low-energy X rays used in mammography

    International Nuclear Information System (INIS)

    Waker, A.J.

    1992-01-01

    The object of this note is to show that the application of microdosimetry to mammography, apart from providing a means to estimate relative radiation risks, can be used as a direct experimental technique in dosimetry, yielding values of absorbed dose and dose-rate in a manner that also facilitates some interpretation of the radiation field itself. (UK)

  2. Promoting mammography screening among Chinese American women using a message-framing intervention.

    Science.gov (United States)

    Sun, Yiyuan; Sarma, Elizabeth A; Moyer, Anne; Messina, Catherine R

    2015-07-01

    This study examined the role of women's perceptions about the relative pros versus cons (decisional balance) of mammography in moderating Chinese American women's responses to gain- and loss-framed messages that promote mammography. One hundred and forty-three Chinese American women who were currently nonadherent to guidelines for receiving annual screening mammograms were randomly assigned to read either a gain- or loss-framed culturally appropriate print brochure about mammography screening. Mammography screening was self-reported at a 2-month follow-up. Although there was not a main effect for message frame, the hypothesized interaction between message frame and decisional balance was significant, indicating that women who received a framed message that matched their decisional balance were significantly more likely to have obtained a mammogram by the follow-up than women who received a mismatched message. Results suggest that decisional balance, and more generally, perceptions about mammography, may be an important moderator of framing effects for mammography among Chinese American women. The match between message frame and decisional balance should be considered when attempting to encourage Chinese American women to receive mammography screening, as a match between the two may be most persuasive. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    Energy Technology Data Exchange (ETDEWEB)

    Pelgrim, Gert Jan; Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); Hamersvelt, Robbert W. van; Willemink, Martin J.; Schilham, Arnold; Leiner, Tim [Utrecht University Medical Center, Department of Radiology, Utrecht (Netherlands); Schmidt, Bernhard T.; Flohr, Thomas [Siemens Healthcare GmbH, Forchheim (Germany); Milles, Julien [Philips Healthcare, Best (Netherlands); Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, P.O. Box EB44, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen (Netherlands)

    2017-09-15

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. (orig.)

  4. Cultural views, language ability, and mammography use in Chinese American women.

    Science.gov (United States)

    Liang, Wenchi; Wang, Judy; Chen, Mei-Yuh; Feng, Shibao; Yi, Bin; Mandelblatt, Jeanne S

    2009-12-01

    Mammography screening rates among Chinese American women have been reported to be low. This study examines whether and how culture views and language ability influence mammography adherence in this mostly immigrant population. Asymptomatic Chinese American women (n = 466) aged 50 and older, recruited from the Washington, D.C. area, completed a telephone interview. Regular mammography was defined as having two mammograms at age-appropriate recommended intervals. Cultural views were assessed by 30 items, and language ability measured women's ability in reading, writing, speaking, and listening to English. After controlling for risk perception, worry, physician recommendation, family encouragement, and access barriers, women holding a more Chinese/Eastern cultural view were significantly less likely to have had regular mammograms than those having a Western cultural view. English ability was positively associated with mammography adherence. The authors' results imply that culturally sensitive and language-appropriate educational interventions are likely to improve mammography adherence in this population.

  5. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2015-01-01

    Highlights: • H 2 energy share increased from 18% with DDM to 36% with WDM (water injection). • H 2 energy share improved marginally with retarded injection timing mode (RDM). • Energy efficiency increased with increasing amount of H 2 in dual-fuel engine. • NO x emission decreased with water injection and retarded pilot fuel injection. • HC, CO and smoke emissions increased slightly with low temperature combustion. - Abstract: A limited hydrogen (H 2 ) energy share due to knocking is the major hurdle for effective utilization of H 2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H 2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H 2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H 2 energy share under dual-fuel operation; however, for a particular energy share of 18% H 2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H 2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H 2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions

  6. Patterns and determinants of mammography screening in Lebanese women.

    Science.gov (United States)

    Elias, Nadia; Bou-Orm, Ibrahim R; Adib, Salim M

    2017-03-01

    The associations of ever using and/or repeating a mammography test with psychosocial and socio-demographic factors were surveyed in 2014 among Lebanese women ≥ 40. A sample of 2400 women was selected across Lebanon. Variables with significant bivariate associations with various types of behaviors were entered in multivariate analysis. Of the total, 105 women (4·4%) had never heard of mammography as a tool for early breast cancer detection. Among the remaining 2295, 45% had ever used it, of whom 10% had obtained it for the first time within the 12 months preceding the survey. Repeaters were 67% of 926 women who had the time opportunity to do so (median lifetime frequency: 2). Older age, higher socio-economic status (SES) and living within the Greater Beirut (GB) area were significantly associated with ever-use. Within GB, psychosocial factors such as perceived susceptibility and benefits were most strongly associated with ever-use. Outside GB, socio-economic advantage seemed to mostly affect ever-use. Only 4% reported opposition from husbands to their mammography, and husband's support was significant for adherence to mammography guidelines mostly outside GB. Higher education emerged also as a significant socio-demographic determinant for ever-repeating in all regions. Perceived comfort of the previous test strongly affected the likelihood of repeating it. Providing mammography free-of-charge may alleviate some obstacles among women with socio-economic disadvantage. Stressing that good results one year do not make the cancer less likely or repeating the test less important, as well as improving the comfort of mammography testing could ensure test repeating.

  7. A computerized expert system for mammography

    International Nuclear Information System (INIS)

    Jackson, V.P.; Dines, K.A.; Bassett, L.W.

    1988-01-01

    The authors have developed a computer-based expert system to aid in the interpretation of mammograms, breast sonograms, and clinical findings. The radiologist enters clinical and image data into the artificial intelligence system and receives a prediction of the etiology of lesions seen on breast imaging studies. This prototype interactive system has undergone preliminary clinical testing and evaluation. Ultimately, a more refined and complex system will be of value in mammography education, for general radiologists without ready access to mammography experts, for paramedical personnel, and for all mammographers in need of a breast imaging database and reporting systems

  8. Patients Mammographic Dose Survey in a Sample of Slovak Mammography Departments

    International Nuclear Information System (INIS)

    Nikodemova, D.; Horvathova, M.; Gbelcova, L.

    2008-01-01

    Breast cancer is the most frequent cancer and the most frequent cause of cancer induced deaths in Europe. Demographic trends indicate a continuing increase in this substantial public health problem. Systematic early detection, effective diagnostic pathways and high quality services have the ability for lowering the breast cancer mortality rates and for reducing the burden of this disease in the population The widespread use of mammography for early breast cancer detection is highly accepted all over the world. For achievement of a successful national mammography programme in Slovakia, a national QA/QC mammography system was introduced. Coming from alarming values of increase of malignant neoplasm of breast in Slovakia a national mammography audit has been initiated, performed in three runs and working in three phases: assessment of existing status of practice and equipment performance, as well as education and training of radiologists and radiographers of 42 mammography departments; implementation of technical quality programme and patient dose evaluation; clinical image evaluation. Preventive mammography in spite of being a reasonable examination, which represents health benefit for patient, exceed also the health risk. In 1991-1996 mammographic examination created 1.3% from all medical radiodiagnostic expositions made in Slovakia. In 2005 there were realized 241 208 mammographic examinations, 140 798 of them were noticed like preventive examinations. In 2006 the number of all mammographic examinations in Slovakia increased to 271 755 and of them 156 199 were preventive mammographic examinations. In our presentation we tried to establish the average absorbed glandular doses of patients undergoing mammography examinations in 10 selected departments and to compare the obtained results with European diagnostic reference values. The obtained values were used for the proposal of a new national diagnostic reference value for mammography examinations

  9. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography

    International Nuclear Information System (INIS)

    Lee, Choong Wook; Seo, Joon Beom; Song, Jae-Woo; Kim, Mi-Young; Lee, Ha Young; Park, Yang Shin; Chae, Eun Jin; Jang, Yu Mi; Kim, Namkug; Krauss, Bernard

    2011-01-01

    To evaluate the sensitivity of computer-aided detection(CAD) and dual-energy software('Lung PBV', 'Lung Vessels') for detecting peripheral pulmonary embolism(PE). Between Jan-2007 and Jan-2008, 309 patients underwent dual-energy CT angiography(DECTA) for the evaluation of suspected PE. Among them, 37 patients were retrospectively selected; 21 with PE at segmental-or-below levels and 16 without PE according to clinical reports. A standard computer assisted detection (CAD) package and two new types of software('Lung PBV', 'Lung Vessels') were applied on a dedicated workstation. This resulted in four alternative tests for detecting PE: DECTA alone and DECTA with CAD, 'Lung Vessels' and 'Lung PBV'. Two radiologists independently read all cases at different reading sessions. Two thoracic radiologists set the reference standard by combining all information from DECTA and software. The sensitivity of detection for all, segmental and subsegmental-or-below PE were assessed. The reference standard contained 136 PE(segmental 65, subsegmental-or-below 71). With DECTA alone, the sensitivity of detection for all, segmental and subsegmental-or-below pulmonary arteries was 54.5%/73.7%/34.4%; DECTA with CAD, 57.8%/76.8%/37.9%; DECTA with 'Lung PBV', 61.1%/79.9%/41.4%; DECTA with 'Lung Vessels', 64.0%/78.3%/48.5% respectively. The use of CAD, Lung Vessels and Lung PBV shows improved capability to detect peripheral PE. (orig.)

  10. Comparison of TLD air kerma measurements in mammography

    International Nuclear Information System (INIS)

    Pernicka, F.

    2002-01-01

    The mammography examination is usually targeted at asymptomatic women so the narrow balance between benefit and undesirable effects is important. During the past few decades there have been significant advances in the equipment used for mammography. Even when the latest equipment and imaging systems are used, there is considerable variation from centre-to-centre in the choice of imaging parameters and techniques. There may be quite large differences in image quality and breast dose among the centres. A Co-ordinated Research Programme on 'Image quality and patient dose optimization in mammography in Eastern European Countries' was conducted by the IAEA, aiming at defining a methodology for the implementation of a quality assurance (QA) programme in mammography and at exercising the assessment of image quality and patient doses in a sample of hospitals in East European countries. Selected mammography clinics from Czech Republic, Hungary, Poland, Romania and Slovakia participate in the project. The teams consisted of experienced clinicians and physicists. They were supported by a group of experts (clinicians and medical physicists) from France, Italy and Spain. As an outcome of the project, improvements in these indicators (image quality and patient dose) after the implementation of the QA programme are expected. A comparison of dosimetry systems has been organized to assure that dosimetry measurements done in the frame of the project are comparable and traceable to the international measurement system. All five East European countries plus Spain took part in the exercise. The thermoluminescent (TL) method was selected for the comparison

  11. Technical quality control - constancy controls for digital mammography systems

    International Nuclear Information System (INIS)

    Pedersen, K.; Landmark, I.D.; Bredholt, K.; Hauge, I.H.R.

    2009-04-01

    To ensure the quality of mammographic images, so-called constancy control tests are performed frequently. The report contains a programme for constancy control of digital mammography systems, encompassing the mammography unit, computed radiography (CR) systems, viewing conditions and displays, printers, and procedures for data collection for patient dose calculations. (Author)

  12. Dual peripheral model up to Serpukhov energies

    CERN Document Server

    Schrempp, Barbara

    1974-01-01

    The high energy behaviour of the s-channel Regge residues is inferred from three plausible requirements. The resulting s-channel helicity amplitudes allow-in a dual sense-the following t-channel interpretation: for -t>or=0.25 GeV/sup 2/ the flip amplitude has the form of a t-channel Regge pole, while the non-flip amplitude looks like a Regge cut. Finally, a quantitative comparison of the predictions with the data available for the set of SU(3) related processes pi N CEX, KN, KN CEX and pi /sup -/p to eta n is performed, covering the energy range 2energies) and the range of momentum transfer 0.25

  13. [Commentary on the planned restructuring of mammography screening in Austria].

    Science.gov (United States)

    Vutuc, Christian; Haidinger, Gerald

    2011-08-01

    With regards to the planned reorganisation of screening mammography in Austria - from an opportunistic to an organised system - the problems related with such a change are depicted from an epidemiological point of view. We were able to demonstrate earlier that opportunistic screening mammography matches the results of controlled screening mammography in Finland and Sweden. Switching to a controlled system in Austria would - besides the need for a change in legislation - lead to enormous expenditures in terms of resources needed and moreover, it could be not evaluated for years.

  14. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  15. Anxiety in mammography: mammographers' and clients' perspectives

    International Nuclear Information System (INIS)

    Galletta, S.; Joel, N.; Maguire, R.; Weaver, K.; Poulos, A.

    2003-01-01

    The aim of this study was to identify causes of anxiety experienced by mammographers and clients during mammography and strategies to decrease the anxiety generated by the mammographic procedure. Two questionnaires were distributed: one to mammographers in public and private centres within NSW, the other to women (clients) who have experienced mammography. Mammographers' and clients' rankings of causes of clients' anxiety demonstrated many similarities indicating the mammographers' acknowledgement of factors contributing to client anxiety. Thematic analysis provided important qualitative data concerning anxiety experienced by both mammographers and clients and the influence of mammographer and client behaviour on that anxiety. The results of this study have provided important new knowledge for mammographic practice and mammography education. By understanding the causes of anxiety experienced by clients, mammographers can provide an informed, empathetic approach to the mammographic process. By acknowledging factors which increase their own anxiety mammographers can reduce the impact of this on themselves and on their clients. Copyright (2003) Australian Institute of Radiography

  16. Breast cancer screening: the underuse of mammography

    International Nuclear Information System (INIS)

    Fox, S.; Baum, J.K.; Klos, D.S.; Tsou, C.V.

    1985-01-01

    The early detection of breast cancer is promoted by the American Cancer Society (ACS) and the American College of Radiology (ACR) by encouraging the regular use of three types of screening: breast self-examination (BSE), the clinical breast examination, and mammography. In August 1983, the ACS publicized seven recommendations pertaining to screening, including a revised statement about the routine use of mammography for women between the ages of 40 and 49 years. In response to the ACS statement, the present study assessed compliance with the updated recommendations for all three types of screening. The results show reasonable rates of compliance for the BSE (53%-69%) and clinical examination (70%-78%). In contrast, only 19% of the women between the ages of 35 and 49 and 25% of the women older than 50 reported complying with the recommendation to undergo one baseline screening mammogram. Some implications for health education by physicians and the professional education of physicians in the use of mammography are discussed

  17. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  18. X-Rays spectrum and air kerma during a mammography study

    International Nuclear Information System (INIS)

    Ramirez G, J.; Hernandez V, R.; Chacon R, A.; Vega C, H. R.

    2009-10-01

    The X-rays spectrum produced in a mammography has been calculated by means of Monte Carlo methods. In this calculation series it is modeled the electrons source, the target and the filter. The spectra were calculated for an energy of the electrons of 28 keV and for targets of W, Mo and Rh. The calculations extended to analyze the effect that produces the filters inclusion in the spectra; the spectra of W-A1, Rh-Rh, Mo-Mo, Mo-Rh and Mo-Be were calculated this way. Using thermoluminescent dosemeters of ZrO 2 +PTFE the air kerma was measured in five points located on a phantom made with acrylic and water when it is was exposed to a X-rays beam produced by electrons of 24 keV and 10 m A of current that it produces a mammography. The values of the air kerma on the entrance surface of the phantom were compared with the calculated values by means of Monte Carlo methods. The calculated spectra present a continuous component and another discreet and its form is similar to the reported spectra in the literature. The filters inclusion allows the elimination of the low energy photons that do not have utility in the obtaining of the mammography image and only they contribute to deposit a dose in the mamma. The values of the measured air kerma indicate that the five points receive the same air kerma approximately, what means that the beam is homogeneous, of the Monte Carlo calculations we find that the center receives a bigger dose which implies that the beam is not uniform, the explanation on this fact it is attributed to that a simple model was used in the calculations, nevertheless, the average of the air kerma measured on the entrance surface of the phantom was of 0.96 ± 0.03 m G, while the obtained by means of the calculations was of 0.96 ± 0.06 mGy, when comparing both significant differences do not exist. (Author)

  19. On the effect of FineView, mean energy and anti-scatter grid on the DQE of a mammography system

    International Nuclear Information System (INIS)

    Ayala-Domínguez, L.; Brandan, M.E.

    2013-01-01

    The GE Senographe DS digital mammography system includes a preprocessing algorithm called FineView designed to improve spatial resolution. The effect of FineView on modulation transfer function MTF, normalized noise power spectrum NNPS, and detective quantum efficiency DQE has been measured by some authors under different experimental conditions and their results do not always agree. We have evaluated the effect of FineView on these functions under rigorous standard conditions, following the 2007 IEC guidelines for DQE measurement in digital mammography detectors. We have also investigated the impact on DQE of the use of different beam spectra and the presence of the anti-scatter grid. Measurements were made with Mo/Mo, 28 kV operating voltage, and 2 mm Al at tube exit. MTF was obtained with the edge method, detector air-kerma DAK levels ranged from 60 to 272 μGy, and the grid was set in or out, depending on the measurement. DQE values showed a dependence on DAK but were not significantly affected by FineView. The effect of the grid on DQE was of the order of 2% average difference and considered nonsignificant, while no effect of beam quality on DQE was observed at 200 μGy, and 6% average difference was observed between 18.5 and 19.4 keV mean energies at 60 μGy, also considered nonsignificant. -- Highlights: • We evaluated the effect of GE FineView preprocessing software on MTF, NNPS and DQE. • At 5 mm −1 MTF increased 35–112% (FineView on with respect to off) for DAK 60–272 μGy. • At 5 mm −1 NNPS increased 70–330% (FineView on with respect to off) for same DAK range. • The MTF and NNPS increases compensated and DQE changed less than 4% with FineView on/off. • Mean energy variation and grid in or out produced nonsignificant changes in DQE

  20. Local recurrences after conservative surgery and irradiation for breast cancer: Diagnosis with mammography and ultrasound. Mammographie und Sonographie in der Rezidivdiagnostik nach brusterhaltender Therapie des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Buchberger, W; Hamberger, L; Schoen, G [Innsbruck Univ. (Austria). Universitaetsklinik fuer Radiodiagnostik; Steixner, G; Fritsch, E [Innsbruck Univ. (Austria). Universitaetsklinik fuer Strahlentherapie

    1991-06-01

    89 patients, who underwent conservative surgery for breast cancer were followed up with mammography and real-time sonography. 78 patients underwent postoperative irradiation. Depending on the time interval between irradiation and examination various alterations in mammographic and sonographic patterns were evident. Of 14 biospy-confirmed local recurrences, 11 were diagnosed by mammography and 12 by sonography. Combined use of mammography and sonography should therefore lead to better results in the diagnosis of local recurrences and to a reduction of unnecessary biopsies. (orig./GDG).

  1. Monochromatic x-rays for low-dose digital mammography: preliminary results.

    Science.gov (United States)

    Yoon, Kwon-Ha; Kwon, Young Man; Choi, Byoung-Jung; Son, Hyun Hwa; Ryu, Cheol Woo; Chon, Kwon Su; Park, Seong Hoon; Juhng, Sun Kwan

    2012-12-01

    The feasibility of using monochromatic x-ray imaging generated from an x-ray tube and a multilayer reflector for digital mammography with a low radiation dose was examined. A multilayer mirror was designed to select the x-ray peak with an energy of 21.5 keV generated from an x-ray tube with a tungsten target and was fabricated by the ion-beam sputtering deposition system. Monochromatic x-ray images were obtained from an experimental digital mammography setup with a scanning stage. The performance of the system was evaluated using a breast phantom, a spectrometer, and a radiation dosimeter. We measured the contrast-to-noise ratio and performed the 10% modulation function test to determine image quality and resolution. The monochromatic beam from the multilayer reflector had a full-width-at-half-maximum of 0.9 keV at 21.5 keV, and the reflectivity was 0.70, which was 90% of the designed value. The polychromatic and monochromatic x-rays showed radiation doses of 0.497 and 0.0415 mGy, respectively. The monochromatic x-ray image shows fibers, calcifications, and masses more clearly than the polychromatic x-ray images do. The image contrast of the monochromatic x-rays was 1.85 times higher than that of the polychromatic x-rays. The experimental mammography setup had a spatial resolution of 7 lp/mm with both x-rays. Monochromatic x-rays generated using a multilayer mirror may be a useful diagnostic tool for breast examination by providing high contrast imaging with a low radiation dose.

  2. Quality control: comparison of images quality with screen film system and digital mammography CR

    International Nuclear Information System (INIS)

    Alvarenga, Frederico L.; Nogueira, Maria do Socorro

    2008-01-01

    The mammography screen film system should be used as part of processing chemicals, revelation process, equipment and this system has have a progressive replacing by the digital technology Full Field Digital Mammography FFDM, Computed Radiography (CR) Mammography and hardcopy. This new acquisition process of medical images has improved radiology section; however it is necessary efficient means for evaluating of the quality parameters. It should be considered taking into account the adaptation of the existent equipment and that procedures adopted for the exam, as well the adaptation of the new mammography films, the radiologist view box constitutes a part of the quality control program. This program aims at obtaining radiography with good quality that allows obtaining more information for the diagnosis and decreases the patient dose. For evaluation the quality image, this article is focused on presenting the differences regarding the acquired images through simulator mammography radiographic PMMA (Poly methyl methacrylate) in CR Mammography system and screen film system. The tests were accomplished at the same equipment of Mammography with the Automatic Exposure Control using a tension of 28 kV for both systems. The quality tests evaluated the spatial resolution, the own structures of the phantom, artifacts, optical density and contrast with conventional and laser films by mammography system. The installation for the accomplishment of the test has a quality control program. The evaluation was based on the pattern developed by the competent organ of the State of Minas Gerais. In this study, it was verified that the suitable Phantom Mama used by the Brazilian School of Radiology for conventional mammography did not obtain satisfactory result for Spatial Resolution in the digital mammography system CR. The final aim of this work is to obtain parameters to characterize the reference phantom quality image in an objective way. These parameters will be used to compare

  3. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery

    Science.gov (United States)

    Rogers, Thomas W.; Jaccard, Nicolas; Griffin, Lewis D.

    2017-05-01

    Previously, we investigated the use of Convolutional Neural Networks (CNNs) to detect so-called Small Metallic Threats (SMTs) hidden amongst legitimate goods inside a cargo container. We trained a CNN from scratch on data produced by a Threat Image Projection (TIP) framework that generates images with realistic variation to robustify performance. The system achieved 90% detection of containers that contained a single SMT, while raising 6% false positives on benign containers. The best CNN architecture used the raw high energy image (single-energy) and its logarithm as input channels. Use of the logarithm improved performance, thus echoing studies on human operator performance. However, it is an unexpected result with CNNs. In this work, we (i) investigate methods to exploit material information captured in dual-energy images, and (ii) introduce a new CNN training scheme that generates `spot-the-difference' benign and threat pairs on-the-fly. To the best of our knowledge, this is the first time that CNNs have been applied directly to raw dual-energy X-ray imagery, in any field. To exploit dual-energy, we experiment with adapting several physics-derived approaches to material discrimination from the cargo literature, and introduce three novel variants. We hypothesise that CNNs can implicitly learn about the material characteristics of objects from the raw dual-energy images, and use this to suppress false positives. The best performing method is able to detect 95% of containers containing a single SMT, while raising 0.4% false positives on benign containers. This is a step change improvement in performance over our prior work

  4. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  5. Image quality and radiation exposure in digital storage plate mammography with magnification technique

    International Nuclear Information System (INIS)

    Fiedler, E.; Aichinger, U.; Boehner, C.; Schulz-Wendtland, R.; Bautz, W.; Saebel, M.

    1999-01-01

    Purpose: Comparison of image quality between digital phosphor storage plate mammography in magnification technique and a conventional film screen system regarding the special aspect of radiation exposure. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system and two digital storage plate systems. Additionally, the radiograms of one digital system were postprocessed emphasizing contrast and included in the comparison. Results: The detectability of details in storage plate mammographies with magnification technique is almost equal to that of film screen mammographies. Thereby, lower radiation exposures were necessary using the digital systems. Conclusions: Based on these results, storage plate mammography in magnification technique is used in clinical routine at our institution. The correct parameters in image postprocessing are of elementary importance for detail detectability. Future studies must show, whether the lower radiation exposure in digital radiograms of the breast, revealing much higher background noise, will allow the same detail detectability as film screen mammographies. (orig.) [de

  6. Ultrasound as an Adjunct to Mammography for Breast Cancer Screening: A Health Technology Assessment

    Science.gov (United States)

    Nikitovic-Jokic, Milica; Tu, Hong Anh; Palimaka, Stefan; Higgins, Caroline; Holubowich, Corinne

    2016-01-01

    Background Screening with mammography can detect breast cancer early, before clinical symptoms appear. Some cancers, however, are not captured with mammography screening alone. Ultrasound has been suggested as a safe adjunct screening tool that can detect breast cancers missed on mammography. We investigated the benefits, harms, cost-effectiveness, and cost burden of ultrasound as an adjunct to mammography compared with mammography alone for screening women at average risk and at high risk for breast cancer. Methods We searched Ovid MEDLINE, Ovid Embase, EBM Reviews, and the NHS Economic Evaluation Database, from January 1998 to June 2015, for evidence of effectiveness, harms, diagnostic accuracy, and cost-effectiveness. Only studies evaluating the use of ultrasound as an adjunct to mammography in the specified populations were included. We also conducted a cost analysis to estimate the costs in Ontario over the next 5 years to fund ultrasound as an adjunct to mammography in breast cancer screening for high-risk women who are contraindicated for MRI, the current standard of care to supplement mammography. Results No studies in average-risk women met the inclusion criteria of the clinical review. We included 5 prospective, paired cohort studies in high-risk women, 4 of which were relevant to the Ontario context. Adjunct ultrasound identified between 2.3 and 5.9 additional breast cancers per 1,000 screens. The average pooled sensitivity of mammography and ultrasound was 53%, a statistically significant increase relative to mammography alone (absolute increase 13%; P screening alone. The GRADE for this body of evidence was low. Additional annual costs of using breast ultrasound as an adjunct to mammography for high-risk women in Ontario contraindicated for MRI would range from $15,500 to $30,250 in the next 5 years. Conclusions We found no evidence that evaluated the comparative effectiveness or diagnostic accuracy of screening breast ultrasound as an adjunct to

  7. [Mammography screening of breast cancer in Tunisia. Results of first experience].

    Science.gov (United States)

    Kribi, Lilia; Sellami, Dorra; el Amri, Aïda; Mnif, Nejla; Ellouze, Thouraya; Chebbi, Ali; Ben Romdhane, Khaled; Hamza, Radhi

    2003-01-01

    This article reports the results of a mammography screening program of breast cancer, realized in the department of Radiology, Charles Nicolle hospital. A free screening mammography with two incidences was offered to women aged from 40 to 70 years old. 2200 mammographies were realized from May 1995 till July 1997. Women having a positive test benefited of a diagnostic explorations in the same unity. The positive test rate was 24%. Predictive positive value was 31%. This program allowed to detect 10 subclinical cancers, corresponding to a rate of detection of 4.5 cancers for 1000 women. This program is a first experience which demonstrated the feasibility of the mammography screening to wide scale and allowed the medical and paramedical team to acquire an experience.

  8. Benefits, risks, and costs of mammography

    International Nuclear Information System (INIS)

    Richter, B.; Rausch, L.

    1977-01-01

    The risk seems to be acceptable if the age-dependency of the frequency of breast cancer is disregarded, i.e. if calculation is done with average values, as is being done frequently (15, 25, 32, 48). This procedure however veils the real circumstances in the examination of young women thus also veiling a risk which could otherwise be made precise and avoidable. The risk of radiation-induced cancerogenesis in the female breast was verified by similar statements made by several empiric investigations on man. The course of the dose-effect-relation in the region of few rad is still unexplained however, although the results do not contradict to the assumption of a linear dose-effect-relation. Thus it seems not advisable to ignore the induction of carcinomas by x-radiation for the sphere of mammography with the doses usually applied today. A reduction of radiation exposition by dose-saving measures to one tenth of the present value (or less) however would make the risk highly unimportant. Advantage/risk/cost-analyses should encourage the responsible persons to make reasonable proposals for the application of methods, in this case mammography. The discouraging of patients whom mammography is indicated for would be a side-effect which is not desired. Just as wrong would be the stimulation of an unjustified feeling of being sure and the demand for costly medical measures by uncritical reports of success. The indication of the considerably high costs of mammography should, together with the advantage expected, be a quantitative criterion for the optimal distribution of limited means the necessity of which cannot be denied. (orig.) [de

  9. Factors influencing elderly women's mammography screening decisions: implications for counseling

    Directory of Open Access Journals (Sweden)

    Davis Roger B

    2007-11-01

    Full Text Available Abstract Background Although guidelines recommend that clinicians consider life expectancy before screening older women for breast cancer, many older women with limited life expectancies are screened. We aimed to identify factors important to mammography screening decisions among women aged 80 and older compared to women aged 65–79. Methods Telephone surveys of 107 women aged 80+ and 93 women aged 65–79 randomly selected from one academic primary care practice who were able to communicate in English (60% response rate. The survey addressed the following factors in regards to older women's mammography screening decisions: perceived importance of a history of breast disease, family history of breast cancer, doctor's recommendations, habit, reassurance, previous experience, mailed reminder cards, family/friend's recommendations or experience with breast cancer, age, health, and media. The survey also assessed older women's preferred role in decision making around mammography screening. Results Of the 200 women, 65.5% were non-Hispanic white and 82.8% were in good to excellent health. Most (81.3% had undergone mammography in the past 2 years. Regardless of age, older women ranked doctor's recommendations as the most important factor influencing their decision to get screened. Habit and reassurance were the next two highly ranked factors influencing older women to get screened. Among women who did not get screened, women aged 80 and older ranked age and doctor's counseling as the most influential factors and women aged 65–79 ranked a previous negative experience with mammography as the most important factor. There were no significant differences in preferred role in decision-making around mammography screening by age, however, most women in both age groups preferred to make the final decision on their own (46.6% of women aged 80+ and 50.5% of women aged 65–79. Conclusion While a doctor's recommendation is the most important factor influencing

  10. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    Science.gov (United States)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.

    2017-12-01

    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  11. Study of signal-to-noise ratio in digital mammography

    Science.gov (United States)

    Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie

    2009-02-01

    Mammography techniques have recently advanced from those using analog systems (the screen-film system) to those using digital systems; for example, computed radiography (CR) and flat-panel detectors (FPDs) are nowadays used in mammography. Further, phase contrast mammography (PCM)-a digital technique by which images with a magnification of 1.75× can be obtained-is now available in the market. We studied the effect of the air gap in PCM and evaluated the effectiveness of an antiscatter x-ray grid in conventional mammography (CM) by measuring the scatter fraction ratio (SFR) and relative signal-to-noise ratio (rSNR) and comparing them between PCM and the digital CM. The results indicated that the SFRs for the CM images obtained with a grid were the lowest and that these ratios were almost the same as those for the PCM images. In contrast, the rSNRs for the PCM images were the highest, which means that the scattering of x-rays was sufficiently reduced by the air gap without the loss of primary x-rays.

  12. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Science.gov (United States)

    Ma, Jing; Song, Zhi-Qiang; Yan, Fu-Hua

    2014-01-01

    To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, pVNC) values were negatively correlated with the fat pathology grading (r = -0.642,pVNC values (F = 25.308,pVNC values were only observed between the fat-present and fat-absent groups. Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  13. Development of special ionization chambers for a quality control program in mammography; Desenvolvimento de camaras de ionizacao especiais para controle de qualidade em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas Oliveira da

    2013-07-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  14. Quality Control in Mammography: Image Quality and Patient Doses

    International Nuclear Information System (INIS)

    Ciraj Bjelac, O.; Arandjic, D.; Boris Loncar, B.; Kosutic, D.

    2008-01-01

    Mammography is method of choice for early detection of breast cancer. The purpose of this paper is preliminary evaluation the mammography practice in Serbia, in terms of both quality control indicators, i.e. image quality and patient doses. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Mean glandular doses ranged from 0.12 to 2.8 mGy, while reference optical density ranged from 1.2 to 2.8. Correlation between image contrast and mean glandular doses was demonstrated. Systematic implementation of quality control protocol should provide satisfactory performance of mammography units and maintain satisfactory image quality and keep patient doses as low as reasonably practicable. (author)

  15. Physical image quality of computed radiography in mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Muhammad Jamal Isa; Wan Muhamad Saridan Wan Hassan; Fatimah Othman

    2013-01-01

    Full-text: Mammography is a screening procedure that mostly used for early detection of breast cancer. In digital imaging system, Computed Radiography is a cost-effective technology that applied indirect conversion detector. The paper presents physical image quality parameter measurements namely modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of Computed Radiography in mammography system. MTF was calculated from two different orientations of slanted images of an edge test device and NNPS was estimated using flat-field image. Both images were acquired using a standard mammography beam quality. DQE was determined by applying the MTF and NNPS values into our developed software program. Both orientations have similar DQE characteristics. (author)

  16. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast

    International Nuclear Information System (INIS)

    Patel, B.N.; Thomas, J.V.; Lockhart, M.E.; Berland, L.L.; Morgan, D.E.

    2013-01-01

    Aim: To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. Materials and methods: The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Results: Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40–77). The mean ± SD lesion contrast values (non-tumoural pancreas – tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 ke

  17. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Michail, C; Kalyvas, N; Kandarakis, I; Fountos, G

    2015-01-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNR tc ) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNR tc /MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection. (paper)

  18. Beyond the mammography debate: a moderate perspective.

    Science.gov (United States)

    Kaniklidis, C

    2015-06-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) "the mammography debate you will have with you always." Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis-also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions.

  19. Analytical Study of the Effect of the System Geometry on Photon Sensitivity and Depth of Interaction of Positron Emission Mammography

    Directory of Open Access Journals (Sweden)

    Pablo Aguiar

    2012-01-01

    Full Text Available Positron emission mammography (PEM cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required.

  20. Dose measurements in mammography

    International Nuclear Information System (INIS)

    Kainberger, F.; Kallinger, W.

    1977-01-01

    Dose measurements at the mamma during mammography were carried out in the form of direct measurement with thermoluminescent dosimetry. Measurement was done for the in- and outcoming doses at the mamma, the dose exposure of the sternal region and the scattered rays above the symphysis, the latter as parameter for the genetic radiation exposure. As expected, the dose of the smooth radiation used for mammography showed a strong decrease at the outcome point in comparison with the income point. Surprisingly high was the scattered radiation in the sternal region. A corresponding protection by lead plates could be taken into consideration. Extremely low is the scattered radiation above the symphysis. Even measurements with the very sensitive calcium fluoride dosimeters did not reveal any practically important dose in the symphysis region. Most measurement values remained below the determinable dose of 0.3mR. Some maximal values varied in the range of 3-1 mR. (orig.) [de

  1. Digital mammography and their developments; Digitale Mammografie und ihre Weiterentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Wienbeck, Susanne [Universitaetsmedizin Goettingen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Fischer, Uwe [Diagnostisches Brustzentrum Goettingen (Germany)

    2015-09-15

    At the present time digital mammography is a satisfactory breast diagnostic imaging in clinical as well as screening mammography in defined age groups. Nevertheless it shows beside the application of ionizing radiation in women with dense breasts limitations in the detection of non calcification breast cancers. Tomosynthesis, digital contrast-enhanced mammography and breast-CT with or without contrast media lead to better results. Especially the application of contrast media for the visualisation of the tumor angiogenesis is invariably superior to all other non-contrast imaging modalities. However, the excellent results of breast MRI will be probably accessible with none of the new procedures.

  2. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida; Toledano, Alicia; Di Maggio, Cosimo; La Grassa, Manuela; Pescarini, Luigi; Muzzio, Pier Carlo

    2010-01-01

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  3. Some practical aspects of dual-energy CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J. (Charing Cross Group of Hospitals, London (UK))

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number.

  4. Mammography in breast screening and in the evaluation and management of breast cancer

    International Nuclear Information System (INIS)

    Onyesoh, C.N.

    2006-01-01

    This paper aims to discuss the importance of breast screening most especially amongst women above the age of 40 years.the limitation of the screening procedure is due to lack of special machines and power awareness campaigns. the application of Mammography and ultrasound in the examination of the breast and other breast imaging techniques will be considered in this paper. The paper will look at the indications for mammography, indications for breast ultrasound, signs of breast carcinoma on mammography, breast enlargement and also the need for breast ultrasound in cases of discrete Mammography

  5. Mammography screening: A major issue in medicine.

    Science.gov (United States)

    Autier, Philippe; Boniol, Mathieu

    2018-02-01

    Breast cancer mortality is declining in most high-income countries. The role of mammography screening in these declines is much debated. Screening impacts cancer mortality through decreasing the incidence of number of advanced cancers with poor prognosis, while therapies and patient management impact cancer mortality through decreasing the fatality of cancers. The effectiveness of cancer screening is the ability of a screening method to curb the incidence of advanced cancers in populations. Methods for evaluating cancer screening effectiveness are based on the monitoring of age-adjusted incidence rates of advanced cancers that should decrease after the introduction of screening. Likewise, cancer-specific mortality rates should decline more rapidly in areas with screening than in areas without or with lower levels of screening but where patient management is similar. These two criteria have provided evidence that screening for colorectal and cervical cancer contributes to decreasing the mortality associated with these two cancers. In contrast, screening for neuroblastoma in children was discontinued in the early 2000s because these two criteria were not met. In addition, overdiagnosis - i.e. the detection of non-progressing occult neuroblastoma that would not have been life-threatening during the subject's lifetime - is a major undesirable consequence of screening. Accumulating epidemiological data show that in populations where mammography screening has been widespread for a long time, there has been no or only a modest decline in the incidence of advanced cancers, including that of de novo metastatic (stage IV) cancers at diagnosis. Moreover, breast cancer mortality reductions are similar in areas with early introduction and high penetration of screening and in areas with late introduction and low penetration of screening. Overdiagnosis is commonplace, representing 20% or more of all breast cancers among women invited to screening and 30-50% of screen

  6. Eighteen cases of small breast cancer: a comparative study of mammography, CT scan and pathology

    International Nuclear Information System (INIS)

    Wu Yaopan; Lin Haogao; Cai Peiqiang; Ouyang Yi; Zhang Weizhang; Lu Bingui

    2003-01-01

    Objective: To improve the early diagnosis of breast cancer through a study of the mammography and CT findings of small breast cancer. Methods: The mammography and CT findings of 18 cases of small breast cancer (φ≤2.0 cm in diameter) were studied and compared with pathological results. Results: The diagnostic accuracy of CT and mammography was 83% and 61%, respectively. There was a statistical difference between both modalities (P<0.05), CT scan was superior to mammography. However, there was no difference between them when assessing the lesion arising in F-type breast. In detecting breast fine cluster of calcification, the sensitivity of mammography was better than CT scan. Conclusion: The patient suspected of small breast cancer should take mammography as the first evaluation. CT scan is reserved for the further investigation. The mammography combined with CT scan can improve the early diagnostic rate of breast cancer

  7. WE-DE-207B-01: Optimization for Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.

  8. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  9. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Experimental Validation.

    Science.gov (United States)

    Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi

    2017-02-01

    Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.

  10. Evaluation of physical parameters and implementation of quality control in mammography diagnosed for a pilot of breast cancer screening in the Caja Costarricense de Seguro Social (CCSS)

    International Nuclear Information System (INIS)

    Hernandez Angulo, Carolina Maria

    2012-01-01

    The purpose of mammography has been to provide the contrast between the lesion and adjacent healthy tissue of the breast. The quality control which should be performed in mammography services is essential to obtain the necessary contrast in mammography and thus achieve a prompt detection of breast lesions. The quality control program has helped to obtain exact diagnosis in mammography and has contributed to reduce mortality from breast cancer in Costa Rica. The Caja Costarricense de Seguro Social (CCSS) has sought to improve the quality of mammograms performed in the different health centers by implementing quality control programs in the services. The evaluation of the physical parameters has had as aim to perform an assessment of the equipment used in mammography facilities. The image quality, dosimetry, optical density, performance, accuracy and repeatability of voltage applied to the tube, filtration and Half-value layer in system of screen film mammography have been evaluated. The usefulness of quality control programs and needs of the services to implement a pilot plan for breast screening, can be seen when comparing the obtained results. The protocol of Mammography Quality Control, TECDOC 1517 from the International Atomic Energy Agency (IAEA), is implemented with this project and the associated software in four of the six hospitals evaluated in this study. (author) [es

  11. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    Science.gov (United States)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  12. XERG-mammography system: a solution to the dose-quality problem

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, M

    1981-05-01

    The XERG (Xonics-Electron-Radio-Graphy) system is the first ionographic system (High-Pressure-Gas-Iono-graphy) suitable for clinical application which became available for testing. The basic principle, the function and imaging qualities of the XERG system are described and first clinical experiences reported. The XERG mammogram is a transparent X-ray negative image, the image quality of which is characterized by good general image contrast, a moderate edge-effect and a high quantum-noise level but giving an extremely low dose rate (4.5% compared to screenless mammography film). Although the XERG quality is not satisfactory in contact technique, it yields results which are equal in quality, when using a 1.5-fold magnification technique, to the results obtained with screenless film mammography at one-tenth of the dose, and is superior to any commercially available film-screen system. Hence, in our opinion, the XERG mammography system is a step forward towards high-quality low-dose mammography.

  13. [Hierarchy structuring for mammography technique by interpretive structural modeling method].

    Science.gov (United States)

    Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2009-10-20

    Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.

  14. Mechanistic modeling for mammography screening risks

    International Nuclear Information System (INIS)

    Bijwaard, Harmen

    2008-01-01

    Full text: Western populations show a very high incidence of breast cancer and in many countries mammography screening programs have been set up for the early detection of these cancers. Through these programs large numbers of women (in the Netherlands, 700.000 per year) are exposed to low but not insignificant X-ray doses. ICRP based risk estimates indicate that the number of breast cancer casualties due to mammography screening can be as high as 50 in the Netherlands per year. The number of lives saved is estimated to be much higher, but for an accurate calculation of the benefits of screening a better estimate of these risks is indispensable. Here it is attempted to better quantify the radiological risks of mammography screening through the application of a biologically based model for breast tumor induction by X-rays. The model is applied to data obtained from the National Institutes of Health in the U.S. These concern epidemiological data of female TB patients who received high X-ray breast doses in the period 1930-1950 through frequent fluoroscopy of their lungs. The mechanistic model that is used to describe the increased breast cancer incidence is based on an earlier study by Moolgavkar et al. (1980), in which the natural background incidence of breast cancer was modeled. The model allows for a more sophisticated extrapolation of risks to the low dose X-ray exposures that are common in mammography screening and to the higher ages that are usually involved. Furthermore, it allows for risk transfer to other (non-western) populations. The results have implications for decisions on the frequency of screening, the number of mammograms taken at each screening, minimum and maximum ages for screening and the transfer to digital equipment. (author)

  15. The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement. A phantom study

    International Nuclear Information System (INIS)

    Yamada, Sachiko; Ueguchi, Takashi; Ukai, Isao; Nagai, Yumiko; Yamakawa, Masanobu; Shimosegawa, Eku; Shimazu, Takeshi; Hatazawa, Jun

    2012-01-01

    Renal cyst pseudoenhancement, an artifactual increase of computed tomography (CT) attenuation for cysts with increased iodine concentrations in the renal parenchyma, complicates the classification of cysts and may thus lead to the mischaracterization of a benign non-enhancing lesion as an enhancing mass. The purpose of this study was to use a phantom model to assess the ability of dual-energy virtual monochromatic imaging to reduce renal pseudoenhancement. A water-filled cylindrical cyst model suspended in varying concentrations of iodine solution, to simulate varying levels of parenchymal enhancement, was scanned with a dual-energy CT scanner using the following three scanning protocols with different combinations of tube voltage: 80 and 140 kV; 80 and 140 kV with tin filter; and 100 and 140 kV with tin filter. Virtual monochromatic images were then synthesized for each dual-energy scan. Single-energy scan with a tube voltage of 120 kV was also performed to obtain polychromatic images as controls. Mean attenuation values (in Hounsfield units) of cyst proxies were measured on both polychromatic and virtual monochromatic images. Pseudoenhancement was considered to be present when the cyst attenuation level increased by more than 10 HU (Hounsfield Unit) as the background iodine concentration increased from 0.0% to 0.4%, 1.5%, or 2.5%. Our results revealed that pseudoenhancement was not observed on any of the monochromatic images, but appeared on polychromatic images at a background iodine concentration of 2.5%. We thus conclude that dual-energy virtual monochromatic images have a potential to reduce renal pseudoenhancement. (author)

  16. Dose reduction through gridless technique in digital full-field mammography

    International Nuclear Information System (INIS)

    Diekmann, F.; Diekmann, S.; Berzeg, S.; Blick, U.; Fischer, T.; Hamm, B.

    2003-01-01

    Purpose: To determine the role of the scatter grid in digital full-field mammography with respect to image quality and dose and to compare the experimental results with initial clinical experience. Materials and Methods: A phantom consisting of 205 fields that enclose gold dots of different thickness and size (CD-Mam phantom, Medical Department, Nijmegen, Netherlands) was used for digital full-field mammography with the conventional grid module and a special gridless module. Four different breast thicknesses were simulated using Plexiglas as scatter material. First, the phantom was exposed at the parameter and dose settings automatically selected in each experimental setup (with and without grid). Subsequently, the phantom was exposed at the different simulated breast thicknesses using the gridless module in combination with the parameters automatically selected for the grid module. This was followed by a series of phantom mammograms obtained with the experimental setup reversed. The 16 mammograms were evaluated by 3 readers and the results compared considering breast thickness, radiation dose, and quality. The gridless module was used for preoperative labeling in 16 patients for comparison of mammograms obtained with and without a grid. Results: For the same entrance dose used in routine mammography, digital mammography without grid is superior to digital mammography with grid when performed on simulated thin breasts (Plexiglas less than 3 cm), with no difference found when performed on simulated large breasts. The advantages of gridless mammography are more pronounced at a markedly reduced entrance dose (identical parenchymal dose without and with grid using the dose automatically selected for the gridless module). This tendency is confirmed by the initial clinical comparison. (orig.) [de

  17. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  18. Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Duan, Xinhui; Xi, Yin; Lewis, Matthew A; Pearle, Margaret S; Antonelli, Jodi A; Goerne, Harold; Kolitz, Elysha M; Abbara, Suhny; Lenkinski, Robert E; Fielding, Julia R; Leyendecker, John R

    2018-04-07

    To assess the non-inferiority of dual-layer spectral detector CT (SDCT) compared to dual-source dual-energy CT (dsDECT) in discriminating uric acid (UA) from non-UA stones. Fifty-seven extracted urinary calculi were placed in a cylindrical phantom in a water bath and scanned on a SDCT scanner (IQon, Philips Healthcare) and second- and third-generation dsDECT scanners (Somatom Flash and Force, Siemens Healthcare) under matched scan parameters. For SDCT data, conventional images and virtual monoenergetic reconstructions were created. A customized 3D growing region segmentation tool was used to segment each stone on a pixel-by-pixel basis for statistical analysis. Median virtual monoenergetic ratios (VMRs) of 40/200, 62/92, and 62/100 for each stone were recorded. For dsDECT data, dual-energy ratio (DER) for each stone was recorded from vendor-specific postprocessing software (Syngo Via) using the Kidney Stones Application. The clinical reference standard of X-ray diffraction analysis was used to assess non-inferiority. Area under the receiver-operating characteristic curve (AUC) was used to assess diagnostic performance of detecting UA stones. Six pure UA, 47 pure calcium-based, 1 pure cystine, and 3 mixed struvite stones were scanned. All pure UA stones were correctly separated from non-UA stones using SDCT and dsDECT (AUC = 1). For UA stones, median VMR was 0.95-0.99 and DER 1.00-1.02. For non-UA stones, median VMR was 1.4-4.1 and DER 1.39-1.69. SDCT spectral reconstructions demonstrate similar performance to those of dsDECT in discriminating UA from non-UA stones in a phantom model.

  19. CAD in breast imaging. Application in mammography and MR mammography

    International Nuclear Information System (INIS)

    Obenauer, S.; Hermann, K.P.

    2012-01-01

    Computer aided diagnosis systems (CAD-systems) are evaluated in different parts of diagnostic imaging. In breast imaging double reading which is time- and cost spending is necessary. Therefore a lot of studies evaluated the use of CAD-systems in mammography. However the rate of false-positives is too high to implement CAD-systems as double reader in routine work. In the future, improvements in this technique could perhaps change the performance of CAD-systems. (orig.)

  20. Dual-energy CT myelography on detection of spontaneous spinal cerebrospinal fluid leaks: initial study

    International Nuclear Information System (INIS)

    Zhang Qiaowei; Wang Dan; Zhang Jinhua; Wang Jin; Zhang Shizheng

    2011-01-01

    Objective: To assess the value of dual-energy computed tomography myelography (CTM) on detecting leaks of cerebrospinal fluid (CSF) in patients with spontaneous intracranial hypotension (SIH). Methods: Six patients with SIH underwent spinal CTM on a 2nd generation dual-source CT with tube voltage set at 100 and 140 kVp (with tin filter). The virtual non-contrast (VNC) and iodine map images were calculated from dual-energy images. The average weighted (AW) CTM images were mixed from two kVp images with mix factor of 0.5. Two radiologists evaluated CSF leak using two sets of images respectively: VNC + iodine map images and AW-CTM images. The results from two reading methods were compared. The level of CSF leaks along the nerve roots, C1-2 retrospinal CSF collections, epidural CSF collections and spinal epidural venous plexus were marked. The consensus about leak sites and CSF collections was made by two radiologists in the third session. Kappa statistics were used to measure the agreement between the two methods. Results: Forty-one leaks were detected using VNC + iodine map images. Forty-three leaks were detected on AW images. The agreement between two methods was excellent (Kappa = 0.997, P<0.01). There were no differences in the detection of C1-2 retrospinal CSF collections (n=2), epidural CSF collections (n=3) or spinal epidural venous plexus (n=1). VNC and iodine map images demonstrated superior visual effects than AW images. Conclusion: Dual-energy CTM can be used to diagnose spontaneous spinal cerebrospinal fluid leaks in SIH patient, (authors)

  1. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience.

    Science.gov (United States)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; de Bazelaire, Cedric

    2015-02-01

    To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24-92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4, respectively. The proportion of false positive cases induced by the addition of breast tomosynthesis to mammography was 2.1% (2/94), 2.1% (2/94), 9.5% (9/94) and 12.7% (12/94) for Readers 1, 2, 3 and 4, respectively. Adding breast tomosynthesis to mammography improved sensitivity and negative predictive value for all readers except for the most experienced one, in whom only a tendency for improvement

  2. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  3. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; Bazelaire, Cedric de

    2015-01-01

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  4. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  5. Screening for breast cancer with mammography

    International Nuclear Information System (INIS)

    Sickles, E.A.

    1991-01-01

    Mammography is generally accepted as a useful problem-solving clinical tool in characterizing known breast lesions, so that appropriate and timely treatment can be given. However, it remains grossly underutilized at what it does best: screening. The major strengths of mammography are (a) its ability to detect breast cancer at a smaller, potentially more curable stage than any other examination, and (b) its proved efficacy in reducing breast cancer mortality in asymptomatic women aged 40-74. If, as has recently been estimated, screening with mammography and physical examination can be expected to lower breast cancer deaths by 40%-50% among those actually examined (13), then the lives of almost 20,000 U.S. women might be saved each year if screening were to become very widely used. The challenges of the next decade are clear, to mount much more effective campaigns to educate physicians and lay women about the life-saving benefits of breast cancer screening, to devise increasingly effective and lower cost screening strategies, to further improve the current high quality of mammographic imaging despite its increasing proliferation, and to train large numbers of breast imaging specialists to guarantee that the growing case load of screening and problem-solving mammograms is interpreted with a very high level of skill

  6. Influence of age and menstrual cycle on mammography and MR imaging of the breast

    International Nuclear Information System (INIS)

    Mueller-Schimpfle, M.; Ohmenhaeuser, K.; Claussen, C.D.

    1997-01-01

    Age and menstrual cycle have an important influence on the breast. This well-known fact is experienced in the daily routine of gynecologists and radiologists. The number of publications addressing the effect of these influences on imaging, however, is surprisingly low. The aim of this work is to describe the influences of age and menstrual cycle on the breast and to address their clinical relevance for mammography and MR mammography. Therefore, own data are presented concerning the age and menstrual cycle influences on breast parenchyma in dynamic MR mammography. Literature data are used to correlate mammography and MR imaging findings with these influences. The changes of the breast due to age and menstrual cycle have important direct implications on performing and reading conventional mammography and MR mammography. The knowledge of these changes is also helpful in the interpretation of findings when comparing different methods. Finally, the data gained by using imaging methods enable important basic insights into physiology and physiopathology of the breast in vivo. (orig.) [de

  7. Is Short-Interval Mammography Necessary After Breast Conservation Surgery and Radiation Treatment in Breast Cancer Patients?

    International Nuclear Information System (INIS)

    Hymas, Richard V.; Gaffney, David K.; Parkinson, Brett T.; Belnap, Thomas W.; Sause, William T.

    2012-01-01

    Purpose: The optimum timing and frequency of mammography in breast cancer patients after breast-conserving therapy (BCT) are controversial. The American Society of Clinical Oncology recommends the first posttreatment mammogram 1 year after diagnosis but no earlier than 6 months after completion of radiotherapy. The National Comprehensive Cancer Network recommends annual mammography. Intermountain Healthcare currently follows a more frequent mammography schedule during the first 2 years in BCT patients. This retrospective study was undertaken to determine the cancer yield mammography during the first 2 years after BCT. Methods and Materials: 1,435 patients received BCT at Intermountain Healthcare between 2003 and 2007, inclusive. Twenty-three patients had bilateral breast cancer (1,458 total breasts). Patients were followed up for 24 months after diagnosis. The 1- and 2-year mammography yields were determined and compared with those of the general screening population. Results: 1,079 breasts had mammography at less than 1 year, and two ipsilateral recurrences (both noninvasive) were identified; 1,219 breasts had mammography during the second year, and nine recurrences (three invasive, six noninvasive) were identified. Of the 11 ipsilateral recurrences during the study, three presented with symptoms and eight were identified by mammography alone. The mammography yield was 1.9 cancers per 1,000 breasts the first year and 4.9 per 1,000 the second year. Conclusions: These data demonstrate that the mammography yield during the first 2 years after BCT is not greater than that in the general population, and they support the policy for initiating followup mammography at 1 year after BCT.

  8. Hidden costs of low-cost screening mammography

    International Nuclear Information System (INIS)

    Cyrlak, D.

    1987-01-01

    Twenty-two hundred women in Orange County, California, took part in a low-cost mammography screening project sponsored by the American Cancer Society and the KCBS-TV. Patients were followed up by telephone and questioned about actual costs incurred as a result of screening mammography, including costs of repeated and follow-up mammograms, US examinations and surgical consultations. The total number of biopsies, cancers found, and the costs involved were investigated. The authors' results suggest that particularly in centers with a high positive call rate, the cost of screening mammograms accounts for only a small proportion of the medical costs

  9. Focused two-dimensional antiscatter grid for mammography

    International Nuclear Information System (INIS)

    Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.

    2002-01-01

    We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed

  10. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Sawada, A [Kyoto college of medical science, Nantan, Kyoto (Japan); Uehara, T; Yuasa, Y; Koike, M; Kawamura, S [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the

  11. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content...... in porous materials relevant for the building industry. The theory of dual-energy x-ray absorptiometry (DEXA) is presented. DEXA results on two combinations of aluminium and acrylic plastic are compared with corresponding values calculated from the geometry of the experimental setup. The results from the x......-ray measurements show good agreement with results from the two standard materials which imitate water in a porous material. On this background the dual-energy x-ray absorptiometry measurement principle can be used on porous structural materials....

  12. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  13. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun, E-mail: maxj802@163.com [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo; Gao, Dangzhong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Jiayun [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  14. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  15. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.

    Science.gov (United States)

    Patel, B N; Thomas, J V; Lockhart, M E; Berland, L L; Morgan, D E

    2013-02-01

    To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40-77). The mean ± SD lesion contrast values (non-tumoural pancreas - tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 keV was 31 ± 25 HU (p = 0

  16. Some practical aspects of dual-energy CT scanning

    International Nuclear Information System (INIS)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J.

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number. (U.K.)

  17. Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography

    International Nuclear Information System (INIS)

    Uotani, Kensuke; Watanabe, Yoshiyuki; Higashi, Masahiro; Nakazawa, Tetsuro; Kono, Atsushi K.; Hori, Yoshiro; Fukuda, Tetsuya; Kanzaki, Suzu; Yamada, Naoaki; Naito, Hiroaki; Itoh, Toshihide; Sugimura, Kazuro

    2009-01-01

    We evaluated quantification of calcified carotid stenosis by dual-energy (DE) CTA and dual-energy head bone and hard plaque removal (DE hard plaque removal) and compared the results to those of digital subtraction angiography (DSA). Eighteen vessels (13 patients) with densely calcified carotid stenosis were examined by dual-source CT in the dual-energy mode (tube voltages 140 kV and 80 kV). Head bone and hard plaques were removed from the dual-energy images by using commercial software. Carotid stenosis was quantified according to NASCET criteria on MIP images and DSA images at the same plane. Correlation between DE CTA and DSA was determined by cross tabulation. Accuracies for stenosis detection and grading were calculated. Stenosis could be evaluated in all vessels by DE CTA after applying DE hard plaque removal. In contrast, conventional CTA failed to show stenosis in 13 out of 18 vessels due to overlapping hard plaque. Good correlation between DE plaque removal images and DSA images was observed (r 2 =0.9504) for stenosis grading. Sensitivity and specificity to detect hemodynamically relevant (>70%) stenosis was 100% and 92%, respectively. Dual-energy head bone and hard plaque removal is a promising tool for the evaluation of densely calcified carotid stenosis. (orig.)

  18. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok

    2017-08-01

    BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.

  19. Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making

    Directory of Open Access Journals (Sweden)

    Turgay Ayer

    2013-01-01

    Full Text Available Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs, in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions.

  20. Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    OpenAIRE

    Xi, Pengcheng; Shu, Chang; Goubran, Rafik

    2018-01-01

    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be tra...